
1.  Introduction
Recently, rendering volume data at truly interactive 

frame rates has become possible with commercially 

available graphics systems.  Previously, the comput-

ing requirements for reconstructing and resampling 

volumes of data have been too great.  With the advent 

of the Silicon Graphics RealityEngine and its 3D 

texturing hardware [SGI], the rendering method de-

scribed here may be used to achieve over 10 frames 

per-second for a one-million point volume size ren-

dered into a 5122 window.  Other data or image sizes 

are rendered at inversely-proportional frame rates.

2.  Reconstruction
Viewing a volume from arbitrary positions requires 

reconstructing and resampling the volume along rays 

that extend from the view-point through the image 

plane pixels.  If the resampled points are constrained 

to lie in planes, a textured polygon can be used to re-

sample volume data that is loaded into the texture 

memory of the RealityEngine.  Polygons are embed-

ded in the texture which is resampled at each point on 

the polygon projecting to a pixel.  There are two al-

ternatives for selecting the orientations of the resam-

pling polygons.  Figure 1a illustrates resampling on 
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Fig. 1 - Resampling polygon orientations
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where ui are the resample values behind a pixel and d 

is the spacing between sample values.  Note that d is 

constant for all samples behind a pixel, but due to per-

spective, it varies from pixel to pixel.  The resampled 

ui terms are summed at each pixel, and the d factors 

are applied by using an additional full-screen polygon 

with a 2D texture corresponding to the d values re-

quired for each pixel.  The summation results may be 

viewed directly or the exponential required to mimic a 

radiograph may be computed at each pixel by using a 

lookup table.

The RealityEngine has a maximum precision of 12-

bits per frame buffer and texture component.  The 

summation could easily overflow that unless the sam-

ple values are properly scaled.  Our implementation 

maintains 12-bit volume data values in the texture 

memory and scales each resampled value by a user 

controlled "exposure" value ranging from zero to one. 

The scaled samples are then summed and clamped if 

they exceed the 12-bit range.  In practice, it has been 

easy to find suitable exposure control settings for the 

data sets tested.  Figure 2 shows radiograph images of 

128×128×64 CT data of a human pelvis made with 

polygons aligned in object-space.

polygons aligned with the object-space axes.  Figure 

1b shows resampling on polygons aligned with the 

image-space axes.  In either case, the resampled values 

behind each pixel are combined to produce a color for 

that pixel.  The combining method is often a compos-

iting operation, but may be other operations as re-

quired by the visualization application.  

Polygons aligned in object-space are defined to lie 

within the volume and rendered with GL library calls. 

This method is complicated slightly by the need to re-

orient the sampling polygons in the plane most parallel 

to the view-plane as the view-point changes.  This is 

accomplished by examining the view matrix and ex-

plicitly creating polygons for the six cases that arise 

[Westover91]. 

Polygons aligned in image-space must be clipped to 

the boundaries of the volume to ensure valid texture 

coordinates.  Polygons are defined in image-space and 

transformed by the inverse viewing matrix into object-

space where the clipping occurs.  Clipped polygons 

are then rendered with the usual GL library calls. 

In addition to using unclipped polygons, there are oth-

er advantages to using the object-space method.  The 

texturing time for any polygon is proportional to the 

number of pixels it covers.  A priori information about 

the extent of interesting features in each slice of the 

volume may be used to minimize the polygon size, and 

thus its texturing time, as a function of its location.   

The texture memory of the RealityEngine is limited to 

1M 12-bit data points.  To render larger volumes, slab 

subsets are loaded and rendered in succession.  Tex-

ture memory may be reloaded in about 0.1 seconds.  

With the object-space method, rendering each slab is 

simple.  The image-space method must render poly-

gons multiple times, clipping them to the currently 

loaded volume slab.

3.  Radiographs
A digitally reconstructed radiograph of medical vol-

ume data is produced by combining the resampled 

values behind each pixel to approximate the attenua-

tion integral

pixel intensity = 1.0 - exp(-∑ ui d ) (1)
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Fig. 3 - Digitally reconstructed radiographs



is not normalized and normalization is an expensive 

process requiring a square root.  Lighting without nor-

malization is possible, but this has not yet been tried to 

see how serious the artifacts are.

5.  Performance
We consider two data sizes rendered into a 5122 

window.  The smaller data size of 128×128×64 may be 

rendered at ten frames per-second using 128 polygons 

aligned in object-space.  This equates to a processing 

rate of 10 million voxels per-second.  In our test im-

ages we measured about 160 million pixel operations 

per second, where each pixel operation is a trilinear 

interpolation of the 3D texture components, a multi-

plication by a scaling or opacity factor, and a summa-

tion or composite into the frame buffer.  The larger 

data size of 256×256×64 requires four 256×256×16 

texture slabs and is rendered at 2.5 frames per-second 

with 256 resampling polygons.  Loading texture slabs 

consumes less than 0.1 seconds per-slab.  A progres-

sive refinement approach would allow a user to ma-

nipulate the low-resolution data at a high frame rate, 

and render the high-resolution data as soon as the user 

allows the motion to stop.  The performance is very 

linear with respect to the number of pixels processed.  

As the number of screen pixels or resampling poly-

gons is doubled, the frame rate is halved.  If more 

resampling polygons are used, higher quality images 

are obtained at the expense of lower rendering speed. 

6.  PixelFlow 
Texturing hardware is likely to be a common feature 

of graphics systems in the future.  The PixelFlow 

graphics system under development at the University 

of North Carolina at Chapel Hill will have texturing 

hardware [Molnar+92] that it is suitable for a variant of 

the polygon resampling approach described above for 

the RealityEngine.  We propose a polygon texturing 

approach for the PixelFlow system that will overcome 

the limitations on realistic lighting and data size im-

posed by the RealityEngine.  The texturing hardware 

in PixelFlow will allow 1282 pixel processors to ac-

cess eight arbitrarily-addressed 32-bit values in tex-

ture memory in under 500 µs.  PixelFlow texturing 

hardware does not perform any operations on these 

texture values; rather, they are simply loaded into the 

pixel processors where a user’s program manipulates 

them as ordinary data.  If the 32-bit values are treated 

as four 8-bit texture components, then three may be 

4.  Opacity-Based Rendering
The summation of samples produces radiograph 

images.  Compositing samples produces images with 

occlusion.  Only one texture component is required for 

the linear attenuation coefficient used to produce 

radiographs.  Two 8-bit texture components can rep-

resent the raw data and a precomputed shading 

coefficient.  The resampled data component values are 

used as indices into an opacity lookup table. This look-

up uses the texture hardware for speed.  The shading 

coefficient is a function of the original data gradient 

and multiplies the sample opacity to produce images 

of shaded features as shown in figure 3.  This figure 

shows the human pelvis data set above an image of a 4 

mm3 volume of a chicken embryo acquired by a mi-

croscopic MRI scanner.  The precomputed shading 

fixes the light position(s) relative to the volume.  For 

more general lighting by sources fixed in image-space, 

the shade texture component must be replaced by three 

components containing the normalized data gradient. 

Unfortunately, the resampled gradient on the polygons 

Fig. 3 - Shaded volume rendering
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used for the x, y, and z gradient components and one 

for the raw data.  Trilinear interpolation of all four 

components is performed by software executing con-

currently on all 1282 pixel processors.  The interpolat-

ed gradient is normalized and used to compute Phong 

shaded lighting coefficients.  Piecewise-linear trans-

formations are computed that translate the interpolated 

data value into color and opacity.  The color is multi-

plied by the shading coefficient and composited into 

the frame buffer.  Each of the 1282 pixel processors 

has an 8-bit ALU, hardware multiply, and hardware-

assisted square root and divide instructions.  These as-

sets permit the shading and classification to be per-

formed concurrently with the next polygon texture 

lookups.  PixelFlow systems may contain many tex-

ture engines whose results are composited over a very 

high speed network. Unlike the RealityEngine, each 

PixelFlow processor card has its own memory capable 

of holding 0.5 M texture values, so the size of the vol-

ume that a system can hold may be expanded by 

adding additional processor cards.  A system with 43 

processor cards will handle a 2563 volume size and 

render it into a 640×512 window using 400 object-

space resampling polygons at over 10 frames-per 

second.  As in the case of the RealityEngine, perfor-

mance is inversely proportional to the number of 

screen pixels and resampling polygons used. 

7.  Summary
We have presented a volume rendering approach 

that leverages the 3D texturing hardware available on 

high-performance graphics systems.  The texturing 

hardware accelerates the reconstruction and resam-

pling process inherent in all volume visualization 

algorithms.  A working implementation of this ap-

proach for the Silicon Graphics RealityEngine is 

described, and radiographs and opacity-based volume 

visualizations are demonstrated.  This approach is eas-

ily implemented and produces the highest performance 

rendering rates ever reported for a commercially avail-

able system.  The application of this approach to the 

proposed PixelFlow graphics system is also presented. 

 PixelFlow will provide scalable volume rendering 

performance and data capacity beyond that of any sys-

tems currently available. 
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