
1. Introduction
Recently, rendering volume data at truly interactive

frame rates has become possible with commercially

available graphics systems. Previously, the comput-

ing requirements for reconstructing and resampling

volumes of data have been too great. With the advent

of the Silicon Graphics RealityEngine and its 3D

texturing hardware [SGI], the rendering method de-

scribed here may be used to achieve over 10 frames

per-second for a one-million point volume size ren-

dered into a 5122 window. Other data or image sizes

are rendered at inversely-proportional frame rates.

2. Reconstruction
Viewing a volume from arbitrary positions requires

reconstructing and resampling the volume along rays

that extend from the view-point through the image

plane pixels. If the resampled points are constrained

to lie in planes, a textured polygon can be used to re-

sample volume data that is loaded into the texture

memory of the RealityEngine. Polygons are embed-

ded in the texture which is resampled at each point on

the polygon projecting to a pixel. There are two al-

ternatives for selecting the orientations of the resam-

pling polygons. Figure 1a illustrates resampling on

Accelerating Volume Reconstruction with 3D Texture Hardware

Timothy J. Cullip1 and Ulrich Neumann2

1 - Radiation Oncology Department
University of North Carolina at Chapel Hill

2 - Department of Computer Science
University of North Carolina at Chapel Hill

Abstract
This paper describes a new method of rendering volumes that leverages the 3D texturing hardware in

Silicon Graphics RealityEngine workstations. The method defines the volume data as a 3D texture and

utilizes the parallel texturing hardware to perform reconstruction and resampling on polygons embedded in

the texture. The resampled data on each polygon is transformed into color and opacity values and composited

into the frame buffer. A 128×128×64 volume is rendered into a 5122 window at over 10 frames per-second.

Two alternative strategies for embedding the resampling polygons are described and their trade-offs are

discussed. This method is easy to implement and we apply it to the production of digitally reconstructed

radiographs as well as opacity-based volume rendered images. The generality of this approach is demon-

strated by describing its application to the proposed PixelFlow graphics system. PixelFlow overcomes the

lighting and volume size limitations imposed by the RealityEngine. It is expected to render 2563 data sets on

a 640×512 screen at over 10 frames per second

1

Fig. 1 - Resampling polygon orientations

Volume Boundary

a) Object space
sample planes

b) Image space
sample planes

RealityEngine is a trademark of Silicon Graphics Inc.

where ui are the resample values behind a pixel and d

is the spacing between sample values. Note that d is

constant for all samples behind a pixel, but due to per-

spective, it varies from pixel to pixel. The resampled

ui terms are summed at each pixel, and the d factors

are applied by using an additional full-screen polygon

with a 2D texture corresponding to the d values re-

quired for each pixel. The summation results may be

viewed directly or the exponential required to mimic a

radiograph may be computed at each pixel by using a

lookup table.

The RealityEngine has a maximum precision of 12-

bits per frame buffer and texture component. The

summation could easily overflow that unless the sam-

ple values are properly scaled. Our implementation

maintains 12-bit volume data values in the texture

memory and scales each resampled value by a user

controlled "exposure" value ranging from zero to one.

The scaled samples are then summed and clamped if

they exceed the 12-bit range. In practice, it has been

easy to find suitable exposure control settings for the

data sets tested. Figure 2 shows radiograph images of

128×128×64 CT data of a human pelvis made with

polygons aligned in object-space.

polygons aligned with the object-space axes. Figure

1b shows resampling on polygons aligned with the

image-space axes. In either case, the resampled values

behind each pixel are combined to produce a color for

that pixel. The combining method is often a compos-

iting operation, but may be other operations as re-

quired by the visualization application.

Polygons aligned in object-space are defined to lie

within the volume and rendered with GL library calls.

This method is complicated slightly by the need to re-

orient the sampling polygons in the plane most parallel

to the view-plane as the view-point changes. This is

accomplished by examining the view matrix and ex-

plicitly creating polygons for the six cases that arise

[Westover91].

Polygons aligned in image-space must be clipped to

the boundaries of the volume to ensure valid texture

coordinates. Polygons are defined in image-space and

transformed by the inverse viewing matrix into object-

space where the clipping occurs. Clipped polygons

are then rendered with the usual GL library calls.

In addition to using unclipped polygons, there are oth-

er advantages to using the object-space method. The

texturing time for any polygon is proportional to the

number of pixels it covers. A priori information about

the extent of interesting features in each slice of the

volume may be used to minimize the polygon size, and

thus its texturing time, as a function of its location.

The texture memory of the RealityEngine is limited to

1M 12-bit data points. To render larger volumes, slab

subsets are loaded and rendered in succession. Tex-

ture memory may be reloaded in about 0.1 seconds.

With the object-space method, rendering each slab is

simple. The image-space method must render poly-

gons multiple times, clipping them to the currently

loaded volume slab.

3. Radiographs
A digitally reconstructed radiograph of medical vol-

ume data is produced by combining the resampled

values behind each pixel to approximate the attenua-

tion integral

pixel intensity = 1.0 - exp(-∑ ui d) (1)

2

Fig. 3 - Digitally reconstructed radiographs

is not normalized and normalization is an expensive

process requiring a square root. Lighting without nor-

malization is possible, but this has not yet been tried to

see how serious the artifacts are.

5. Performance
We consider two data sizes rendered into a 5122

window. The smaller data size of 128×128×64 may be

rendered at ten frames per-second using 128 polygons

aligned in object-space. This equates to a processing

rate of 10 million voxels per-second. In our test im-

ages we measured about 160 million pixel operations

per second, where each pixel operation is a trilinear

interpolation of the 3D texture components, a multi-

plication by a scaling or opacity factor, and a summa-

tion or composite into the frame buffer. The larger

data size of 256×256×64 requires four 256×256×16

texture slabs and is rendered at 2.5 frames per-second

with 256 resampling polygons. Loading texture slabs

consumes less than 0.1 seconds per-slab. A progres-

sive refinement approach would allow a user to ma-

nipulate the low-resolution data at a high frame rate,

and render the high-resolution data as soon as the user

allows the motion to stop. The performance is very

linear with respect to the number of pixels processed.

As the number of screen pixels or resampling poly-

gons is doubled, the frame rate is halved. If more

resampling polygons are used, higher quality images

are obtained at the expense of lower rendering speed.

6. PixelFlow
Texturing hardware is likely to be a common feature

of graphics systems in the future. The PixelFlow

graphics system under development at the University

of North Carolina at Chapel Hill will have texturing

hardware [Molnar+92] that it is suitable for a variant of

the polygon resampling approach described above for

the RealityEngine. We propose a polygon texturing

approach for the PixelFlow system that will overcome

the limitations on realistic lighting and data size im-

posed by the RealityEngine. The texturing hardware

in PixelFlow will allow 1282 pixel processors to ac-

cess eight arbitrarily-addressed 32-bit values in tex-

ture memory in under 500 µs. PixelFlow texturing

hardware does not perform any operations on these

texture values; rather, they are simply loaded into the

pixel processors where a user’s program manipulates

them as ordinary data. If the 32-bit values are treated

as four 8-bit texture components, then three may be

4. Opacity-Based Rendering
The summation of samples produces radiograph

images. Compositing samples produces images with

occlusion. Only one texture component is required for

the linear attenuation coefficient used to produce

radiographs. Two 8-bit texture components can rep-

resent the raw data and a precomputed shading

coefficient. The resampled data component values are

used as indices into an opacity lookup table. This look-

up uses the texture hardware for speed. The shading

coefficient is a function of the original data gradient

and multiplies the sample opacity to produce images

of shaded features as shown in figure 3. This figure

shows the human pelvis data set above an image of a 4

mm3 volume of a chicken embryo acquired by a mi-

croscopic MRI scanner. The precomputed shading

fixes the light position(s) relative to the volume. For

more general lighting by sources fixed in image-space,

the shade texture component must be replaced by three

components containing the normalized data gradient.

Unfortunately, the resampled gradient on the polygons

Fig. 3 - Shaded volume rendering

3

8. References

[Molnar+92] Steven Molnar, John Eyles, and John

Poulton. "PixelFlow: High-Speed Rendering

Using Image Composition." Computer Graph-

ics 26(2):231-240, July 1992. Proceedings of

SIGGRAPH’92.

[SGI] Greg Estes and Joshua Mogal. "Its’

Time to Get Real." Iris Universe (21):15-19,

Summer 1992. Silicon Graphics Inc.

[Westover91] Lee Westover. "Splatting - A Parallel,

Feed-Forward Volume Rendering Algorithm."

Dept. of Computer Science, UNC at Chapel

Hill, Tech Report TR91-029, July 1991. Ph.D.

Dissertation.

used for the x, y, and z gradient components and one

for the raw data. Trilinear interpolation of all four

components is performed by software executing con-

currently on all 1282 pixel processors. The interpolat-

ed gradient is normalized and used to compute Phong

shaded lighting coefficients. Piecewise-linear trans-

formations are computed that translate the interpolated

data value into color and opacity. The color is multi-

plied by the shading coefficient and composited into

the frame buffer. Each of the 1282 pixel processors

has an 8-bit ALU, hardware multiply, and hardware-

assisted square root and divide instructions. These as-

sets permit the shading and classification to be per-

formed concurrently with the next polygon texture

lookups. PixelFlow systems may contain many tex-

ture engines whose results are composited over a very

high speed network. Unlike the RealityEngine, each

PixelFlow processor card has its own memory capable

of holding 0.5 M texture values, so the size of the vol-

ume that a system can hold may be expanded by

adding additional processor cards. A system with 43

processor cards will handle a 2563 volume size and

render it into a 640×512 window using 400 object-

space resampling polygons at over 10 frames-per

second. As in the case of the RealityEngine, perfor-

mance is inversely proportional to the number of

screen pixels and resampling polygons used.

7. Summary
We have presented a volume rendering approach

that leverages the 3D texturing hardware available on

high-performance graphics systems. The texturing

hardware accelerates the reconstruction and resam-

pling process inherent in all volume visualization

algorithms. A working implementation of this ap-

proach for the Silicon Graphics RealityEngine is

described, and radiographs and opacity-based volume

visualizations are demonstrated. This approach is eas-

ily implemented and produces the highest performance

rendering rates ever reported for a commercially avail-

able system. The application of this approach to the

proposed PixelFlow graphics system is also presented.

 PixelFlow will provide scalable volume rendering

performance and data capacity beyond that of any sys-

tems currently available.

4

5

6

