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Abstract

Unconstrained handwritten text recognition systems
maximize the combination of two separate probability
scores. The first one is the observation probability that
indicates how well the returned word sequence matches
the input image. The second score is the probability
that reflects how likely a word sequence is according to
a language model. Current state-of-the-art recognition
systems use statistical language models in form of bi-
gram word probabilities. This paper proposes to model
the target language by means of a recurrent neural net-
work with long-short term memory cells. Because the
network is recurrent, the considered context is not lim-
ited to a fixed size especially as the memory cells are
designed to deal with long-term dependencies. In a set
of experiments conducted on the IAM off-line database
we show the superiority of the proposed language model
over statistical n-gram models.

1 Introduction

The task of transcribing images of continuous hand-
written text into a computer-readable form is chal-
lenging and has been a focus of research for several

decades [7]. It has been shown that it is beneficial to not
only take the input image into account when estimating
the most likely word sequence, but also the target lan-
guage [9]. Thus, modern modern recognizers use a sta-
tistical approach in which the returned word sequence
is the one that maximizes the probability w.r.t. the input
image according to a model trained on handwritten text
as well as the language according to a model trained on
a language corpus.

State-of-the-art recognition systems model the lan-
guage using statistical n-grams (typically bi-grams).
However, modeling the target language using n-gram
probabilities has severe disadvantages. First, the size of
the contextual information taken into account when es-
timating a word’s probability is limited to the last n− 1
words for a given n-gram order, hence ignoring longer
span dependencies. Secondly, the number of distinct
n-grams increases exponentially with n. Hence, even
in a large training corpus, many word combinations do
not occur at all or they occur with a frequency not high
enough for a robust occurrence probability estimation.

In a neural network (NN) language model, a word is
represented as an element of a continuous vector space
which has been shown to be useful for approximat-
ing the probabilities of low-frequency word sequences
[2, 12, 13]. The limitations of restricting the input to a



fixed-size context in a feed-forward NN language model
have been addressed in the domain of speech recogni-
tion using recurrent neural networks [11]. For the task
of handwriting recognition, however, no similar work
seems to exist. Hence, we propose in this paper recur-
rent NN language models for handwriting recognition.
Furthermore, we propose to use an architecture specif-
ically designed to deal with long-term dependencies,
called long-short term memory (LSTM) network [3].
We demonstrate on the IAM off-line database that an in-
crease in context length decreases dramatically the per-
plexity of the testing set. A similar trend, however, can
not be observed on the handwriting recognition task by
re-rankingN -best lists. Nevertheless, the proposed lan-
guage model outperforms the state-of-the-art reference
system.

The rest of this paper is structured as follows. Sec-
tion 2 introduces the LSTM language models. The
complete handwriting recognition process is outlined in
Section 3. An experimental evaluation is presented in
Section 4 and conclusions are drawn in Section 5.

2 LSTM Neural Networks

For both language modeling and continuous text
recognition, interdependencies between different ele-
ments in the input sequence are crucial. Recurrent
neural networks can be used like a memory to store
information over several time steps. However, these
networks suffer from the so-called vanishing gradient
problem which describes the inability to learn long-term
sequence dependencies.

A recently proposed solution to this problem is long-
short term memory (LSTM) cells [5]. Consequently,
both the proposed language model and the recognition
system underlying the experiments are based on this ar-
chitecture to store information over arbitrarily long time
steps. As shown in Fig. 1(a), the core of the cell stores
the net input with a recurrent connection in the middle
of the cell to store the memory. Three nodes are used to
control the information flow from the network into the
cell and from the cell back into the network. The net in-
put node receives values from the network and forwards
its activation into the cell. However, the value is only
passed into the core if a second node, the input gate, is
activated, or open. Similarly, an output gate regulates if
the core’s value is fed into the network.

Each of the activation functions of the nodes in an
LSTM cell is differentiable, hence the entire LSTM
cell realizes a differentiable function, which renders the
entire network suitable for standard back-propagation
training.

(a) A long-short term memory cell.

...

...
(b) The language model neural network.

Figure 1. The LSTM neural network.

2.1 LSTM Neural Network Language Models

The goal of handwriting recognition is to transcribe
a text image X by returning a word sequence ŵ =
w1w2 . . . wn that maximizes a combination of the oc-
currence probability p(ŵ|X) and the language model
probability of the target language p(ŵ|LM). For a word
sequence, we factorize the latter probability as

p(ŵ|LM) = p(w1|LM)

n∏
i=2

p(wi|w1 . . . wi−1, LM)

and evaluate each factor separately. In this
paper we propose to estimate the probabilities
p(wi|w1 . . . wi−1, LM) using a neural network con-
taining two hidden layers, a projection layer and a re-
current LSTM layer (see Fig. 1(b)).

Given a shortlist S of the most frequent words, the
neural network has one input node for each word in
the shortlist and three additional ones: one to indicate
an out-of-shortlist (OOS) word, one for the start-of-
sentence (SOS) tag, and one for the end-of-sentence
(EOS) tag. Thus, each word is represented as a binary
vector of length |S|+ 3.

To reduce the huge dimensionality of this encoding,
the words are linearly mapped onto a projection layer.
The next layer is the LSTM layer containing the recur-
rent LSTM memory cells. The output layer has again
the same dimensionality as the input layer. Thus, the
probabilities pLSTM(wi|w1 . . . wi−1, LM) are obtained
by normalizing the output activations via the softmax
function after feeding the input sequence w1 . . . wi−1

into the network one word at a time.
For OOS words, the probability mass given by the

activation of the OOS-node is split across the remain-
ing vocabulary, according to factors estimated on the



training corpus. Finally, the probabilities are smoothed
with a bi-gram language model of the entire vocabulary.
This is done by a weighted sum of both probabilities.
The weights are estimated on the validation set.

For training, a sequence w0, . . . , wi−1 is fed to the
network and the cross entropy error between the word
wi and the network’s output acts as the objective func-
tion that is to be minimized.

3 Recognition System

The advantage of using LSTM NN recurrent mod-
els is that they can consider the entire context. Keeping
track of all the different word histories, however, leads
to an exponential increase in decoding time. Therefore
we have opted to use a state-of-the-art recognition sys-
tem and prune the search space by means ofN -best lists
which are then re-ranked using the LSTM NNs.

The considered recognition system itself is also
based on LSTM neural networks and has been proven
to achieve a high performance. Given a bi-gram lan-
guage model, the system is able to generateN -best lists
of recognition hypotheses for each text line. For more
details on the handwriting recognition system we refer
to [4].

4 Experimental Evaluation

To evaluate the performance of the proposed lan-
guage model we re-ranked N -best lists of a BLSTM
NN recognizer according to the newly obtained word
sequence probabilities. The experiments are done on
the IAM off-line database of modern English handwrit-
ten data [10]. The database consists of texts from the
LOB corpus [6] and is separated into writer disjunct
training, validation, and testing sets with a size of 6,161,
920, and 2,781 text lines, respectively. Ten BLSTM NN
recognizers were trained on the training set and the one
performing best on the validation set was selected.

To create the novel language model, we trained eight
LSTM neural networks on a union of the Brown and
Wellington corpus [1, 8] as well as the part of the LOB
corpus not used for validation or testing1. Finally, a lin-
ear combination of the four networks having the low-
est cross entropy error on the validation set is used as
the LSTM NN language model. We used a shortlist
size of 10K words, a projection layer of size 193 and
100 LSTM cells in the recurrent layer. The size of the
projection layer was taken from previous experiments,
while the size of the LSTM layer was selected as a good
trade-off between the computational cost of training and

1All in all 3.34M words in 162.6K sentences.
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Figure 2. Recognition word error rate and
perplexity on the testing set.

decrease of training error. The bi-gram model used to
obtain the N -best lists is estimated on the same set on
which the LSTM NNs are trained. The complete dic-
tionary of 103K words is used. One network consists
of 1.2M weights and requires therefore about 10MB,
hence storing four networks in memory uses about as
much memory as a tri-gram LM.

The experiments are done as follows: the BLSTM
NN recognizer decodes each text line of the valida-
tion and testing set using the bi-gram model. Each text
line is stored as an N -best list with N = 5, 000. For
each hypothesis, the recognition probability and lan-
guage model probability are stored separately. Then,
the language model probability is replaced by the one
estimated using the LSTM NN language model.

A grammar scale factor and a word insertion penalty
parameter is used to balance the word probabilities
given by the language model and the observation prob-
abilities given by the recognizer [9]. For all systems,
both parameters are optimized on the validation set.

In Fig. 2(a) the decoding using the LSTM NN lan-
guage model using various context lengths is compared
to the reference system which achieves a word error
rate on the testing set of 23.5%. The proposed lan-
guage model, with a word error rate between 22.2%
and 22.4%, constantly outperforms the reference sys-
tem. This increase is statistically significant (α = 0.05).

Additionally, we show in Fig. 2(b) the perplexity of
the testing set, using the LSTM NN language model as a



function of the context size. One can clearly see the cor-
relation between the context that is taken into account
and the perplexity. The perplexity of a language model
indicates how unpredictable a given text is. Hence the
lower the perplexity, the better can the word sequences
be explained by the model. It can clearly be seen that
the neural networks make use of long-term dependen-
cies in a text line and move more probability mass to the
correct words, the longer the considered context is. The
perplexity of the bi-gram and tri-gram reference models
are far above the shown range.

5 Conclusions

In this paper we propose the use of recurrent neu-
ral network language models containing LSTM mem-
ory cells. This architecture is specifically designed for
long term dependencies within sequences. This renders
them very useful for the task of language modelling.

Following the approach of feed-forward NN lan-
guage models, the proposed LSTM NN language model
focuses on a shortlist of 10K words. During application,
the words, represented as 10,003-dimensional vectors,
are mapped linearly into a smaller subspace. The low-
dimensional word representations are then fed into the
recurrent LSTM layer of the neural network which fi-
nally predicts the occurrence probabilities for the text
word that follows the input sequence.

We demonstrate how contextual information de-
creases the perplexity of a testing set using the LSTM
NN language model. Furthermore, we show for the
writer independent handwriting recognition task on
the IAM off-line database that the proposed language
model can be used to re-rank generated N -best lists to
decrease the word error rate. However, word error rate
does not follow the trend of the perplexity reduction
w.r.t. the context length, possibly because the N -best
lists were created using bi-grams. Hence, a further step
would be to integrate the LSTM NN LM directly into
the decoding process.

Language models that consider an arbitrary long
context work best the longer the input sequence be-
comes. Hence, moving from single line to whole docu-
ment recognition seems to be an interesting application
of recurrent NN LM in the future.
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