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Abstract

Let X be a smooth, closed 4-manifold which is homotopy equivalent to S x S2. By the Seiberg-Witten theory, we take
Inds, Dy as a virtual As-representation and give its concrete representation. We also study Inds, Dy when X is homotopy
equivalent to #,52 x S2. Besides we give an example of our main theorem.
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1. Introduction

Suppose X is a smooth, closed, connected spin 4-manifold. Let b; be the i-th Betti number and b, be the rank of the
maximal positive definite subspace of H>(X; R). o-(X) denotes the signature of X. By Freedman & Quinn 1990 and Bryan
1998, the intersection form of X with non-positive signature should be

—2kEg ® mH, k>0,

where Eg is the 8 dimension bilinear intersection form and H is the hyperbolic form. Obviously, m = b3(X) and k =
-o(X)/16.

Suppose X admits a finite G-action which preserves the spin structure. We also suppose there is a Riemannian matric on
X so that the G-action is isometric. Under these assumption, the G-action can always be lifted to a G-action on the spinor
bundles, where G is in the following extension

157, »G—>G—1.

If G contains a subgroup isomorphic to G, then the G-action is called even type. Otherwise, the G-action is called odd
type. When G is the alternating group As, G is a group isomorphic to Z, x As. Since As is a subgroup of Z, x As, the spin
As action on a spin 4-manifold must be of even type.

By Bryan 1998, for a spin even type G-action on a spin manifold X, the Dirac operator Dy is G-equivariant and IndgDx =
kerDyx — cokerDx € R(G). Suppose Inds, Dx = aoppo + bop1 + copz + dops + egpa, where po, p1, p2, p3 and p4 are irreducible
representations of As of degree 1, 3, 3, 4 and 5 (for detail see section 2), ag, by, ¢y, dy and eq are all integers.

The finite spin group actions on spin 4-manifold are widely studied. Such as Bryan 1998, Fang 2001, Furuta 2001, Liu
2005, Liu 2006 and Liu & Li 2008. In this paper, we mainly study the spin alternating group As action on spin 4-manifolds
X which are homotopy equivalent to S x S2. Let —X denote X with the reversed orientation. Then —X is also homotopy
equivalent to S% x S? and satisfies Indsg,Dx = —Inds,D_x. Using this property, representation theory, Seiberg-Witten
theory and the character formula for K-theory degree, we obtain the following main result.

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to S* x S2. If X admits a smooth spin
alternating group As action such that b (X/As) = b3 (X), then Inda;Dx = ao(po — 2p1 + ps) + co(p2 — p1), where a, b are
integers.

Corrolary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to #,S* x S2. If X admits a smooth
spin alternating group As action such that b} (X/As) = b (X), then Indy,Dx = aopoy + bop| + copz + dop3 + eops satisfies
|bo + co + do + 20| < %51

Theorem 3. Let X be a closed smooth 4-manifold which is homotopy equivalent to #,S* x S2. Suppose X admit a smooth
spin alternating group As action and b3(X/As) = 0, b3(X/ < s >) = 0 and b5(X/ < t >) # 0. Then as an element of
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R(As), Inda,D is of the form
aopo + bo(p1 + p2) + (ap + bo)p3 — (ap + 2bo)ps,
and n = 0 mod 4.

The rest of this paper consists of three parts. The first one is the introduction about this study. The second one gives the
proofs of Theorem 1, Corollary 2 and Theorem 3. The last part contains an example about the main theorem.

2. Preliminaries

In this section, we review some basics about the Seiberg-Witten equations and symmetries on it, conjugacy classes of
alternating group As, the index of 9 and the K-theory degree. Notice that this section largely depends on Bryan 1998.
Besides, readers can also refer to Fang 2001, Furuta 2001 and Liu 2006.

2.1 Seiberg-Witten equations and its symmetry

Let U* be the positive and negative complex spinor bundles and U = U* & U~. Denote by D : I'(U*) — I'(U") the Dirac
operator and p : Ag — Endc(U) the Clifford multiplication. Then the Seiberg-Witten equations are as follows

D¢ + p(a)p = 0, plda)—pR¢" + %|¢|2id =0, d'a=0,

where (a,¢) € Q'(X, V=1R) x (U*). Let V be the L3-completion of I'( V-1A' @ U*) and W’ be the L}-completion of
T(U~ ® V-1su(U") @ V=1A"). We could look the Seiberg-Witten equations as the zero set of a map

D+Q: VoW,
where D(a, $) = (D¢, p(d*a), d"a)), Qa, $) = (p(a)p, d ® ¢* — %|¢|zid, 0).

In fact, the image of D +Q is L*-orthogonal to the constant functions in V—1Q° c W’. We denote W to be the orthogonal
complement of the constant functions in W and consider D+ Q : V — W.

Next we consider the symmetries on the Seiberg-Witten equations. Denote by SU(2). the group of unit quaternions and
S the set of elements in the form e V=17 Suppose Pin(2) is the normalizer of S in SU(2). Then the elements of Pin(2)
should be in the form e V=" or ¢ V-1¢J. The action of Pin(2) on I'(U*) is the multiplication on the left. The action of Z/2
on ['(A{) is multiplication by +1. By this way, we obtain the action of Pin(2) on V, W. Furthermore, the operator O and
Q are all Pin(2) equivariant.

Assume X is a closed smooth spin 4-manifold and G is a compact Lie group action on X which is isometric and preserves
the spin structure. If the action is of even type, then both D and Q are G = Pin(2) X G equivariant maps (Bryan 1998).

2.2 The Alternating Group As

In this paper, we consider the action of the alternating group As on homotopy S2 x S2. The alternating group As is the
minimal nonabelian finite simple group which consists of even permutations of a set {a, b, c,d, e} with 5 elements. It
consists of 60 elements which can be divided into the following 5 conjugacy classes:

(1) the identity element 1;

(2) 15 elements of order 2 which is conjugate with x = (ab)(cd);
(3) 20 elements of order 3 which is conjugate with ¢t = (abc);

(4) 12 elements of order 5 which is conjugate with s = (abcde);
(5) 12 elements of order 5 which is conjugate with s> = (abced).

Besides, we have the following character table for A5, where w = 2™/5 . For detail computation, we can refer to Serre
1997.

Table 1. Table title (the character table for As)

1t x s s

xo 1 1 1 1 1

Y1 3 0 -1 l+w+o* 1+0*+d°
Y2 3 0 -1 1+0*+e® 1+w+d*
x3 4 1 0 -1 -1

xa 5 -1 1 0 0
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2.3 The Index of D and the Character Formula for the K-theory Degree

Denote by V,; c V (resp. W, c W) the subspace spanned by the eigenspaces of D*D (resp. DD*) with eigenvalues less
than or equal to A € R. Denote V,c =V, ® C, W,c = W, ® C. Then

IndD = [kerD] — [CokerD] = [Vac] — [Wacl.

Let r : R(G) — R(Pin(2)) denotes the restriction map. Suppose 1 be the non-trivial one dimensional representation in
R(Pin(2)), which is obtained by pulling back the non-trivial Z/2 representation by the map Pin(2) — Z/2. Denote h; the
2 dimensional irreducible representation in R(Pin(2)), which is the restriction of the standard representation of SU(2) to
Pin(2) c SU(2) and write | = h. Then Furuta determines IndD as a Pin(2) representation, and shows

r(IndD) = 2kh — m1.

Thus IndD = sh — ¢1, where s and ¢ are polynomials such that s(1) = 2k and #(1) = m.
For a spin As action, G = Pin(2) x As. We have

5(00, P1, P2, 03, 04) = aopo + bop1 + cop2 + dops + eppa,

(00, P1,P2, 03, P4) = a1po + bip1 + c1p2 + d1p3 + €14,
such that ag + 3bg + 3¢ + 4dy + Seq = 2k and a; + 3b; + 3¢y +4d| + S5e; =m = bg(X)

Suppose < g > is the cyclic subgroup of As generated by g € As. Then by using dimensions of invariant subspaces of
< g > and multiplicities of eigenvalue 1 of p;, (0 < i < 4) for respective conjugacy classes, we get

dim (H* (X)) = a; = b3 (X/As),

dim (H*(X)““9>) = a) + by + ¢; + 2d, + e, = b3(X/ < (abc) >),
dim (H* (X)<@D>) = a; + by + ¢; + 2d, + 3e; = b}(X/ < (ab)(cd) >),
dim (H*(X)~“¢4>) = a; + by + ¢| + e; = b3(X/ < (abcde) >),
dim (H*(X)<@“D>) = a; + by + ¢| + e; = b3(X/ < (abced) >).

Moreover, for the Dirac operator of Ind4, D, we get
dim (Ind, D) = ay,

dim (Il’ldASD)<(abc)> =ag+ by + ¢y + 2dy + e,
dim (Ind, D)<“PCD> = o + by + co + 2dy + 3ep,
dim (Ind, D)<“P°4> = g4 + by + ¢y + ep,

dim (Ind,, D)<@beed> — 40 4 b + ¢ + €.

Suppose V and W are two complex G-representations of compact Lie group G. BV and BW are balls in V and W. We
construct a G-map f : BV — BW which preserves the boundaries of BV and BW. Denote by V, and W, the subspaces
of V and W fixed under the action of ¢ € G and by Vgl and WgL the corresponding orthogonal complements. Define
f¢: Vg — W, to be the restriction of f. Suppose A_8 = 2(~1)'A'8. Then we have the following character formula for
the degree a;.

Theorem 4.(Tom Dieck 1979) Let f : BV — BW be a G-map preserving boundaries and let ay € R(G) be the K-theory
degree. Then

tre(ap) = d(ftry (A (WE = V),
where trg is the trace of the action of an element g € G, d(f?) is the topological degree of f2.

Obviously, if dim V, # dim Wy, then d(f¢) = 0. Note that A_(Z;k;0;) = [T;(A-1p))%. When p; is a 1-dim representation,
A1pi = (1 = p;). When p; is a 2-dim representation k, we have A_;p; = (2 — h). Suppose ¢ € S! c Pin(2) is the element
generating a dense subgroup of S', J € Pin(2) is an element in the set of quaternion. The action of ¢ on the 2-dim
representation  is nontrivial and on the 1-dim representation 1 is trivial. J acts on & with two invariant subspaces. The
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action of J on them is multiplying + V—1. In the following, to be simple we denote a by a, denote V, and W, by V and
w.

3. Results

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to S* x S2. If X admits a smooth spin
alternating group As action with b} (X/As) = b3 (X), then Indy;Dx = ao(po — 201 + p4) + co(p2 — p1), where a, b are
integers.

Proof. Obviously, b3(X/As) = b3(X) = 1, k = —o(X)/16 = 0 and m = b}(X) = 1. For
5(p0, P1, P2, P3,P4) = Aopo + bop1 + copa + dops + egpa,

and
1(po, P1, P2, P3,p4) = a1po + bip1 + c1p2 + d1p3 + e1p4,

we have
ag + 3bg + 3co + 4dy + 5e9 = 0,

a1=1,

bl =C1=d1 =€1:0.
Note that @ € R(Pin(2) X As), then it must in the form
@=ay+agl + Zaihi,
i=1
where @; = lipg + mipy + nipy + qip3 + ripa, i = 0 and & = lopo + fop1 + figpa + Gops + Fopa.
By the action of ¢,
dim(V(po, p1, P2, 03, 04))g — dim(W(po, p1, 02,03, 04))¢ = —(a1 + 3by + 3c1 + 4dy + 5e1) = 1.
Then from T. tom Dieck’s character formula, we get trga = 0.

Notice that ¢t acts non-trivially on V(pg, p1, 02,03, p04)h. t acts trivially on pg. The actions of ¢ on py, p2, p4 all have a
1-dim invariant subspace, while the action of ¢ on p3 has a 2-dim invariant subspace. The above actions give rise to

dim(V(po, p1, P2, 03, P4))er — AIM(W (00, p1, 02,03, 04))pr = —(a1 + by + c1 +2d; + e1) = —1.
Hence trya = 0.

The action of ¢x on V(pg, p1, 02,03, p4)h is non-trivial while it is trivial on 1. x acts on p; and p» both with a 1-dim
invariant subspace while it has a 2-dim invariant subspace on p3 and a 3-dim invariant subspace on p4 respectively.

dim(V(po, o1, P2, 3, P4))gx — Aim(W (po, p1, p2, 03, p4))px = —(a1 + by + ¢ +2d; + 3ey) = —1.
Therefore try,a = 0.

The action of ¢s on V(pg, p1, 02,03, P4)h is nontrivial. s acts on py trivially and with a 1-dim invariant subspace on py, p»
and p4 respectively. Thus we have

dim(V(po, p1, P2, 03, Pa))ps — Aim(W(po, p1, 02,03, 04))ps = —(a1 + by +c1 + 1) = —1.
For the same reason, we have

dim(V(po, o1, 02, 3, P4))ps2 — Aim(W(po, 01, 02,03, 04))¢2 = —(a1 + by +c1 +e1) = —1.
Thus trysa = trgpea = 0.

In summary, if b3 (X/As) = b3 (X) = 1 then we have trya = trya = try@ = trga = tryea = 0 which implies that

trya = tr¢(ao + d’oi + Z a;h;)
i=1

0

= trpap + tr¢(y0 + Z tr¢ai(¢i + ¢_i)
i=1

(lo + 3mo + 3ng + 4qo + 5ro) + (lo + 3y + 37ig + 4o + 5F0) + Z trpai(¢’ +¢7),

i=1
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()
|

trpe = tr (g + d(oi + Z a',~(¢i + ¢7i))
i=1

(o +qo = o) + (o + Go = Fo) + ) (¢ +¢7),

i=1

)
|

trga = try(ao + aol + Z a;(qﬁi + ¢_i))
i=1

(lo = mo — no + ro) + (Io — fing — g + 7o) + Z tryi(¢' +¢7),

i=1

0 = tl‘¢5(Z = try(ag + CNZQI + Z CZI'(QSi + ¢7i))
i=1
= [lo+(1+w+w4)m0+(1+w2+w3)n0—qo]+

o + (1 + @+ whyig + (1 + 6 + &)itg = Gol + ) treen(@’ + ¢7),
i=1

00

0 = trgea = tri(ay+a&]l + Z i@ +¢7)

i=1

= [lo+1+w*+)my+ (1 +w+whng—qol +

o+ (1 + 0 + wyitg + (1 + w+ w'Yitg = Gol + ) traei(@’ +¢7).

i=1

From these equations we can conclude @y = —&j and ; = 0,i > 0, thatis @ = (1 — .
Since J acts non-trivially on both 4 and 1, and dimV; = dimW, = 0, we have d(f’) = 1. Besides, tryh = 0 and tr;1 = —1.
Then we have tr;(a) = tr;((1 — 1)"(2 — h)~%) = 22,

Since the action of Jt is non-trivial on Vi and W1, we have d(f’") = 1. Then

try (@)
= trylA-i(an] = A_i(ap + bop1 + copa + dops + eopa)h]
try [(1 = D (1 = h)y™ (1 = p1h) (1 = pah) (1 = p3h) (1 = pah)™]
2%
2a0[2(1 + €2)(1 + &) [2(1 + &)(1 + &2)]°[22(1 + &2)(1 + &)1 [2(1 + 2)(1 + &)?]¢

2u1 —(u0+b0 +co +2d(] +€0)

Here the 3-dim representation p; can be decomposed into three complex lines, the actions of ¢ on them are multiplying 1,
g and &2, where & = ¢?/3. Similarly, the action of ¢ on the three subspaces of representation p; is 1, €2 and &. For the

4-dimensional representation ps3, the action of ¢is 1, 1, g, £2. For the 5-dimensional representation pq4, the action of 7 is 1,

&, &, &%, 2.

Since Jx acts non-trivially on both V(py, p1, p2, 03, p4)h and W(pq, p1, 02, p3,p4)1, we have
dim(V(po, p1, 02, 035 P4))1x — dim(W(po, p1, 02, P3, p4)) sz = 0.
Consequently, d(f/*) = 1. Then

try[A1(a1)T = A1 (aopo + bop1 + copa + dops + eopa)h]
=t l(1 = = poh) (1 = prh)y™ (1 = poh) (1 — p3h) (1 — psh)™]

20] —(a0+3b0+300+4d()+5€0)

trjx(a')
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Since Js acts non-trivially on both V(po, p1, 02, 3, p4)h and W(po, p1, p2, 3, p4)1, we have

dim(V(po, p1, P2, 03, p4)) s — dim(W(po, p1, p2, 03, 04))ss = 0.

thereby, d(f J$) = 1. From tom Dieck formula, we have

trys[A-1(@)1 = A_i(agpo + bop1 + copa + dops + eopa)h]
= 2427%012(1 + W1 + W)™ [2(1 + WM + W)

[+ (1 + 0H( + )1+ )21 + )1 + M)A + w)(1 + )]
— 2a1—(a0+b0+60+60)[(1 + (1)2)(1 + w3)]bo—£0.

tryg(@)

For the same reasons, we have
tryp (@) = 247 @bt [(] 4 )1+ w0

By calculating directly, we have

tryag = lo + 3mg + 3ng + 4qo + 5rp = 2" = 1, (1)

trao = Iy + go—ro = 2a1—(a0+b0+c0+2d0+e0)—1 — 22(b()+6()+d()+2€0)’ 2)

troag = lo — mg — ng + ro = a1~(ao+3bo+3co+ddo+Seo)=1 _ om=2k=1 _ | 3)
tryg = lo+(1+w+w)my+ 1+ +wng — qo

2a|—(a0+bo+co+eo)—1[(1 + wz)(l + w3)]b0—c0’ (4)

treag = lo+ 1+ +0)mo+ (1 +w+wng—qo
— 2a1—(ao+b()+c()+6[))—l[(1 + 0.)2)(1 + w3)]co—bg. (5)
Notice that we have the following relations.
tr,a = try(2ag) = 2treay,
trpa = tr;2ag) = 2trao,
trya = tryRag) = 2tryay,
tryea = tre(2ag) = 2treayp.

From (1) and (3) we get
lo+6[0+2r0 =1,

which together with (2) shows us
7”0 — %[1 _ 22(b0+c0+d0+260)].
Since rg € Z, S0 by + cg + dy + 2¢ep > 0.

’

Now we consider —X, the reverse-oriented homotopy S 2% S2. If we denote by Inds;D_x = agpo+bppo1 +cyp2+dyps +egps,
from the above discussion we know that bj + ¢(, + dj + 2¢;; > 0. On the other hand, we have Inds; Dx = —Inds;D_x, so

’

a, = —ap, by = —by,c;; = —co,dj; = —dp and e[ = —e. From these equations, we get by + ¢p + dy + 2ep < 0 and then
by + co + dy + 2ey = 0. Thus we have

lO=1+m0+no=1—q0. (6)

From (4) and (5), we have

21y + mg + ng — 2q = 27RO + W?)(1 + W) + (1 + W)L + @)
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which along with (6) shows that

2 — 2-@rborcoren (1 + w?)(1 + w?))O b0 + (1 + w?)(1 + w?))0 0]
< .

q0 =

Since g € Z and [(1 + w?)(1 + w*)]0™ + [(1 + w?)(1 + w?)]?~ is a positive integer, we have ag + by + co + ey < 0. Using
the reverse-orientation as before, we get ayp + by + co + ¢g = 0.

Thus we have the following equations

ag + 3bg + 3co + 4dy + 5¢9 = 0, (7
apg+by+cy+ey=0, (8)
by +co+dy+2ey =0, (9)

from which we get
ap = €, b() = —Cy— 260,d0 =0.

Thus Inda, Dx = ao(po — 2p1 + pa) + co(p2 — p1). This completes the proof of Theorem 1.
We can also study the G-Index of As action on homotopy #,S? x §? in the similar way, and get the following result.

Corollary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to #,S*> x S2. If X admits a spin
alternating group As action with by (X/As) = b3 (X), and denote by Inds;Dx = aopo + bop1 + cop2 + dop3 + eops, then
|bo + co + do + 2eg| < %

Notice that when X is homotopy equivalent to #,52 x S, b3(X) = nand k = 0.

Theorem 3 Let X be a closed smooth 4-manifold which is homotopy equivalent to 4,S* x S?. Suppose X admit a smooth
spin alternating group As action and b} (X/As) = 0, b5(X/ < s >) = 0 and bj(X/ < t >) # 0. Then as an element of
R(As), Inda, D is of the form

aopo + bo(p1 + p2) + (ap + bo)ps — (ap + 2bo)ps,

and n = 0 mod 4.

Proof. Let X is homotopy equivalent to #,S xS 2. Next we assume b} (X/As) = 0,b3(X/ < s >) = 0and b3(X/ <t >) # 0,
thatisa; = by = ¢; = e; = 0and d; # 0. Then b;(X) = ay +3by +3c; +4d, + 5e¢; = 4d,. Since d| € Z, we have
n = 0 mod 4.

Considering the action of ¢s, we know the action of ¢s on h, pih, pah, p3h, psh and p31 are all non-trivial but it acts on
1,p11,p021, p41 all with a 1-dimensional invariant subspace. So

dim(V(p1, 02, 03, p1))gs — dim(W(py, pa, 03, 04) s = —(a1 + by + ¢ + 1) = 0,

and then d(f%*) = 1. By tom Dieck formula, we have

trgs@ = trag[A1(dip3)1 — A1 (@opo + bop1 + copa + dops + eopa)h]
= [ - w)(1 = @)1 = )1 = (1 = g)(1 = g~y @it
[(1 = ’¢)(1 = ¢ O D1 - )1 — ™ o
[(1 = wp)(1 — wg™H o dral[(] — )1 — whg")] tordoren),

Since trg,f U(1) — C is a C%-function and ¢ is a generic element, then ag + by + co + eg < 0, co + dy + ey < 0,
by +dy + ep < 0. Besides, dim(IndDy,) = ap + 3by + 3co + 4dy + Seg = 0. Then we have

ag+by+co+ey=co+dyg+ey=by+dy+ey=0, (10)

which means by = ¢, dy = ap + by and ey = —(ag + 2by). This completes the proof of Theorem.

76



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 8, No. 1; 2016

4. An example of Theorem 1.

As we know there exist a smooth action of As on the standard S? x S? induced by the icosahedral action on each factor.
Furthermore, the fixed points of this action for every non-trivial element is 4 isolated points. Next we compute Ind,Dx
as a virtual As-representation.

_ . _ sign(X) _
(1) When g = 1, spin(g, X) = —=5= = 0.
(2) When g = t, denote m., m_ the number of fixed points with local representation (1, 2) and (1, 1) respectively. Besides

1
=@ = @) )
p— 1 j—
@Y=

Since sign(X/ < g >) is integer, we have m, = m_ = 2. Then spin(g, X) = mv,(P) + m_v_(P) = 0.

vi(P) =

1/3,

v_(P)

-1/3.

(3) When g = x, two of the fixed points have v(P) = —1/4, and the other two have v(P) = +1/4. Then spin(g, X) = —1.

(4) When g = s, the local representation of the 4 fixed points may be of type (1, 1), (1, 2), (1, 3), (1,4),(2,2), (2,3),(2,4),(3,3),(3,4)
or (4,4). Besides we have

1
Y1) = TV4) = V) = é«Jrév—zt_z
1
v =V =—
(1,2) (3.4) 202201
1
v, =V, =
13 =ve4 - -1
1
V(2,2) = —V(2’3) = V(3’3) = m
Note that
1 1
+ =-1,
J+-2 2+ P-2

1 1
+ =0
=202 -203 -1 =20-204-1
If spin(g, X) is rational, then spin(g, X) = 0, =1 or +2.

(5) When g = s2, the result is the same as above.

Then the coefficient ay, by, ¢y, dy and ey can be computed as follows.

CIXxIX0+1Xx20X0+1X15x0+1Xx12x spin(s, X) +1 % 12 x spin(s®, X)

B 60 '

Since ay is an integer, the only possible case is ap = 0. Similarly, by = ¢cp = dyp = ep = 0. Thus Inds,Dx = 0. This is
consistent with Theorem 1.

ap
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