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ABSTRACT

Time-scale transformations of audio signals have trautiiiy
relied exclusively upon manipulations of tempo. We present
novel technique for automatic mixing and synchronizatietwizen
two musical signals. In this transformation, the originghsi as-
sumes the tempo, meter, and rhythmic structure of the maglel s
nal, while the extracted downbeats and salient intra-nreaisu
frastructure of the original are maintained.

1. INTRODUCTION

Rhythm is comprised of regular or irregular pulses arouedic-
tus that when taken together, provide a sense of movememinwit
a piece. Automated rhythmic extraction seeks to computaliyp
detect this structure within a musical recording, first byaliz-
ing measure boundaries, and then by characterizing int@suore
events within these boundaries. In this paper, we incotpohgth-
mic extraction into a framework for the automated rhythnyin-s
chronization of two musical signals.

Manual transformations of this type are time-intensive and
usually performed with the use of an audio editor. First,dhg-
inal waveform is sliced at rhythmically relevant points. c8ed,
each segment is relocated to a new position based on thenttyth
pattern of a model signal. Finally, each segment is indiilgu
time-scaled to maintain continuity. The popularizationladp-
based music production and mixing applications has provile
impetus for several softwares, suchAsleton Live[] and FX-
Pansion GURU[Z|, to offer automated tools for rhythmic con-
tour adjustment. While these methods are designed for ue wi
monophonic ofimited polyphonic audio, no technique currently
addresses the difficulties inherent within transformatiohmore
complex musical audio.

Time-scaling is often utilized in an attempt towards autteda
synchronization. However, if the ratio between the new aigi-o
nal tempi (scalar ratio) is increased or reduced by too gréstor,
then transient regions may become smeared or artificialltieg
in a perceptual loss of audio quality. As a secondary coresezp)
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rhythmic structures within the original and model pieces aot
guaranteed to coincide, as these structures are indeggnpest
served and proportionally affected during time-scaling.

A partial solution is suggested by Duxbuiiyl [3], followed by
Ravelli et al [4], which presents aadaptive phase vocod¢ime-
scaling approach that preserves attacks following dedemtisets
via incorporation of a local scaling factor and phase-lngkpro-
cess. The result of this adaptive method is a dramatic iserga
the acceptable range of global scalar ratios and thus aedserin
the range of tempi for a given transformation.

This multi-scalar approach lends itself to the adjustmédnt o
swing within musical excerpt. In Gouyon et al [5] both tactus
locations and subdivisions are automatically extractedating
eighth-note sections which are then modified by an inputddfi
syncopation. Although this process creates a metricafiyrined
representation of an audio signal, the dynamism of the fioams
is limited by the lack of a more precise rhythmic represéorat

In a technique conceptually similar to ours, Ravelli et{dl [6
perform an automatic rhythm modification of percussive apii
which note events are extracted by discrete onset deteatidn
classified as eithelow, mid, or high-pitched sounds. A pattern
matching algorithm then selects a best-path sequence tchmat
segments from the first signal to those of the second. Tnansie
regions within the initial portion of each segment are presg
as in [4]. Although the method is well-suited for percussie
dio, the extraction of discrete segment times and categfowiz of
slices make it unsuitable for polyphonic audio, where suelrc
demarcation is neither guaranteed, nor likely.

Another related method is th@oss-matchingechnique pre-
sented by Jehaih][7], in which synchronization of musicali@ud
signals is achieved through two stages. First, beat trgcaimd
downbeat detection is performed to determine the tempo aad m
sure boundaries of each signal. The two signals are themealigy
time-scaling the regions between detected downbeats. eudt+
ing transformation provides a metrically aligned signawkver
no attempt is made to adjust the timing of intra-measure @emp
nents that comprise the signal.

Our modification model seeks not only to combine the down-
beat alignment of 7] with the aforementioned phase-logkian-
sient preservation of[4], but further, to incorporate @atneasure
rhythmic structural changes towards a more intricate niagcf
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two arbitrary polyphonic signals.

This automatic rhythmic synchronization is achieved tigiou
the following series of signal processing steps: Firstgfach sig-
nal we extract beat locations and downbeats, from whichdvayth
predominant rhythmic patterns are generated. Next, rhigtpat-
tern events are assessed for both signals, and a companatbess
is undertaken to identify structurally relevant intra-re@@ com-
ponents of the original signal that coincide with the modghal.
These points are then realigned to those of the model. Finall
regions within the structurally relevant points of the arag sig-
nal are adaptively time-scaled to fit the length of those iwithe
model, while preserving transient regions at the presence-0
tected onsets in each segment.

The remainder of this paper is structured as follows. [Th §2
we outline the rhythmic analysis. 1083 we present the rhythm
pattern matching approach and an overview of the timessgali
algorithm in €. Results are given i85 with discussion[ih §6

2. RHYTHMIC SEGMENTATION

To modify the rhythmic properties of a musical audio signal w
must first localize the start points of musical events. Talsdhis
end, the process of discrete onset detecfibn [8] might festdm-
sidered appropriate, as it has been used both within tirakrgc
[4] and existing rhythm modification techniqués$ b, 7]. Qe
tection provides éemporalsegmentation of the input signal. How-
ever, in our method, it is not mandatory to detect every oraat
ther, an accurate representation of discrete onsets iobaple
within musical audio due a random density of note events én th
input signal. Instead, we wish only to locate those onsetisabin-
tribute to an underlying rhythmic pattern present in theum®ur
aim then is to produce ythmicsegmentation, for which we turn
to existing work within beat tracking, downbeat detection &s-
timation of predominant rhythm patterns. We now provideiafbr
overview of this analysis (for a complete derivation $é¢.[9]

The first stage in our analysis is to transform the incoming au
dio signal into a mid-level representation more suited dhimic
analysis. In this case the mid-level signal should exhibitks
at note onset locations where higher peaks represent miftric

Onset detection function with beat locations and bar boundaries
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Figure 1: Overview of rhythmic analysis (top) onset detatti
function I'(m) with downbeatsy; (solid lines) and beat loca-
tions~, (dashed lines); (bottom-left) cluster of bar-length paise
(bottom-right) predominant rhythmic patteity (m).

La(m) =T(m) ~va <m < yatr. @

To account for variable bar lengths, we follow the approach
of Dixon et al [10] and resample each onset detection functio
barT"4(m) to have normalized lengtt; (where L=144 detection
function (DF) samples). Th&,(m) are then clustered together
using k-means (where k=3), and the predominant paiferfi)
is extracted as the temporal average of the largest cluster.

To find the rhythmic pattern eventswithin the bar length pat-
tern, we peak-pick’'p (m) using the approach frorhl[8]. The final
stage is then to associate these pattern events with thectedr
downbeats;;, which we achieve through linear interpolation,

m,p:mﬁp(W) d=1,...,D-1. (2

An overview of the rhythmic analysis is shown in figiile 1.

3. RHYTHMIC PATTERN MATCHING

stronger events. For this purpose we use the complex spectragyr eventual aim is to associate the rhythmic pattern ewefras

difference onset detection functidi(m) [8], where each detec-
tion function (DF) samplen represents 11.6ms. While many such
mid-level features exist, this detection function has b&sswn to
outperform many other features for the task of beat tracfhg
The next stage is to identify beat locations Again we make
use of our existing beat tracking algorithfr [9], however aewat
tracking algorithm could be employed.

original signalA to those of a model sign@, and adaptively scale
the regions demarcated by these pattern poittgttimic slices
As such, the aforementioned rhythmic segmentation is pegd
on both A and B. As the implementation is designed to oper-
ate upon arbitrary signals, there is often an unbalancedauof
intra-measure pattern segments betwdeand B. Thus, prior to
modification of the temporal locations of pattern pointgs imper-

The beats are extracted from a two-stage process. First, theative to address the number of intra-measure pattern ewghis

beat period (the time between beats) is given by comb filjehie
autocorrelation of'(m). Secondly the beat alignment is estimated
by comb filteringl’(m) given the beat period.

Once beat locations have been found, the downbeatsre
then extracted by measuring the spectral dissimilaritwbeh beat
synchronous spectral frames, i.e. one spectral frame peér Dee
beat transitions consistently leading to most spectrahgbare
identified as the downbeats.

To extract the predominant rhythmic pattdra (m), we re-
analyze the onset detection functibm) given the beats, and
downbeatsyy. We then partition the onset detection functlofm)
into individual barsT'q(m)

the two signals. If, for example, a given measuredofontainsn
more rhythm pattern events than dd@sand no modifications are
made to absolve this disparity, thepattern points will become
the first series of events within the subsequent measure. urhi
desirablewrapping effect will then cause the transformed bars of
A to have a different length than those of the target sighahs
the downbeats of the original sequence will not be preserved
Validity of a metrically synchronized transformation isde-
ened by extending the rhythmic pattern to include metrical a
tactus-level events, as the output should ideally contajulae
similar to the model. Beat locations are determined as gerio
strong events within the detection function, and as suchhighly
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Figure 2: Rhythmic pattern matching. Beat events are alywas's
served. Where there are more pattern events per beat ingmad si
compared to the other, the weakest excess events are removed

probable that beat times are already embedded within thé-rhy
mic pattern. Incorporation of beat times also permits ugtoave
the metrical component from the matching stage, simplgfyonr
model by instead focusing our analysis upon the beat levél an
pattern events per beaFinally, to assure downbeat synchroniza-
tion, audio signals are truncated such that bé#nd B begin with

the start of a bar and terminate with the end of a bar. We modify
the notation from equatioif](2) to refer to the individuakinbeat
segments. For each beat.ihthere will be@ pattern events per
beat, where the'”" pattern event in thé'" beat of A is referred

to asAy,q, and similarly, givenR pattern events per beat i, the

r*" pattern event in the'" beat of B is notated as3; .. The beat
locations exist as the first pattern event per beat, 4,g..

As mentioned, within each befatn A andB, there is no guar-
antee that there will be an equal number of pattern everds (i.
R # @). We contend with this mismatch by selectively ignor-
ing excess pattern events in terms of their relative stren@ur
measure of strength is determined by sampling the onsettamte
functionT'(m), with the excess number of pattern events per beat
at each pattern event, ,. Theweakesteventsp* are then itera-
tively removed once located using

®)

In figure?, we observe the process of removing the weak-
est pattern positions from each inter-beat interval, ahdeguent
alignment of residual salient events. Beat locations aeseywved
without exception, as shown by the vertical lines which aesent
in both patternsA and B, while excess pattern events, calculated
from equation[{B) are marked as terminating in ‘x’.

p' = argminT ().

Once the pattern events per beat have been balanced we chanqm

our notation to reflecP pattern events per beat in bathand B
where we now refer tod; , and By, and proceed to the time-
scaling stage, to implement the rhythmic transform.

4. TIME-SCALING

We now iteratively extract each rhythmic segment as defined b
the rhythmic pattern events i, and time-scale it to match the
duration of the corresponding segmenfnTo perform this time-
scaling, we utilize the adaptive phase-locking method ofdRticet

al [].

A discrete onset detection of the input audio signal is peréul,
and transient regions are defined as the first 1/3rd of eaeh int
onset-interval (10l), under the condition that the minimtnan-
sient region is always greater than 11.6ms, and always tess t
50ms. Time-scaling is then only applied during the steddies
regions of the input, to prevent smearing of the transients.

Given the rhythmic segmentation described [th 82 we do not
require a discrete onset detection stage, aslin [4]. Eadhntiy
slice has a defined ons4y, , and a defined offset, found as either
the next pattern event for the current beat, 1, or the next beat
Ap+1,1. Within each slice we calculate linear scaling fackaras
the ratio of the durations between current pattern events amd
those inB

Abpr1—Abp

Bb,p+17Bb,p P < P

P o= (4)

Apr11—4pp
Bpir1,1—Bp,p

The non-linear scaling factdf, which accounts for the tem-
poral masking is calculated as

otherwise

Wit
Fh=—(F—-1)+F 5
2 I/Vt( 1 )+ F1 (5)
whereWy; is the width of the non-transient region, aHd is the
width of the transient region. Each time-scaled rhythmicesis
then concatenated with the previous slices to form the eeént

transformed signal.

5. RESULTS

Since both the rhythmic pre-processing and time-scalipgets
have been evaluated previoudl¥[[®, 4] we only evaluate tidanh
transformation aspect. Our evaluation centers on the thak-o
tomatic rhythmic genre classification. We explore whether o
rhythm transform technique can force thésclassificatiorof mu-
sical genre, e.g. transforming a Samba into a QuickStep eted-d
mining whether the output would be classified as the inputegen
(Samba) or target (QuickStep).

We employ an existing technique]11] which uses a bar-length
periodicity pattern to characterize the rhythmic progsrtof the
input signal so as to maximize the similarity between exiseop
the same genre but minimize the cross-similarity betwegerdit
genres. The feature calculated is the autocorrelationtibmof
the onset detection function (describedih §2). This isdated at
the bar-level periodicity (defined by the tempo and the nunalbe
beats per bar) and resampled to a fixed duration (144 DF sample
). Each excerpt in the test database is given a genré dalble
passed to the open source data mining software, WHKA [12] to
perform the classification. For further details ded [11].

As training data we use an existing database comprised of 523
ballroom dance excerpts across 6 genres: Jive, QuickSaegoT
Samba, ChaCha and Rumba. This constitutes a subset of the ful
698 test databasé 0] where the 3/4 time-signature Waldz an
Viennese-Waltz categories (those which are beyond theesobp
our techniques) have been removed. From the training sekwe e
tract a subset of 120 (20 x 6 genres) test excerpts for which we
annotate beats and downbeats. For each genre in turn, we pick
a random input signal and a random target signal. We perf@m 2

Temporal masking is performed as a pre-processing step totransformations from each of the 30 distinct genre pairggi00

separate the transient and non-transient regions of th signal.

DAFX-

total transformations. To prevent any potential innacciesin the
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Evaluation | Accuracy
Data (%)
CFV (training set) 87.0
XB—a — Ga 51.5
Xp—a—Gp 135

Table 1: Summary of classification accuracy. CFV — 10 folagsfo
validation on the 523 excerpt training dafiiz_, 4 — transformed
signals,G 4 — target genr&;'z — input genre.

Genre | Jive Quick Tango Samba Cha Rumba

Jive | n/a 19 12 8 13 5
Quick | 7 n/a 10 3 1 2
Tango| 7 14 n/a 14 10 7
Samba| 13 16 5 n/a 15 8
Cha| 12 9 14 17 n/a 9

Rumba| 13 6 9 14 16 n/a

Total % | 53 64 50 56 55 31

Table 2: Rhythmic genre classification resulf§g .4 — Ga)
for 1-NN classifier. In each case 20 transformations arergited.
Quick is short for QuickStep.

rhythmic pre-processing we provide the transformatiomiadigm
with the metrical annotations.

We label genre of the transformed signalss(_. 1) in two dif-
ferent ways: first with those of the target genrés,j, and sec-
ondly (as a control), with the labels of the input signal gsnr
(GB). We then pass this data to WEKA]12] and use the near-
est neighbor classifier (1-NN) to perform the classificatioro
gauge the performance of the genre classification methdubutit
rhythm transformation we perform a 10-fold cross-validaton
the 523 excerpt training data. The overall results are suiaeth
in Table[d with a genre-dependent breakdown in TEble 2.

The classification accuracy of the transformed signals tligh
target genre labels (51.5%) is considerably higher thamwise
ing the input genre labels (13.5%), i.e. the transformedadgare
closer to the target genres than those before they werddrares.
The 51.5% accuracy is still well below the 87.0% performaoice
the genre classification on the unmodified data. Examinaifon
Tablel2 reveals the hardest target genre to be Rumba, wittkQui
Step as the most suitable target. This latter finding is nmkeslyl
due to theswinginherent within the QuickStep genre, which was
not as prevalent in other genres tested.

6. DISCUSSION

The challenge for our method lies in the preliminary rhytbmi
analysis. In cases where the rhythmic analysis is sucdesiséu
resulting transformations sound surprisingly coherermt imten-
tionall, not least in part to the high quality of the time-scaled audi
This is especially encouraging given the implicit comptgxif the
task. If, however, the initially extracted beat times ar@ccurate,

1 WWW. NuSI C. ncgl | | . ca/ ~hocknman/ proj ect s/ ARI VA

then the subsequent analysis is likely to fail. If downbesaiescal-
culated incorrectly, a coherent rhythmic transformatioayrstill

be produced, however the phase difference between sigilals w
become apparent when mixed together.

Both problems could be remedied by a semi-automatic version
of the transform, which would allow a user to manually cotrec
beat times and downbeats, leaving the remaining procetsing
performed automatically. Used as a post-processing toohtsic
production, this would not impose a significant burden oruies.

We also intend to investigate a real-time version of ourirhyt
mic transformation algorithm. Although our current implema-
tion processes the musical excerpts in an offline fashioauaat
version of the rhythmic pattern analysis has been impleeatent
which can be used to predict future rhythmic segmentationtpo
within a consistent underlying rhythmic pattefih [9]. As e po-
tential applications within production and compositiomeal-time
version could provide transformation of recorded accoripant
to follow the rhythmic structure of a live musical perforncan
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