Alternating Group A_5 Actions on Homotopy $S^2 \times S^2$

Hongxia Li¹

Correspondence: Hongxia Li, College of Arts and Sciences, Shanghai Maritime University, Shanghai, China. Tel: 21-3828-2258. E-mail: lihongxia_2002@163.com

Received: December 14, 2015 Accepted: January 11, 2016 Online Published: January 25, 2016

doi:10.5539/jmr.v8n1p70 URL: http://dx.doi.org/10.5539/jmr.v8n1p70

The research is financed by (the National Natural Science Foundation of China NO.(11301334).)

Abstract

Let X be a smooth, closed 4-manifold which is homotopy equivalent to $S^2 \times S^2$. By the Seiberg-Witten theory, we take $\operatorname{Ind}_{A_5}D_X$ as a virtual A_5 -representation and give its concrete representation. We also study $\operatorname{Ind}_{A_5}D_X$ when X is homotopy equivalent to $\sharp_n S^2 \times S^2$. Besides we give an example of our main theorem.

Keywords: homotopy $S^2 \times S^2$, alternating group actions, Seiberg-Witten equations, Dirac operator

1. Introduction

Suppose X is a smooth, closed, connected spin 4-manifold. Let b_i be the i-th Betti number and b_+ be the rank of the maximal positive definite subspace of $H^2(X; \mathbb{R})$. $\sigma(X)$ denotes the signature of X. By Freedman & Quinn 1990 and Bryan 1998, the intersection form of X with non-positive signature should be

$$-2kE_8 \oplus mH, \qquad k \ge 0.$$

where E_8 is the 8 dimension bilinear intersection form and H is the hyperbolic form. Obviously, $m = b_2^+(X)$ and $k = -\sigma(X)/16$.

Suppose X admits a finite G-action which preserves the spin structure. We also suppose there is a Riemannian matric on X so that the G-action is isometric. Under these assumption, the G-action can always be lifted to a \tilde{G} -action on the spinor bundles, where \tilde{G} is in the following extension

$$1 \to \mathbb{Z}_2 \to \tilde{G} \to G \to 1.$$

If \tilde{G} contains a subgroup isomorphic to G, then the G-action is called even type. Otherwise, the G-action is called odd type. When G is the alternating group A_5 , \tilde{G} is a group isomorphic to $\mathbb{Z}_2 \times A_5$. Since A_5 is a subgroup of $\mathbb{Z}_2 \times A_5$, the spin A_5 action on a spin 4-manifold must be of even type.

By Bryan 1998, for a spin even type G-action on a spin manifold X, the Dirac operator D_X is G-equivariant and $\operatorname{Ind}_G D_X = \ker D_X - \operatorname{coker} D_X \in R(G)$. Suppose $\operatorname{Ind}_{A_5} D_X = a_0 \rho_0 + b_0 \rho_1 + c_0 \rho_2 + d_0 \rho_3 + e_0 \rho_4$, where $\rho_0, \rho_1, \rho_2, \rho_3$ and ρ_4 are irreducible representations of A_5 of degree 1, 3, 3, 4 and 5 (for detail see section 2), a_0, b_0, c_0, d_0 and e_0 are all integers.

The finite spin group actions on spin 4-manifold are widely studied. Such as Bryan 1998, Fang 2001, Furuta 2001, Liu 2005, Liu 2006 and Liu & Li 2008. In this paper, we mainly study the spin alternating group A_5 action on spin 4-manifolds X which are homotopy equivalent to $S^2 \times S^2$. Let -X denote X with the reversed orientation. Then -X is also homotopy equivalent to $S^2 \times S^2$ and satisfies $Ind_{A_5}D_X = -Ind_{A_5}D_{-X}$. Using this property, representation theory, Seiberg-Witten theory and the character formula for K-theory degree, we obtain the following main result.

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to $S^2 \times S^2$. If X admits a smooth spin alternating group A_5 action such that $b_2^+(X/A_5) = b_2^+(X)$, then $\operatorname{Ind}_{A_5}D_X = a_0(\rho_0 - 2\rho_1 + \rho_4) + c_0(\rho_2 - \rho_1)$, where a, b are integers.

Corrolary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_n S^2 \times S^2$. If X admits a smooth spin alternating group A_5 action such that $b_2^+(X/A_5) = b_2^+(X)$, then $\operatorname{Ind}_{A_5}D_X = a_0\rho_0 + b_0\rho_1 + c_0\rho_2 + d_0\rho_3 + e_0\rho_4$ satisfies $|b_0 + c_0 + d_0 + 2e_0| \le \frac{n-1}{2}$.

Theorem 3. Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_n S^2 \times S^2$. Suppose X admit a smooth spin alternating group A_5 action and $b_2^+(X/A_5) = 0$, $b_2^+(X/<s>) = 0$ and $b_2^+(X/<s>) <math>\neq 0$. Then as an element of

¹ College of Arts and Sciences, Shanghai Maritime University, Shanghai, China

 $R(A_5)$, $Ind_{A_5}D$ is of the form

$$a_0\rho_0 + b_0(\rho_1 + \rho_2) + (a_0 + b_0)\rho_3 - (a_0 + 2b_0)\rho_4$$

and $n \equiv 0 \mod 4$.

The rest of this paper consists of three parts. The first one is the introduction about this study. The second one gives the proofs of Theorem 1, Corollary 2 and Theorem 3. The last part contains an example about the main theorem.

2. Preliminaries

In this section, we review some basics about the Seiberg-Witten equations and symmetries on it, conjugacy classes of alternating group A_5 , the index of \mathcal{D} and the K-theory degree. Notice that this section largely depends on Bryan 1998. Besides, readers can also refer to Fang 2001, Furuta 2001 and Liu 2006.

2.1 Seiberg-Witten equations and its symmetry

Let U^{\pm} be the positive and negative complex spinor bundles and $U=U^{+}\oplus U^{-}$. Denote by $D:\Gamma(U^{+})\to \Gamma(U^{-})$ the Dirac operator and $\rho:\Lambda_{\mathbb{C}}^{*}\to \operatorname{End}_{\mathbb{C}}(U)$ the Clifford multiplication. Then the Seiberg-Witten equations are as follows

$$D\phi + \rho(a)\phi = 0,$$
 $\rho(d^+a) - \phi \otimes \phi^* + \frac{1}{2}|\phi|^2 \text{id} = 0,$ $d^*a = 0,$

where $(a, \phi) \in \Omega^1(X, \sqrt{-1}\mathbb{R}) \times \Gamma(U^+)$. Let V be the L_2^4 -completion of $\Gamma(\sqrt{-1}\Lambda^1 \oplus U^+)$ and W' be the L_2^3 -completion of $\Gamma(U^- \oplus \sqrt{-1}\operatorname{su}(U^+) \oplus \sqrt{-1}\Lambda^0)$. We could look the Seiberg-Witten equations as the zero set of a map

$$\mathcal{D} + Q: V \to W'$$

where $\mathcal{D}(a, \phi) = (D\phi, \rho(d^+a), d^*a), Q(a, \phi) = (\rho(a)\phi, \phi \otimes \phi^* - \frac{1}{2}|\phi|^2 \mathrm{id}, 0).$

In fact, the image of $\mathcal{D} + Q$ is L^2 -orthogonal to the constant functions in $\sqrt{-1}\Omega^0 \subset W'$. We denote W to be the orthogonal complement of the constant functions in W' and consider $\mathcal{D} + Q : V \to W$.

Next we consider the symmetries on the Seiberg-Witten equations. Denote by SU(2). the group of unit quaternions and S^1 the set of elements in the form $e^{\sqrt{-1}\theta}$. Suppose Pin(2) is the normalizer of S^1 in SU(2). Then the elements of Pin(2) should be in the form $e^{\sqrt{-1}\theta}$ or $e^{\sqrt{-1}\theta}J$. The action of Pin(2) on $\Gamma(U^\pm)$ is the multiplication on the left. The action of $\mathbb{Z}/2$ on $\Gamma(\Lambda_{\mathbb{C}}^*)$ is multiplication by ± 1 . By this way, we obtain the action of Pin(2) on V, W. Furthermore, the operator \mathcal{D} and Q are all Pin(2) equivariant.

Assume X is a closed smooth spin 4-manifold and G is a compact Lie group action on X which is isometric and preserves the spin structure. If the action is of even type, then both \mathcal{D} and Q are $\tilde{G} = \text{Pin}(2) \times G$ equivariant maps (Bryan 1998).

2.2 The Alternating Group A₅

In this paper, we consider the action of the alternating group A_5 on homotopy $S^2 \times S^2$. The alternating group A_5 is the minimal nonabelian finite simple group which consists of even permutations of a set $\{a, b, c, d, e\}$ with 5 elements. It consists of 60 elements which can be divided into the following 5 conjugacy classes:

- (1) the identity element 1;
- (2) 15 elements of order 2 which is conjugate with x = (ab)(cd);
- (3) 20 elements of order 3 which is conjugate with t = (abc);
- (4) 12 elements of order 5 which is conjugate with s = (abcde);
- (5) 12 elements of order 5 which is conjugate with $s^2 = (abced)$.

Besides, we have the following character table for A_5 , where $\omega = e^{2\pi i/5}$. For detail computation, we can refer to Serre 1997.

Table 1. Table title (the character table for A_5)

1	t	х	S	s^2	
χ_0	1	1	1	1	1
χ_1	3	0	-1	$1 + \omega + \omega^4$	$1 + \omega^2 + \omega^3$
χ_2	3	0	-1	$1 + \omega^2 + \omega^3$	$1 + \omega + \omega^4$
χ_3	4	1	0	-1	-1
<i>X</i> 4	5	-1	1	0	0

2.3 The Index of \mathcal{D} and the Character Formula for the K-theory Degree

Denote by $V_{\lambda} \subset V$ (resp. $W_{\lambda} \subset W$) the subspace spanned by the eigenspaces of $\mathcal{D}^*\mathcal{D}$ (resp. $\mathcal{D}\mathcal{D}^*$) with eigenvalues less than or equal to $\lambda \in \mathbb{R}$. Denote $V_{\lambda,\mathbb{C}} = V_{\lambda} \otimes \mathbb{C}$, $W_{\lambda,\mathbb{C}} = W_{\lambda} \otimes \mathbb{C}$. Then

$$\operatorname{Ind}\mathcal{D} = [\ker \mathcal{D}] - [\operatorname{Coker}\mathcal{D}] = [V_{\lambda,\mathbb{C}}] - [W_{\lambda,\mathbb{C}}].$$

Let $r: R(\widetilde{G}) \to R(\operatorname{Pin}(2))$ denotes the restriction map. Suppose $\widetilde{1}$ be the non-trivial one dimensional representation in $R(\operatorname{Pin}(2))$, which is obtained by pulling back the non-trivial $\mathbb{Z}/2$ representation by the map $\operatorname{Pin}(2) \to \mathbb{Z}/2$. Denote h_i the 2 dimensional irreducible representation in $R(\operatorname{Pin}(2))$, which is the restriction of the standard representation of $\operatorname{SU}(2)$ to $\operatorname{Pin}(2) \subset \operatorname{SU}(2)$ and write $h_1 = h$. Then Furuta determines $\operatorname{Ind}\mathcal{D}$ as a $\operatorname{Pin}(2)$ representation, and shows

$$r(\operatorname{Ind}\mathcal{D}) = 2kh - m\tilde{1}.$$

Thus Ind $\mathcal{D} = sh - t\tilde{1}$, where s and t are polynomials such that s(1) = 2k and t(1) = m.

For a spin A_5 action, $\tilde{G} = Pin(2) \times A_5$. We have

$$s(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4) = a_0\rho_0 + b_0\rho_1 + c_0\rho_2 + d_0\rho_3 + e_0\rho_4$$

$$t(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4) = a_1\rho_0 + b_1\rho_1 + c_1\rho_2 + d_1\rho_3 + e_1\rho_4,$$

such that $a_0 + 3b_0 + 3c_0 + 4d_0 + 5e_0 = 2k$ and $a_1 + 3b_1 + 3c_1 + 4d_1 + 5e_1 = m = b_2^+(X)$.

Suppose < g > is the cyclic subgroup of A_5 generated by $g \in A_5$. Then by using dimensions of invariant subspaces of < g > and multiplicities of eigenvalue 1 of ρ_i , $(0 \le i \le 4)$ for respective conjugacy classes, we get

$$\dim(H^+(X)^{A_5}) = a_1 = b_2^+(X/A_5),$$

$$\dim(H^+(X)^{<(abc)>}) = a_1 + b_1 + c_1 + 2d_1 + e_1 = b_2^+(X/<(abc)>),$$

$$\dim(H^+(X)^{<(ab)(cd)>}) = a_1 + b_1 + c_1 + 2d_1 + 3e_1 = b_2^+(X/<(ab)(cd)>),$$

$$\dim(H^+(X)^{<(abcde)>}) = a_1 + b_1 + c_1 + e_1 = b_2^+(X/<(abcde)>),$$

$$\dim(H^+(X)^{<(abced)>}) = a_1 + b_1 + c_1 + e_1 = b_2^+(X/<(abced)>).$$

Moreover, for the Dirac operator of $Ind_{A_{\epsilon}}D$, we get

$$\dim (\operatorname{Ind}_{A_5} D)^{A_5} = a_0,$$

$$\dim (\operatorname{Ind}_{A_5} D)^{<(abc)>} = a_0 + b_0 + c_0 + 2d_0 + e_0,$$

$$\dim (\operatorname{Ind}_{A_5} D)^{<(ab)(cd)>} = a_0 + b_0 + c_0 + 2d_0 + 3e_0,$$

$$\dim (\operatorname{Ind}_{A_5} D)^{<(abcde)>} = a_0 + b_0 + c_0 + e_0,$$

$$\dim (\operatorname{Ind}_{A_5} D)^{<(abced)>} = a_0 + b_0 + c_0 + e_0.$$

Suppose V and W are two complex G-representations of compact Lie group G. BV and BW are balls in V and W. We construct a G-map $f:BV\to BW$ which preserves the boundaries of BV and BW. Denote by V_g and W_g the subspaces of V and W fixed under the action of $g\in G$ and by V_g^\perp and W_g^\perp the corresponding orthogonal complements. Define $f^g:V_g\to W_g$ to be the restriction of f. Suppose $\lambda_{-1}\beta=\Sigma(-1)^i\lambda^i\beta$. Then we have the following character formula for the degree α_f .

Theorem 4.(Tom Dieck 1979) *Let* $f : BV \to BW$ *be a G-map preserving boundaries and let* $\alpha_f \in R(G)$ *be the K-theory degree. Then*

$$\operatorname{tr}_g(\alpha_f) = d(f^g)\operatorname{tr}_g(\lambda_{-1}(W_g^{\perp} - V_g^{\perp})),$$

where tr_g is the trace of the action of an element $g \in G$, $d(f^g)$ is the topological degree of f^g .

Obviously, if dim $V_g \neq \dim W_g$, then $d(f^g) = 0$. Note that $\lambda_{-1}(\Sigma_i k_i \rho_i) = \prod_i (\lambda_{-1} \rho_i)^{k_i}$. When ρ_i is a 1-dim representation, $\lambda_{-1}\rho_i = (1-\rho_i)$. When ρ_i is a 2-dim representation h, we have $\lambda_{-1}\rho_i = (2-h)$. Suppose $\phi \in S^1 \subset \text{Pin}(2)$ is the element generating a dense subgroup of S^1 , $J \in \text{Pin}(2)$ is an element in the set of quaternion. The action of ϕ on the 2-dim representation h is nontrivial and on the 1-dim representation 1 is trivial. J acts on J with two invariant subspaces. The

action of J on them is multiplying $\pm \sqrt{-1}$. In the following, to be simple we denote α_f by α , denote V_g and W_g by V and W.

3. Results

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to $S^2 \times S^2$. If X admits a smooth spin alternating group A_5 action with $b_2^+(X/A_5) = b_2^+(X)$, then $\operatorname{Ind}_{A_5}D_X = a_0(\rho_0 - 2\rho_1 + \rho_4) + c_0(\rho_2 - \rho_1)$, where a, b are integers.

Proof. Obviously, $b_2^+(X/A_5) = b_2^+(X) = 1$, $k = -\sigma(X)/16 = 0$ and $m = b_2^+(X) = 1$. For

$$s(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4) = a_0\rho_0 + b_0\rho_1 + c_0\rho_2 + d_0\rho_3 + e_0\rho_4$$

and

$$t(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4) = a_1\rho_0 + b_1\rho_1 + c_1\rho_2 + d_1\rho_3 + e_1\rho_4,$$

we have

$$a_0 + 3b_0 + 3c_0 + 4d_0 + 5e_0 = 0,$$

 $a_1 = 1,$
 $b_1 = c_1 = d_1 = e_1 = 0.$

Note that $\alpha \in R(Pin(2) \times A_5)$, then it must in the form

$$\alpha = \alpha_0 + \tilde{\alpha}_0 \tilde{1} + \sum_{i=1}^{\infty} \alpha_i h_i,$$

where $\alpha_i = l_i \rho_0 + m_i \rho_1 + n_i \rho_2 + q_i \rho_3 + r_i \rho_4$, $i \ge 0$ and $\tilde{\alpha}_0 = \tilde{l}_0 \rho_0 + \tilde{m}_0 \rho_1 + \tilde{n}_0 \rho_2 + \tilde{q}_0 \rho_3 + \tilde{r}_0 \rho_4$.

By the action of ϕ ,

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi} = -(a_1 + 3b_1 + 3c_1 + 4d_1 + 5e_1) = -1.$$

Then from T. tom Dieck's character formula, we get $tr_{\phi}\alpha = 0$.

Notice that ϕt acts non-trivially on $V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)h$. t acts trivially on ρ_0 . The actions of t on ρ_1 , ρ_2 , ρ_4 all have a 1-dim invariant subspace, while the action of t on ρ_3 has a 2-dim invariant subspace. The above actions give rise to

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi t} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi t} = -(a_1 + b_1 + c_1 + 2d_1 + e_1) = -1.$$

Hence $tr_{\phi t}\alpha = 0$.

The action of ϕx on $V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)h$ is non-trivial while it is trivial on $\tilde{1}$. x acts on ρ_1 and ρ_2 both with a 1-dim invariant subspace while it has a 2-dim invariant subspace on ρ_3 and a 3-dim invariant subspace on ρ_4 respectively.

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi_X} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi_X} = -(a_1 + b_1 + c_1 + 2d_1 + 3e_1) = -1.$$

Therefore $tr_{\phi x}\alpha = 0$.

The action of ϕs on $V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)h$ is nontrivial. s acts on ρ_0 trivially and with a 1-dim invariant subspace on ρ_1, ρ_2 and ρ_4 respectively. Thus we have

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi s} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi s} = -(a_1 + b_1 + c_1 + e_1) = -1.$$

For the same reason, we have

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi s^2} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{\phi s^2} = -(a_1 + b_1 + c_1 + e_1) = -1.$$

Thus $tr_{\phi s}\alpha = tr_{\phi s^2}\alpha = 0$.

In summary, if $b_2^+(X/A_5) = b_2^+(X) = 1$ then we have $\operatorname{tr}_{\phi}\alpha = \operatorname{tr}_{\phi s}\alpha = \operatorname{tr}_{\phi s}\alpha = \operatorname{tr}_{\phi s^2}\alpha = 0$ which implies that

$$0 = \operatorname{tr}_{\phi} \alpha = \operatorname{tr}_{\phi} (\alpha_{0} + \tilde{\alpha}_{0} \tilde{1} + \sum_{i=1}^{\infty} \alpha_{i} h_{i})$$

$$= \operatorname{tr}_{\phi} \alpha_{0} + \operatorname{tr}_{\phi} \tilde{\alpha}_{0} + \sum_{i=1}^{\infty} \operatorname{tr}_{\phi} \alpha_{i} (\phi^{i} + \phi^{-i})$$

$$= (l_{0} + 3m_{0} + 3n_{0} + 4q_{0} + 5r_{0}) + (\tilde{l}_{0} + 3\tilde{m}_{0} + 3\tilde{n}_{0} + 4\tilde{q}_{0} + 5\tilde{r}_{0}) + \sum_{i=1}^{\infty} \operatorname{tr}_{\phi} \alpha_{i} (\phi^{i} + \phi^{-i}),$$

$$0 = \operatorname{tr}_{\phi t} \alpha = \operatorname{tr}_{t} (\alpha_{0} + \tilde{\alpha}_{0} \tilde{1} + \sum_{i=1}^{\infty} \alpha_{i} (\phi^{i} + \phi^{-i}))$$

$$= (l_{0} + q_{0} - r_{0}) + (\tilde{l}_{0} + \tilde{q}_{0} - \tilde{r}_{0}) + \sum_{i=1}^{\infty} \operatorname{tr}_{t} \alpha_{i} (\phi^{i} + \phi^{-i}),$$

$$0 = \operatorname{tr}_{\phi x} \alpha = \operatorname{tr}_{x} (\alpha_{0} + \tilde{\alpha}_{0} \tilde{1} + \sum_{i=1}^{\infty} \alpha_{i} (\phi^{i} + \phi^{-i}))$$

$$= (l_{0} - m_{0} - n_{0} + r_{0}) + (\tilde{l}_{0} - \tilde{m}_{0} - \tilde{n}_{0} + \tilde{r}_{0}) + \sum_{i=1}^{\infty} \operatorname{tr}_{x} \alpha_{i} (\phi^{i} + \phi^{-i}),$$

$$0 = \operatorname{tr}_{\phi s} \alpha = \operatorname{tr}_{s} (\alpha_{0} + \tilde{\alpha}_{0} \tilde{1} + \sum_{i=1}^{\infty} \alpha_{i} (\phi^{i} + \phi^{-i}))$$

$$= [l_{0} + (1 + \omega + \omega^{4}) m_{0} + (1 + \omega^{2} + \omega^{3}) n_{0} - q_{0}] +$$

$$[\tilde{l}_{0} + (1 + \omega + \omega^{4}) \tilde{m}_{0} + (1 + \omega^{2} + \omega^{3}) \tilde{n}_{0} - \tilde{q}_{0}] + \sum_{i=1}^{\infty} \operatorname{tr}_{s} \alpha_{i} (\phi^{i} + \phi^{-i}),$$

$$0 = \operatorname{tr}_{\phi s^{2}} \alpha = \operatorname{tr}_{s}^{2} (\alpha_{0} + \tilde{\alpha}_{0} \tilde{1} + \sum_{i=1}^{\infty} \alpha_{i} (\phi^{i} + \phi^{-i}))$$

$$= [l_{0} + (1 + \omega^{2} + \omega^{3}) m_{0} + (1 + \omega + \omega^{4}) n_{0} - q_{0}] +$$

$$[\tilde{l}_{0} + (1 + \omega^{2} + \omega^{3}) \tilde{m}_{0} + (1 + \omega + \omega^{4}) \tilde{n}_{0} - \tilde{q}_{0}] + \sum_{i=1}^{\infty} \operatorname{tr}_{s^{2}} \alpha_{i} (\phi^{i} + \phi^{-i}).$$

From these equations we can conclude $\alpha_0 = -\tilde{\alpha}_0$ and $\alpha_i = 0, i > 0$, that is $\alpha = \alpha_0(1 - \tilde{1})$.

Since J acts non-trivially on both h and $\tilde{1}$, and $\dim V_J = \dim W_J = 0$, we have $d(f^J) = 1$. Besides, $\operatorname{tr}_J h = 0$ and $\operatorname{tr}_J \tilde{1} = -1$. Then we have $\operatorname{tr}_J(\alpha) = \operatorname{tr}_J((1-\tilde{1})^m(2-h)^{-2k}) = 2^{m-2k}$.

Since the action of Jt is non-trivial on Vh and W1, we have $d(f^{Jt}) = 1$. Then

$$\begin{aligned} & \operatorname{tr}_{Jt}(\alpha) \\ &= \operatorname{tr}_{Jt}[\lambda_{-1}(a_{1})\tilde{1} - \lambda_{-1}(a_{0} + b_{0}\rho_{1} + c_{0}\rho_{2} + d_{0}\rho_{3} + e_{0}\rho_{4})h] \\ &= \operatorname{tr}_{Jt}[(1 - \tilde{1})^{a_{1}}(1 - h)^{-a_{0}}(1 - \rho_{1}h)^{-b_{0}}(1 - \rho_{2}h)^{-c_{0}}(1 - \rho_{3}h)^{-d_{0}}(1 - \rho_{4}h)^{-e_{0}}] \\ &= \frac{2^{a_{1}}}{2^{a_{0}}[2(1 + \varepsilon^{2})(1 + \varepsilon)]^{b_{0}}[2(1 + \varepsilon)(1 + \varepsilon^{2})]^{c_{0}}[2^{2}(1 + \varepsilon^{2})(1 + \varepsilon)]^{d_{0}}[2(1 + \varepsilon^{2})^{2}(1 + \varepsilon)^{2}]^{e_{0}}} \\ &= 2^{a_{1} - (a_{0} + b_{0} + c_{0} + 2d_{0} + e_{0})}. \end{aligned}$$

Here the 3-dim representation ρ_1 can be decomposed into three complex lines, the actions of t on them are multiplying 1, ε and ε^2 , where $\varepsilon = e^{2\pi i/3}$. Similarly, the action of t on the three subspaces of representation ρ_2 is 1, ε^2 and ε . For the 4-dimensional representation ρ_3 , the action of t is 1, 1, ε , ε^2 . For the 5-dimensional representation ρ_4 , the action of t is 1, ε , ε , ε^2 , ε^2 .

Since Jx acts non-trivially on both $V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)h$ and $W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)\tilde{1}$, we have

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{Ix} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{Ix} = 0.$$

Consequently, $d(f^{Jx}) = 1$. Then

$$\operatorname{tr}_{J_X}(\alpha) = \operatorname{tr}_{J_X}[\lambda_{-1}(a_1)\tilde{1} - \lambda_{-1}(a_0\rho_0 + b_0\rho_1 + c_0\rho_2 + d_0\rho_3 + e_0\rho_4)h] \\
= \operatorname{tr}_{J_X}[(1 - \tilde{1})^{a_1}(1 - \rho_0 h)^{-a_0}(1 - \rho_1 h)^{-b_0}(1 - \rho_2 h)^{-c_0}(1 - \rho_3 h)^{-d_0}(1 - \rho_4 h)^{-e_0}] \\
= 2^{a_1 - (a_0 + 3b_0 + 3c_0 + 4d_0 + 5e_0)}.$$

Since Js acts non-trivially on both $V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)h$ and $W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4)\tilde{1}$, we have

$$\dim(V(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{Js} - \dim(W(\rho_0, \rho_1, \rho_2, \rho_3, \rho_4))_{Js} = 0.$$

thereby, $d(f^{Js}) = 1$. From tom Dieck formula, we have

$$\begin{aligned} \operatorname{tr}_{Js}(\alpha) &= & \operatorname{tr}_{Js}[\lambda_{-1}(a_{1})\tilde{1} - \lambda_{-1}(a_{0}\rho_{0} + b_{0}\rho_{1} + c_{0}\rho_{2} + d_{0}\rho_{3} + e_{0}\rho_{4})h] \\ &= & 2^{a_{1}}2^{-a_{0}}[2(1+\omega^{2})(1+\omega^{3})]^{-b_{0}}[2(1+\omega^{4})(1+\omega)]^{-c_{0}} \\ &= & [(1+\omega^{2})(1+\omega^{4})(1+\omega)(1+\omega^{3})]^{-d_{0}}[2(1+\omega^{2})(1+\omega^{4})(1+\omega)(1+\omega^{3})]^{-e_{0}} \\ &= & 2^{a_{1}-(a_{0}+b_{0}+c_{0}+e_{0})}[(1+\omega^{2})(1+\omega^{3})]^{b_{0}-c_{0}}. \end{aligned}$$

For the same reasons, we have

$$\operatorname{tr}_{Js^2}(\alpha) = 2^{a_1 - (a_0 + b_0 + c_0 + e_0)} [(1 + \omega^2)(1 + \omega^3)]^{c_0 - b_0}.$$

By calculating directly, we have

$$\operatorname{tr}_{J}\alpha_{0} = l_{0} + 3m_{0} + 3n_{0} + 4q_{0} + 5r_{0} = 2^{m-2k-1} = 1,$$
(1)

$$\operatorname{tr}_{t}\alpha_{0} = l_{0} + q_{0} - r_{0} = 2^{a_{1} - (a_{0} + b_{0} + c_{0} + 2d_{0} + e_{0}) - 1} = 2^{2(b_{0} + c_{0} + d_{0} + 2e_{0})},$$
(2)

$$\operatorname{tr}_{x}\alpha_{0} = l_{0} - m_{0} - n_{0} + r_{0} = 2^{a_{1} - (a_{0} + 3b_{0} + 3c_{0} + 4d_{0} + 5e_{0}) - 1} = 2^{m - 2k - 1} = 1,$$
(3)

$$\operatorname{tr}_{s}\alpha_{0} = l_{0} + (1 + \omega + \omega^{4})m_{0} + (1 + \omega^{2} + \omega^{3})n_{0} - q_{0}$$
$$= 2^{a_{1} - (a_{0} + b_{0} + c_{0} + e_{0}) - 1}[(1 + \omega^{2})(1 + \omega^{3})]^{b_{0} - c_{0}}, \tag{4}$$

$$\operatorname{tr}_{s^2}\alpha_0 = l_0 + (1 + \omega^2 + \omega^3)m_0 + (1 + \omega + \omega^4)n_0 - q_0$$

= $2^{a_1 - (a_0 + b_0 + c_0 + e_0) - 1}[(1 + \omega^2)(1 + \omega^3)]^{c_0 - b_0}.$ (5)

Notice that we have the following relations.

$$tr_{Jx}\alpha = tr_x(2\alpha_0) = 2tr_x\alpha_0,$$

$$tr_{Jt}\alpha = tr_t(2\alpha_0) = 2tr_t\alpha_0,$$

$$tr_{Js}\alpha = tr_s(2\alpha_0) = 2tr_s\alpha_0,$$

$$tr_{Js^2}\alpha = tr_{s^2}(2\alpha_0) = 2tr_{s^2}\alpha_0.$$

From (1) and (3) we get

$$l_0 + q_0 + 2r_0 = 1,$$

which together with (2) shows us

$$r_0 = \frac{1}{3} [1 - 2^{2(b_0 + c_0 + d_0 + 2e_0)}].$$

Since $r_0 \in \mathbb{Z}$, so $b_0 + c_0 + d_0 + 2e_0 \ge 0$.

Now we consider -X, the reverse-oriented homotopy $S^2 \times S^2$. If we denote by $\operatorname{Ind}_{A_5}D_{-X} = a_0'\rho_0 + b_0'\rho_1 + c_0'\rho_2 + d_0'\rho_3 + e_0'\rho_4$, from the above discussion we know that $b_0' + c_0' + d_0' + 2e_0' \ge 0$. On the other hand, we have $\operatorname{Ind}_{A_5}D_X = -\operatorname{Ind}_{A_5}D_{-X}$, so $a_0' = -a_0, b_0' = -b_0, c_0' = -c_0, d_0' = -d_0$ and $e_0' = -e_0$. From these equations, we get $b_0 + c_0 + d_0 + 2e_0 \le 0$ and then $b_0 + c_0 + d_0 + 2e_0 = 0$. Thus we have

$$l_0 = 1 + m_0 + n_0 = 1 - q_0. (6)$$

From (4) and (5), we have

$$2l_0 + m_0 + n_0 - 2q_0 = 2^{-(a_0 + b_0 + c_0 + e_0)} [((1 + \omega^2)(1 + \omega^3))^{c_0 - b_0} + ((1 + \omega^2)(1 + \omega^3))^{b_0 - c_0}]$$

which along with (6) shows that

$$q_0 = \frac{2 - 2^{-(a_0 + b_0 + c_0 + e_0)}[((1 + \omega^2)(1 + \omega^3))^{c_0 - b_0} + ((1 + \omega^2)(1 + \omega^3))^{b_0 - c_0}]}{5}.$$

Since $q_0 \in \mathbb{Z}$ and $[(1+\omega^2)(1+\omega^3)]^{c_0-b_0} + [(1+\omega^2)(1+\omega^3)]^{b_0-c_0}$ is a positive integer, we have $a_0 + b_0 + c_0 + e_0 \le 0$. Using the reverse-orientation as before, we get $a_0 + b_0 + c_0 + e_0 = 0$.

Thus we have the following equations

$$a_0 + 3b_0 + 3c_0 + 4d_0 + 5e_0 = 0, (7)$$

$$a_0 + b_0 + c_0 + e_0 = 0, (8)$$

$$b_0 + c_0 + d_0 + 2e_0 = 0, (9)$$

from which we get

$$a_0 = e_0, b_0 = -c_0 - 2e_0, d_0 = 0.$$

Thus $\operatorname{Ind}_{A_5}D_X = a_0(\rho_0 - 2\rho_1 + \rho_4) + c_0(\rho_2 - \rho_1)$. This completes the proof of Theorem 1.

We can also study the G-Index of A_5 action on homotopy $\sharp_n S^2 \times S^2$ in the similar way, and get the following result.

Corollary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_n S^2 \times S^2$. If X admits a spin alternating group A_5 action with $b_2^+(X/A_5) = b_2^+(X)$, and denote by $\operatorname{Ind}_{A_5}D_X = a_0\rho_0 + b_0\rho_1 + c_0\rho_2 + d_0\rho_3 + e_0\rho_4$, then $|b_0 + c_0 + d_0 + 2e_0| \le \frac{n-1}{2}$.

Notice that when *X* is homotopy equivalent to $\sharp_n S^2 \times S^2$, $b_2^+(X) = n$ and k = 0.

Theorem 3 Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_n S^2 \times S^2$. Suppose X admit a smooth spin alternating group A_5 action and $b_2^+(X/A_5) = 0$, $b_2^+(X/< s>) = 0$ and $b_2^+(X/< t>) \neq 0$. Then as an element of $R(A_5)$, $Ind_{A_5}D$ is of the form

$$a_0\rho_0 + b_0(\rho_1 + \rho_2) + (a_0 + b_0)\rho_3 - (a_0 + 2b_0)\rho_4$$

and $n \equiv 0 \mod 4$.

Proof. Let *X* is homotopy equivalent to $\sharp_n S^2 \times S^2$. Next we assume $b_2^+(X/A_5) = 0$, $b_2^+(X/< s>) = 0$ and $b_2^+(X/< t>) ≠ 0$, that is $a_1 = b_1 = c_1 = e_1 = 0$ and $d_1 ≠ 0$. Then $b_2^+(X) = a_1 + 3b_1 + 3c_1 + 4d_1 + 5e_1 = 4d_1$. Since $d_1 ∈ \mathbb{Z}$, we have $n \equiv 0 \mod 4$.

Considering the action of ϕs , we know the action of ϕs on $h, \rho_1 h, \rho_2 h, \rho_3 h, \rho_4 h$ and $\rho_3 \tilde{1}$ are all non-trivial but it acts on $1, \rho_1 \tilde{1}, \rho_2 \tilde{1}, \rho_4 \tilde{1}$ all with a 1-dimensional invariant subspace. So

$$\dim(V(\rho_1, \rho_2, \rho_3, \rho_4)h)_{\phi s} - \dim(W(\rho_1, \rho_2, \rho_3, \rho_4)\tilde{1})_{\phi s} = -(a_1 + b_1 + c_1 + e_1) = 0,$$

and then $d(f^{\phi s}) = 1$. By tom Dieck formula, we have

$$\begin{aligned} \operatorname{tr}_{\phi s} \alpha &= \operatorname{tr}_{\phi s} [\lambda_{-1} (d_{1} \rho_{3}) \tilde{1} - \lambda_{-1} (a_{0} \rho_{0} + b_{0} \rho_{1} + c_{0} \rho_{2} + d_{0} \rho_{3} + e_{0} \rho_{4}) h] \\ &= [(1 - \omega) (1 - \omega^{2}) (1 - \omega^{3}) (1 - \omega^{4})]^{d_{1}} [(1 - \phi) (1 - \phi^{-1})]^{-(a_{0} + b_{0} + c_{0} + e_{0})} \\ &= [(1 - \omega^{2} \phi) (1 - \omega^{2} \phi^{-1})]^{-(c_{0} + d_{0} + e_{0})} [(1 - \omega^{3} \phi) (1 - \omega^{3} \phi^{-1})]^{-(c_{0} + d_{0} + e_{0})} \\ &= [(1 - \omega \phi) (1 - \omega \phi^{-1})]^{-(b_{0} + d_{0} + e_{0})} [(1 - \omega^{4} \phi) (1 - \omega^{4} \phi^{-1})]^{-(b_{0} + d_{0} + e_{0})}. \end{aligned}$$

Since $\operatorname{tr}_{s\bullet}\alpha \pounds\ U(1) \to \mathbb{C}$ is a C^0 -function and ϕ is a generic element, then $a_0 + b_0 + c_0 + e_0 \le 0$, $c_0 + d_0 + e_0 \le 0$, $b_0 + d_0 + e_0 \le 0$. Besides, $\dim(\operatorname{Ind}D_{A_5}) = a_0 + 3b_0 + 3c_0 + 4d_0 + 5e_0 = 0$. Then we have

$$a_0 + b_0 + c_0 + e_0 = c_0 + d_0 + e_0 = b_0 + d_0 + e_0 = 0,$$
 (10)

which means $b_0 = c_0$, $d_0 = a_0 + b_0$ and $e_0 = -(a_0 + 2b_0)$. This completes the proof of Theorem.

4. An example of Theorem 1.

As we know there exist a smooth action of A_5 on the standard $S^2 \times S^2$ induced by the icosahedral action on each factor. Furthermore, the fixed points of this action for every non-trivial element is 4 isolated points. Next we compute $\operatorname{Ind}_{A_5}D_X$ as a virtual A_5 -representation.

- (1) When g = 1, $spin(g, X) = -\frac{sign(X)}{8} = 0$.
- (2) When g = t, denote m_+ , m_- the number of fixed points with local representation (1, 2) and (1, 1) respectively. Besides

$$\nu_{+}(P) = \frac{1}{(\zeta^{1/2} - \zeta^{-1/2})((\zeta^{2})^{1/2} - (\zeta^{2})^{-1/2})} = 1/3,$$

$$\nu_{-}(P) = \frac{1}{(\zeta^{1/2} - \zeta^{-1/2})(\zeta^{1/2} - \zeta^{-1/2})} = -1/3.$$

Since $sign(X/\langle g \rangle)$ is integer, we have $m_+=m_-=2$. Then $spin(g,X)=m_+\nu_+(P)+m_-\nu_-(P)=0$.

- (3) When g = x, two of the fixed points have v(P) = -1/4, and the other two have v(P) = +1/4. Then spin(g, X) = -1.
- (4) When g = s, the local representation of the 4 fixed points may be of type (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4) or (4, 4). Besides we have

$$\begin{split} \nu_{(1,1)} &= -\nu_{(1,4)} = \nu_{(4,4)} = \frac{1}{\zeta + \zeta^4 - 2}, \\ \nu_{(1,2)} &= \nu_{(3,4)} = \frac{1}{-2\zeta^2 - 2\zeta^3 - 1}, \\ \nu_{(1,3)} &= \nu_{(2,4)} = \frac{1}{-2\zeta - 2\zeta^4 - 1}, \\ \nu_{(2,2)} &= -\nu_{(2,3)} = \nu_{(3,3)} = \frac{1}{\zeta^2 + \zeta^3 - 2}. \end{split}$$

Note that

$$\frac{1}{\zeta + \zeta^4 - 2} + \frac{1}{\zeta^2 + \zeta^3 - 2} = -1,$$
$$\frac{1}{-2\zeta^2 - 2\zeta^3 - 1} + \frac{1}{-2\zeta - 2\zeta^4 - 1} = 0.$$

If spin(g, X) is rational, then $spin(g, X) = 0, \pm 1$ or ± 2 .

(5) When $g = s^2$, the result is the same as above.

Then the coefficient a_0, b_0, c_0, d_0 and e_0 can be computed as follows.

$$a_0 = \frac{1 \times 1 \times 0 + 1 \times 20 \times 0 + 1 \times 15 \times 0 + 1 \times 12 \times spin(s, X) + 1 \times 12 \times spin(s^2, X)}{60}.$$

Since a_0 is an integer, the only possible case is $a_0 = 0$. Similarly, $b_0 = c_0 = d_0 = e_0 = 0$. Thus $Ind_{A_5}D_X = 0$. This is consistent with Theorem 1.

References

Bryan, J. (1998). Seiberg-Witten theory and $\mathbb{Z}/2^p$ actions on spin 4-manifolds. *Math. Res. Letter*, 5, 165-183. http://dx.doi.org/10.4310/MRL.1998.v5.n2.a3

Fang, F. (2001). Smooth group actions on 4-manifolds and Seiberg-Witten theory. *Diff. Geom. and its Applications*, 14, 1-14. http://dx.doi.org/10.1016/S0926-2245(00)00036-X

Freedman, M. H., & Quinn, F. (1990). *The topology of 4-manifolds*. Princeton Mathematical Series. 39, Princeton University Press, Princeton.

Furuta, M. (2001). Monopole equation and $\frac{11}{8}$ -conjecture. *Math. Res. Letter*, 8, 279-291. http://dx.doi.org/10.4310/MRL.2001.v8.n3.a5

Liu, X. (2005). On S3-actions on spin 4-manifolds. Carpathian J. Math., 21(1-2), 137C142.

Liu, X. (2006). On spin alternating group actions on spin 4-manifolds. Korean Math. Soc., 6, 1183-1197.

- Liu, X., & Hongxia, L. (2008). Symmetric group actions on homotopy $S2 \times S2$. Mon. Math., 153(1), 49-57. http://dx.doi.org/10.1007/s00605-007-0514-0
- Serre, J. P. (1977). *Linear Representation of Finite Groups*. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4684-9458-7
- Tom Dieck, T. (1979). *Transformation Groups and Representation Theory*. Lecture Notes in Mathematics. 766, Springer, Berlin. http://dx.doi.org/10.1007/BFb0085965

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).