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Summary 

Detailed investigation of socially important diseases with modern experimental methods has 

resulted in the generation of large volume of valuable data. However, analysis and interpretation 

of this data needs application of efficient computational techniques and systems biology 

approaches. In particular, the techniques allowing the reconstruction of associative networks of 

various biological objects and events can be useful. In this publication, the combination of 

different techniques to create such a network associated with an abstract cell environment is 

discussed in order to gain insights into the functional as well as spatial interrelationships. It is 

shown that experimentally gained knowledge enriched with data warehouse content and text 

mining data can be used for the reconstruction and localization of a cardiovascular disease 

developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein). 

 

1 Introduction 

More than 4000 human diseases are known and defined [1]. Regarding the medical characteristics 

or main features one can see that any disease is defined or specified by particular symptoms and/or 

laboratory parameters. In practice the diagnosis problem is based on the fact that a lot of symptoms, 

such as fever, are related to many diseases. Therefore, the diagnostic procedure will always be a 

differential process which will produce a set of possible diseases. Furthermore, the so-called 

personalized medicine makes the problem of finding the patient-relevant diagnosis and 

recommendation for its treatment much more difficult. Based on the data of molecular biology, the 

development of new and more efficient tools for medical diagnosis and therapy process is becoming 

possible.  

Today, more and more diseases can be reduced to simple metabolic processes, which more or less 

are based on mutations in related genes. OMIM [2] examplifies of well-known information systems 

which exactly represent this kind of knowledge. Overall, there are more than 1000 molecular 

database and information systems which represent various molecular and phenotypic data. These 

information resources were designed on the basis of either automatic data extraction or manual 
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annotation and curation. Behind these information systems there is one more specific and powerful 

information system which will present molecular and medical disease knowledge. The MEDLINE 

information system represents all relevant publications (abstracts and in the near future a complete 

listing of papers) which are relevant for molecular medicine or biomedicine. Overall one have 

access to more than 1000 powerful database and information systems which will help identify 

molecular knowledge about any disease. Furthermore, this data can be supported, enriched or fused 

by the extension of text and data mining techniques which allow the automatic extraction of 

medical and molecular knowledge from the PubMed system, which includes all relevant scientific 

results. Therefore, it is possible to construct or predict the metabolic network for any disease. This 

kind of work is relatively new and during the last years different database integration and data 

mining systems have been implemented. However, the problem of all these systems is, that data 

integration and mining tools will produce networks, which are too complex. Therefore, the 

development of special filter systems or visualization tools is a necessary step in understanding and 

analyzing these complex metabolic disease-related networks. In this paper it will be demonstrated 

how the data integration and data mining tools can be used to gather the molecular knowledge on 

diseases.  

The focus of this application is on Cardiovascular diseases (CVDs), and more precisely the dilated 

cardiomyopathy, which is the leading cause of death in developed countries. Based on the 

experimental identification of a CVD relevant protein, two protein-protein interaction networks 

were constructed by using the network visualization and analysis tool VANESA [3] and the text 

mining tool ANDVisio [4], which is also able to identify the localization of network components. 

This localization information was extended, combined with the created networks and finally 

visualized in 3D by the CELLmicrocosmos 4.2 PathwayIntegration (CmPI) [5]. 

 

2 Basics 

2.1 Metabolic disease networks 

Much attention has been recently focused on the metabolic aspects of Cardiovascular diseases 

(CVDs). The discovery of new CVDs specific molecular targets promoted the investigation of 

proteins functional roles in their specific pathways. It is quite complex to evaluate the weight of 

each trigger factor (metabolism, hormones, exogenous factors, etc.) on CVDs emergence. 

Epidemiological studies constitute the starting point for molecular medicine screening. The advent 

of high throughput analytical techniques (DNA chip, protein arrays, molecular imaging) has 

improved the capability to screen new candidate target proteins (genes). The relations of metabolic 

pathways of a sample coming from patients affected with dilated cardiomyopathy (DCM) was the 

basis of study for this publication. The proteome analysis is based on experimental data on which 

integrative bioinformatics approaches have been applied to characterize a specific functional 

pathway deregulated in the pathological sample. In this study, the combination of data warehouse 

with text mining approaches is demonstrated by using different software applications.  

 

2.2 Data integration 

Since industrial research of molecular biology questions starting with the Human Genome Project, 

one of the main challenges in bioinformatics is the integration of molecular data. Today high 

throughput analysis delivers data of complete genomes, for instance short sequences of all genes in 

an organism or expression patterns of thousands of a cell in shortest time. Analysis of these high 

throughput data by manual investigation using publications or relevant databases is no longer 
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possible. Consequently, biologist has to be supported by tools and methods that can accumulate 

experimental data with complementary data sources, estimate the data and compare or classify these 

data. This challenge leads us to the problem of database integration. 

Typically, data of genomes, genes, proteins, enzymes, chemical compounds, diseases, etcetera is 

stored in databases with worldwide availability. A good overview of important databases is 

provided by the annual special issue of Nucleic Acids Research [6]. The number of molecular 

databases is continuously increasing in the last decade. Molecular biological data has a high 

semantic heterogeneity that is caused by (experimental) data extracted from a series of experiments. 

Molecular biology deals with complex problems, hence enormous and versatile data is produced. 

The total number of databases, as well the data itself, is continuously increasing, as is the 

distribution and heterogeneity of the data. Particularly, data heterogeneity causes big problems in 

molecular biological data integration. Technical heterogeneity is caused by a high number of 

different formats and interfaces of the different data sources. Furthermore, the data is usually not 

available in a standard format which causes structural heterogeneity. Moreover, there is a level of 

semantic heterogeneity, because of missing standards and consensus for basic biological terms. In 

addition to the problems of molecular biological databases there are some more in data integration. 

Usually, data sources of an integrated system are distributed. That means, each and every source is 

located on separate systems and different locations. The distribution of several data sources leads 

automatically to the problem of autonomy. Regarding data integration, autonomy means 

independence of the data source that refers to access, configuration, development and 

administration. 

The major problem of data integration is heterogeneity that is caused by autonomy. Moreover, 

distribution can also cause heterogeneity, but not generally. The development of an integrated 

database system is a complex task. Particularly, if a large number of heterogeneous databases have 

to be integrated. Data warehouses (DWH) are one of the widely used structures for database 

integration. For that purpose a software infrastructure for building life science data warehouses 

using different common relational database management systems is introduced. The BioDWH [7] 

system is realized as a Java-based open source application that is supported on different platforms 

with an installed Java Runtime Environment (JRE). BioDWH is a flexible DWH infrastructure for 

bioinformatics; it is independent from the underlying RDBMS. Furthermore, the data warehouse 

approach provides an easy-to-use graphical user interface for administration and configuration. The 

main feature of the BioDWH tool-kit is the automatic storage and visualization of data content and 

information from different public databases into a homogeneous and consistent data warehouse. It 

provides integrated data from different widely-used life science databases, such as BRENDA [8], 

EMBL [9], ENZYME [10], GO [11], HPRD [12], KEGG [13], OMIM [2], Reactome [14], SCOP 

[15], Transfac [16], Transpath [17] and UniProt [18] and microarray data. Additionally, 

configuration of the infrastructure and its tools is also possible via XML, because it is human 

readable, well-formatted, easy accessible and standardized. A logging mechanism observes the 

integration process and begins a simple recovery process to guarantee a consistent state of the data 

warehouse. The data warehouse BioDWH addresses the aforementioned aspects of data integration.  

Based on the data from the warehouse infrastructure, the CardioVINEdb [19], a data warehouse 

approach, was developed to browse and explore life science data. Furthermore, a DWH system to 

search integrated life science data and simple navigation called DAWIS-M.D. was implemented 

based on the life science data from the BioDWH toolkit. In addition, the network editor VANESA 

uses the data from DAWIS-M.D to generate biological networks and enrich them with additional 

information. 
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2.3 Text mining 

Work with scientific literature and factual databases is required for research in every knowledge 

area. The size of this information pool is immense and expands exponentially. The PubMed 

database alone contains over 19 million abstracts [20] and their number increases annually by 1 

million. Thus, the development of computer algorithms for automated text analysis (text-mining) 

becomes a timely task. 

In microbiology and biomedicine the most important type of interactions is molecular-genetic. 

Extraction of facts concerning such interactions from literature and providing access to them can be 

divided in two directions: manual analysis of literature and automated data analysis with text-

mining techniques. Manual curation is most accurate but also is a highly time-consuming task [21]. 

The automated data analysis methods are not so accurate but allow the processing of larger amounts 

of data in less time and usually are used in three main tasks: extraction of data on molecular-genetic 

interactions between biological objects, discovery of new associations between different sources of 

biological information and biological data classification. 

For the automated extraction of molecular-genetic interactions between biological objects and new 

associations from the literature various methods exist:  

 methods based on the co-occurrence of objects, 

 natural language methods based on the deep syntactic analysis of single sentences (full 

parsing), 

 natural language methods based on rules and templates analysis (shallow parsing). 

Co-occurrence is based on the statistically important values of the joint frequency of names of 

biological objects in texts. The main advantage of this method is that it is easy to implement and 

achieves good results in regards to search completeness, but it is not so accurate. Moreover such 

approach does not allow detection of different parameters of interconnections between objects, such 

as type of interaction and its direction. PUBGENE [22] and FACTA [23] are based on this 

approach. In BioGene [24] it was implemented for prioritization of genes. 

“Full-parsing” is based on the definition of the language with formal grammar. There are many 

various types of grammars as well as descriptions of the complete sentence structure. The main 

limitation of this approach is its low time efficiency so it cannot be used for all tasks. MedScan 

from the PathwayStudio [25], GeneScene [26] are examples of a full parsing-based system, also it 

has been used by Fayruzov [27] for protein relation extraction. A text analysis algorithm based on 

formal grammar implemented in this system shows high accuracy but is also very time-consuming. 

“Shallow parsing” (deep parsing) is based on the extraction of information from sentences by using 

the partial connection between words in the sentence with the help of specified rules and templates. 

A SUISEKI system is based on it [28]. In the Chilibot system [29], the deep parsing method was 

implemented for the classification of extracted proteins (genes) from PubMed abstracts. The 

relations between two proteins may result from the existence or non-existence of an interaction or 

co-location. 

The biological data classification task is based on the idea of classification of various sources of 

data by user-specified features. For the solution of this task, different algorithms are applicable, 

such as hidden Markov models [30] or Bayesian networks. The BioBayesNet server [31], based on 

Bayesian networks can be used for such classification. 

Most of the modern text-mining systems are combining various methods. The ANDVisio, ALI 

BABA [32] and PolySearch [33] systems are based on the combination of co-ocurrence and 

shallow-parsing methods. The co-occurrence method is used for mapping of the biological objects 
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in texts with dictionaries, and then the deep parsing method should be used for the identification of 

interactions between mapped objects.  

Another important implementation of text-mining in micro biology and biomedicine field is 

automated building of thematic thesauruses of names of microbiology entities. Such dictionaries are 

crucial for the co-occurrence method in general, as well as for various text-mining systems that are 

based on the mapping of microbiological objects for the identification of interaction between them. 

This task can be partially solved by using data from semantic databases (database-mining) such as: 

Uniprot, Ensembl [34], PharmGKB [35], DrugBank [36] etc. Information contained within such 

databases has a high degree of confidence and is well-structured, but its rate of replenishment is 

inferior to the growth rate of the total number of publications. Another significant disadvantage for 

using dictionaries based exclusively on the information generated by database-mining for the 

identification of interactions between biological objects in literature is the lack of synonyms for 

biological objects. This problem is caused by authors often altering the canonical names of objects 

by adding back various special characters (dashes, colons, etc.), replacing the letters of the Greek 

alphabet to their transcriptions and vice versa, etc. in their publications. This is why the generation 

of a thesaurus with technologies combining text-mining and database-mining approaches achieves 

the best results. Tyne Liang and colleges used statistical approaches verified with real corpora in the 

thesaurus construction module of their bacterial Textual Processing and Retrieval System with 

thesauruses created by the analysis of databases and it showed good results [37].  

 

2.4 3D-visualization 

The scope of the 3D visualization introduced here is defined by two main areas: the pathway 

visualization in 3D and cell visualization and simulation. 

An established approach lies in the 2.5D Visualization of metabolic networks [38], which offers 

comparison methods for two different biological networks: On the first 2D layer a metabolic 

pathway is presented, on layer two a protein interaction network and on the third layer, located in 

the middle of the 3D space, the overlapping nodes are shown. In other 2.5D visualization 

approaches the layer concept is used for the inter-organismic [39] or inter-domain large-scale [40] 

comparison of related metabolic networks. Another analogy with those 2.5D approaches is the use 

of KEGG [13] as the metabolic data source. 

MetNetVR introduced the possibility of visualizing complex large-scale, hierarchical networks 

interactively by implementing different 3D layout algorithms [41]. Virtual Reality techniques are 

used to extend displays into the third dimension. In addition, the network layouts of MetNetVR may 

follow the cellular compartmentation, but only on a very abstract level, refusing cell component 

internal mapping.  

BioCichlid is another tool which visualizes and animates time-dependent gene expression data, 

correlated with protein interaction, signalling and regulatory networks in 3D [42].  

Different cell simulation environments have been extended from 2D to 3D during the last few 

years, but the included cell models of the mentioned approaches are based on a very high grade of 

simplification: 

For example CompuCell3D is a software framework to simulate the development of multicellular 

organisms with stochastic rules and differential equations [43]. E-Cell3D is implementing meta-

algorithms also based on differential equations to simulate nonlinear interactions between 

functional modules [44]. The Virtual Cell simulation environment (VCell) allows the formulation 

and simulation of cell biological models in 3D [45]. 
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3 Applied Software Tools 

3.1 VANESA 

In the last decades, many different methods of modeling and simulation of biological networks have 

been introduced. In this paper a software application called VANESA (Visualization and Analysis 

of Networks in System Biology Applications) (http://vanesa.sf.net) is presented. VANESA creates a 

large-scale biological network based on the DAWIS-M.D. data warehouse information system to 

examine gene-controlled processes. The BioDWH data warehouse infrastructure was used to 

integrate life science data from multiple data sources for DAWIS-M.D. and VANESA. Using 

VANESA, different fields of studies are combined such as life-science, database consulting, 

modeling, visualization and simulation for a semi-automatic reconstruction of complex biological 

systems. The main function of VANESA is to trim down data to a manageable yet relevant size and 

to analyze and identify new as well as altered versions of interaction patterns in dynamic interaction 

networks.  

The idea of VANESA is to extend any molecular data based network by new targets and interacting 

elements. The software solution is a new editor-controlled information system for the representation 

of research data in the form of biomedical network representations. Information is visualized in a 

clear and understandable manner to meet the purposes of underlying research activities. The user is 

enabled to record research results and thoughts in the form of a digital network model. The user is 

not limited to any kind of biological model; moreover it is possible to create an individual system 

that meets the requirements of each research activity. 

As a case study of VANESA and the data warehouse BioDWH and DAWIS-M.D. information 

system, the modeling and exploration of biological systems in cardiovascular diseases from an EU 

project is presented here[46]. The case study is based on a cardiovascular-disease related to gene-

regulated biological networks. Based on the project experimental data, literature and the integrated 

databases it was begun by exploring and reconstructing specific pathways derived from misleading 

proteins in cardiovascular diseases in VANESA.  

In addition to experimental data, external databases and literature had to be examined for 

meaningful information to map out the important biomedical networks and systems. It is essential 

for scientists to access and analyze information from multiple heterogeneous data sources to meet 

their objectives. 

The communication between VANESA and the biomedical data sources is realized by a web 

service. Spanning multiple databases containing biochemical and metabolic information from 

databases such as KEGG and HPRD enabled the modeling and visualization of the most important 

pathways based on the proteins in the discussed microarray sample of our case study. The data from 

the BioDWH system was analyzed on a large scale and visualized in a biological meaningful way. 

Multi-dimensional data annotations was considered in a way suitable for the knowledge discovery 

process. 

As a result of the predicted gene-controlled processes and protein-protein interaction pathways 

scientists were provided with new opportunities for the discovery of novel biomarkers, and 

unknown therapeutic targets. In addition, the use of VANESA in combination with the data 

warehouse infrastructure BioDWH and the DAWIS-M.D. information system can allow 

investigation of the biological functionality of a gene or of a protein in its specific genetic or 

functional pathway. 
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3.2 ANDVisio 

The computer system ANDVisio-ANDCell was developed for automated extraction of knowledge 

from PubMed abstracts and databases concerning molecular-genetic interactions, gene regulations, 

catalytic processes, polymorphism gene – disease associations and other associations between facts 

and their representation as semantic association networks [4]. The vertices of such networks are 

molecular-genetic objects, diseases and processes while the edges between the vertices represent 

types of associations. Considered are the following objects: genes, proteins, microRNAs, 

metabolites, molecular processes, pathways and cellular components. The system has the following 

types of interaction between objects: direct interaction, catalytic reaction, proteolysis, treatment, co 

expression, expression regulation, activity/function regulation, stability regulation and transport 

regulation. For molecular interactions and associations, data on cell types and organisms are 

represented. Knowledge extracted from different types of publications was stored into the base of 

knowledge: ANDCell. A graphical user interface is realized in the ANDVisio program. ANDVisio 

allows the graphical visualization and analysis of the associative networks, reconstructed by using 

queries sent to the ANDCell knowledge base. 

The knowledge base contains about 5 millions facts. For development of the base of knowledge 

ANDCell, data from the PubMed abstracts was analyzed, as well as different databases such as 

IntAct [47], MINT [48], NCBI GENE [49], TRRD [50], KEGG, PIMRider®, InterPro [51]. The 

system has been provided with a user-friendly interface and implemented links to molecular-genetic 

databases. Also, articles for additional information were extracted. The developed system may be 

useful for resolving a wide range of tasks in biology and biomedicine, such as expansion and 

complementation of the genetic networks reconstructed by the experts, identification of associations 

of genetic networks with diseases, search for the existing molecular mechanisms of associations 

between pathologies, identification of gene-candidates for genotyping, mutation that reduce disease, 

interpretation data of microchip analysis of gene expression etc. 

ANDVisio system, particularly, was used for the analysis of potential molecular mechanisms of 

interconnection between myopia and glaucoma. In the course of this work, a list of potential gene-

candidates for the genotyping of myopia and open-angle glaucoma [52] was detected. Also the 

ANDVisio system was used for the analysis of data from high-performance proteomic experiments 

in researching of Helicobacter pylori and their connection with progressive gastritis and gastric 

tumors [53]. 

 

3.3 CELLmicrocosmos PathwayIntegration 

CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is an approach to visualize and analyze inter-

cellular and intra-compartmental relationships by correlating pathways with an abstract cell 

environment in 3D space. By using data coming from DAWIS-M.D., metabolic pathways from 

KEGG can be parsed. The pathway structure, consisting of enzymes, their substrates and products 

with the connecting reactions, can be shown in 2D as original KGML layout and directly compared 

to the 3D layout in the cell. The cell can be modelled by using a variety of different eucaryotic cell 

component models, which are mainly abstractions of Electron and Light Microscopic Images. In 

addition, first approaches of 3D microscopic-based cell component models exist, based on electron 

tomographic data. The composition of the cell may vary according to the needs of the visualization 

or mapping information. 

For the enzymatic localization, terms from the databases BRENDA and UniProt (UniProt 2008) are 

used. Usually information exists on the subcellular level – but also mapping information about the 

intra-compartmental mapping may be derived . Focusing, for example on mitochondria, UniProt 

contains more than 50, BRENDA more than 20 different localization definitions. The quality of the 
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data varies: BRENDA contains only localization information reviewed by an curator, but UniProt 

provides additionally unreviewed information. These results may be compared directly to the 

PubMed abstract, if the corresponding database provides the link. Different terms may belong to the 

same localization: “Mitochondrial inter-membrane space” and “mitochondrial lumen” both need to 

be mapped onto 3
rd

 mitochondrial layer. Often different mapping information are found and stored 

in an interactive localization table. The user may choose which of these options should be used to 

place the enzymatic spatial positioning or refuse the propositions from the databases and predict the 

localization. Sometimes the localization information from the database contains comments 

specifying more precisely the whereabouts of a protein then the regular cell component information. 

In this case, CmPI uses the comment for mapping. 

The localization of different pathways is comparable by using the same position for each enzyme of 

the same type located in 3D space. An Inverted Self-Organizing Graphs (ISOM) layout is used for 

the distribution of nodes [54] onto unit hypersphere: Connected nodes are placed in proximity to 

each other. A six-degrees-of-freedom (6DoF) navigation offers different possibilities to navigate 

through the cell environment. Following the Focus+Context paradigm [55], also every single node 

of the pathway can be spatially focused and examined according the information acquired from the 

different databases. In addition, Stereoscopy [56] is implemented, compatible to e.g. nVidia® 

Quadro® FX cards, to take full advantage of the 3D perspective.  

The Webstart application is located at http://Cm4.CELLmicrocosmos.org. 

 

4 Application 

4.1 Experimental Data 

First, the point of interest has been defined as a Cardiovascular Disease related pathway. The data 

used here represents a dilated cardiomyopathy (DCM) coming from a female DCM patient with 

renal insufficiency aged 52 years. The analysis has been carried out in an extracted cytoplasmic 

sample of cultured aortic smooth muscle cells (S12 fraction). In order to highlight its associated 

disregulated pathways, the proteomic profile of the sample had to be investigated. The proteome 

analysis has been carried out by a Clontech Ab Microarray
TM

 500 (Lot no. 7030444, Clontech, CA, 

USA). From the set of identified proteins, the Multiple PDZ Domain protein (MUPP1/MPDZ) has 

been chosen for former analysis. MUPP1 is a 13 PDZ domain holding protein, showing a large 

diversity of interacting proteins [57] and viruses [58, 59].  

 

4.2 Network Reconstruction 

Using VANESA, the environment of MPDZ has been investigated. 12 interacting proteins have 

been identified by using the BioDWH integration of HPRD: ABCA1, CAMK2A, CLDN1, CLDN5, 

CSPG4, DRD3, F11R, HTR2C, KIT, PLEKHA1, RNF5 and SYNGAP1. Moreover, CAMK2A and 

SYNGAP are also interacting with each other (Fig. 1). 

Further investigations according the MPDZ protein were carried out using the KEGG 

implementation of VANESA. MPDZ was identified as being part of the human Tight junction 

signaling pathway (hsa04530) (Fig. 2). The tight junction is the closely associated area of the 

plasma membranes of two different cells. They form an impermeable surface area to ions and 

molecules. The corresponding pathway regulates the passage of substances through the protein 

complexes. The tight junction localization is in agreement with various publications [58, 59]. 
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Figure 1: The relevant sub-network (from Fig. 2) of direct protein interactions with MPDZ, computed 

by the BioDWH integration of the HPRD database in VANESA. 

Figure 2: Visualization of the Tight junction signaling pathway (hsa04530) from KEGG by VANESA. 

The place marked red is the relevant protein MPDZ on the microarray sample. 
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The ANDVisio system also has been used for the determination of the MUPP1 surrounding proteins 

by searching for its synonym MUPP1. Eight interacting proteins has been revealed and five of them 

are new: AMOT, CLD8, CLIC6, GABR2, PKHA2. After the curation of ANDVisio, all newly 

found associations were confirmed. Although the protein RNF5 was found by Vanesa, the curation 

of the ANDVisio text mining results could not verify the link between MUPP1 and RNF5. The 

synonym NG2 is pointing here to the protein CSPG4, although NG2 is often used as a synonym for 

RNF5. Sentences introducing these links are found in Table 1. 

 

 

ANDVisio 

IDs 

Uniprot 

KB IDs 

Association 

Confirmation 

PubMed 

ID 

Sentence from the abstract which confirm the association 

AMOT Q4VCS5 confirmed 17397395 Using yeast two-hybrid screening, we found here that MUPP1 

interacts with angiomotin (Amot), JEAP/Amot-like 1 and 

MASCOT/Amot-like 2, which we refer to as Amot/JEAP family 

proteins. 

CLD5 O00501 confirmed 12403818 MUPP1 and claudin-5 colocalized in the incisures, and the COOH-

terminal region of claudin-5 interacts with MUPP1 in a PSD-

95/Disc Large/zona occludens (ZO)-1 (PDZ)-dependent manner. 

CLD8 P56748 confirmed 12839333 The interaction of claudin-8 and MUPP1 in vivo was confirmed by 

co-immunolocalization and co-immunoprecipitation in MDCK 

cells.  

CLIC6 Q96NY7 confirmed 14499480 In two-hybrid system, CLIC6 also interacted with MUPP1 and 

radixin but not GIPC, suggesting it could take part in a complex 

with D(2)-like receptors, not only by direct interaction with their 

C-termini, but also through interactions with scaffolding proteins. 

CSPG4 Q6UVK1 confirmed 10967549 The fusion proteins fail to bind NG2 missing the C-terminal half of 

the cytoplasmic domain, emphasizing the role of the NG2 C-

terminus in the interaction with MUPP1.  

GABR2 O75899 confirmed 17145756 Biochemical analysis confirmed that full-length Mupp1 and 

PAPIN interact with GABA(B)R2 in cells. 

PKHA2 Q9HB19 confirmed 11802782 We show that TAPP1 and TAPP2 interact with the 10th and 13th 

PDZ domain of MUPP1 through their C-terminal amino acids. 

RNF5 Q99942 not confirmed 10967549 The fusion proteins fail to bind NG2 missing the C-terminal half of 

the cytoplasmic domain, emphasizing the role of the NG2 C-

terminus in the interaction with MUPP1. 

Explanation: The term NG2 is in the context of the referenced 

publication no synonym for RNF5 (see CSPG4 instead). 

Table 1. Sentences from PubMed proving associations to MUPP1/MPDZ extracted by ANDVisio. 

 

4.3 Localization 

The reconstructed network of MPDZ should be investigated according the localization of the 

different interacting proteins. Because the original sample discussed above (see 6.1) is taken from 

cytoplasm, the previous experimentally achieved knowledge was merely that the proteins are 

localized within the cell and outside the nucleus. The correlation to the tight junction pathway using 

KEGG is pointing towards the cell junction. Therefore it is mainly searched for this cellular part 

“tight junction” during the localization process of MPDZ and the 12 interacting proteins using the 

CmPI. Table 2 is showing the localization accuracy classes in this context. By using the BioDWH 
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integrating BRENDA, UniProt, GO and Reactome, all of the 13 proteins are localized. The most 

precise results are achieved for five proteins, including MPDZ, by pointing to the tight/cell junction. 

For five proteins, the cell membrane, and for another two proteins, a membrane fraction has been 

identified as a possible localization (Fig. 4). For SYNGAP1 only the term “intracellular” inferred 

from electronic annotation by the InterPro database has been found, which is not accurate enough. 

 
 

Localization Accuracy Class Terms 

High cell/tight junction (organisation) 

Middle cell/plasma membrane/projection/surface integrin cell surface 

interaction 'transmembrane proteins with a single transmembrane 

pass, a cytoplasmic domain, and an extracellular domain' 

Low membrane/membrane fraction 

No actin filament 

chromosome 

collagen/collagen type VI 

cytoplasm, intracellular 

cytosol  

death inducing signaling complex 

endocytic vesicle 

endoplasmatic reticulum 

extracellular matrix 

filamentous actin 

golgi  

mitochondrium 

nucleus/nucleoplasm/pronucleus,  

ribosome 

sarcoplasmic reticulum 

vimentin 

X chromosome 

Table 2: Localization Accuracy Classes of the terms found by CmPI and ANDVisio in comparison to 

the reference term “cell junction” 

 

Now the question should be investigated, if the text mining data from PubMed abstracts created by 

ANDVisio can verify and/or improve the accuracy of the results. For this purpose, the proteins of 

the MPDZ interacting protein network are successfully identified. In a second step, the 

corresponding localizations of every protein are searched by focusing only on PubMed results. 

ANDVisio uses a dictionary which connects different synonyms and spellings to one localization 

term. “Peripheral plasma membrane protein“, “juxta-membrane” and “juxtamembrane” are for 

example connected to the term “extrinsic to plasma membrane”. 34 different cell components are 

found in ANDVisio (Fig. 6) and 10 of 13 proteins are localized by using the mapping table of 

CmPI. 
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Figure 3. The MPDZ protein-protein interaction network based on PubMed abstracts in ANDVisio. 

 

Importing the results to CmPI, four proteins could be localized to the tight/cell junction and four 

proteins to the cell membrane. For one protein the Nucleus and for another protein only a 

membrane faction could be found as results (Fig. 5). 

 

The results from CmPI are combined with those from ANDVisio, showing that the results pointing 

to the cell junction are not improved. But four results proposing the cell junction are now double-

proofed (Fig. 7). In addition, ANDVisio improved the result on ABCA1: CmPI could localize this 

protein only to a membrane (fraction), ANDVisio found results pointing to the cell membrane. The 

complete results can be found in Table 3. 

 

After localizing the protein-protein interaction network created with VANESA, the network created 

with ANDVisio needed to be localized. CmPI can localize four of eight proteins to the cell junction 

and the remaining proteins to the cell membrane. ANDVisio can localize five proteins. Two of 

these proteins, which were not identified by VANESA, namely AMOT and GABR2, are found at 

the cell membrane according to PubMed abstracts. This is in affirmation of the CmPI results for 

these two proteins (Fig. 7). 
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Figure 4: The localization of the MPDZ interacting protein network (Fig. 1) using CmPI: 5 proteins could be localized to the tight/cell junction (including 

MPDZ), 5 proteins to the cell membrane, 2 protein to membrane and 1 protein to the cytoplasm (SYNGAP1). 

 

Figure 5: The localization of the MPDZ interacting protein network (Fig. 1) using CmPI and exclusively results from ANDVisio (Fig. 6): 4 proteins could be 

localized to the tight/cell junction, 4 proteins to the cell membrane, 2 proteins to the Nucleus and 3 proteins not at all. 
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Figure 6: The sub-network shown in Fig. 2 supplemented by using ANDVisio and its Localization results extracted from PubMed entries. The protein identifiers 

are here synonyms for the identifiers used in VANESA. Six proteins are not localized: PKHA1 (PLEKHA1), PKHA2 (PLEKHA2), KCC2A (CAMK2A), CLIC6, 

CLD8 and SYGP1 (SYNGAP1). Localization descriptions obtained by ANDVisio have different detail levels. For example the KIT protein is connected to the 

following descriptions related to the cell membrane: cell surface, plasma membrane, pseudopodium, external/internal side of plasma membrane and extrinsic to 

plasma membrane. Grey lines show “interactions”, black lines show “association” and the yellow line shows an “activity regulation”. 
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Figure 7: The combined localization results for the VANESA (#1) and the ANDVisio (#2) pathway. The VANESA Pathway includes the localization of the MPDZ 

interacting protein network (Fig. 1) using CmPI including results from ANDVisio: Five proteins could be localized to the tight/cell junction (including MPDZ), 

seven proteins to the cell membrane, one protein only to the cytoplasm (SYGP1). 
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Protein CmPI Localization ANDVisio 

Localization 

BRENDA GO* Reactome UniProt PubMed 

Abstracts 

 VANESA Pathway Reconstruction 

ABCA1  m(U)  m cm:4, em, nu 

CAMK2A c, cs, m, nu, sa cj(U), cs(R), 

nu(R) 

cs, nu cj, cm, m  

CLDN1  cj(U):2 cj cj:2, cm:2, m:2 cj, cm:2, c, nu 

CLDN5  cj(U):2 cj cj:2, cm:2, m:2 cj, cs 

CSPG4  cm(U)  m, cm cm, cs:2, em:3 

DRD3    cm, m m, nu 

F11R  cj(U) cj, cm cj, cm, m cj, cs:2, nu 

HTR2C  cm(U)  cm, m nu 

KIT cm:3 m(I), em(U)**  m:2 cs:3, cm:4, 

em:2, gg, mi, 

nu:3, ri 

MPDZ  cj(U)  cj, cm, m cj, c 

PLEKHA

1 

 c(U), nu(H)  cm, c, m, nu  

RNF5    m cm, c, cs, em:4 

SYNGAP  c(I):3    

 ANDVisio Pathway Reconstruction*** 

AMOT  cj(U), 

cm(M,U):2, 

cp(U):2, vs(M) 

 cj cm 

CLD8  cj(U):2, er(U) cj cj:2, cm:2, m:2  

CLIC6  c(U), cm(U)  c, cm, m  

GABR2  cj(U)  cj, cm, m cm 

PKHA2  c(U):2, cm(U), 

nu(U):2 

 c, cm, m, nu  

Table 3: Localization Results in CmPI and ANDVisio  

Unique Connections to the following Cell Components:  

c: cytoplasm, intracellular; cj: cell/tight junction (organisation); cm: cell/plasma 

membrane/projection/surface, integrin cell surface interaction, “transmembrane proteins with a 

single transmembrane pass, a cytoplasmic domain, and an extracellular domain”; cs: cytosol, 

death inducing signaling complex, filamentous actin, actin filament, vimentin; em: extracellular 

matrix, collagen (type VI); er: endoplasmatic reticulum; gg: golgi; m: membrane (fraction); mi: 

mitochondrium; nu: nucleus/nucleoplasm/pronucleus, (X) chromosome; ri: ribosome; sr: 

sarcoplasmic reticulum; vs: endocytic vesicle; numbers behind the colon show multiple results 

for one localization 

Comments: 

* the letter in brackets indicates if the GO result is achieved data from InterPro (I), Human 

Protein Atlas (HPA), MGI (M), Reactome (R) or UniProt (U)  

** in UniProt, this term is only found in the GO keywords, not as a cell component definition, 

therefore it is not found by the direct UniProt search in CmPI in this case  

*** italic-faced proteins are also part of the ANDVisio network 
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5 Discussion 

Analysing the Localization Results in Table 3, different important observations are made: 

CmPI already achieves good results by combining four different databases:  

 BRENDA: With two localized enzymes BRENDA does not perform well. The reason 

is that BRENDA is working with EC numbers. For many proteins discussed here there 

is no EC entry. Therefore BRENDA is unable to find localizations for those enzymes. 

 GO: The Gene Ontology provides links to different external databases. The links to 

UniProtKB have been specially relevant for this sample. But there have been also 

links to Reactome, InterPro, Human Protein Atlas (HPA) [60] and a human annotation 

from the Mouse genome informatics (MGI) [61]. 16 proteins have been localized by 

GO, indicating that it is a very good localization resource. In particular the protein 

SYNGAP1 could only be localized by using GO. 

 Reactome: For a few proteins, five in number, results are coming from Reactome. 

Most of them are pointing to the cell junction, which is the most relevant localization.  

 UniProt: All proteins except SYNGAP1 has been localized by UniProt. This indicates, 

that it is the best resource discussed here for localizing proteins by their gene names.  

Focusing now on the results from ANDVisio, the advantages of the text mining approach 

emerges. It should be mentioned, that ANDVisio is also supporting other data sources, but the 

results discussed here were restricted to PubMed Abstract data. In spite of this, the approach 

performs well for our purpose. Four proteins could be localized to the tight/cell junction and 

six proteins to the cell membrane. One hit is pointing to a nucleus or a membrane, and one hit 

only to the nucleus. Another six proteins could not be localized at all. If it would make sense 

to rank the localization sources according the hits for this sample, it would be UniProt, GO, 

ANDVisio PubMed Abstracts, Reactome, BRENDA.  

Naturally, it is not the intention of the text mining approach discussed here to compete with an 

established database. Particularly the problem with the ambiguous synonym NG2 pointing to 

CSPG4 as well as RNF5 show that it is important to evaluate crucial data from ANDVisio. 

But the final question reads as follows: Is ANDVisio able to increase the precision of the 

localization? It was mentioned before that three localizations from CmPI were very imprecise. 

The results from ANDVisio are fixing two of these problems by adding plasma membrane 

similar terms. Comparing all localizations in Table 3 in detail it shows, that ANDVisio finds 

new localizations for ten proteins, which are not included in the databases accessed by CmPI. 

This fact shows the high importance of tools like ANDVisio: They can be used to verify, 

improve and extend the localization results. Tools like this should be used by database 

curators to search for new results expanding the knowledge of their databases. 

Finally one question remains: How to solve the problem with the imprecisely localized 

protein SYNGAP1? Analyzing the networks, the interacting proteins should be taken into 

account. MPDZ and CAMK2A are interacting with SYNGAP1, as the protein interaction 

network indicates. In addition, ANDVisio can be used to search the PubMed abstracts for 

interacting proteins with SYGP1. One of three interaction nodes is the protein KCC2G, which 

belongs to the same enzyme complex (EC 2.7.11.17) as KCC2A, the synonym for CAMK2A. 

Therefore, this connection is double-proofed. The localizations shown by ANDVisio, 

“cytoplasm”, “chromosome” and “growth cone” are not satisfactory in this case, because the 

search is focusing on the tight junction complex (Fig. 8). In CmPI, MPDZ as well as 

CAMK2A are localized at the tight junction. The logical consequence is, that SYNGAP1 can 

also be found with a very high probability at the tight junction complex. 
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With the accumulated knowledge, a virtual cell environment is created based on the 

localization information from CmPI. With this visualization, it is possible to compare the 2D 

network with the localized 3D visualization, the localization table (Tab. 3) and in addition, 

both networks created with VANESA and ANDVisio (Fig. 9-12). Of course the CmPI 

Visualization is more useful for showing inter- and intra-organelle relationships instead of 

processes restricted only to one region like the tight junction discussed here. The 

visualizations of the alternative localizations in Fig. 10 and 12 give an idea of this ability. 

 

 

Figure 8: The protein interaction network in ANDVisio shows also the direct connection between 

SYGP (SYNGAP1) and KCC2G, which is part of the same protein complex (2.7.11.17) as 

KCC2A (CAMK2A). The localization result of KCC2G could be assigned as well to SYGP1: 

chromosome, cytoplasm and growth cone. 
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Figure 9: This CmPI visualization shows the localized network as shown in Fig. 7. The red 

network comes from VANESA, the green from ANDVisio. All enzymes are localized at the cell 

membrane. SYNGAP1, originally localized at the cytosol, can also be mapped directly onto the 

cell membrane by combining the newly gained knowledge. 

 

 

Figure 10: The CmPI visualization from Fig. 7 showing additionally all alternative localization of 

the enzymes. The information overflow can be limited by using the Focus+Context paradigm. 
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Figure 11: The comparison of the 2D and 3D visualization. In this case CmPI uses the original 

2D layout from VANESA and maps it into the 3D cell environment. The NodeDetails window 

provides information about the actual state of the node. Every window shown here can be used 

for the navigation. 

 

Figure 12: Focusing KIT, the incoming reaction from MPDZ (thick red line) and connections to 

the alternative locations (thin red lines) are shown, like the Ribosome, Nucleus and 

Mitochondria. 

Journal of Integrative Bioinformatics, 7(1):148, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-148 20



6 Conclusion 

This case study showed a way to combine experimental data, data warehouse and text mining 

approaches in order to create protein-protein interaction networks by using VANESA and 

ANDVisio. All in all, 17 proteins were identified to interact with MPDZ. Then the logical 

assumption was examined, that the interacting proteins with MPDZ, which is a part of the 

tight junction pathway, can be localized at the tight junction or at least at the cell membrane 

by combining results from CELLmicrocosmos 4.2 PathwayIntegration and ANDVisio 

PubMed abstract text mining. With this methods, eight proteins, including MPDZ, could be 

localized at the tight junction complex, nine proteins at the cell membrane and one protein, 

SYNGAP1, could be imprecisely localized at the inner cell. By combining the localization 

results with the pathway structure it was shown, that SYNGAP1 could also be indirectly 

localized at the cell junction. Moreover, it was verified, that ANDVisio is an important tool 

which can be used to search for localization alternatives to extend the content of curated 

databases by identifying information gaps. With all acquired knowledge it was finally 

possible to create a curated cell visualization showing the intracellular relationships of the 

network discussed here (Fig. 13). 

Figure 13: Knowledge generation by the combination of data from seven different projects. 
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