
Sydit: Creating and Applying
a Program Transformation from an Example

Na Meng∗ Miryung Kim∗ Kathryn S. McKinley∗†
∗ The University of Texas at Austin †Microsoft Research

∗ Austin, TX † Seattle, WA
mengna09@cs.utexas.edu, miryung@ece.utexas.edu, mckinley@cs.utexas.edu

ABSTRACT
Bug fixes and feature additions to large code bases often
require systematic edits—similar, but not identical, coordi-
nated changes to multiple places. This process is tedious and
error-prone. Our prior work introduces a systematic editing
approach that creates generalized edit scripts from exem-
plar edits and applies them to user-selected targets. This
paper describes how the Sydit plug-in integrates our tech-
nology into the Eclipse integrated development environment.
A programmer provides an example edit to Sydit that con-
sists of an old and new version of a changed method. Based
on this one example, Sydit generates a context-aware, ab-
stract edit script. To make transformations applicable to
similar but not identical methods, Sydit encodes control,
data, and containment dependences and abstracts position,
type, method, and variable names. Then the programmer
selects target methods and Sydit customizes the edit script
to each target and displays the results for the programmer
to review and approve. Sydit thus automates much of the
systematic editing process. To fully automate systematic
editing, future tool enhancements should include automated
selection of targets and testing of Sydit generated edits.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
integrated environments

General Terms
Design, Experimentation, and Measurement

Keywords
Software evolution, program transformation and differencing

1. INTRODUCTION
A software life cycle begins with design, prototyping, and
writing code. After the initial burst of development, pro-
grammers continue to fix bugs, refactor code, and add new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

features. Recent work observes that many changes dur-
ing a maintenance phase are systematic—programmers add,
delete, and modify code in numerous classes in similar, but
not identical ways [9]. Manually making these edits is te-
dious and error prone.

We recently introduced a flexible systematic editing ap-
proach that consists of two algorithms: (1) transformation
creation, which derives a generalized context-aware, abstract
edit script from an exemplar edit, and (2) transformation ap-
plication, which applies and customizes the derived transfor-
mation to target methods specified by the user [7]. Our prior
work describes and evaluates this approach in detail. Our
empirical evaluation used version histories from five Java
open source projects and showed that (1) Sydit produces
syntactically valid transformations for 82% of target meth-
ods, (2) it perfectly mimics developer edits on 70% of the
targets, and (3) syntactic program differencing judges the
human generated version and the Sydit generated version
as 96% similar. We argue that working from examples is
intuitive and this level of accuracy is sufficient to make it
appealing for programmers as well.

This paper describes an Eclipse IDE plug-in implementa-
tion of the Sydit technology in an interactive programming
tool. To use Sydit, users provide an exemplar edit. Sydit

then generates a program transformation that is more gen-
eral than the concrete edit, which makes the edit applicable
to similar but not identical target methods. Users next spec-
ify one or more target methods to apply the transformation
and Sydit produces a new version of each target method.
Users examine each new version, edit them further, and/or
accept the new versions as correct. To ease this process,
Sydit presents a diff-style comparison of each original target
and its suggested versions. Users may examine, name, and
store transformations for later use. Our initial experiences
suggest that interactive refinement of the derived transfor-
mations and automated selection of targets are important
features for future work.

Compared to prior work for helping programmers sys-
tematically fix and enhance software, Sydit is more effec-
tive, convenient, and automated [7]. For instance, exist-
ing refactoring engines in Integrated Development Environ-
ments (IDEs), such as Eclipse, automate repetitive edits, but
are confined to pre-defined semantic-preserving transforma-
tions. Source transformation languages and tools such as
iXJ [1] and TXL [2] force programmers to prescribe system-
atic edits in a formal syntax in advance. Search-and-replace
in text editors is the most popular approach, but it typically
only supports simple text replacements and does not han-

440

②  !"#$%&'(")*+,(#"-,)&
")%&$.$#/0"(&#$'1,%&&&

③  2$0$3'$%&'"(4$'&#$'1,%5*6&

①  7,#/"($&89$:&',&*1,:&$.$#/0"(&3,%$&31")4$*&&

④  7,#/"($&89$:&',&*1,:&
;44$'$%&31")4$*&

Figure 1: A screen snapshot of Sydit Eclipse plug-in and its features

dle non-contiguous edits nor edits that require customiza-
tion for different contexts. Clone detection and approaches
do suggest edit locations, but leave the task of editing the
code manually to programmers [9, 6]. With simultaneous
editing, programmers edit pre-specified clones in parallel,
näıvely propagating exactly the same edit to all clones with-
out regard to context, which leads to errors [11, 8, 3]. In the
work closest to Sydit, Lanza et al. monitor the evolution of
a code fragment, deriving a sequence of change operations
to represent this transformation [10]. Developers then spec-
ify any generalization of position and names by hand. In
contrast, Sydit automatically derives a general edit script
from the original and final version of an exemplar changed
method, which makes it convenient for programmers to use,
and our prior evaluation shows Sydit is effective.

Whereas our prior publication focused on the algorithms
and evaluation, this tool paper makes new contributions by
presenting Sydit’s instantiation as an Eclipse plug-in, work-
flow architecture, user interfaces, and implementation de-
tails. The next section contains some background [7]. Sec-
tion 2 illustrates the Sydit Eclipse plug-in features and user
interface with an example scenario. Section 3 describes the
implementation.

Background
This section summarizes Sydit’s two key algorithms: (1)
generating program transformations from an example and
(2) applying the resulting context-aware abstract transfor-
mations to new code.

Sydit transformation generation algorithm takes an exem-
plar edit as input, which consists of the original and modi-
fied versions of a changed method. It first performs program
differencing on the original and modified versions to gener-
ate a sequence of Abstract Syntax Tree (AST) node addi-

tions, deletions, updates, and moves. For each edit in the
sequence, Sydit computes control, data, and containment
dependences and then combines them to describe the edit’s
context, i.e., other program statements on which the edits
depend, and statements that depend on the edits. Sydit

then abstracts edit positions and the names of variables,
methods, and types. This abstraction process generalizes
edit positions and names. The result of this algorithm is an
abstract context-aware edit script.

Sydit’s transformation application algorithm takes as in-
put this edit script and a target method. Sydit tries to
establish a map of the edit context to the target method for
exact and approximate matches of statements, dependences,
positions, and names. If Sydit establishes a map, it next cus-
tomizes the abstract edit script by replacing the matched
abstract identifiers with the corresponding names used by
the concrete AST nodes in the target method. Similarly, it
calculates concrete edit positions based on the target. Sydit

then generates a new version of the target by applying the
customized concrete edit script to the target method.

2. SYDIT FEATURES
Consider a simplified example from the Eclipse compare project.
Suppose Alice wants to replace the use of class ChangeDiffs
with Merger and refactor iteration over diff objects in two
methods: paintSides and handleMouseInSides. Part 1©
on the right-hand side of Figure 1 shows the exemplar edit,
and 4© on the left-hand side shows Sydit’s suggestion modi-
fication on a different target. Though both methods use the
same API for ChangeDiffs and iterate diff objects, they
use different variables names (Iterator e versus Iterator

iter), and contain different code. For example, paintSides
lays out the diff information while handleMouseInSides

441

captures mouse activities over the diff layout. The required
edits for these changes are not exactly the same with respect
to edit content and position, but they are very similar.

In this example, both edits involve complex coordinated
changes. To replace the use of ChangeDiffs with Merger,
Alice needs to remove the declaration of ChangeDiffs and
insert one for Merger. She also needs to replace all uses of
changeDiffs with merger and its method invocations. To
refactor the diff object iterator, Alice needs to replace the
while loop with a for loop, move the declaration of variable
region from inside to outside of the loop, and adjust the API
usage. We use this relatively complicated example to show
the power of Sydit. Since each method needs multiple non-
contiguous edits and the edit content is different for each
method, search-and-replace is not very helpful to Alice.

Alice reviews and tests her changes to paintSides as
shown in 1© in Figure 1. She next provides this example edit
to Sydit. Using syntactic program differencing, Sydit com-
putes a set of edits that transform the old version to the new
version. In this case, Sydit computes: delete the changeD-

iffs declaration, insert the merger declaration, update the
if condition changeDiffs != null with merger != null,
move the region declaration out of the while loop, insert
the leg declaration on the true branch of the if statement,
delete the e declaration, update the while loop with a for

loop, update the diff declaration, and update the argument
of the tp.getLineRange() method invocation.

Sydit next generalizes these edits, abstracting position
and names. The result is an abstract, context-aware edit
script. Alice names this script, reconstruct loop and change
API, and stores the Old Method and New Method of
paintSides as an example edit (see Figure 1 2©).

Alice then selects one or more target methods to which
she wants to apply the derived script. Alice selects han-

dleMouseInSides (see Figure 1 3©). Sydit suggests similar
but not identical edits, e.g., delete iter’s declaration in-
stead of e’s, and update the argument of method invocation
msv.getLineRange() instead of tp.getLineRange().

Alice inspects the suggested version of handleMouseIn-

Sides using Eclipse’s compare view (see Figure 1 4©). Af-
ter Alice examines the suggested edits, she approves Sydit’s
suggestion by choosing Accept Suggested Version.

Although the target method handleMouseInSides and the
source method paintSides have different structures and use
different identifier names, Sydit correctly identifies a reusable,
abstract transformation and applies it. Sydit ignores con-
crete names in the edit content and computes edit positions
relative to the edit context. These abstraction features make
the edit application problem harder, but are key to replicat-
ing similar but not identical program transformations.

3. SYSTEM ARCHITECTURE
This section describes the system architecture and imple-
mentation details of Sydit. Sydit currently targets Java pro-
grams and consists of five components: (1) program differ-
encing, (2) edit context extraction through dependence anal-
ysis, (3) identifier and edit position abstraction, (4) context
matching, and (5) program transformation through AST
rewrites. As shown in Figure 2, the first three components
correspond to program transformation creation while the
last two correspond to program transformation application.

Program Differencing. Sydit compares the syntax trees

!"#$"%&'
()*+"+,-),$'

./%,$+0)1233+"4'5#3('

5,+6'

5718"%-8'+()8'
1-")98'

%993)-%2#,'

5718"%-8'+()8'
1-")98'

%993)-%2#,'

.#,8+:8'
+:8"%-2#,'
.";18%34'

<(+,2=+"'>''
+()8'9#1)2#,'
%718"%-2#,'

?#3('

?,+6'

.#3('

.,+6'4'@+'&#()A;'8/+1+'8##31B'

5718"%-8'C()8'D-")98'."+%2#,' 5718"%-8'C()8'D-")98'5993)-%2#,'

C()8'1-")98'

C()8'1-")98' C()8'1-")98'

Figure 2: Sydit User and Tool Workflow

of two versions of the same method to derive a sequence
of AST node edits. It performs this task with a modified
version of ChangeDistiller [4]. For example, Figure 3 shows
the derived edits for paintSides in Figure 1. We modify
ChangeDistiller’s algorithms in two ways. First, instead of
allowing any inner nodes to match if their children nodes
match, we also require the inner nodes should at least be
similar control-flow constructs, such as while and for loops.
Second, we match leaf nodes and inner nodes to handle cases
such as matching a catch clause with an empty body (a
leaf node) to a catch clause with a non-empty body (an
inner node).

Edit Context Extraction. Sydit extracts a change con-
text from both the old and new versions using control, data,
and containment dependence analysis. By context, we mean
other program statements on which the edits depend or
those that depend on the edits. The context nodes serve
as anchors to position edits correctly in a new target lo-
cation. We implement the context analysis in the Crystal
static analysis framework [5]. Sydit takes an input a param-
eter k, which indicates the dependence chain length, i.e., the
hop distance from edits to context nodes. When k is set to
1, Sydit selects only unchanged nodes on which the edits
are directly dependent upon or statements that direct de-
pend on the edit. In Figure 3, the gray boxes represent the
found contextual nodes when k = 1. Setting k to 2 selects
unchanged directly dependent nodes and unchanged nodes
that transitively depend on these nodes, i.e., dependences
with a 2 hop distance.

Edit Position and Identifier Abstraction. Sydit then
replaces concrete identifiers of variables, methods, and types
with corresponding symbolic names, vn, mn, and T$n in
the edits and extracted context, creating conversion map-
pings between them. It then recalculates the position of
each edit with respect to the extracted context.

Context Matching. Given a target method, Sydit uses
context matching to establish a mapping between the AST
nodes in the edit script and the target method. The mapping
problem is similar to a labeled graph isomorphism problem
and we invented a specialized tree matching algorithm cus-
tomized to the needs of this problem. The intuition behind
our algorithm is that it first finds candidate leaf matches
and then uses them to match inner nodes. We find as many
candidate matches as possible between leaf nodes in the ab-
stract context and the target tree. Starting from these can-
didate leaf matches, we determine a best match in the target
context for each path. This algorithm is described in detail

442

!"#$%&'
&"()*

+,*

#$"-*

&+,,'&"()*

.$+)"*"'&"()*

/'!+*#0'!+* /'!+*/'!+*

&+10)23'
&"()*

4"/+%-
'&"()*

!"#$%&'
&"()*

+,*

#$"-*

&+,,'&"()*

,%4*

/'!+*#0'!+* /'!+*/'!+*

4"/+%-
'&"()*

)"/'&"()*

56*
57*

58*

59*

:6* :7*

:8*

:;*
5;*

5<*

5=*

($2-/">+,,1'
&"()*

&+10)23'
&"()*

!"4/"4'
&"()*

:?* :@*5?* 5@*

:=*

!"#$%&'()*+,-#.!-#!/-##

,"#0123)'*.4-#+4/-#

4"#567'*.8-#.9-#:/-#

9"#$%&'()*+;-#.9-#!/-#

;"#0123)'*.<-#+</-#

<"#0123)'*.=-#+=/-#

="#0123)'*.>-#+8/-#

8"#2'?')'*.,/-#

>"#2'?')'*.;/#

('?'73%)#0%@A3%B'2#%62'# @A3%B'2#%62'#$(('?'73%)#0%@A3%B'2#%62'#

23)3#3%2#@6%)(6?#2'1'%2'%@'# @6%)3$%5'%)#('?3C6%#

Figure 3: Concrete AST edits of paintSides

in reference [7]. If every node in the abstract script finds a
unique correspondence in the target tree, Sydit collects the
identifier mappings based on the node matches and proceeds
to the next step.

Program Transformation. To generate concrete edits for
a target method, Sydit replaces symbolic names used in the
abstract edit script with corresponding concrete identifiers
found in the target context. It also recalculates each edit
position with respect to the concrete target method. Sydit

translates the resulting edits to a sequence of AST rewrite
operations step by step using the Eclipse ASTRewrite API,
and provides suggested edits to a user.

4. SUMMARY
Sydit helps developers perform systematic editing tasks that
involve similar but not necessarily identical changes to multi-
ple places. The Sydit plug-in makes it easier for developers
to specify an exemplar changed method and multiple tar-
get methods to change similarly. It assists programmers by
showing them the suggested changes for each target method
and only using them if the programmer approves. In fu-
ture, we plan to support developers to edit the generated
abstract transformations for better flexibility. We also plan
to simplify target method selection by searching for candi-
dates which are similar to the exemplar changed method and
providing potential candidates to programmers.

5. ACKNOWLEDGMENTS
This work was supported in part by the National Sci-

ence Foundation under grants CCF-1043810, SHF-0910818,
and CCF-0811524. We thank anonymous reviewers for their
thorough comments on our earlier version of the paper.

6. REFERENCES
[1] M. Boshernitsan, S. L. Graham, and M. A. Hearst.

Aligning development tools with the way programmers
think about code changes. In CHI ’07, pages 567–576,
New York, NY, USA, 2007. ACM.

[2] J. R. Cordy. The txl source transformation language.
Science of Computer Programming, 61(3):190–210,
2006.

[3] E. Duala-Ekoko and M. P. Robillard. Tracking code
clones in evolving software. In ICSE ’07: Proceedings
of the 29th International Conference on Software
Engineering, pages 158–167, Washington, DC, USA,
2007. IEEE Computer Society.

[4] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall.
Change distilling—tree differencing for fine-grained
source code change extraction. IEEE TSE, 33(11):18,
November 2007.

[5] C. Jaspan, K. Bierhoff, and J. Aldrich. Crystal
tutorial notes. 2009.

[6] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE TSE,
28(7):654–670, 2002.

[7] N. Meng, M. Kim, and K. S. McKinley. Systematic
Editing: Generating Program Transformations from
an Example. In PLDI ’11, pages 329–342, San Jose,
CA, 2011. ACM.

[8] R. C. Miller and B. A. Myers. Interactive
simultaneous editing of multiple text regions. In
Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, pages 161–174,
Berkeley, CA, USA, 2001. USENIX Association.

[9] T. T. Nguyen, H. A. Nguyen, N. H. Pham,
J. Al-Kofahi, and T. N. Nguyen. Recurring bug fixes
in object-oriented programs. In ICSE ’10, pages
315–324, New York, NY, USA, 2010. ACM.

[10] R. Robbes and M. Lanza. Example-based program
transformation. In Proceedings of the 11th
international conference on Model Driven Engineering
Languages and Systems, MoDELS ’08, pages 174–188,
Berlin, Heidelberg, 2008. Springer-Verlag.

[11] M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In VLHCC ’04,
pages 173–180, Washington, DC, USA, 2004. IEEE
Computer Society.

443

