
Appears in the Proceedings of Micro-32

Computer Sciences Department, University of Wisconsin - Madison
1210 West Dayton Street, Madison, WI 53706-1685, USA

{zilles, sohi}@cs.wisc.edu

*Alpha Development Group
Compaq Computer Corporation

emer@vssad.hlo.dec.com

Figure 1. Traditional vs. Multithreaded Exception Handling.
Six instructions have been fetched when an exception is
detected on the fourth. Traditionally (a), instructions 4-6 are
squashed and must be refetched after the exception handler is
fetched. With our multithreaded mechanism (b), a second
thread fetches the exception handler (A-D), and then the main
thread continues to fetch (7,8). The exception handler is retired
before the excepting instruction. (c) This makes the global
retirement order different than the fetch order, but each thread
retires instructions in it’s fetch order.

(1,2,3,4,5,6,A,B,C,D,7,8)

2
1

3
4
5
6
7
8
T1 T2

Except. Inst
Fetched Before
Excpt. Detected
Fetched After
Handler Fetched

Exception
Handler

Retirement

A
B
C
D

2

(1,2,3,A,B,C,D,4,5,6,7,8)

Fetch Order:

{
{

2
1

3
4
5
6

2

A
B
C
D
4’
5’
6’
7
8

Except. Inst
Fetched Before
Excpt. Detected

Fetched After
Handler Fetched

{

{

{
{Exception

Handler

Refetch
Squashed Insts

Order

Retirement Order:

c)

b)a)

Abstract
Common hardware exceptions, when implemented by

trapping, unnecessarily serialize program execution in
dynamically scheduled superscalar processors. To avoid the
consequences of trapping the main program thread,
multithreaded CPUs can exploit control and data
independence by executing the exception handler in a
separate hardware context. The main thread doesn’t squash
instructions after the excepting instruction, conserving fetch
bandwidth and allowing execution of instructions
independent of the exception. This leads to earlier branch
resolution in the post exception code and additional
memory latency tolerance. As a proof of concept, using
threads to handle software TLB misses is shown to provide
performance approaching that of an aggressive hardware
TLB miss handler.

1 Introduction
Exception handling is a mechanism to flexibly, and with

low implementation cost, handle “exceptional” events in a
way that doesn’t impact the execution of the common case.
This is performed by inserting a short software routine into
the dynamic instruction stream at the site of the exception.
This exception handler resolves the excepting event so that
the execution of the application can continue.

Current sequential execution paradigms provide no mech-
anism to insert the exception handler between instructions
which are already in the process of execution. Typically,
in-flight instructions younger than the excepting instruction
are squashed and refetched following the execution of the
exception handler (Figure 1.a). Like a branch mispredict,
this significantly impacts performance in the locus of the
exception; for a number of cycles after the exception is
detected, fewer instructions are available for execution.
Since many of the squashed instructions were control and
data independent of the exception handler. This unnecessar-
ily penalizes the execution.

To avoid squashing we require a mechanism which pro-
vides the appearance of sequential execution, namely cor-
rect dataflow and retirement order, despite the fact that the
exception handler is fetched when the exception is detected.
Correct dataflow implies observing true register depen-
dences, but because little data passes between an application
and an exception handler, often only values associated with

the excepting instruction, a general purpose out-of-order
register renaming mechanism is not required. The correct
retirement order is different from the fetch order because
the exception handler is retired before the excepting instruc-
tion. By allocating the handler to a separate thread, the
desired retirement order can be enforced while maintaining
FIFO resource management within a thread (Figure 1.b).
Retirement is controlled so that the exception handler is
retired in its entirety after all pre-exception instructions and
before all post-exception instructions retire (Figure 1.c).

This work explores using separate threads in a multi-
threaded processor for exception handling to avoid squash-
ing in-flight instructions. The exception thread does not
have direct access to the application’s registers, avoiding
complex renamer hardware, and memory operations are
executed speculatively, recovering if an ordering violation is
detected. Although this mechanism is applicable to many
classes of exceptions, in this paper we focus on software
TLB miss handling. The multithreaded exception handling
approach halves the cycles-per-instruction (CPI) attributed
to software TLB miss handling, and with an optimization,
which we callquick-starting, the performance discrepancy
between software and hardware TLB miss handlers can be
reduced by 80%. We expect similar benefits for other

The Use of Multithreading for Exception Handling

Craig B. Zilles, Joel S. Emer* and Gurindar S. Sohi

.

classes of exceptions, which cannot be implemented in
hardware state machines.

This paper is organized as follows: In Section 2 we pro-
vide more background on exceptions, focusing on software
TLB miss handlers. Section 3 motivates this work by dem-
onstrating how the performance impact of traditional soft-
ware TLB miss handling increases with current trends in
microprocessors. In Section 4, we describe the hardware
requirements for TLB exceptions and walk through the
exception process. In Section 5, we present performance
results for a multithreaded software TLB miss handler along
with our simulation methodology and model. In Section 6
we briefly describe how to generalize the mechanism for
other types of exceptions. Finally, in Section 7, we discuss
the related work and, in Section 8, conclude.

2 Background
Exceptions are events which are either impossible or too

costly to handle through normal program execution. An
illustrative example is arithmetic overflow; software could
test whether an overflow occurred after every arithmetic
operation and branch to fix-up code if necessary, but this
would add substantial overhead to the execution since such
overflows are uncommon.

Since a purely software solution is not appealing, and a
purely hardware solution aren’t cost effective nor provide
the flexibility required by many exceptions, a hybrid hard-
ware/software solution is generally used. The hardware is
responsible for identifying the exceptional event, at which
point it halts the executing program and transfers control to
a software routine called the exception handler. This handler
attempts to rectify the cause of the exception and deter-
mines if and when to return control to the user application.

Exceptions can be separated into two classes:un-recover-
ableandrecoverable. Un-recoverable exceptions, where the
system cannot restore the application to a meaningful state,
are infrequent, at most once per application, so their perfor-
mance is not a concern. In contrast, recoverable exceptions
can be called repeatedly to perform “behind-the-scenes”
work on behalf of the programmer and can affect system
performance. They, in general, have a control independent
nature; after the exception handler is executed they return to
the site of the exception. This reconvergent behavior
enables our multithreaded exception handling architecture.
If the exception handler does not return to the excepting
instruction we cannot avoid squashing and re-fetching.
Some examples of recoverable exceptions are unaligned
access, profiling, and instruction emulation. In this paper we
study TLB miss handlers.

To provide the virtual memory abstraction without sub-
stantially sacrificing performance, modern microprocessors
include a translation lookaside buffer (TLB). The TLB

serves as a cache of recently used translations (from virtual
addresses to physical addresses). When a virtual address
that is not currently mapped by the TLB is accessed, the
processor handles the TLB miss by fetching an entry from
the page table.

TLB misses occur because the TLB cannot map the
whole application’s address space; in fact, many machines
cannot even map their whole L2 cache. As memories sizes
continue to grow at an exponential rate, we expect program
data sets to grow proportionally. TLB size, on the other
hand, is limited by processor cycle time, power dissipation,
and silicon area in proximity to the memory datapath. Most
architectures support large pages, which can increase the
amount of memory mapped by the TLB, but large pages
have proven to be difficult to use and can reduce the utiliza-
tion of memory due to internal fragmentation. Secondary
TLBs can scale more efficiently with data set size, but exe-
cution of future applications will likely continue to stress
the virtual memory sub-system, maintaining TLB perfor-
mance as an important component of overall system perfor-
mance.

A number of architectures provide TLB miss handling
through a dedicated, hardware finite-state-machine. This
structure is capable of walking the page table and writing a
new entry into the TLB. Instructions which miss in the TLB
are stalled while the hardware page-walk takes place; no
instructions need to be squashed, and, in machines which
permit out-of-order execution, independent instructions can
continue to execute. This TLB widget competes normal
instruction execution for the cache ports, making the core
somewhat more complex.

In contrast, one feature common to some RISC architec-
tures (Alpha, MIPS, Sparc V9) is the software-managed
TLB. Software-managed TLBs save hardware and provide
flexibility to software on how page tables are organized and,
in some cases, allow software to control replacement poli-
cies. In addition, they can be used to simplify implementa-
tions of software distributed shared memory (DSM),
copy-on-write, and concurrent garbage collection. In cur-
rent processors for these architectures, the pipeline is
flushed at the memory instruction which missed in the TLB.
The software TLB miss handler is fetched and executed,
and then the application is restarted with the faulting
instruction. This serializing nature of the traditional soft-
ware TLB miss handling is not intrinsic to the nature of
TLB fills, but merely an artifact of the implementation.

This paper presents multithreading as an alternative to
both traditional mechanisms. Multithreading has been pro-
posed as a technique for tolerating latency, typically mem-
ory latency [14]. Recently, microprocessors which support
multithreading have begun shipping [16]. By time-multi-
plexing resources between multiple program “threads,” high
aggregate throughput can be attained despite chronic stalls,

because each thread’s stalls tend to be independent. In addi-
tion, simultaneous multithreading (SMT) [9,17,19], unlike
coarse-grained multithreading, provides the flexibility to
issue instructions from multiple threads in the same cycle.
This tolerates the lack of parallelism in the individual
threads, further increasing throughput.

3 Motivation
In this section, we demonstrate that the performance of

traditional software TLB miss handling is increasing at a
slower rate than program execution as a whole. With TLB
miss handling becoming an increasingly large fraction of
execution, alternative mechanisms for exception handling
become appealing.

At the 1998 Microprocessor forum, Compaq presented a
breakdown of the execution time of the transaction process-
ing benchmark TPC-C for their current and future
Alpha-based products [1]. The enhanced micro-architecture
of the out-of-order 21264 spent the same amount of time on
trap handling as the in-order 21164 (at the same frequency),
but due to the 21264’s increased exploitation of ILP in the
rest of the application the percentage contribution for traps
increases from about 8 percent to about 13 percent. Increas-
ing the clock frequency (of the 21264) and integrating the
L2 cache (the 21364) do not significantly change the per-
centage contribution from its 13 percent level. This evi-
dence implies a relationship between the sophistication of
the core and relative overhead of exception handling; in this
section we present simulation results which explore this
relationship in more detail.

Dynamically-scheduled superscalar is the paradigm of
choice for current high-performance microprocessors. The
processors seek to achieve high levels of instruction level
parallelism (ILP) by speculating past unresolved branches
and relaxing artificial constraints to issue instructions out of

program order. Typically, these machines maintain a “win-
dow” of instructions from the predicted dynamic instruction
stream, from which ready instructions are selected for exe-
cution in the functional units.

Achievable ILP is strongly dependent on useful window
occupancy, the number of instructions from the correct path
in the instruction window available for execution. The tradi-
tional mechanism for executing exception handlers reduces
useful window occupancy by squashing all post-exception
instructions. As machines continue their current trends of
increasing superscalar width, window size, and pipeline
length, the importance of keeping the instruction window
full of “useful” instructions increases.

TLB fill latency is not a good metric for characterizing
program execution time because it does not account for the
extent that the execution of the TLB miss handler can be
overlapped with other operations. To measure performance
directly, we compare each simulation to one performed with
a perfect TLB to identify the performance degradation due
to TLB miss handling. Rather than dividing this penalty by
the number of instructions executed, as would be done to
compute the CPI contribution, we divide by the number of
TLB misses. This “penalty cycles per TLB miss” metric
allows comparison between benchmarks with widely differ-
ent TLB miss rates. Details about our simulation model and
benchmarks are available in Section 5.1 and Section 5.2,
respectively.

Figure 2 shows the trends for increased pipeline length
(3, 7, and 11 stages between fetch and execute, the mini-
mum branch mispredict penalty) for an 8 issue machine. In
correspondence to branch misprediction penalties, we’d
expect longer pipelines to have proportionally higher TLB
miss handling penalties, and we are not disappointed. The
various benchmarks differ in their ability to tolerate the
squashes, but the slope of the graph (i.e. its dependence on

Figure 2. Overhead of software TLB miss handling as a
function of pipeline length. With an increasing number of
stages between fetch and execute, overhead of traditional
exception handling increases.

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

0

5

10

15

20

25

30

35

40

45

pe
na

lty
 c

yc
le

s
pe

r T
LB

 m
is

s

3 pipe stages
7 pipe stages
11 pipe stages

Figure 3. Overhead of software TLB miss handling as a
function of superscalar width.Wider machines spend larger
percentage of their execution time on TLB miss handling
because TLB miss handling does not benefit much from
increased issue width.

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

0

1

2

3

re
la

tiv
e

TL
B

ex
ec

ut
io

n
pe

rc
en

ta
ge

2 wide, 32 window
4 wide, 64 window
8 wide, 128 window

the pipeline length) is around 2 for most benchmarks. This
roughly corresponds to the time to refill the pipe at the
exception, and once again after the return from exception
since our simulator does not have a return address stack
(RAS) like mechanism for predicting the target of exception
returns.

A similar experiment was performed to show the perfor-
mance trends with respect to superscalar width. In general,
as the machine width increases, the percentage of the time
spent handling TLB misses increases. The wider machines
are able to execute the miss handler slightly faster, but exe-
cution in the locus of a TLB miss does not benefit from
wider issue nearly as much as the program as a whole.
Figure 3 shows relative percentage of execution time spent
handling TLB misses for 2, 4, and 8 wide machines with
instruction windows of size 32, 64, and 128 respectively.
The performance trend ingcc is a symptom of cache pollu-
tion from speculative memory accesses in the base case and
is described in detail in Section 5.3.

These performance trends, which we expect to be repre-
sentative for other types of exceptions as well, demonstrate
a steadily increasing opportunity for alternate implementa-
tions for exception handling. Given that common exception
handlers tend to be short, in the tens of instructions, purging
the instruction window represents a significant portion of
the exception penalty in future machines.

4 Description of the proposed hardware
In this section, we walk through the multithreaded excep-

tion handler’s execution and discuss in detail the hardware
requirements for this mechanism. This work is presented as
an extension to a simultaneous multithreading (SMT) pro-
cessor. For clarity, we focus on the execution of a software
TLB miss handler.

4.1 Starting/Stopping Threads
When a TLB miss occurs, the faulting memory instruc-

tion (and any dependent instructions which have been
scheduled) has to be restored to a state from which it can
re-execute when the TLB fill has completed. This means
returning the instruction to the instruction window and
marking the instruction as not ready to execute. A similar
recovery mechanism is required for machines which specu-
latively schedule instructions that are dependent on loads,
before it is determined whether the load has hit in the cache
[12]. Presumably, an extension to such a mechanism could
support TLB misses as well.

To accomplish the fill, a thread context is selected and
instructed to begin fetching the TLB miss handler. The priv-
ilege level for the TLB miss handler may be higher than the
application code; we assume a processor which allows
instructions from multiple privilege levels to co-exist in the

pipeline. This thread could be one of the general purpose
thread contexts in the SMT, or it could be a special-purpose,
reduced-functionality thread context. Typically, the proces-
sor would select from idle threads, but lower priority
threads could be preempted to run exception handlers on
behalf of higher priority threads, sacrificing their through-
put to benefit the higher priority thread.

The thread ID and the instruction identifier of the except-
ing instruction are stored by the allocated thread (Figure 4).
This execution of the TLB miss handler proceeds in parallel
with the execution of independent instructions from the
application thread. When the TLB write is complete, the
faulting instruction is made ready and scheduled normally.

Instructions are not retired in the order they are fetched;
the exception handler is spliced into the retirement stream
of the application (Figure 1). When the excepting instruc-
tion is the next to retire, retirement from the application
thread is halted. This can be detected by comparing the
sequence numbers of retiring instructions with those of
excepting instructions which have spawned threads (Figure
4). At this point the exception thread can begin retirement.
When it has completely retired (signified by the retirement
of a RETURN FROM EXCEPTION) it resets its thread state to
idle, signalling that retirement of the application thread can
recommence. Also, events which cause squashes (for exam-
ple control mispredicts) check exception sequence numbers
to reclaim exception threads if the faulting instruction has
been squashed.

4.2 Register and Memory Communication
Inserting an arbitrary piece of code into the dynamic

instruction stream requires re-renaming the instructions
after the insertion. Any post-insertion instruction which
reads a logical register defined by the inserted code will
have a stale physical register number for one of its source
operands. This stale ID should be updated with the physical
register number assigned to the instruction from the inserted
code. This operation is equal in complexity to register
renaming.

Fortunately, exception handlers are not arbitrary pieces of
code and do not require a general-purpose re-renaming
mechanism. Specifically, the TLB miss handler only reads
the virtual address generated by the faulting memory
instruction (which is provided from a privileged register
read) and the page table (which is not accessible by the
application) and only writes an entry into the TLB (which

Figure 4. Additional Per-Thread Control State (in bits). When
an idle thread is allocated to handle an exception, the ID (log2
(# of threads) bits) of the thread which caused the exception is
put into Master Thread, and a “pointer” to the excepting
instruction (~log2 (window size) bits) is stored.

State (Normal, Idle, Exception) Master Thread
Sequence Number of Excepting Inst.

the application reads indirectly). The exception handler
begins and ends with the same register state. The fact that
no direct register communication takes place allows the
hardware to be greatly simplified. The exception thread is
provided with an independent set of registers which begin
the exception handler containing undefined values. These
registers are only used to hold temporary values.

Since there is no direct register communication between
the TLB miss handler and the application thread, no order-
ing violations can occur in registers. On the other hand,
because exception handlers can execute memory operations,
we need to correctly enforce true dependencies between
these memory operations and memory operations in the
application thread. The TLB miss handler performs no
stores and loads only from the page table. These loads will
only alias with a store that is modifying or invalidating an
entry of the page table. Since writing the page table already
has special semantics, necessary to keep a coherent view of
virtual memory in multiprocessors, ensuring proper order-
ing for the TLB miss handler’s memory operations should
be manageable.

4.3 Handling the Uncommon Case
Due to the concessions we made to simplify the hard-

ware, the exception thread will not be able to handle all pos-
sible tasks that an exception handler might need to perform.
If a TLB miss is discovered to be a page fault the process
state needs be saved. To allow the application’s registers to
be read, we revert to the traditional exception handling
mechanism.

This reversion process is complicated by the fact that it
cannot be knowna priori whether an exception will require
the full functionality of the traditional mechanism or can be
handled by an exception handler thread. Only by loading a
page table entry can we detect that the desired page is not
resident in memory, but at that point the handler has already
been partially executed. Clearly, the mechanism must be
able to recover from incorrectly spawning an exception han-
dler thread for an exception which requires the traditional
mechanism.

The handler needs a mechanism to communicate to the
hardware that it requires traditional exception support. This
could be accomplished completely in hardware (requiring
the machine to recognize that the handler is trying to per-
form some action of which the multithreaded model is not
capable) but is probably simpler to accomplish by providing
software a mechanism which communicates this fact
directly to the hardware. Thishard exceptionmechanism
could be in the form of an new instruction or a store to a
special address, much like an inter-processor interrupt. This
instruction should be present in the exception handler
before any instructions which permanently affect the visible
machine state.

When ahard exceptioninstruction is encountered, the
exception handler has been partially executed by the excep-
tion thread. The machine will either have to merge state
from the application and exception threads together, or
throw away the work in progress in the exception thread and
re-fetch and re-execute the whole handler from the main
thread. Since memory operands will have been prefetched
into the cache, we expect the performance of a complete
re-execution should not be substantially worse, and re-exe-
cution is likely to be significantly simpler to implement.
The thread ID and instruction number stored by the excep-
tion thread (Figure 4) can be used to trigger a squash. To
avoid repeating branch mispredictions in the re-execution,
the branch outcomes could be buffered and used instead of a
predictor for the previously executed region.

Some operating systems may choose to not implement
spawnable exception handlers for all exceptions. For these
exceptions, attempting to spawn the handler will only add
latency to the exception handling; this can be avoided easily.
The OS could explicitly inform the hardware which excep-
tions should be spawned by setting bits in a control register.
Alternatively, the hardware could learn which exceptions
should be spawned by tracking the use of thehard exception
instruction. A small predictor, perhaps 2-4 bits for each of
16 or so exception types, could detect which exceptions
were implemented with spawning in mind. In addition, it
might be able to adapt to dynamic behavior, like clustering
of page faults.

4.4 Resource Allocation
Once the handler thread has been allocated, it has to com-

pete for processor resources. Previous work on SMT has
shown that proper allocation of fetch bandwidth is critical
for high throughput [17]. The handler thread should be
given fetch priority over the main thread since the instruc-
tions in the handler thread will need to retire before any

instructions after the exception1. Prioritization in the pres-
ence of multiple application threads is more complicated.
Given a scheme like ICOUNT [17], which gives priority to
threads with less in-flight instructions, it is likely that all
active threads have approximately equal numbers of instruc-
tions in-flight. Statistically the excepting instruction should
be at least as close to retirement as the most recently fetched
instructions for other threads, implying that the exception
handler, which should be retired before the excepting
instruction, should be given fetch priority. This policy is
naturally implemented in ICOUNT because when the han-
dler thread is started it will have no in-flight instructions.

To avoid wasting fetch bandwidth, the handler thread
should stop fetching once the complete exception handler

1. Although the exception handler can be launched control-speculatively,
and may be squashed due to a branch mispredict, it is no more specula-
tive than the post-exception instructions.

has been fetched. The common-case software TLB miss
handler is typically in the tens of instructions long. By the
time theRETURN FROM EXCEPTIONinstruction is decoded,
signalling the end of the exception, multiple cycles worth of
instructions past the end of the handler could have been
fetched. To avoid the performance impact of these lost fetch
cycles (approximately 0.5 cycles/miss), the machine could
predict, using the previous handler execution, the number of
fetch cycles an exception handler requires and prevent addi-
tional fetching until the initial instructions have been
decoded.

Out-of-order fetch provides the opportunity for deadlock
unless instruction window resources are properly managed.
Deadlock occurs if the window is full of post-exception
instructions. Instructions from the handler thread, which
must be retired before the instructions in the window, will
never complete because they can not be inserted into the
instruction window and executed. Even for cases when
deadlock doesn’t occur, performance will suffer if sufficient
window resources are not available.

A mechanism is required to restrict the original thread
from monopolizing window resources and reclaim them
when necessary. Since other application threads are not
dependent on the handler thread, they will continue to retire
instructions (and hence reclaim window resources) regard-
less of the condition of the handler thread. Other application
threads are ignored for instruction window management
purposes. In our implementation, when an exception occurs,
a “reservation” is made for the window resources required
to hold the handler (using the prediction of handler length
mentioned above). The main thread is prevented from
inserting additional instructions into the instruction window
if no unreserved slots are available. In addition, to avoid
deadlock, if the handler thread ever has instructions which
are ready to be put in the window, instructions from the tail
of the main thread are squashed to make room (unless such
a squash would kill the excepting instruction, in which case
the exception handler is stalled). Such a squash is an
extremely rare occurrence in our simulations.

4.5 Multiple Exceptions
Multiple exceptions can occur in the same window of

instructions; to avoid unnecessary serialization these should
be handled in parallel when possible. Our hardware model
provides support for renaming and speculative execution for
privileged architecture state. This allows the traditional
mechanism to handle multiple exception handlers in parallel
assuming their control flow is predictable, but it cannot dis-
patch them in parallel because the second excepting instruc-
tion will be squashed when the first handler is fetched. In
contrast, the multithreaded solution does not need to squash
the second excepting instruction, allowing both exception
handlers to be launched immediately. In addition, the multi-

threaded solution can gracefully handle launching exception
handlers out-of-order.

There are two implementation options to handle the case
when more exceptions occur than idle thread contexts are
available: 1) stall exceptions until threads are available or 2)
handle the additional exceptions traditionally by squashing
and re-fetching. Stalling exceptions introduces another
deadlock case (when exceptions are detected out-of-order
and the oldest is not allocated to a thread) to be avoided.
This, coupled with the fact that the traditional exception
handling mechanism is already required, leads us to advo-
cate using the traditional scheme.

One case, particular to TLB miss handlers, is detecting
TLB misses to the same page out-of-order, which occurs
1-2% of the time. To maintain correct retirement semantics,
the handler should be retired before the first offending
instruction and only affect the state of later instructions.
Traditionally, the handler is squashed and re-fetched at the
correct instruction boundary. Since the correct handler is
already in-flight, the unnecessary delay of re-fetching can
be avoided. Our proposed multithreaded hardware detects
this situation and re-links the exception thread with earlier
excepting instruction, by updating the sequence number of
the excepting instruction (Figure 4). We believe this can be
implemented with minimal additional complexity. Whether
or not this relinking is supported, a mechanism for buffering
secondary TLB misses will be required due to their preva-
lence.

5 Experimental Results
To demonstrate the performance benefit of multithreaded

exception handling we performed a series of experiments
using software TLB miss handling as an example. Since
there is no benefit to spawning exception threads for
instruction TLB misses, only data TLB misses are modeled.

5.1 Simulation Infrastructure
This research was performed using a simultaneous

multi-threaded simulator evolved from the Alpha architec-
ture version of the SimpleScalar Toolkit [2], version 3.0.
This execution-driven simulator supports precise inter-
rupts/exceptions which allows us to trap at TLB misses and
run the TLB miss handler. The simulator supports enough
of the 21164 privileged architecture [4] to run the common
case of the data TLB miss handler from the 21164 privi-
leged architecture library (PAL) code. The base simulated
machine configuration is described in Table 1.

The simulator has an abstract front-end which provides
the benefits of a trace cache without a specific mechanism.
It is capable of supplying instructions from multiple
non-contiguous basic blocks in the same cycle and the num-
ber of taken branches per cycle is not limited. To simplify

simulation, instructions are scheduled in the same cycle
they are executed, which in effect provides perfect cache
hit/miss prediction. To account for the delay required for a
register file read, instructions are prevented from scheduling
until a number of cycles after they are put in the window.
Limited execution resources and bandwidth are modeled,
but writeback resources are not. Instructions maintain
entries in the instruction window until retirement and must
retire in order, but retirement bandwidth is not limited. A
multi-level cache hierarchy and request/transfer bandwidths
between levels of the hierarchy are modeled. The page table
entries are treated like any other data and compete for space
in the cache as such.

The simulated machine includes a 64 entry data TLB,
smaller than contemporary machines, to account for the
moderately small data sets of the benchmarks. Since all
results are presented in terms of cycle penalty per TLB
miss, rather than absolute speedup, results are not signifi-
cantly affected by TLB size. Using a smaller TLB increases
the number of misses per simulated instruction. Three TLB
miss handler mechanisms are studied:
• The traditional software TLB handler squashes all

instructions from the TLB miss on, fetches the handler
and then resumes the application code. Instructions are
free to use translations speculatively, but the translation
is only permanently entered into the TLB at retirement
of the exception handler.

• The multithreaded TLB miss handler executes the han-
dler code in a separate thread, when available; otherwise
it reverts to the traditional mechanism.

• Lastly, for comparison, a hardware TLB miss handler is
studied. The hardware scheme does not require instruc-

tions to be fetched, but requires memory system band-
width, and its load from the page table must be
scheduled like other loads. The finite state machine can
handle multiple misses in parallel and speculatively fills
the TLB if the faulting instruction hasn’t been squashed
by the time the translation has been computed.

5.2 Benchmarks
Five benchmarks, those with non-trivial data TLB behav-

ior, were selected from Spec95. Three additional bench-
marks from various sources (X Windows, verification,
object-oriented [5]) are included for additional breadth. All
benchmarks were run for 100 million instructions. To avoid
the initialization phase of the programs, the simulations
were started from checkpoints partway into the execution.
The benchmarks are listed in Table 2.

5.3 Analysis
Figure 5 shows the relative performance for four different

exception architectures across the benchmark suite. The tra-
ditional software TLB miss handler has an average TLB
miss penalty (run time difference compared to a perfect
TLB, divided by the number of TLB fills, as described in
Section 3) of 22.7 cycles per miss. The hardware TLB miss
handler usually has the best performance (the only excep-
tion is gccwhich is described in the next paragraph) with a
TLB miss penalty of 7.3 cycles, around a third of the tradi-
tional software handler. The multithreaded(1) solution,
which has one idle thread available for exception handling
is a significant improvement over the traditional mechanism
with an average penalty of about 11.7 cycles per miss, or
just over half of the traditional miss penalty. Additional

Core Dynamically-scheduled simultaneous multithreading with 2 or 4 threads. All threads share a single fetch unit,
branch predictor, decoder, centralized instruction window (with 128 entries), scheduler, memory systems, and pool
of functional units. Fetch, decode, and execution bandwidth are equal, nominally 8. The fetch chooser policy is
described in Section 4.4. Instructions are scheduled oldest fetched first.

Branch

Prediction
YAGS[7] with 214 entry table, 212 exceptions with 6 bit tags, with perfect branch target prediction. Indirect

branches predicted by an cascaded indirect predictor [6] with 28 entry table, with 210 exceptions. Returns are pre-
dicted by a 64 entry checkpointing return address stack (RAS) [10].

Pipelining 3 cycles for Fetch, 1 cycle Decode, 1 cycle Schedule, 2 cycle Register Read for nominal 7 stages between Fetch
and Execute.

Functional Units
(Latency)

8 integer ALUs (1), 3 integer mult/div (3/12), 3 Float Add/Mult (2/4), 1 Float Div/SQRT (12/26), 3 Load/Store
ports(3/2) for an 8 way machine. All functional units are fully pipelined.

Memory System 64 KB, 2 way set associative (32 B lines) L1 instruction cache, 64 KB, 2 way set associative (32 B lines) L1 data
cache, up to 64 outstanding (primary + secondary) misses, L1/L2 bus is 16B wide giving a 2 cycle occupancy per
block, 1 MB (64 B lines) 4 way set associative fully-pipelined unified L2 cache with a 6 cycle latency (best
load-use latency is 12 cycles), L2/memory bus occupied for 11 cycles during transfer, 80 cycle memory latency
(best load-use latency is 104 cycles)

Translation Perfect ITLB, 64 entry DTLB. PAL instructions can co-exist in pipeline with user-mode instructions, TLB misses
are handled speculatively, and TLB miss registers are renamed to allow multiple in-flight misses simultaneously.
Assume common case (no page faults or double TLB misses), enabling perfect prediction of handler length.

Table 1.Base simulated machine configuration

threads provide only modest benefit; the multithreaded(3)
experiments, which have 3 idle threads, reduce the average
the miss penalty to about 11.0 cycles.

The multithreaded mechanism has better performance
than the hardware mechanism on the benchmarkgcc
because the hardware mechanism speculatively updates the
TLB, andgccsuffers from many TLB misses on mis-specu-
lated paths. The speculative loads that cause these TLB
misses cause cache pollution in the perfect-TLB case (the
TLB filters these speculative accesses reducing cache pollu-
tion) giving the perception that the TLB penalty forgcc is
lower than other benchmarks.

Although the multithreaded mechanism regains much of
the performance lost to traditional software miss handling,
there is still a discrepancy between its performance and that
of the hardware state machine. The multithreaded mecha-
nism has a number of overheads not present in a hardware
mechanism: latency for fetching and decoding instructions,
fetch and decode bandwidth, execution bandwidth, and
instruction window space. To quantify these overheads we
performed a series of limit-study style experiments, where
we eliminated each of these overheads in turn and analyzed
their effect on performance. These limit studies were per-
formed with 3 idle threads to maximize performance.

Table 3 shows the average results of the these experi-
ments, comparing them with averages for traditional soft-
ware, multithreaded software, and hardware mechanisms.
Instantaneous fetch is the only optimization which signifi-
cantly affects performance, reducing the miss penalty by 2.5
cycles. In the next section we propose a hardware optimiza-
tion to reduce the fetch/decode latency of the software TLB
miss handler.

5.4 Quick Start
Since fetch and decode latency is the major contributor

preventing equivalent performance to the hardware TLB,
we explored a possible optimization which reduces the
latency incurred before the exception handler begins execu-
tion. Specifically we predict the next exception to occur,
prefetch the exception code, and store it in the fetch buffer.

At fetch time, it can be difficult to predict whether there
will be room for instructions in the instruction window
given that it is unknown when instructions will retire. Our
microarchitecture includes fetch buffers, which serve as a
holding place for instructions which have been fetched but
not decoded because the instruction window is full. In our
SMT processor, these resources are supplied on a per thread
basis. When a thread is idle, so is its buffer. These idle fetch

Name Data Set TLB misses description

alphadoom (adm) -playdemo rockin 11,000 X-windows first-person shooter game Doom, from Id Software.

applu (apl) test input 16,000 parabolic/elliptical partial differential equation solver (SpecFP 95)

compress (cmp) 100000 q 2131 230,000 text compression using adaptive Lempel-Ziv coding (SpecInt 95)

deltablue (dbl) 5000 16,000 object-oriented incremental dataflow constraint solver (C++)

gcc (gcc) jump.s 14,000 GNU optimizing C compiler, generating SPARC assembly (SpecInt 95)

hydro2d (h2d) test input 23,000 astrophysics-hydrodynamical Navier Stokes solver (SpecFP 95)

murphi (mph) adash.m 36,000 finite state space exploration tool for verification (C++)

vortex (vor) persons.250 86,000 single-user object-oriented transactional database (SpecInt 95)

Table 2.Benchmark summary.TLB misses records approximate number of TLB misses in runs of 100 million instructions.

Figure 5. Relative TLB miss performance of traditional,
multithreaded and hardware handlers.

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

0

5

10

15

20

25

30

35

40

pe
na

lty
 c

yc
le

s
pe

r T
LB

 m
is

s

traditional software
multithreaded(1)
multithreaded(3)
hardware

Configuration Average

Penalty/Miss

Traditional Software 22.4

Multithreaded 11.0

Multi w/o execute bandwidth overhead 10.7

Multi w/o window overhead 10.5

Multi w/o fetch/decode bandwidth overhead 10.2

Multi w/ instant handler fetch/decode 8.5

Hardware TLB miss handler 7.1

Table 3.Average number of penalty cycles per miss for differ-
ent configurations.The “Multi” configurations are limit stud-
ies of the multithreaded mechanism with one of its overheads
removed. The latency of fetch and decode is a major contribu-
tor to the performance discrepancy between multithreaded and
the hardware mechanism.

buffers can be used to hold the exception code that was
prefetched before the exception occurred.

To prefetch the exception handler, we have to predict
which exception is likely to occur next. Since it is likely that
a particular application is dominated by a small number of
exception types, a simple history-based predictor is likely to
perform well. Since our experiments only modelled data
TLB misses, prediction of the next exception type was per-
fect and thus optimistic.

Figure 6 shows that the quick start mechanism does pro-
duce a sizable performance improvement, on average 1.7
cycles per miss. This improvement falls short of the instant
fetch/decode limit study from Section 5.3, as the quick start
mechanism cannot avoid the latency for decoding the
exception handler, and the instructions have not always
been prefetched.

Speedup is a function of the number of penalty cycles per
miss, the TLB miss rate and the base IPC. Although we
don’t feel that these benchmarks, with their relatively small
data sets, have TLB miss rates that are representative of
important workloads, for completeness we have included
Table 4 with speedups, TLB miss rates and base IPC.

5.5 Multiple Application Threads
Since an SMT processor will often be running multiple

application threads, it is important to investigate the benefit
of our technique in that environment. We performed experi-
ments with 3 application threads (arbitrary combinations of
our 8 benchmarks) and one idle thread. Figure 7 shows
these results. The benefits of our technique here are more
modest but are not unsubstantial, reducing the average TLB
miss penalty by 25% (30% with quick start).

One thread proved to be sufficient for supporting 3 of
these benchmark applications. The exception thread was

active between 5 and 40 percent of the time, averaging
about 20% activity.

There are many factors which affect these results. SMT
processors are more tolerant of the delays caused by TLB
misses because the other threads can continue to execute
normally. This leads to a reduction of the overall penalty,
reducing the opportunity for our optimization. However,
because SMT tend to have higher throughput in general, the
lost fetch and decode bandwidth due to unnecessary
squashes becomes more harmful, hence our technique
shows benefit. Similarly, the hardware TLB miss handler
has an advantage over the software techniques because it
doesn’t allocate precious fetch and decode bandwidth to the
exception handler itself.

6 Generalized Mechanism
In Section 4, we focused on the mechanisms necessary

for TLB miss exceptions. Other exceptions, like unaligned
access or floating-point exceptions, can’t easily be imple-
mented without some access to registers. Up to this point
we’ve relied on the traditional exception mechanism for
general purpose reading and writing of the register file, but
the multithreaded mechanism could be extended to provide
read access to the register file.

Since all threads in an SMT processor share a central pool
of physical registers, the difficulty of providing cross thread
register access is not in adding extra datapath, but rather
finding the correct physical register number. The exception
handler thread could be started with a copy of the applica-
tion thread’s register rename map as it existed immediately
preceding the excepting instruction (mechanisms for copy-
ing register maps are proposed in [18]). The SMT will cor-
rectly handle these read-only registers naturally: the normal

Figure 6. Performance of the “quick-starting” multithreaded
implementation.

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

0

5

10

15

20

25

pe
na

lty
 c

yc
le

s
pe

r
T

LB
 m

is
s

multithreaded(1)
quick start(1)
hardware

Figure 7. Average TLB miss penalties with 3 applications
running on the SMT.

adm−cmp−vor
adm−gcc−vor

adm−h2d−mph
apl−cmp−h2d

apl−dbl−mph
apl−dbl−vor

cmp−gcc−mph
dbl−gcc−h2d

average

0

2

4

6

8

10

12

pe
na

lty
 c

yc
le

s
pe

r
T

LB
 m

is
s

traditional
multithreaded(1)
quick start(1)
hardware

scheduling mechanism handles the cross-thread dataflow,
the registers will remain valid for the life of the exception
handler since they can’t be reclaimed until instructions after
the handler retire, and the normal renaming mechanism will
not allow the original thread’s registers to be polluted. The
difficulty with this solution is that the rename map might no
longer exist when the exception is detected and may be
expensive to regenerate. Although a mechanism to roll back
the renaming maps to an arbitrary instruction boundary is
necessary for traditional exception handling, utilizing this
hardware to recover renaming maps for running threads
might add unacceptable complexity.

Some exception handlers, including those for unaligned
access and emulated instructions (those implemented in
software), only need to read and write the source and desti-
nation registers of the faulting instruction. Simpler hard-
ware could be built which would provide access to only
those registers which were involved in the excepting
instruction. In any machine in order to execute, an instruc-
tion needs to know the IDs of its source and destination
physical registers; when an exception occurs we keep track
of those register identifiers. In this way we can provide read
access to the excepting instruction’s source registers with-
out the need to reconstruct the whole register map.

Write access to the instruction’s destination can be simi-
larly provided. When the exception is detected, the faulting
instruction’s destination register is recorded and it and all
dependent instructions are returned to the instruction win-
dow. We can provide the exception handler a mechanism to
write directly to this physical register. Upon this write, the
excepting instruction is converted to a nop (to make sure
that the register is not re-written) and any consumers of that
register that are in the instruction window are marked ready
and scheduled normally.

Other types of exceptions also need a more general mem-
ory ordering solution. Typically, dynamically scheduled
processors include a mechanism to support out-of-order
memory operations within a thread, but this needs to be
extended to handle RAW violations between the exception
thread and the application thread. This inter-process mem-
ory ordering support is already present in machines which
enforce sequential consistency in the presence of specula-
tive memory operations [20].

7 Related Work
A wealth of research has been done on multithreading

and simultaneous multithreading, in particular, for increas-
ing throughput of multi-programmed workloads and
multi-threaded applications. Recently, Chappell et. al. [3]
and Song and Dubois [15] have investigated mechanisms
which allow subordinate threads to assist the execution of
an application thread. This work differs from the previous

work in three ways: 1) the exception threads are full-fledged
SMT threads which are idle, rather than specialized threads
with reduced register files [3] or a register file which is par-
tially shared with the application thread [15], 2) instructions
are fetched from the instruction cache; no micro-RAM has
to be managed [3], and 3) the threads are synchronous;
instructions executed by the subordinate thread are inserted
into the application thread’s retirement stream, and all syn-
chronization between threads is implicit.

Significant work has been done in TLB design to reduce
the frequency of TLB misses. Multithreaded TLB miss han-
dling does not reduce the number of TLB misses, but
instead reduces the performance impact of each TLB miss.

Previously, Henry explored mechanisms which acceler-
ated interrupts and exceptions in a superscalar processor
using the traditional mechanism [8], including tagging all
in-flight instructions with a kernel/user bit rather than using
a global kernel/user bit to avoid flushing the pipe at the tran-
sition. This mechanism is assumed in our implementation.

Concurrently with this work, Keckleret. al. performed a
study on the performance impact of using separate threads
for exception and interrupt handling for the M-Machine
[11]. Because the M-Machine is an in-order machine, the
work relies on the “instruction slack” between the excepting
instruction and the first instruction which requires its result
to overlap the handler with the faulting thread.

Our proposed mechanism exploits the control indepen-
dence present in exception handler execution. Micro-archi-
tectures with general mechanisms for exploiting control
independence [13] should be able to likewise exploit this
aspect of exception handlers.

8 Conclusion
This paper presents a new exception architecture which

uses idle threads in a multithreaded processor to execute
exception handlers. The exception handler is executed in a
separate thread, but instructions are forced to retire in the
correct order maintaining the appearance of sequential exe-
cution. Squashing and re-fetching instructions after the
faulting instruction is avoided, and, with dynamic schedul-
ing, independent operations can continue to execute in par-
allel with the exception handler.

This execution model only applies to exceptions which
return to the excepting instruction and limits access to regis-
ter values from the main thread. Despite these limitations,
this architecture seems promising for accelerating the exe-
cution of the classes of exceptions which are frequently exe-
cuted.

The performance of this mechanism applied to software
TLB miss handling is investigated. The overhead of tradi-
tional exception handling is rapidly increasing given the
current trends in microprocessors. With the multithreaded

mechanism the TLB miss penalty can be reduced by a factor
of two. With a small optimization, speculatively fetching
the exception handler and storing it in an idle thread’s fetch
buffer, the penalty can be further reduced, rivaling the per-
formance of hardware TLB miss handling. When multiple
applications are being executed the benefit is reduced to a
25% reduction of average TLB miss penalties.

Acknowledgements
We thank Amir Roth, Milo Martin and the anonymous

reviewers for their comments and valuable suggestions on
earlier drafts of this paper and Rebecca Stamm and George
Chrysos for providing insight into SMT. This work is sup-
ported in part by National Science Foundation Grant
MIP-9505853, and an equipment donation from Intel Corp.
Craig Zilles was supported by an NSF Graduate Fellowship.

References
[1] P. Bannon. Alpha EV7: A Scalable Single-chip SMP. Micro-

Processor Forum, October 1998.
[2] D. C. Burger, T. M. Austin. The SimpleScalar Tool Set, Ver-

sion 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin-Madison, June 1997.

[3] R. Chappell, J. Stark, S. Kim, S. Reinhardt, Y. Patt. Simulta-
neous Subordinate Microthreading (SSMT). In Proc. of the
26th Annual International Symposium on Computer Architec-
ture, May 1999.

[4] Compaq Corporation. 21164 Alpha Microprocessor Hardware
Reference Manual. order number EC-QP99C-TE, ht-
tp://ftp.digital.com/pub/Digital/info/semiconductor/litera-
ture/dsc-library.html, December 1998

[5] K. Driesen, U. Holzle. The Direct Cost of Virtual Function
Calls in C++. In Proc. of OOPSLA ‘96, October 1996.

[6] K. Driesen, U. Holzle. The Cascaded Predictor: Economical
and Adaptive Branch Target Prediction. In Proc. of the 31st
Annual International Symposium on Microarchitecture, De-
cember 1998.

[7] A. N. Eden, T. Mudge. The YAGS Branch Prediction Scheme.
In Proc. of the 31st Annual International Symposium on Mi-
croarchitecture, December 1998.

[8] D. S. Henry. Adding Fast Interrupts to Superscalar Processors.

Computation Structures Group Memo 366, Laboratory for
Computer Science, M. I. T. December 1994.

[9] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nish-
imura, Y. Nakase, T. Nishizwa. An elementary processor ar-
chitecture with simultaneous instruction issuing from multiple
threads. In Proc. of the 19th Annual International Symposium
on Computer Architecture, May 1992.

[10] S. Jourdan, T. Hsing, J. Stark, Y. N. Patt. The Effects of
Mispredicted-Path Execution on Branch Prediction Structures.
International Journal of Parallel Programming, vol 25, num 5,
1997.

[11] S. W. Keckler, W. J. Dally, A. Chang, W. S. Lee, S. Chatterjee.
Concurrent Event Handling Through Multithreading. IEEE
Transactions on Computers, November 1999.

[12] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro,
Vol. 19, No. 2, March/April 1999.

[13] E. Rotenberg, Q. Jacobsen, J. Smith. A Study of Control Inde-
pendence in Superscalar Processors. In Proc. of the 5th Inter-
national Symposium on High-Performance Computer
Architecture, January 1999.

[14] B. J. Smith. A pipelined shared resource MIMD computer. In
Proc. of the 1978 International Conference on Parallel Pro-
cessing, 1978.

[15] Y. H. Song, M. Dubois. Assisted Execution. Technical Report
#CENG 98-25, Department of EE-Systems, University of
Southern California, October 1998.

[16] S. Storino, A. Aipperspach, J. Borkenhagen, R. Eickemeyer, S.
Kunkel, S.Levenstein, G. Ulhmann. A Commercial
Multi-Threaded RISC Processor. In Proc. of the IEEE 1998 In-
ternational Solid State Circuits Conference. February 1998.

[17] D. M. Tullsen, S. J. Eggers, J. S. Emer, H M. Levy, J. L. Lo,
R. L. Stamm. Exploiting Choice: Instruction Fetch and Issue
on an Implementable Simultaneous Multithreading Processor.
In Proc. of the 23rd Annual International Symposium on Com-
puter Architecture, May 1996.

[18] S. Wallace, B. Calder, D. Tullsen. Threaded Multiple Path Ex-
ecution. In Proc. of the 25th Annual International Symposium
on Computer Architecture, June 1998.

[19] W. Yamamoto and M. Nemirovsky, Increasing Superscalar
Performance Through Multistreaming. Parallel Architectures
and Compilation Techniques, June 1995.

[20] K. C. Yeager, “The MIPS R10000 Superscalar Microproces-
sor”, IEEE Micro, 16, 2, April 1996, 28-40.

Name base IPC TLB misses Perfect H/W Multi(1) Multi(3) Quick(1) Quick(3)

alphadoom 4.3 11,000 1.0% 0.6% 0.4% 0.4% 0.5% 0.5%

applu 2.6 16,000 0.9% 0.4% 0.1% 0.1% 0.2% 0.2%

compress 2.6 230,000 12.9% 9.0% 6.8% 7.3% 7.8% 8.4%

deltablue 2.2 16,000 1.4% 0.8% 0.6% 0.6% 0.7% 0.7%

gcc 2.8 14,000 0.5% 0.4% 0.4% 0.4% 0.4% 0.4%

hydro2d 1.3 23,000 0.7% 0.4% 0.1% 0.1% 0.2% 0.2%

murphi 3.9 36,000 3.2% 2.2% 1.6% 1.7% 1.8% 1.9%

vortex 4.9 86,000 9.6% 7.1% 4.8% 5.3% 5.7% 6.3%

Table 4.Table of speedups (over traditional software), TLB miss rates and base IPC for 100 million inst. runs of the benchmarks.

