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ABSTRACT

This paper applies the algorithm of Hastie et al. [1] to the prob-
lem of learning the entire solution path of the one class support vec-
tor machine (OC-SVM) as its free parameter v varies from 0 to 1.
The OC-SVM with Gaussian kernel is a nonparametric estimator of
a level set of the density governing the observed sample, with the
parameter v implicitly defining the corresponding level. Thus, the
path algorithm produces estimates of all level sets and can therefore
be applied to a variety of problems requiring estimation of multiple
level sets including clustering, outlier ranking, minimum volume set
estimation, and density estimation. The algorithm’s cost is compa-
rable to the cost of computing the OC-SVM for a single point on
the path. We introduce a heuristic for enforced nestedness of the
sets in the path, and present a method for kernel bandwidth selec-
tion based in minimum integrated volume, a kind of AUC criterion.
These methods are illustrated on three datasets.

Index Terms— support vector machines, one-class classifica-
tion, solution path, density level set estimation

1. INTRODUCTION

The one class (or single class) support vector machine (OC-SVM)
was introduced independently by Tax and Duin [2] and Schélkopf et
al. [3] as an extension of the support vector classification method-
ology to the problem of one class classification. Recently Vert and
Vert [4] proved that for the Gaussian kernel with bandwidth tending
to zero, the OC-SVM is a consistent density level set estimator. The
free parameter v € [0, 1] acts as an upper bound on the fraction of
outlying points, and therefore affects which level set is estimated, al-
though the mapping between v and the corresponding density level
is implicit and not known a priori.

In this paper we present an algorithm for learning the entire so-
lution path of the OC-SVM as the parameter v varies from 0 to
1. The algorithm relies on recasting the OC-SVM so that v is re-
placed by another parameter C', analogous to the C' in the original
support vector classifier (SVC). This allows us to adapt a recent al-
gorithm of Hastie et al. [1] for computing the solution path of the
C-parametrized SVC. While C lacks an intuitive interpretation (un-
like v), this is irrelevant because the solution paths of the two for-
mulations coincide. The solution path is piecewise linear in 1/C and
can be computed efficiently. As C' (or v) varies from one extreme to
another, so does the corresponding density level.

This work is motivated by a desire to perform nonparametric
estimation of density level sets at a range of density levels. Since
the path algorithm is about as costly as determining the OC-SVM
at a fixed v, the path algorithm offers considerable savings. The
following applications are envisioned.

Clustering: Clusters may be defined as the connected compo-
nents of a density level set. The level at which the density is thresh-
olded determines a tradeoff between cluster number and cluster cov-
erage. Varying the level from 0 to oo yields a “cluster tree” [5] that
depicts the bifurcation of clusters into disjoint components and gives
a hierarchical representation of cluster structure.

QOutlier ranking: Given a dataset that may be contaminated
with outliers/anomalies, a natural way to rank the data points in or-
der of “outlyingness” (potential to be an outlier) is by the volume
of the smallest density level set containing the point. Estimating the
density level set at all levels allows one to prioritize the data points
for further investigation of their status as outliers [6].

Minimum volume set estimation: A minimum volume set [7,
8] is a density level set that encloses a pre-specified probability mass
of the distribution from which data are observed. Such sets are useful
for outlier prediction with a guaranteed false alarm rate. Since nei-
ther v nor C correspond to a precise mass enclosed, it is necessary to
estimate level sets in a range and select the best by cross-validation
or some other error estimate.

Density estimation: Estimating all the level sets of a density is
equivalent to density estimation. In high dimensions, density esti-
mates such as kernel density estimates are known to struggle while
SVMs are touted for their ability to avoid overfitting. Our OC-SVM
solution path may therefore offer advantages for density estimation
in high dimensions, and such claims warrant further investigation.

2. ONE-CLASS SUPPORT VECTOR MACHINES

The OC-SVM was proposed in [2, 3] as a support vector method-
ology to estimate a set that encloses “most” of a given random
sample {x;}7-1, x; € R? Each x; is first transformed via a
map ® : R? — H where 7 is a high (possibly infinite) dimen-
sional Hilbert space generated by a positive-definite kernel k(x, x").
The kernel function corresponds to an inner product in H through
k(x,x') = (®(x),P(x')). The OC-SVM attempts to find a hy-
perplane in the feature space that separates the data from the origin
with maximum margin (the distance from the hyperplane to the ori-
gin). In the event that no such hyperplane exists, slack variables &;
allow for some points to be within the margin, and the free param-
eter v € [0, 1] controls the cost of such violations. In fact, v can
be shown to be an upper bound on the fraction of points within the
margin (outliers) [3]. The hyperplane in feature space induces a gen-
erally nonlinear surface in the input space. In practice, the OC-SVM
has only been successfully applied with the Gaussian kernel. For this
kernel, the induced feature space is such that all points are mapped
into the same orthant, and therefore the principle of separating the
data from the origin is justified [9].

More precisely, the OC-SVM as presented in [3] solves the fol-



lowing quadratic program:
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The optimal w € H is the normal vector defining the hyper-
plane, and the function g(x) = sgn({w, ®(x)) — p) determines
whether a point is in (+) or out (—) of the estimated set. The quan-
tity ”W” is the margin, that is, the distance from the hyperplane
{z € H : (w,z) = p} to the origin.

In practice the quadratic program is solved via its dual, where
we optimize over the Lagrange multipliers a:
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The optimal normal vector is given by w = >, a; ®(x;).
The points x; for which «; # 0 are called support vectors. It can
also be shown that v lower bounds the fraction of support vectors.
The path algorithm is facilitated by an alternative formulation of
the OC-SVM which replaces v with a different parameter C' > 0:
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The two formulations P, and Pc are equivalent in the sense of
the following result. The proof follows a similar course to [9].

Proposition 1. If P, results in p > 0, then Pc with C' = #p leads

to the same decision function.

Proof. Suppose that wo, §, and po solve P,. Then the wo, §, also
minimize the objective function of Pc, with C' = 1/vn, subject to
the constraints of P, with p = po. Letting w = pow’,& = po¢’
in P,, we see that wyo, £0 optimize the objective function (scaled by
p2) of Pc with C = subject to the constraints of Pc. O

Although C lacks the interpretation of v as a bound on the frac-
tion of outliers, the solution paths of the two quadratic programs are
the same. While the C' parametrization facilitates the path algorithm,
it should be possible to reparametrize the path, once learned, in terms
of v using connections established in [10].

3. PATH ALGORITHM

Hastie et al. [1] demonstrated that the Lagrange multipliers of the
SVC are piecewise-linear in 1/C, and developed an algorithm for
finding this solution path. The computational complexity of the algo-
rithm is on the order of the complexity of finding a single point on the
path. We adapt their approach, using the same notation, to develop a
similar path algorithm for the OC-SVM. Indeed, the OC-SVM may
be viewed as the application of the SVC to an augmented dataset,

where the original x; constitute one class and their reflections about
the origin —x; constitute the other. Because of the structure of this
reduction, however, the path algorithm simplifies somewhat. For ex-
ample, path initialization for the OC-SVM can be significantly easier
that for the SVC.

Introducing the parameter A = é, we can rewrite Pc as

A =
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corresponding to a decision function g(x) = sgn((w, ®(x)) — 1).
From the Karush-Khun-Tucker conditions (here 3; is the La-
grange multiplier corresponding to the constraint & > 0)

a;i(f(xi) —1+&) =0, B:i& =0,
it follows that
f(x) = & =0, a; =0
fxi) =1 = & =0, i €[0,1]
f(xi) = & >0, a; =1
where f(x) = (w,®(x)). Then {®(x) : f(x) = 1} defines a

hyperplane with a distance 7 from the origin.

Decreasing A from a large value toward zero yields the entire
solution path. As A decreases, ||w|| increases, and hence the margin
width decreases. As this width decreases, points cross the margin
(f(xi) = 1) and move from inside (f(x:;) < 1) to outside the
margin (f(x;) > 1) while their corresponding a; change from 1 to
0. During this process, the algorithm monitors the following subsets:

o R:{i:f(xi)>1, ai:O}.
e &E={i: f(xs)=1,0<a; <1},
o L={i:f(xi;) <1, ay =1}

3.1. Initialization

Since the dataset belongs to a single class, the initialization of the
OC-SVM is easier than the two-class SVM, where the process de-
pends on whether the classes are balanced or not [1].

For sufficiently large A, w vanishes from (1). Then the margin
width tends to infinity and all the data falls inside the margin; thus,
f(x;) <1and a; = 1 for Vi. For large values of A, we have

(W, ®(x;)) <1, A
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f(xi) =

where w* = ). ®(x;). Finding the most extreme point from the
origin, we can obtain the initial value of A, Ao = (W™, (x4, )),
where i1 = arg max; (w", ®(x;)).

3.2. Tracing the path

As A decreases, the algorithm keeps track of the following events:
A. A point enters € from £ or R.
B. A point leaves £ and joins either R or L.



We let aé and \; denote the parameters right after the /th event and
fY(x) the function at this point. Define & similarly and suppose
|€1] = m. Since
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The last equality holds because for this range of A only points in &

change their o5, while all other points in R; or £; have fixed a; = 0
or 1, respectively. Since f(x;) = 1 forall i € &, we have

D Gik(xi,x5) = N — A,
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where §; = o} — a.

Now let K; be the m x m matrix such that [K;];; = k(x:,x;)
fori,j € &. Then we have K;6 = (\; — \)1. If K, has full rank,
we obtain b = Kl_ll, and hence

aj=as— N —=Nb;, jeE&. (3)
Substituting this result into (2), we have
A
Fox) = S ) = B ()] + B () @

where h!(x) = > jeg, bik(x,x;). Therefore, the a; for j € € are
piecewise-linear in A. If K; is not invertible, some of the «; have
non-unique paths. These cases are rare in practice and discussed
more in [1].

3.3. Finding the next breakpoint

The (I 4 1)-st event occurs when:

A. Some x; for which j € £;UTR; hits the hyperplane, meaning
f(x;) = 1. Then, from (4), we know that

S = Rxp)
A= )\ZTl(XJ)

B. Some «; for which j € & reaches 0 or 1. In this case, from
(3), we know, respectively, that

e L B Bt P12
b; ’ b; '
The next event corresponds to the largest A such that A < ;.

3.4. Obtaining nested density level set estimates

Asdiscussed above, we interpret a decision function through the path
algorithm as a density level set estimator:

é,\ = {X : f)\(x) = %Zal()\)k(xz,x) > 1}.

Note that A does not correspond to the density level, but rather to the
parameter in the OC-SVM.

Since density level sets are nested, it seems reasonable to enforce
level set estimators to be nested as well. The experiments in the next
section, however, show that this condition does not hold in general
for the OC-SVM. To impose nestedness, we modify the output of the
path algorithm by introducing

é;\: U éu,

[N

which ensures nestedness of the path of sets. Once x falls into a
density level set (fx(x) > 1), therefore, it remains in the set.

3.5. Bandwidth selection via minimum integrated volume

Correctly setting the bandwidth of the Gaussian kernel in the OC-
SVM is critical to its performance. We propose to select the band-
width minimizing the integrated volume (IV), defined as follows.
The family of estimates G yields a curve (P(Gy), u(Gy)) as A
varies, where P the underlying probability measure and p denotes
Euclidean volume. The IV is the area under this curve. Since level
sets of a density are minimum volume sets [7], meaning they have
the smallest volume for the mass they enclose, the true density has
the smallest possible integrated volume. Selecting the bandwidth by
minimum integrated volume (MIV) thus attempts to do a good job
of approximating the true level sets across the whole range of differ-
ent levels/enclosed masses. In our implementation we estimate mass
via cross-validation and volume by a simulated uniform sample on
a box enclosing the data. We also note that MIV is equivalent to
maximizing the area under the ROC curve (AUC) corresponding to
the null distribution P and a uniform alternative.

4. EXPERIMENTS

To implement the OC-SVM solution path algorithm, we adapted the
SvmPath package [11]. We examined three random data sets “mix-
ture”, “multi” and “ring” each with 200 data points. The first data
set is from [1], “multi” is a three component Gaussian mixture dis-
tribution with unequal weights, and “ring” is a ring-shaped dataset
{(r4,0:)}22 such that the radius r; is drawn from a Rayleigh distri-
bution with an offset and the angle 6; is drawn from unform distri-
bution.

In our experiments, the radial basis function (Gaussian) kernel
k(x,x") = exp(—%) was used. Fig. 1 illustrates four mass-
volume curves of “multi”. To estimate mass and volume of a den-
sity level set, we used 5-fold cross validation. Among these curves,
o = 1 achieves the minimum integrated volume. Following the
discussion above, we searched for bandwidth o over the logarithmi-
cally spaced grid of 30 points from 0.3 to 3. Integrated volumes for
each value of o can be seen in Fig. 2. We can observe well-defined
minimum integrated volume near o = 1.

The results using o with minimum integrated volumes are pre-
sented in Fig. 3. In the figure, small circles represent data points and
solid lines depict the boundary of the decision function. The region
inside the boundary corresponds to a density level set estimate.

The images in the left column show G x for the final value of A,
for each dataset. We see that G5 has holes where clearly it should
not. In the right column, each image contains five different nested
set estimates @;\ for various increments of A along the path. The
holes no longer appear.

Movies illustrating the path algorithm with different ker-
nel widths and for the three datasets are available in http:
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//www—personal .umich.edu/~-gyemin/ocsvm/. These
movies clearly illustrate the non-nested nature of the OC-SVM path
G and the monotone growth of the nested sets é;\ They also
clearly demonstrate the effect of different kernel widths: small
widths lead to overfitting (many holes in the estimated sets) while
large widths lead to overly rigid shapes that fail to capture the con-
tours of the density.

5. CONCLUSION

In this paper, we have applied the work of Hastie et al. [1] to com-
pute the entire solution path for the OC-SVM. The key step allowing
our adaptation was a reformulation of the OC-SVM in terms of pa-
rameter A in which the path is piecewise linear. The path algorithm
yields a family of density level set estimators. We demonstrated a
simple heuristic for enforcing nestedness, and developed a minimum
integrated volume criterion for kernel bandwidth selection.

Future work may include (1) applying our methodology to the
problems outlined in the introduction; (2) comparing to other mul-
tiple level set estimators such as kernel density estimation followed
by thresholding; (3) other methods for enforcing nestedness, such as
incorporating nestedness into the solution path algorithm.
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