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Abstract

Let X be a smooth, closed 4-manifold which is homotopy equivalent to S 2 × S 2. By the Seiberg-Witten theory, we take
IndA5 DX as a virtual A5-representation and give its concrete representation. We also study IndA5 DX when X is homotopy
equivalent to ♯nS 2 × S 2. Besides we give an example of our main theorem.
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1. Introduction

Suppose X is a smooth, closed, connected spin 4-manifold. Let bi be the i-th Betti number and b+ be the rank of the
maximal positive definite subspace of H2(X;R). σ(X) denotes the signature of X. By Freedman & Quinn 1990 and Bryan
1998, the intersection form of X with non-positive signature should be

−2kE8 ⊕ mH, k ≥ 0,

where E8 is the 8 dimension bilinear intersection form and H is the hyperbolic form. Obviously, m = b+2 (X) and k =
−σ(X)/16.

Suppose X admits a finite G-action which preserves the spin structure. We also suppose there is a Riemannian matric on
X so that the G-action is isometric. Under these assumption, the G-action can always be lifted to a G̃-action on the spinor
bundles, where G̃ is in the following extension

1→ Z2 → G̃ → G → 1.

If G̃ contains a subgroup isomorphic to G, then the G-action is called even type. Otherwise, the G-action is called odd
type. When G is the alternating group A5, G̃ is a group isomorphic to Z2 × A5. Since A5 is a subgroup of Z2 × A5, the spin
A5 action on a spin 4-manifold must be of even type.

By Bryan 1998, for a spin even type G-action on a spin manifold X, the Dirac operator DX is G-equivariant and IndGDX =

kerDX − cokerDX ∈ R(G). Suppose IndA5 DX = a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4, where ρ0, ρ1, ρ2, ρ3 and ρ4 are irreducible
representations of A5 of degree 1, 3, 3, 4 and 5 (for detail see section 2), a0, b0, c0, d0 and e0 are all integers.

The finite spin group actions on spin 4-manifold are widely studied. Such as Bryan 1998, Fang 2001, Furuta 2001, Liu
2005, Liu 2006 and Liu & Li 2008. In this paper, we mainly study the spin alternating group A5 action on spin 4-manifolds
X which are homotopy equivalent to S 2 × S 2. Let −X denote X with the reversed orientation. Then −X is also homotopy
equivalent to S 2 × S 2 and satisfies IndA5 DX = −IndA5 D−X . Using this property, representation theory, Seiberg-Witten
theory and the character formula for K-theory degree, we obtain the following main result.

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to S 2 × S 2. If X admits a smooth spin
alternating group A5 action such that b+2 (X/A5) = b+2 (X), then IndA5 DX = a0(ρ0 − 2ρ1 + ρ4) + c0(ρ2 − ρ1), where a, b are
integers.

Corrolary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to ♯nS 2 × S 2. If X admits a smooth
spin alternating group A5 action such that b+2 (X/A5) = b+2 (X), then IndA5 DX = a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4 satisfies
|b0 + c0 + d0 + 2e0| ≤ n−1

2 .

Theorem 3. Let X be a closed smooth 4-manifold which is homotopy equivalent to ♯nS 2 × S 2. Suppose X admit a smooth
spin alternating group A5 action and b+2 (X/A5) = 0, b+2 (X/ < s >) = 0 and b+2 (X/ < t >) , 0. Then as an element of
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R(A5), IndA5 D is of the form
a0ρ0 + b0(ρ1 + ρ2) + (a0 + b0)ρ3 − (a0 + 2b0)ρ4,

and n ≡ 0 mod 4.

The rest of this paper consists of three parts. The first one is the introduction about this study. The second one gives the
proofs of Theorem 1, Corollary 2 and Theorem 3. The last part contains an example about the main theorem.

2. Preliminaries

In this section, we review some basics about the Seiberg-Witten equations and symmetries on it, conjugacy classes of
alternating group A5, the index of D and the K-theory degree. Notice that this section largely depends on Bryan 1998.
Besides, readers can also refer to Fang 2001, Furuta 2001 and Liu 2006.

2.1 Seiberg-Witten equations and its symmetry

Let U± be the positive and negative complex spinor bundles and U = U+ ⊕U−. Denote by D : Γ(U+)→ Γ(U−) the Dirac
operator and ρ : Λ∗C → EndC(U) the Clifford multiplication. Then the Seiberg-Witten equations are as follows

Dϕ + ρ(a)ϕ = 0, ρ(d+a) − ϕ ⊗ ϕ∗ + 1
2
|ϕ|2id = 0, d∗a = 0,

where (a, ϕ) ∈ Ω1(X,
√
−1R) × Γ(U+). Let V be the L4

2-completion of Γ(
√
−1Λ1 ⊕ U+) and W′ be the L3

2-completion of
Γ(U− ⊕

√
−1su(U+) ⊕

√
−1Λ0). We could look the Seiberg-Witten equations as the zero set of a map

D + Q : V → W′,

whereD(a, ϕ) = (Dϕ, ρ(d+a), d∗a)), Q(a, ϕ) = (ρ(a)ϕ, ϕ ⊗ ϕ∗ − 1
2 |ϕ|2id, 0).

In fact, the image ofD+Q is L2-orthogonal to the constant functions in
√
−1Ω0 ⊂ W ′. We denote W to be the orthogonal

complement of the constant functions in W ′ and considerD + Q : V → W.

Next we consider the symmetries on the Seiberg-Witten equations. Denote by SU(2). the group of unit quaternions and
S 1 the set of elements in the form e

√
−1θ. Suppose Pin(2) is the normalizer of S 1 in SU(2). Then the elements of Pin(2)

should be in the form e
√
−1θ or e

√
−1θJ. The action of Pin(2) on Γ(U±) is the multiplication on the left. The action of Z/2

on Γ(Λ∗C) is multiplication by ±1. By this way, we obtain the action of Pin(2) on V, W. Furthermore, the operator D and
Q are all Pin(2) equivariant.

Assume X is a closed smooth spin 4-manifold and G is a compact Lie group action on X which is isometric and preserves
the spin structure. If the action is of even type, then bothD and Q are G̃ = Pin(2) ×G equivariant maps (Bryan 1998).

2.2 The Alternating Group A5

In this paper, we consider the action of the alternating group A5 on homotopy S 2 × S 2. The alternating group A5 is the
minimal nonabelian finite simple group which consists of even permutations of a set {a, b, c, d, e} with 5 elements. It
consists of 60 elements which can be divided into the following 5 conjugacy classes:

(1) the identity element 1;

(2) 15 elements of order 2 which is conjugate with x = (ab)(cd);

(3) 20 elements of order 3 which is conjugate with t = (abc);

(4) 12 elements of order 5 which is conjugate with s = (abcde);

(5) 12 elements of order 5 which is conjugate with s2 = (abced).

Besides, we have the following character table for A5, where ω = e2πi/5. For detail computation, we can refer to Serre
1997.

Table 1. Table title (the character table for A5)
1 t x s s2

χ0 1 1 1 1 1
χ1 3 0 −1 1 + ω + ω4 1 + ω2 + ω3

χ2 3 0 −1 1 + ω2 + ω3 1 + ω + ω4

χ3 4 1 0 −1 −1
χ4 5 −1 1 0 0
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2.3 The Index ofD and the Character Formula for the K-theory Degree

Denote by Vλ ⊂ V (resp. Wλ ⊂ W) the subspace spanned by the eigenspaces of D∗D (resp. DD∗) with eigenvalues less
than or equal to λ ∈ R. Denote Vλ,C = Vλ ⊗ C, Wλ,C = Wλ ⊗ C. Then

IndD = [kerD] − [CokerD] = [Vλ,C] − [Wλ,C].

Let r : R(G̃) → R(Pin(2)) denotes the restriction map. Suppose 1̃ be the non-trivial one dimensional representation in
R(Pin(2)), which is obtained by pulling back the non-trivial Z/2 representation by the map Pin(2) → Z/2. Denote hi the
2 dimensional irreducible representation in R(Pin(2)), which is the restriction of the standard representation of SU(2) to
Pin(2) ⊂ SU(2) and write h1 = h. Then Furuta determines IndD as a Pin(2) representation, and shows

r(IndD) = 2kh − m1̃.

Thus IndD = sh − t1̃, where s and t are polynomials such that s(1) = 2k and t(1) = m.

For a spin A5 action, G̃ = Pin(2) × A5. We have

s(ρ0, ρ1, ρ2, ρ3, ρ4) = a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4,

t(ρ0, ρ1, ρ2, ρ3, ρ4) = a1ρ0 + b1ρ1 + c1ρ2 + d1ρ3 + e1ρ4,

such that a0 + 3b0 + 3c0 + 4d0 + 5e0 = 2k and a1 + 3b1 + 3c1 + 4d1 + 5e1 = m = b+2 (X).

Suppose < g > is the cyclic subgroup of A5 generated by g ∈ A5. Then by using dimensions of invariant subspaces of
< g > and multiplicities of eigenvalue 1 of ρi, (0 ≤ i ≤ 4) for respective conjugacy classes, we get

dim (H+(X)A5 ) = a1 = b+2 (X/A5),

dim (H+(X)<(abc)>) = a1 + b1 + c1 + 2d1 + e1 = b+2 (X/ < (abc) >),

dim (H+(X)<(ab)(cd)>) = a1 + b1 + c1 + 2d1 + 3e1 = b+2 (X/ < (ab)(cd) >),

dim (H+(X)<(abcde)>) = a1 + b1 + c1 + e1 = b+2 (X/ < (abcde) >),

dim (H+(X)<(abced)>) = a1 + b1 + c1 + e1 = b+2 (X/ < (abced) >).

Moreover, for the Dirac operator of IndA5 D, we get

dim (IndA5 D)A5 = a0,

dim (IndA5 D)<(abc)> = a0 + b0 + c0 + 2d0 + e0,

dim (IndA5 D)<(ab)(cd)> = a0 + b0 + c0 + 2d0 + 3e0,

dim (IndA5 D)<(abcde)> = a0 + b0 + c0 + e0,

dim (IndA5 D)<(abced)> = a0 + b0 + c0 + e0.

Suppose V and W are two complex G-representations of compact Lie group G. BV and BW are balls in V and W. We
construct a G-map f : BV → BW which preserves the boundaries of BV and BW. Denote by Vg and Wg the subspaces
of V and W fixed under the action of g ∈ G and by V⊥g and W⊥g the corresponding orthogonal complements. Define
f g : Vg → Wg to be the restriction of f . Suppose λ−1β = Σ(−1)iλiβ. Then we have the following character formula for
the degree α f .

Theorem 4.(Tom Dieck 1979) Let f : BV → BW be a G-map preserving boundaries and let α f ∈ R(G) be the K-theory
degree. Then

trg(α f ) = d( f g)trg(λ−1(W⊥g − V⊥g )),

where trg is the trace of the action of an element g ∈ G, d( f g) is the topological degree of f g.

Obviously, if dim Vg , dim Wg, then d( f g) = 0. Note that λ−1(Σikiρi) =
∏

i(λ−1ρi)ki . When ρi is a 1-dim representation,
λ−1ρi = (1 − ρi). When ρi is a 2-dim representation h, we have λ−1ρi = (2 − h). Suppose ϕ ∈ S 1 ⊂ Pin(2) is the element
generating a dense subgroup of S 1, J ∈ Pin(2) is an element in the set of quaternion. The action of ϕ on the 2-dim
representation h is nontrivial and on the 1-dim representation 1̃ is trivial. J acts on h with two invariant subspaces. The
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action of J on them is multiplying ±
√
−1. In the following, to be simple we denote α f by α, denote Vg and Wg by V and

W.

3. Results

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to S 2 × S 2. If X admits a smooth spin
alternating group A5 action with b+2 (X/A5) = b+2 (X), then IndA5 DX = a0(ρ0 − 2ρ1 + ρ4) + c0(ρ2 − ρ1), where a, b are
integers.

Proof. Obviously, b+2 (X/A5) = b+2 (X) = 1, k = −σ(X)/16 = 0 and m = b+2 (X) = 1. For

s(ρ0, ρ1, ρ2, ρ3, ρ4) = a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4,

and
t(ρ0, ρ1, ρ2, ρ3, ρ4) = a1ρ0 + b1ρ1 + c1ρ2 + d1ρ3 + e1ρ4,

we have
a0 + 3b0 + 3c0 + 4d0 + 5e0 = 0,

a1 = 1,

b1 = c1 = d1 = e1 = 0.

Note that α ∈ R(Pin(2) × A5), then it must in the form

α = α0 + α̃01̃ +
∞∑

i=1

αihi,

where αi = liρ0 + miρ1 + niρ2 + qiρ3 + riρ4, i ≥ 0 and α̃0 = l̃0ρ0 + m̃0ρ1 + ñ0ρ2 + q̃0ρ3 + r̃0ρ4.

By the action of ϕ,

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))ϕ − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))ϕ = −(a1 + 3b1 + 3c1 + 4d1 + 5e1) = −1.

Then from T. tom Dieck’s character formula, we get trϕα = 0.

Notice that ϕt acts non-trivially on V(ρ0, ρ1, ρ2, ρ3, ρ4)h. t acts trivially on ρ0. The actions of t on ρ1, ρ2, ρ4 all have a
1-dim invariant subspace, while the action of t on ρ3 has a 2-dim invariant subspace. The above actions give rise to

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))ϕt − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))ϕt = −(a1 + b1 + c1 + 2d1 + e1) = −1.

Hence trϕtα = 0.

The action of ϕx on V(ρ0, ρ1, ρ2, ρ3, ρ4)h is non-trivial while it is trivial on 1̃. x acts on ρ1 and ρ2 both with a 1-dim
invariant subspace while it has a 2-dim invariant subspace on ρ3 and a 3-dim invariant subspace on ρ4 respectively.

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))ϕx − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))ϕx = −(a1 + b1 + c1 + 2d1 + 3e1) = −1.

Therefore trϕxα = 0.

The action of ϕs on V(ρ0, ρ1, ρ2, ρ3, ρ4)h is nontrivial. s acts on ρ0 trivially and with a 1-dim invariant subspace on ρ1, ρ2
and ρ4 respectively. Thus we have

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))ϕs − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))ϕs = −(a1 + b1 + c1 + e1) = −1.

For the same reason, we have

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))ϕs2 − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))ϕs2 = −(a1 + b1 + c1 + e1) = −1.

Thus trϕsα = trϕs2α = 0.

In summary, if b+2 (X/A5) = b+2 (X) = 1 then we have trϕα = trϕtα = trϕxα = trϕsα = trϕs2α = 0 which implies that

0 = trϕα = trϕ(α0 + α̃01̃ +
∞∑

i=1

αihi)

= trϕα0 + trϕα̃0 +

∞∑
i=1

trϕαi(ϕi + ϕ−i)

= (l0 + 3m0 + 3n0 + 4q0 + 5r0) + (l̃0 + 3m̃0 + 3ñ0 + 4q̃0 + 5r̃0) +
∞∑

i=1

trϕαi(ϕi + ϕ−i),
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0 = trϕtα = trt(α0 + α̃01̃ +
∞∑

i=1

αi(ϕi + ϕ−i))

= (l0 + q0 − r0) + (l̃0 + q̃0 − r̃0) +
∞∑

i=1

trtαi(ϕi + ϕ−i),

0 = trϕxα = trx(α0 + α̃01̃ +
∞∑

i=1

αi(ϕi + ϕ−i))

= (l0 − m0 − n0 + r0) + (l̃0 − m̃0 − ñ0 + r̃0) +
∞∑

i=1

trxαi(ϕi + ϕ−i),

0 = trϕsα = trs(α0 + α̃01̃ +
∞∑

i=1

αi(ϕi + ϕ−i))

= [l0 + (1 + ω + ω4)m0 + (1 + ω2 + ω3)n0 − q0] +

[l̃0 + (1 + ω + ω4)m̃0 + (1 + ω2 + ω3)ñ0 − q̃0] +
∞∑

i=1

trsαi(ϕi + ϕ−i),

0 = trϕs2α = tr2
s(α0 + α̃01̃ +

∞∑
i=1

αi(ϕi + ϕ−i))

= [l0 + (1 + ω2 + ω3)m0 + (1 + ω + ω4)n0 − q0] +

[l̃0 + (1 + ω2 + ω3)m̃0 + (1 + ω + ω4)ñ0 − q̃0] +
∞∑

i=1

trs2αi(ϕi + ϕ−i).

From these equations we can conclude α0 = −α̃0 and αi = 0, i > 0, that is α = α0(1 − 1̃).

Since J acts non-trivially on both h and 1̃, and dimVJ = dimWJ = 0, we have d( f J) = 1. Besides, trJh = 0 and trJ 1̃ = −1.
Then we have trJ(α) = trJ((1 − 1̃)m(2 − h)−2k) = 2m−2k.

Since the action of Jt is non-trivial on Vh and W1̃, we have d( f Jt) = 1. Then

trJt(α)
= trJt[λ−1(a1)1̃ − λ−1(a0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]
= trJt[(1 − 1̃)a1 (1 − h)−a0 (1 − ρ1h)−b0 (1 − ρ2h)−c0 (1 − ρ3h)−d0 (1 − ρ4h)−e0 ]

=
2a1

2a0 [2(1 + ε2)(1 + ε)]b0 [2(1 + ε)(1 + ε2)]c0 [22(1 + ε2)(1 + ε)]d0 [2(1 + ε2)2(1 + ε)2]e0

= 2a1−(a0+b0+c0+2d0+e0).

Here the 3-dim representation ρ1 can be decomposed into three complex lines, the actions of t on them are multiplying 1,
ε and ε2, where ε = e2πi/3. Similarly, the action of t on the three subspaces of representation ρ2 is 1, ε2 and ε. For the
4-dimensional representation ρ3, the action of t is 1, 1, ε, ε2. For the 5-dimensional representation ρ4, the action of t is 1,
ε, ε, ε2, ε2.

Since Jx acts non-trivially on both V(ρ0, ρ1, ρ2, ρ3, ρ4)h and W(ρ0, ρ1, ρ2, ρ3, ρ4)1̃, we have

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))Jx − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))Jx = 0.

Consequently, d( f Jx) = 1. Then

trJx(α) = trJx[λ−1(a1)1̃ − λ−1(a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]
= trJx[(1 − 1̃)a1 (1 − ρ0h)−a0 (1 − ρ1h)−b0 (1 − ρ2h)−c0 (1 − ρ3h)−d0 (1 − ρ4h)−e0 ]
= 2a1−(a0+3b0+3c0+4d0+5e0).
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Since Js acts non-trivially on both V(ρ0, ρ1, ρ2, ρ3, ρ4)h and W(ρ0, ρ1, ρ2, ρ3, ρ4)1̃, we have

dim(V(ρ0, ρ1, ρ2, ρ3, ρ4))Js − dim(W(ρ0, ρ1, ρ2, ρ3, ρ4))Js = 0.

thereby, d( f Js) = 1. From tom Dieck formula, we have

trJs(α) = trJs[λ−1(a1)1̃ − λ−1(a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]
= 2a1 2−a0 [2(1 + ω2)(1 + ω3)]−b0 [2(1 + ω4)(1 + ω)]−c0

[(1 + ω2)(1 + ω4)(1 + ω)(1 + ω3)]−d0 [2(1 + ω2)(1 + ω4)(1 + ω)(1 + ω3)]−e0

= 2a1−(a0+b0+c0+e0)[(1 + ω2)(1 + ω3)]b0−c0 .

For the same reasons, we have

trJs2 (α) = 2a1−(a0+b0+c0+e0)[(1 + ω2)(1 + ω3)]c0−b0 .

By calculating directly, we have

trJα0 = l0 + 3m0 + 3n0 + 4q0 + 5r0 = 2m−2k−1 = 1, (1)

trtα0 = l0 + q0 − r0 = 2a1−(a0+b0+c0+2d0+e0)−1 = 22(b0+c0+d0+2e0), (2)

trxα0 = l0 − m0 − n0 + r0 = 2a1−(a0+3b0+3c0+4d0+5e0)−1 = 2m−2k−1 = 1, (3)

trsα0 = l0 + (1 + ω + ω4)m0 + (1 + ω2 + ω3)n0 − q0

= 2a1−(a0+b0+c0+e0)−1[(1 + ω2)(1 + ω3)]b0−c0 , (4)

trs2α0 = l0 + (1 + ω2 + ω3)m0 + (1 + ω + ω4)n0 − q0

= 2a1−(a0+b0+c0+e0)−1[(1 + ω2)(1 + ω3)]c0−b0 . (5)

Notice that we have the following relations.

trJxα = trx(2α0) = 2trxα0,

trJtα = trt(2α0) = 2trtα0,

trJsα = trs(2α0) = 2trsα0,

trJs2α = trs2 (2α0) = 2trs2α0.

From (1) and (3) we get

l0 + q0 + 2r0 = 1,

which together with (2) shows us

r0 =
1
3

[1 − 22(b0+c0+d0+2e0)].

Since r0 ∈ Z, so b0 + c0 + d0 + 2e0 ≥ 0.

Now we consider −X, the reverse-oriented homotopy S 2×S 2. If we denote by IndA5 D−X = a′0ρ0+b′0ρ1+c′0ρ2+d′0ρ3+e′0ρ4,
from the above discussion we know that b′0 + c′0 + d′0 + 2e′0 ≥ 0. On the other hand, we have IndA5 DX = −IndA5 D−X , so
a′0 = −a0, b′0 = −b0, c′0 = −c0, d′0 = −d0 and e′0 = −e0. From these equations, we get b0 + c0 + d0 + 2e0 ≤ 0 and then
b0 + c0 + d0 + 2e0 = 0. Thus we have

l0 = 1 + m0 + n0 = 1 − q0. (6)

From (4) and (5), we have

2l0 + m0 + n0 − 2q0 = 2−(a0+b0+c0+e0)[((1 + ω2)(1 + ω3))c0−b0 + ((1 + ω2)(1 + ω3))b0−c0 ]
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which along with (6) shows that

q0 =
2 − 2−(a0+b0+c0+e0)[((1 + ω2)(1 + ω3))c0−b0 + ((1 + ω2)(1 + ω3))b0−c0 ]

5
.

Since q0 ∈ Z and [(1+ω2)(1+ω3)]c0−b0 + [(1+ω2)(1+ω3)]b0−c0 is a positive integer, we have a0 + b0 + c0 + e0 ≤ 0. Using
the reverse-orientation as before, we get a0 + b0 + c0 + e0 = 0.

Thus we have the following equations

a0 + 3b0 + 3c0 + 4d0 + 5e0 = 0, (7)

a0 + b0 + c0 + e0 = 0, (8)

b0 + c0 + d0 + 2e0 = 0, (9)

from which we get
a0 = e0, b0 = −c0 − 2e0, d0 = 0.

Thus IndA5 DX = a0(ρ0 − 2ρ1 + ρ4) + c0(ρ2 − ρ1). This completes the proof of Theorem 1.

We can also study the G-Index of A5 action on homotopy ♯nS 2 × S 2 in the similar way, and get the following result.

Corollary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to ♯nS 2 × S 2. If X admits a spin
alternating group A5 action with b+2 (X/A5) = b+2 (X), and denote by IndA5 DX = a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4, then
|b0 + c0 + d0 + 2e0| ≤ n−1

2 .

Notice that when X is homotopy equivalent to ♯nS 2 × S 2, b+2 (X) = n and k = 0.

Theorem 3 Let X be a closed smooth 4-manifold which is homotopy equivalent to ♯nS 2 × S 2. Suppose X admit a smooth
spin alternating group A5 action and b+2 (X/A5) = 0, b+2 (X/ < s >) = 0 and b+2 (X/ < t >) , 0. Then as an element of
R(A5), IndA5 D is of the form

a0ρ0 + b0(ρ1 + ρ2) + (a0 + b0)ρ3 − (a0 + 2b0)ρ4,

and n ≡ 0 mod 4.

Proof. Let X is homotopy equivalent to ♯nS 2×S 2. Next we assume b+2 (X/A5) = 0, b+2 (X/ < s >) = 0 and b+2 (X/ < t >) , 0,
that is a1 = b1 = c1 = e1 = 0 and d1 , 0. Then b+2 (X) = a1 + 3b1 + 3c1 + 4d1 + 5e1 = 4d1. Since d1 ∈ Z, we have
n ≡ 0 mod 4.

Considering the action of ϕs, we know the action of ϕs on h, ρ1h, ρ2h, ρ3h, ρ4h and ρ31̃ are all non-trivial but it acts on
1, ρ11̃, ρ21̃, ρ41̃ all with a 1-dimensional invariant subspace. So

dim(V(ρ1, ρ2, ρ3, ρ4)h)ϕs − dim(W(ρ1, ρ2, ρ3, ρ4)1̃)ϕs = −(a1 + b1 + c1 + e1) = 0,

and then d( f ϕs) = 1. By tom Dieck formula, we have

trϕsα = trϕs[λ−1(d1ρ3)1̃ − λ−1(a0ρ0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]
= [(1 − ω)(1 − ω2)(1 − ω3)(1 − ω4)]d1 [(1 − ϕ)(1 − ϕ−1)]−(a0+b0+c0+e0)

[(1 − ω2ϕ)(1 − ω2ϕ−1)]−(c0+d0+e0)[(1 − ω3ϕ)(1 − ω3ϕ−1)]−(c0+d0+e0)

[(1 − ωϕ)(1 − ωϕ−1)]−(b0+d0+e0)[(1 − ω4ϕ)(1 − ω4ϕ−1)]−(b0+d0+e0).

Since trs•α£ U(1) → C is a C0-function and ϕ is a generic element, then a0 + b0 + c0 + e0 ≤ 0, c0 + d0 + e0 ≤ 0,
b0 + d0 + e0 ≤ 0. Besides, dim(IndDA5 ) = a0 + 3b0 + 3c0 + 4d0 + 5e0 = 0. Then we have

a0 + b0 + c0 + e0 = c0 + d0 + e0 = b0 + d0 + e0 = 0, (10)

which means b0 = c0, d0 = a0 + b0 and e0 = −(a0 + 2b0). This completes the proof of Theorem.
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4. An example of Theorem 1.

As we know there exist a smooth action of A5 on the standard S 2 × S 2 induced by the icosahedral action on each factor.
Furthermore, the fixed points of this action for every non-trivial element is 4 isolated points. Next we compute IndA5 DX

as a virtual A5-representation.

(1) When g = 1, spin(g, X) = − sign(X)
8 = 0.

(2) When g = t, denote m+, m− the number of fixed points with local representation (1, 2) and (1, 1) respectively. Besides

ν+(P) =
1

(ζ1/2 − ζ−1/2)((ζ2)1/2 − (ζ2)−1/2)
= 1/3,

ν−(P) =
1

(ζ1/2 − ζ−1/2)(ζ1/2 − ζ−1/2)
= −1/3.

Since sign(X/ < g >) is integer, we have m+ = m− = 2. Then spin(g, X) = m+ν+(P) + m−ν−(P) = 0.

(3) When g = x, two of the fixed points have ν(P) = −1/4, and the other two have ν(P) = +1/4. Then spin(g, X) = −1.

(4) When g = s, the local representation of the 4 fixed points may be of type (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4)
or (4, 4). Besides we have

ν(1,1) = −ν(1,4) = ν(4,4) =
1

ζ + ζ4 − 2
,

ν(1,2) = ν(3,4) =
1

−2ζ2 − 2ζ3 − 1
,

ν(1,3) = ν(2,4) =
1

−2ζ − 2ζ4 − 1
,

ν(2,2) = −ν(2,3) = ν(3,3) =
1

ζ2 + ζ3 − 2
.

Note that
1

ζ + ζ4 − 2
+

1
ζ2 + ζ3 − 2

= −1,

1
−2ζ2 − 2ζ3 − 1

+
1

−2ζ − 2ζ4 − 1
= 0.

If spin(g, X) is rational, then spin(g, X) = 0,±1 or ±2.

(5) When g = s2, the result is the same as above.

Then the coefficient a0, b0, c0, d0 and e0 can be computed as follows.

a0 =
1 × 1 × 0 + 1 × 20 × 0 + 1 × 15 × 0 + 1 × 12 × spin(s, X) + 1 × 12 × spin(s2, X)

60
.

Since a0 is an integer, the only possible case is a0 = 0. Similarly, b0 = c0 = d0 = e0 = 0. Thus IndA5 DX = 0. This is
consistent with Theorem 1.
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