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UNDERSTANDING SIGMA-DELTA

MODULATION:
The Solved and Unsolved Issues

By Joshua D. Reiss, AES Member

Sigma—delta modulation is the most popular form of analog-to-digital conversion used in audio applica-
tions. It is also commonly used in D/A converters, sample-rate converters, and digital power amplifiers.
In this tutorial the theory behind the operation of sigma—delta modulation is introduced and explained.
We explain how performance is assessed and resolve some discrepancies between theoretical and experi-
mental results. We discuss the issues of usage, such as limit cycles, idle tones, harmonic distortion, noise
modulation, dead zones, and stability. We characterize the current state of knowledge concerning these
issues and look at what are the most significant problems that still need to be resolved. Finally, practical
examples are given to illustrate the concepts presented.

INTRODUCTION
Sigma—delta modulation (SDM) is per-
haps best understood by comparison
with traditional pulse-code modulation
(PCM). A PCM converter typically
samples an input signal at the Nyquist
frequency and produces an N-bit repre-
sentation of the original signal. This
technique, however, requires quantiza-
tion to 2N levels. Whether implemented
using successive approximation regis-
ters, pipelined converters, or other tech-
niques, high resolution is difficult to
obtain in PCM conversion due to the
need to accurately represent many quan-
tization levels and the subsequent circuit
complexity. This is the motivation for
sigma—delta modulation, a form of
pulse-density modulation, which
exploits oversampling and sophisticated
filter design in order to employ a low-bit
quantizer with high effective resolution.
In this tutorial, we will consider
common designs of sigma-delta
modulators as used for analog-to-digi-
tal conversion. The basic principle is
the same for SDMs employed in D/A
or sample-rate conversion. We will
restrict the analysis to asynchronous,
discrete-time designs. However, these
are by far the most common designs
and include most feedforward, feed-
back, and multistage implementations.
We will explain the theory of opera-
tion, emphasizing signal-to-noise ratio
estimation and comparison with PCM
conversion. We will also introduce the
linear model, which assists in under-
standing filter design and noise shap-

ing principles. Since sigma—delta
modulation is highly nonlinear, there
are various phenomena that cannot be
explained using this technique, such as
instability and limit cycles. The litera-
ture on these phenomena can be
confusing, so we attempt to give a
clear definition of the terms and clarify
the current state of understanding.
Finally, we introduce several state-of-
the-art techniques that can be used to
deal with these unwanted phenomena.

THE LINEAR MODEL AND
PULSE-CODE MODULATION

The theory of quantization is well-
established (see [1] and references
therein). The allowed values in the

output signal, after quantization, are
called quantization levels, whereas the
distance between two successive
levels, is called the quantization step
size, . For a quantizer with b bits
covering the range from +1 to -1, there
are 2b quantization levels, and the
width of each quantization step is

q=2/(2"-1 ey

This is depicted in Fig. 1 for a 3-bit
quantizer.

The rounding, or midriser, quantizer
assigns each input sample X(n) to the
nearest quantization level. The quanti-
zation error is simply the difference
between the input and output to the =
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Fig. 1. Transfer characteristics for a 3-bit quantizer and V=1
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quantizer, e;=Q(X)-X. It can easily be
seen that the quantization error €(n) is
always bounded by

@
Since quantization is a highly
nonlinear process, the exact effect of
quantization on the signal content and
the nature of quantization noise may be
difficult to measure. For this reason,
several assumptions are often made.

1. The error sequence, €,(N), is a sta-
tionary, random process.

2. The error sequence is uncorrelated
with itself and with the input
sequence X(n).

3. The probability-density function
of the error is uniform over the
range of quantization error.

Such assumptions are known to be,
in general, untrue. However, they are a
reasonable approximation for large-
amplitude, time-varying input signals
when b is large and successive quanti-
zation error values are not highly
correlated. Furthermore, as we shall
see, results obtained through the use of
this approximation yield accurate esti-
mates of the signal-to-(quantization)-
noise ratio, or SNR.

These assumptions allow us to repre-
sent quantization as the introduction of
an additive white-noise source. This is
depicted in Fig. 2. As we shall see, this
model enables in-depth understanding
of the signal and noise in quantization
systems. More exact models exist that
include gain terms applied to the signal
and quantization noise, as in [2], but
the model depicted here is sufficient
for analysis.

The assumption that the quantization
error is uniformly distributed over a
quantization step gives

1/ le ISq/2
pley=1 4
E 0 lel>q/2

—q/2<e(m)<q/2

3)

Since the error is white noise, the
power spectral density of the noise will
also have a uniform distribution within
the limits of the Nyquist band. The
probability-density function and power
spectral-density function are depicted
in Figs. 3A and B respectively.

If the sampling rate satisfies the
sampling theorem, i.e., the signal is
sampled at least twice the highest
frequency in the input signal, f>2f,
then quantization is the only error in the
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Fig. 3. (a) Probability-density function and (b) power spectral-density function for
the quantization error under the linear model.

A/D conversion process (jitter and other
effects are not considered here). Using
the assumption of uniform distribution,
the average quantization noise is given by

.[eq p(eq)deq =
- q/2

J. eqdeq =0

q —q/2

1 @

and the quantization noise power is
given by

o, =E{(e,-&)’}=

From (1), we get

, q 1 1
T RT3y 32 ©

To find the SNR, we also need to
estimate the signal power. Now assume
we are quantizing a sinusoidal signal of
amplitude A, X(t)=Acos(2nt/T). The
average power of the signal is thus

o, =

E{(e, -8’} =E{e,’} =

oo 1 T AZ
jeq2 pe,)de, = —[(Acos2mt /1 T)’dt =—- (7
T 2
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Fig. 4. SNR as a function of the number of bits in the quantizer for a PCM-encoded

signal, sampled at the Nyquist frequency.
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SNR(dB)=
2~2b
20l0g,, 2 = 10log,, S22 =
o, 2

20log, A+ 6.02b +1.76 (8)

Thus the signal-to-noise ratio
increases by approximately 6 dB for
every bit in the quantizer. Using this
formula, an audio signal encoded onto
CD (a 16-bit format) using PCM, has a
maximum SNR of 98.08. Also note
from (7) that the SNR is linearly related
to the signal strength in decibels.

In Fig. 4, the SNR is given as a func-
tion of the number of bits in the quan-
tizer for two PCM encoded signals,
sampled at the Nyquist frequency. Eq.
(8) is used to predict the SNR, and the
simulated SNR is measured directly in
the time domain from signal variance
and quantization-error variance. The
input signals are 2-kHz sinusoids,
where it is assumed that the sampling
rate is 44.1 kHz, with full range ampli-
tude A=1 and with small amplitude
A=0.1. It can easily be seen, for a high-
bit quantizer, that the signal-to-noise
ratio is indeed given by Eq. (8). The
only significant error is for a low
number of bits due to the approxima-
tion first introduced in Eq. (6).

Eq. (8) also gives a method by
which the performance of sigma-delta
modulators may be compared with
Nyquist-rate PCM converters. By
inverting this formula for a full-scale
input signal and incorporating all the
noise and distortion into the signal-to-
noise-and-distortion ratio (SINAD), we
have the measurable effective number
of bits of a quantization,

SINAD-1.76
6.02

ENOB = ©)

NOISE SHAPING
AND OVERSAMPLING
Let’s now assume that the signal is
oversampled. That is, rather than
acquiring the signal at the Nyquist
rate, 2fg, the actual sampling rate is
f=2r+1fg. The oversampling ratio is
OSR=2r=f/2f5. Thus, the quantization
noise is spread over a larger frequency
range yet we are still primarily con-
cerned with noise below the Nyquist
frequency.

The in-band quantization noise power
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Fig. 5. Distribution of quantization noise for Nyquist rate sampling, 4 times, and

8 times oversampling

can be found by integrating the power
spectral density over the passband,

fE
ol = [ s,(f)df =
=i
20 f
2%ela_g2/0R  (10)

S|

where S (f)=0’/f, is the power spec-
tral density of the (unshaped) quantiza-
tion noise.

Most of the noise power is now
located outside of the signal band. As
depicted in Fig. 5, the quantization-
noise power within the band of interest
has decreased by a factor OSR. The
signal power occurs over the signal
band only, so it remains unchanged
and is given by Eq. (7). The signal-to-
noise ratio may now be given by,

SNR(dB)=
0_2

10log,, — + 10log, 2" ~
Ue

20log,, A+

6.02b +3.01r +1.76 (11)

Thus for every doubling of the over-
sampling ratio, the SNR improves by
3 dB. The 6-dB improve-

tizer. However, this alone is not suffi-
cient. According to Eq. (11), to achieve
a CD-quality recording (ENOB=16,
f=44,100 kHz) with an 8-bit quantizer
we would need an oversampling ratio of
216, or sample rate of approximately
2.89 GHz, which is unfeasible.

STF and NTF under the linear
model

The above oversampling system per-
forms no noise shaping. Consider a fil-
ter placed in front of the quantizer
(known as the loop filter), and the out-
put of quantization is fed back and
subtracted from the input signal, as
shown in Fig. 6. We now have a sys-
tem that may be represented by trans-
fer functions applied to both the input
signal and the quantization noise. In
the Z domain, the output may be rep-
resented as

Y(@)=

STF(2)X(2)+ NTF2)Ez)  (12)

where STF is the signal transfer func-
tion and NTF is the noise transfer
function. To find these values, note
that the input to the loop filter is X(z)-
E(z) so that Y(2)=H(2)[X(2)-Y(2)]+E(2).

ment with each bit in the
quantizer remains, SO we
can say that doubling the
oversampling ratio increases
the effective number of bits =
by half a bit.

Oversampling gives us a

T

E(z)

Yiz)
Hiz)

means to reduce the required
number of bits in the quan-

Fig. 6. Representation of a sigma—delta modulator
using the linear model
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Rearranging terms, we have,

Y(@)[1+H(@2)]=
H(z)X(2) + E(2) (13)
And thus,
STF@Z)= @
1+ H(2)
NTF(z) =
1+ H(z) (14)

So the linear model allows us to find
the effects on the signal and noise due
to any choice of filter function.

This filtering and feedback,
combined with oversampling, are the
essential elements of sigma—delta
modulation. The primary goal of
sigma—delta modulator design is to
choose a filter resulting in high stabil-
ity and few artifacts, such that over the
passband,

STF(z) =1, NIF(z)=0 (15)

If such is the case, then the noise has
been shaped away from the passband
and the signal passes unchanged.

First-order sigma—delta
modulation A/D converter

A first-order SDM has a single integra-
tor in the loop filter. The simplest
design has no additional gain terms and
may be given in the time domain as,

u(n+1) = x(n) — y(n)+u(n) (16)

which is depicted in the block
diagram Fig. 7A). Recalling that,
e,=Q-U and describing the previous
time step, we have

4.0
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Fig. 8. Normalized power spectral density for pulse-code modulation and for first-
order SDM (no oversampling). Actual values are found by multiplying by of /f,.

Y =x(n—1)+e,(m)—e,(n—1)(17)

A Z-domain block diagram is given
by Fig. 7B, and the corresponding
equation is

Y(z)=X(2)z '+ E(zXl—-z") (18)

Thus the signal transfer function is
given by z-I. The signal is unaffected
and only delayed by one sample. The
noise transfer function is 1-z-!, which
pushes the noise to high frequencies.
Using trigonometric identities,

INTF(f)IP=
(1_e—j27rf/f5 )(l_ejzﬂlfs):
4sin’*(mf / f) (19)

Unlike oversampled PCM, which has
unity NTF, the noise shaping in
sigma—delta modulation implies a
nonconstant noise power, given in the

) | e

x?t 5

()

B(z)
izZ)

Fig. 7. (a) first-order sigma—delta modulator given by its block diagram and
alternatively (b), by its z-transform block diagram with the quantizer approximated

by a noise source.
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baseband by,

Iy
ol = j S.(f)|NTF(f)P df  (20)
v
where, again, S (f)=o0’/f is the
power spectral density of the unshaped
quantization noise. The total noise
power, Gf, remains unchanged, but
now the noise has been pushed up to
the high frequencies. This is depicted
in Fig. 8, which gives the power spec-
tral density for first-order SDM as
compared with PCM.

Assuming a high OSR, 1, > f; and
using a Taylor series expansion,
sin(X)=x-x3/3!+ x5/5!..., Eq. (20) can
be solved to give

O.2
f—[

3 OSR3 2y

2
n

The signal-to-noise ratio may now
be given by,

2 3r
SNR(dB)=10log,, 2= ~
o,

20log,, A+ 6.02b +9.03r —3.41 (22)

The effect of first-order noise shap-
ing is evident. We now get an
improvement of 9 dB for each
doubling of the oversampling ratio,
rather than the 3-dB improvement that
occurs without noise shaping.

SNR for high-order sigma—delta
modulators

This technique can be extended to
higher-order filters. The transfer w
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function of a generic Nth-order SDM
is given by
Y2)=X@)z'+E@)d-z Y =
STF(2)X(z) + NTF(2)E(2) (23)
Thus, the noise transfer function is

given by

NIF(f)=(1—e>"")Y (24)

Using an integral formula, this gives
f

o= j S, (f)INTF(f)I* df =

_fB

—

0_2 B

Te [2sin(z f / f )" df =
s —fg
5 n.ZN

O‘ _—
* (2N + 1)OSR*"*! (25)

where the approximate equality was
found by using a Taylor series expan-
sion on the sine terms and keeping
only the first nonzero terms.

Compared with the first-order SDM,
this provides more suppression of the
quantization noise over the low
frequencies and more amplification of
the noise outside the signal band. Eq.
(25) can be used to find the general
formula for the SNR of an ideal
Nth-order SDM,

2
SNR(B)=10log,, = +
O-E

@N+1Dr

10log,, BNV 7 +7r12)N2 ~
20log,,A+6.02b +1.76 +
10log,, (2N +1)— 9.94N +
3.012N + Dr (26)

Thus we see a large improvement
with increasing SDM order. For a
second-order SDM (N=2), there is a
15-dB improvement in the SNR with
each doubling of the oversampling
ratio.

In general, for an Nth-order SDM,
there is a 3(2N+1) dB improvement
in the SNR with each doubling of
the oversampling ratio, and a 6-dB
improvement with each additional
bit in the quantizer. Thus, use of
high-order SDMs and a high over-
sampling ratio offers a much better
SNR than that obtained by simply
increasing the number of bits.

Of course, this is an approximation.
It depends on the coefficients of the
modulator, on the approximations
used in the derivation, and other
factors. Nevertheless, it provides an
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Fig. 9. SNR as a function of r, the log, of the oversampling ratio. In each case, 217
samples and a 16-bit quantizer were used, and the input signal had a frequency

101f/217,

upper limit on the SNR. Fig. 9 depicts
the SNR for PCM encoding, a first-
order SDM, and a second-order SDM.
In each case 217 samples and a 16-bit
quantizer were used, and the input
signal had a frequency 101f/217.
Unlike in the PCM simulation for Fig.
4, the quantization error and input
signal samples are no longer time
aligned, so the signal and noise power
were calculated in the frequency
domain. There is strong agreement
between theory and simulation, with
the differences being attributable to
the assumption of high oversampling
ratio (for the Taylor series truncation),
the difficulty in accurate measurement
of SNR, particularly at large values,
and the assumptions mentioned

earlier, particularly that of uniform
PDF over the range —q/2 to +q/2.
Nevertheless, the 3-dB, 9-dB, and
15-dB increases for doubling the OSR
have been confirmed, and there
is reasonable agreement throughout.

ISSUES IN SIGMA-DELTA
MODULATION

As reported in [3, 4], 64-times-over-
sampled 1-bit A/D converters, using a
fifth-order SDM have been designed
and achieve an SNR over 120 dBs.
Yet from Eq. (26), we find that

SNR(B) ~ 20log,,A +167.15  (27)

To date, no one has designed a
sigma—delta modulator with such high
performance. As an example, consider

X

Sl(]{+1
{2

- F

s1(k) , 5(k)

53(k) s4(k) s5(k)
1 1 1

’f
-

Fig. 10. Implementation of a realistic fifth-order feedforward SDM
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Fig. 11. Estimates of the signal-to-noise ratio as a function of input signal
amplitude for an ideal SDM, derived from theory, and for a practical SDM, both
derived from theory and estimated from simulation. In all cases, the SDM was
assumed to be 1-bit, fifth-order, with an oversampling ratio of 64.

a 1-bit, arbitrary-order feedforward
SDM that may be represented as,

y(n) = sgn(C- s(n))
s,(n+1)=s,(n)+x(n)—y(n)
s,(n+1)=s,(n)+s,(n)

(28)

X is the input signal and y the output
bitstream, as before, and u=c-s is
the input to the quantizer, where c is a
coefficient vector determining noise-
shaping characteristics. A practical
fifth-order implementation of this
design, Fig. 10, is described in [5], and
is intended to be used for analog-to-
digital conversion in audio applications
(we will return to this SDM later in
this section to demonstrate other
phenomena). The SDM is lowpass, has
a corner frequency of 80 kHz for a
sample rate of 64 x 44.1 kHz, and is
given by the coefficients,

€c=[0.5761069262,

0.1624753515,
0.0276093301,
0.0028053934,
0.0001360361] (29)

Fig. 11 depicts the theoretical SNR
as a function of input signal amplitude
for an ideal fifth-order SDM, and both
theoretical and simulated SNR esti-
mates for the SDM given by Eq. (28)
and (29). In both cases, the SDM was
assumed to be 1 bit with an oversam-

sy(N+1)=s,_ (N)+s,(n)

pling ratio of 64. The theoretical SNR
is computed directly from the signal
power and in-band noise power.
In-band noise power is found from the
integral given by Eq. (20), which is
numerically integrated for the practical
SDM and may be found from Eq. (26)
for the ideal SDM. Note that the practi-
cal design has an SNR almost 80 dB
less than that of the ideal design, and
that simulation shows a dramatic drop
in performance for input amplitude
greater than 0.77.

The archetypal Nth-order SDM with
NTF (1-z-D)N is highly unstable; hence
loop filters with less-aggressive noise
shaping are used. But even this less-
aggressive SDM becomes unstable with
large input values. This

first-order SDM as given by Eq. (16)
with constant input X=.5, and an initial
condition, say, u(n)=0.1>0
un+)=5-1+.1=-4
u(n+2)=5+1-4=1.1
u(n+3)=5-1+1.1=.6
un+4)=5-1+.6=.1 (30)
Thus, the input to the quantizer repeats
with a period of 4 iterations and the
quantizer produces a repeating output
bitstream +1,-1,+1,+1... Note that the
average value is [3%(+1)+1%(-1)]/4,
which is the same as the input. This
relationship can be easily shown for a
first-order SDM since repeated appli-
cation of Eq. (16), leads to

u(n+k)=
k—1 k—1
Zx(n +1) —Zy(n +i)+um @31

If we assume constant input and that
u repeats after K cycles, we have

k-1
k=Y "y(n+1i)
i=0 (32)
which implies that average output is
equal to the input signal. The occur-
rence of a repeating sequence in the
output bitstream is known as a limit
cycle. It poses problems in the signal
processing of the output. More seri-
ously, when SDMs are applied in
audio applications, limit cycles can
result in audible artifacts. For instance,
in the case just mentioned, the input
was purely DC, yet the limit cycle
results in a square wave with 75% duty
cycle and frequency fy/4 at the output.
The theory of limit cycles in low-

instability problem is
not explained by the
linear model. In fact,
there are a host of
issues in sigma—delta
modulation that are
caused by feedback
around a highly nonlin-
ear quantizer. In this
section we will look at
the related causes of
these unwanted behav-
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current state of under-

2000
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standing and research.

Limit cycles

Consider a single-bit
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Fig. 12. Plot of the input to the quantizer as a function of
the iterate for a fifth-order SDM. The quantizer input,
and hence the output bitstream, enter a limit cycle
around iterate 2300 and again at approximately 8400.
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order (first- and second-order)
sigma—delta modulators is well under-
stood. Yet limit cycles can exist in
high-order SDMs operating under
normal conditions. Returning to the
SDM described in the introduction at
the beginning of this section, with an
input of 0.7 and initial conditions s=0,
it exhibits a short-term limit cycle. This
can be seen in a time series of the input
to the quantizer, as depicted in Fig. 12.
This example illustrates both the exis-
tence of limit cycles in high-order
designs and the fact that limit cycles
may also appear for finite duration.

It is only in recent years that the
theory of limit cycles has been extended
to characterize behavior in higher-order
SDMs [5-10]. Reefman’s Theorem
shows that, for most SDM designs, DC
input implies that the output bitstream is
periodic if and only if the state-space
variables (a vector describing the current
state of the system) are periodic. Using
this condition it was possible to find all
limit cycles that may occur for a given
sigma—delta modulator and the set of
initial conditions that may generate
them. This allowed a description of
sensitivity to limit cycles for different
SDM designs and the ease by which
various techniques may be used to break
out of a limit cycle. Other significant
recent results include analysis of limit-
cycle behavior with nonconstant, peri-
odic input and development of
limit-cycle detection and removal
techniques.

Design of SDMs to avoid limit
cycles is accomplished either by using
more complex noise shaping structures
[11] or through the addition of dither or
a control [12] in order to suppress limit
cycles in an existing design. Questions
linger concerning how problematic
limit cycles are when the input has a
small amount of noise, such as with
analog implementations of SDMs when
the limit cycle is of finite duration or
when the input is not constant but the
oversampling ratio is large enough such
that the input appears nearly constant
over a short duration. The framework
established in [5] may be used to
address these issues.

Idle tones

There is little theoretical understand-
ing of idle tones, even for the simplest
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Fig. 13. lllustration of the definitions used to distinguish a limit cycle (left) from an
idle tone (right). A limit cycle consists of a finite number of discrete peaks in the
frequency spectrum; an idle tone is a peak in the frequency spectrum, but

superimposed on a noise background.

low-order sigma—delta modulators.
Perhaps the most significant is early
work by Candy [13] that showed that
in a first-order SDM the idle tone is
simply an alias of an overtone of a
square wave that is discretely sam-
pled. Thus it is suspected that a similar
phenomenon may account for idle
tones in higher-order SDMs. The idle-
tone phenomenon in higher-order
SDMs has been described in [14, 15],
and experimental evidence of idle-
tone behavior in a second-order band-
pass SDM was reported in [16].

It is important to distinguish
between limit cycles and the related
phenomenon of idle tones. The repeti-
tive patterns that exist in the output
bitstream are referred to as idle
patterns or limit cycles. Whereas an
idle tone is represented by a discrete
peak in the frequency spectrum of the
output of a SDM, but superimposed on
a background of noise (see Fig. 13). In

this case there is no unique series of
repeating bits.

This distinction is often blurred, and
alternative definitions are sometimes
used. Kozak and Kale [17] do not
distinguish between limit cycles and
idle tones per se, but instead refer to idle
tones as periodic patterns with constant
input and harmonic tones as periodic
patterns resulting from sinusoidal input.

Bourdopoulos [18] reported idle
tones occurring with both constant and
sinusoidal input for a third-order SDM.
The latter we would refer to as
harmonic distortion. He also linked the
generation of idle tones to the exis-
tence of almost repeating patterns.
Ledzius [19] used this link to infer that
since a linear model of an SDM cannot
account for limit cycles, it must not be
able to account for idle tones either.
This link to limit cycles (exactly peri-
odic sequences) has also been
suggested by Angus [20] and w»

-20 -
~40 -
-60 -
-80 |
-100
-120

-140

Power (cB)

-160
-180 -
-200
220
240

-260

T T
0 200 400

T
600
Frequency (kHz)

T
800 1000 1200 1400

Fig. 14. Power spectrum of a 64 times oversampled fifth-order SDM with constant
input of amplitude 0.7, depicting idle tones.

J. Audio Eng. Soc., Vol. 56, No. 1/2, 2008 January/February



ASSISTANT PRUFESSUR

AUDIO ENGINEERING
TECHNOLOGY

QTeach 24 credit hours per year.

0 Advise students with academic progress and mentor students
in research and other class-related activities.

0 Engage in activities to support the mission and vision of
Belmont University and the College.

Q Engage in scholarly activity and professional development.

Q Participate in departmental work as appropriate.

For additional information about the position and to complete the online
application, visit http://jobs.belmont.edu.

Review of applications will begin immediately. Belmont University is an equal
opportunity /affirmative action employer under all applicable civil rights laws.
Women and minorities are encouraged to apply.

Located near Nashville’s Music Row, the Mike Curb College of Entertainment
and Music Business at Belmont University enrolls 1200+ majors and
combines classroom experience with real-world applications. Facilities

feature state-of-the-art classrooms and recording studios, including the

award-winning Ocean Way Nashville studios, Historic RCA Studio B, and

the Robert E. Mulloy Student Studios in the Center for Music Business.

MIKE CURB COLLEGE of
ENTERTAINMENT & Music BUSINESS

BELMONT

UNIVERSITY




UNDERSTANDING SIGMA=DELTFA-MOBDUEATION: The Solved and Unsolved Issues

Jespers [21]. Yet recent work by the
authors has shown that, although these
tones are related to the input in much
the same way as for limit cycles, they
are not easily accounted for within the
current theory of limit cycles [9].

However tempting, the assumption
that idle tones result from limit cycles
has so far left several phenomena unex-
plained. First, the limit cycle produces a
spectrum with discrete peaks of compa-
rable amplitude occurring at multiples
of the limit-cycle frequency [9]. Thus,
for a limit cycle with a short period, all
peaks would be out of the audible band.
For a limit cycle with sufficiently long
period to produce audible tones, almost
all harmonics would be present and
significant. This is in direct contrast to
idle tones, which are known to produce
a relatively small number of peaks and
the higher harmonics are of small
amplitude. Furthermore, limit cycles are
highly sensitive to initial conditions and
input. An infinitesimal change in the
input will completely remove a limit
cycle, and a change in initial conditions
will destabilize it. Idle tones, on the
other hand, may be observed regardless
of initial conditions and persist as the
input is changed. Finally, it has been
shown that limit cycles exist only if the
input is constant or periodic [6] whereas
there are no known similar constraints
on idle tones.

The phenomenon of idle tones is
illustrated in Fig. 14, which depicts the
power spectrum of the fifth-order
SDM described in the previous section
on limit cycles, with constant input of
0.7. The strongest idle tone occurs at
423.36 kHz, or exactly 3/20 of the
sampling frequency of 64 x 44.1 kHz.
The next strongest is the first harmonic
of this tone. This is also evidence of a
simple relationship observed in [22]. In
that paper the authors noted that the
frequency of the fundamental idle tone,
referred to as fgq, is proportionally
related to the amplitude of the input
signal,

for = Apcl (33)

Here, we refer to the amplitude as
related to full scale. An input of ampli-
tude 0.7 is 17/20 of the full scale from
-1 and +1, or 3/20 of the full scale on a
reverse x-axis, from +1 to -1. Since
171420 is above fy/2, we would expect
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Fig. 15. Power spectrum of a 64 times oversampled fifth-order SDM with sinusoidal
input of frequency 5 kHz and amplitude 0.7, depicting harmonic distortion.

the frequency of the idle tone to be
3,20, as observed. The other signifi-
cant idle tones are due to harmonics
and aliasing of the fundamental tone.
Although the fundamental idle tone is
typically far outside the audible range,
higher-order harmonics of this tone
may alias back to lower frequencies.

It is important to note that the rela-
tionship given by Eq. (33), though
easily observed, has no known theoret-
ical justification. Nor does there yet
exist any theory that will estimate the
amplitudes of the idle tones. This is
perhaps more relevant since the
designer is concerned with unwanted
tones that are significantly above the
noise floor. Furthermore, the funda-
mental and its harmonics may not
account for all observed tones. Thus a
more detailed understanding of idle
tones remains a significant challenge.

Proposed solutions to idle tones and
harmonic distortion are the addition of
dither or the use of chaotic SDMs [23].
These same solutions are effective in
eliminating limit-cycle behavior. Thus,
it is believed that these are, at least in
part, dynamical systems phenomena,
but not a direct consequence of limit
cycles. Nonlinear dynamics techniques
may therefore be successful in devis-
ing a parallel analytical approach to the
understanding of idle tones.

Harmonic distortion

As with idle tones, there are multiple
definitions of harmonic distortion in

the literature. Harmonic distortion,
though also appearing as undesired
tones, occurs when sinusoidal input is
applied. It may be defined as the pres-
ence of harmonics (signals whose fre-
quencies are integer multiples of the
input signal) and other spurs in the
output spectrum that were not present
in the input signal. In this case we are
concerned both with peaks that are
due to unwanted harmonics or aliasing
of the input signal and those that bear
no apparent relationship to the input
frequency.

Kozak and Kale [17] refer to
harmonic tones as periodic patterns
resulting from sinusoidal input (these
would still be considered limit cycles
under our previous definition).
Experimental evidence of harmonic
distortion was given in [24] and [25].
Theoretical results have typically been
limited to approximate analysis of
second-order or third-order harmonics
[26] or low-order modulators [13, 27].
They are also specific to harmonic
distortion that appears as a result of
circuit imperfections, as opposed to the
inherent distortion components in
high-order SDMs. Aliasing of the
distortion components back into the
passband was described in [28], though
no theoretical approach was provided.

Harmonic distortion is depicted in
the power spectrum shown in Fig. 15,
which is identical to Fig. 14 except
now the constant input of 0.7 has been
replaced with sinusoidal input of
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amplitude 0.7. The distortions are far
more numerous than the idle tones
produced from constant input and are
especially intriguing because they
show no obvious relationship to the
input frequency or amplitude. In both
cases, fortunately, the tones are far
outside the audio band (though this is
not always the case).

Harmonic distortion, even though it is
a serious issue, is not well understood.
It is known that it is more problematic
in low-order designs, and the same
techniques that are used to remove idle
tones may be applied here. The origins
of harmonic distortion lie in the fact
that, in a low-bit representation, sinu-
soidal signals are represented in the
output bitstream as close to a square
wave. Since square waves have strong
harmonics, these harmonics appear in
the output spectrum. However, no
general theory exists allowing one to
analytically derive the dominant
harmonics and their amplitudes or to
determine the susceptibility of different
filter designs to harmonic distortion.

Noise modulation

We begin by looking at dither distribu-
tions and the resultant quantization error
in PCM systems. The approach used is
slightly simpler though less rigorous
than that in [1]. The analysis in this sec-
tion is presented primarily because the
analysis of SDM systems can be made
via an extension of this approach.
Recall that an infinite midriser

quantizer has the input-output charac-
teristic Q(w)=gq|w/q|+q/2, where
w is the input to the quantizer. If the
input to a PCM system, X, is fed
directly into the quantizer, then the
total error between input and output is
simply

e,=q|x/ql+q/2-x (34

Thus the mth moment of the error
for a given X is

Yeple)=(q|x/q|+q/2-x)"(35)

Under such circumstances, all error
moments are dependent on the input
value X. In particular, the second
moment, the quantization noise power,
depends on the signal. This is known
as noise modulation. It can be
perceived in the quantization of audio
signals and is generally undesirable.

However, if random noise with
uniform probability distribution from
—0/2 to +0/2, otherwise known as rect-
angular PDF (RPDF) dither of size 1
Least Significant Bit (LSB), is applied
immediately before quantization then
the PDF of the input to the quantizer
has the form,

p(w) =

1/q
0

The input ranges over 1 LSB, so
the output can assume only 2
possible values. If we define
y:X/q+1/2—LX/q+l/2J, then
the error has the distribution,

X=Qq/2<wW<Xx+0q/2
otherwise  (36)
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.- { q(l-y) p=y
! —-qy p=l-y (37)
and hence, using Eq. (35), the first

error moment becomes independent of
the input.
D8P, =
qa-yy-ayd-y)=0 (3g)

Note that this was also the result of
the uniform distribution assumption in
the linear model, Eq. (4), only now the
addition of dither makes the assump-
tion fully valid. In fact, it can be shown
that nth-order dither will make the first
n error moments independent of the
input. Triangular (TPDF) dither of
width 2 LSBs, which can be generated
by summing two rectangular PDF
dithers of width 1 LSB, will render
both the first- and second-order
moments of the error independent of
the input signal. That is, the quantiza-
tion noise will have a constant average
of zero and a constant (nonzero) power
independent of the input signal charac-
teristics. The dithering forces the quan-
tization noise to lose its coherence with
the original input signal, but has the
drawback of raising the average spec-
tral noise floor.

The effect of dither on the conditional
moments of error is depicted in Fig. 16.
This shows the first two conditional
moments of error (average quantization
noise and average quantization noise
power) as a function of the system input
for a PCM system without dither, with
RPDF dither and with TPDF dither.
This PCM system uses the same 3-bit
midriser quantizer as depicted in Fig. 1.
The results were found from simulation
of 100,000 data points with a constant
input to the system and a random
number generator used to create the
dither signal. With RPDF dither, the
average quantization noise remains
fixed at zero, regardless of the input
signal. With TPDF dither both the aver-
age quantization noise and the average
quantization noise power are constant,
thus the noise modulation has been
removed. However, due to the finite bits
in the quantizer, the results do not hold
for the lowest and highest quantization
levels with RPDF dither, and do not
hold for the lowest two and highest two
quantization levels with TPDF dither.

To date, the theory of noise w»
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modulation has not yet been extended
from PCM to SDM. Though the use of
dither to prevent noise modulation in
pulse-code modulation is well under-
stood, there are many intriguing ques-
tions that remain when dither is applied
to a sigma—delta modulation system.
The feedback loop affects the distribu-
tion of the input to the quantizer in
complicated ways. Many researchers
have suggested that this leads to a form
of “self-dithering,” but correlations
remain between the quantization noise
and the input signal. In addition, one-
bit sigma-—delta modulation is
frequently used, yet RPDF dither of 1
LSB or TPDF dither of 2 LSBs, as
mentioned above, will cause the quan-
tizer to be overloaded [29], and no
amount of dither in a one bit system
will produce constant noise power [30].

Dead zones

For certain input signals, the input
may not be properly encoded by the
SDM. That is, there is a range of input
for which the sigma—delta modulator
may produce the same average output
value. This range is known as a dead
zone.

Consider a first-order SDM with a
lossy integrator, such that Eq. (16) is
replaced by

u(n) =cu(n—1)+ x(n)— y(n—1) (39)

where c<1. For x<<1, y(0)=+1, this
yields,
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u(l) = cuOHx-y(0) = x-1<0
u2) = cu(IHx-y(1) = (1+e)x+1-c)>0
u3) = cu@px-yR) = (I+c+c*x-(1-c+c*)<0 (40)

which gives the output bitstream
y(n)=+1,-1,+1,-1,... The general
formula for the input to the quantizer
becomes,

k-1
u(k)=Y c'x+(=Df(-c)  (41)

i=0
When x is equal to 0, and c<1, then
this produces the limit cycle +1,-1. In
order to break out of this limit cycle
for nonzero x, at some point we must

have, for odd K,

k-1 k-1
u(k)>0— Y c'x>Y (-c)  (42)
i=0

i=0

or for even k,

k-1 k-1
u(k)<0— Y c'x<—Y (-¢)' (43)

i=0 i=0
In the limit of large K, these formulas
become
X 1 X -1
> <
l-c 1l+c and 1-c 1+c (44)

That is, all input in the range

c—1

x<=¢ (45)
l+c l+c
will not break out of a limit cycle, and
thus will have no effect on the output.
The region of input defined by Eq. (45)
is known as a dead zone, and the
phenomenon is sometimes referred to

as a threshold effect. It is strongly

related to limit cycles in that the output
is an endlessly repeating bitstream.

A formal definition would be that a
dead zone is a continuous range of
SDM input, such that, for given initial
conditions, the same output bitstream
would be produced.

If one considers a nonzero initial
condition, then Eq. (41) becomes

k-1
u(k) = c*u(0) + Y c'x + (=D)*(=c)’ (46)

i=0

which in the limit of large K still reduces
to Eq. (41). Thus, this dead zone is inde-
pendent of initial conditions.

It should be mentioned that in a first-
order SDM, dead zones occur for
every limit cycle. Since the limit cycles
exist with any rational input, this can
be rephrased as stating that dead zones
exist in the neighborhood of every
rational input. Similar phenomena
exist in second-order SDMs. Fig. 17
depicts the average output of a
sigma—delta modulator as a function of
DC input. It can be seen that both first-
and second-order SDMs may exhibit
dead zones.

Dead zones are familiar to the SDM
community and are mentioned in many
design textbooks [31]. There was some
extensive analysis of dead zones in first-
and second-order SDMs in the work of
Feely [32-36]. However, she did not
refer to them as such, and instead
discussed the staircase structure of the
SDM output as a function of input,
which characterizes the dead zones.

To date, no one who has character-
ized the dead zones that can exist in
high-order SDMs nor fully character-
ized the possible relationships between
dead zones, initial conditions, and
input. However, though this seems
tractable, there is little evidence that
dead zones are a serious issue in high-
order SDM designs.

Stability

In our earlier introduction to the issues
in SDM, we stated that the primary
reason that ideal SNRs are not
achieved with high-order SDMs is that
many designs are highly unstable.
There has been much research into
stability issues in SDMs, but many
essential questions remain unsolved.
At its core, one would like to derive
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values of constant input such that, for
certain initial conditions, the magni-
tude of the quantizer input will
diverge toward infinity. A similar
question is, given initial conditions
and constant input, determine if this
leads to stable behavior.

For the first-order SDM, it is easy to
show that it is stable for all input
-1<x<1 and to find the related bitstream
behavior. Returning to the time-domain
expression given by Eq. (16), assume x
is constant and -1<x<1. The following 2
relationships show that a negative u will
increase until it is positive, and a posi-
tive U will decrease until it is negative.

um)<0 = u@+1) = u@Hx+1>u(n)
um) =2 0 = u@+1) =umMx-l<um) (47)

Thus it is oscillating between posi-
tive and negative values. Now assume
that at least one bit flip has occurred
(i.e., the transient behavior has passed
and we are not starting from arbitrary
initial conditions). From Eq. (47), the
maximum value of U occurs when the
previous value is just below zero and
the minimum value occurs when the
previous value is equal to zero

u(n)»0=u(n+1)~x+1
um)=0=u(n+)=x—-1 (48)

Thus u is limited to the range
[-1+X;1+X].

The first-order SDM can be iterated
to give, when the output bits all have
the same sign,

u(n+m)=u(n)+m(x—y) (49)

Assume that there are exactly n+
positive output bits in a row. Then we
have

ul)=0

u(n)=u(l)+[n" =1)(x-1) =0 (50)
Since the maximum value of U is
X+1, we have that the maximum
number of output bits occurs when,
x+1+[n"-1)(x-1)=0 (51)

so the maximum number of positive
output bits is given by the largest n+
such that

nt<— 52)
X

similarly, the maximum number of
negative output bits is given by the
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Fig. 18. The absolute magnitude of the quantizer input in a fifth-order SDM as a
function of iterate for various constant input magnitudes. At x=0.7, the quantizer
input is stable, at x=0.9 the quantizer input is unstable and oscillating with
exponentially increasing period and amplitude, and at x=1.1 the quantizer input is

unstable but nonoscillating.

largest n™ such that

2

"= 1+x (53)

The standard second-order SDM has
similar stability properties in that
stability is independent of initial condi-
tions, but proof of boundedness is not
trivial. A linear programming approach
is used by Farrell and Feely [37]. They
assume that there have been some
number N~ iterations with negative
output. From this, they identify the
maximum values of the state-space
variables for the first positive output
bit. This value is used to identify the
maximum number of positive output
bits, which results in n*. They then
find the maximum number of negative
output bits that result from the n* posi-
tive bits. This new value of n~ is
strictly less than n+ and hence the
oscillations are bounded. This success-
fully finds the bounds on the second-
order SDM and may be extended to
second-order SDMs with leaky or
chaotic integrators, and their results
bear strong agreement with simulation.
To the best of our knowledge, there
is no successful analytical approach to
stability in high-order SDMs (order
greater than 2). There are several alter-
native approaches to stability in
second-order SDMs, some preliminary
work on third-order designs, and only
sketched approaches to stability
in higher-order SDMs. Thus the ques-
tion becomes, “Can any existing
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approaches be extended to higher-
order SDMs?” Of course, there is the
related question of whether existing
approaches are correct.

Risbo [38] discussed stability of
SDMs in detail, primarily from a
nonlinear dynamics perspective. But,
with the exception of first-order SDMs,
he did not attempt a method for its
determination. A computational
approach to finding the invariant sets,
which consist of initial conditions
giving rise to stable behavior, is
derived by Schreier [39—41]. Although
neither analytical nor rigorous, it is
significant because source code is
available and because results are
provided that may be confirmed or
denied by other methods. Hein and
Zakhor’s approach [42] is to use the
limit cycles as a measure of stability.
Their method is not rigorous, in that it
postulates that the limit cycles have a
convergent bound on the state-space
variables, and that this is also the bound
for nonlimit cycle behavior. Wang [43]
converted a third-order modulator to a
continuous-time system by looking at
the vector field equations. By consider-
ing only boundary points, he is able to
convert the 3-dimensional flow into a
2-dimensional return map. Fixed points
of this map then yield insight into
stability of the SDM. Zhang [44, 45]
used a model of the quantizer to esti-
mate the stability of a third-order
SDM. The linearization implies that
important phenomena have been w
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omitted. Furthermore, there is little
comparison of the results with simula-
tion. Another work by Zhang [46] bears
a strong resemblance to the linear
programming approach of Feely.

Steiner and Yang [47, 48] use a trans-
formation that decouples the state-space
variables, except through their interac-
tion in the quantization function. They
suggest how this may be used to tackle
stability but there is little analysis. This
approach has been expanded by Wong
[49] to deal with practical high-order
SDMs. Wong provides simulated
results for many high-order SDMs, but
his analysis does not confirm simula-
tion. Mladenov et al. [S0] also use a
related transformation and have shown
promising results on simple but high-
order SDMs. The author and collabora-
tors are currently investigating the
potential of this technique.

Now we will show that the state-
space variables are always unbounded
for lul>1, and that the state-space vari-
ables oscillate between positive and
negative values for lul<1. Note that this
oscillation does not guarantee stable
behavior, but an understanding of the
oscillations may lead to an understand-
ing of stability.

Returning to the arbitrary SDM
given by Eq. (28), it is easy to see that

s;(m)>0=s, (n+1)>s, (n)
s;(mM)<0=s, (n+1)<s, (o) (54)

If x>1, x—y(n)>0, regardless of
c. Therefore, s (n+1)>s,(n), €.g., S
always increases. Hence, for some Kk,
s,(k)>0. At which point s, will
increase, and at some point it will
become positive, and so on. This
implies that, at some point all state-
space variables will increase.
Similarly, if X<-1, at some point, all
state-space variables will decrease.
Thus, for any feedforward SDM in this
form, the bounds are always <=1.

Assume O<x<1, Assume Y(n)>0. So

(a+D) _ (n) (n)
=" +x-1<s" (55)

5

So s, decreases. S, may still increase,
but eventually S; becomes less than 0.
Then s, starts to decrease, and so on.
Eventually s <0, and y(n) flips to
-1. Now, the same procedure happens
again, but with each variable increas-
ing. This gives oscillation. The prob-
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lem comes when each oscillation takes
longer than the previous one. An
example of this oscillation is depicted
in Fig. 18. For x=0.9, the system is
unstable but still oscillating between -1
and +1 output, though the oscillations
are exponentially increasing in both
amplitude and period.

CONCLUSION

In this tutorial we have discussed
methods of operation, design, and use
of sigma—delta modulators. Although
we considered the design of a
sigma—delta modulator as used for
analog-to-digital conversion, the
results derived here could easily be
generalized. The descriptions apply
equally for SDMs used in other appli-
cations, such as D/A converters or
Class D amplifiers. The SNR formulas
in the linear model and pulse-code
modulation section and the section on
noise shaping and oversampling can
also be modified for different input
signals or filter designs. The examples
in the section on SDM issues could
apply to multibit SDMs as well.

We’ve identified several key issues
in sigma—delta modulation: limit
cycles, idle tones, dead zones,
harmonic distortion, noise modulation,
and stability. To some extent limit
cycles may be considered a mostly
solved problem, whereas for each of
the other problems the issues are
understood for low-order design but
the theory is not yet established for the
high-order designs. Dead zones have
been effectively characterized for low-
order designs, but they have not been
reported to be problematic in high-
order or commercial designs. Noise
modulation is well understood for
PCM, yet there is no well established
theory for even low-order sigma—delta
modulators. Idle tones and harmonic
distortion, though not well understood,
are clearly related phenomena. With
idle tones in particular, well-defined
and simple relationships between the
input signal and the frequencies of the
tones have been observed that do not
yet have a theoretical basis.

Noise modulation, idle tones,
harmonic distortion, and limit cycles
may be dealt with, at least in part,
through the application of dither.
However, dither is less effective when

used with a low bit quantizer, which is
also when these issues are most seri-
ous. Furthermore, dither is not helpful
in dealing with stability issues, and
will actually decrease the stable range
of a sigma—delta modulator. A better
understanding of stability (and of other
issues) is needed so that robust, high-
performance implementations may be
developed. There have been many
promising recent results that may lead
toward a theory of stability in
sigma—delta modulators; this remains
an active area of investigation for the
author.
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