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Abstract

Drosophila melanogaster is a well-studied model organism, especially in the field of neurophysiology and neural circuits. The
brain of the Drosophila is small but complex, and the image of a single neuron in the brain can be acquired using confocal
microscopy. Analyzing the Drosophila brain is an ideal start to understanding the neural structure. The most fundamental
task in studying the neural network of Drosophila is to reconstruct neuronal structures from image stacks. Although the fruit
fly brain is small, it contains approximately 100 000 neurons. It is impossible to trace all the neurons manually. This study
presents a high-throughput algorithm for reconstructing the neuronal structures from 3D image stacks collected by a laser
scanning confocal microscope. The proposed method reconstructs the neuronal structure by applying the shortest path
graph algorithm. The vertices in the graph are certain points on the 2D skeletons of the neuron in the slices. These points
are close to the 3D centerlines of the neuron branches. The accuracy of the algorithm was verified using the DIADEM data
set. This method has been adopted as part of the protocol of the FlyCircuit Database, and was successfully applied to
process more than 16 000 neurons. This study also shows that further analysis based on the reconstruction results can be
performed to gather more information on the neural network.
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Introduction

Neurons in a fruit fly brain form numerous distinct functional

circuits as in the mammalian brain. These circuits mediate the

fundamental processes of vision, olfaction, locomotion, flight

navigation, and complex behaviors such as feeding, learning, and

memory. The neurotransmitters and molecular mechanisms that

mediate these behaviors and activities are very similar to those of

higher organisms and humans. It is worth studying the fruit fly

brain as the initial step in understanding the functions of the

neural network.

A single neuron in the Drosophila brain can be labeled by the

Green Fluorescent Protein (GFP) [1]. Using the focus clear

technique [2] or the Scale technique [3], one can employ a

confocal microscope to acquire a clear image stack of the entire

brain, containing a labeled single neuron. This allows one to

reconstruct the structure of neurons and study the neural network

of the fruit fly brain. The Drosophila brain contains approximately

100 000 neurons in, and therefore, reconstructing all the neuronal

structures by manually tracing every single neuron is impractical.

A high-throughput computer method is required.

Tracing neuron fibers is similar to tracking vasculature line

structures in a 3D image volume. Previous studies on medical

image processing presented related methods of tracking line

structures. Bouix et al. proposed a method based on skeletoniza-

tion and branch analysis [4]. Other approaches include a method

based on enhancing line or edge properties and then chaining up

the most likely pixels [5] and a method that attempts to find the

minimal paths [6]–[8]. Compared with medical images of blood

vessels, neuron images often suffer from noise and uneven

resolution in the x, y, and z directions, and a single neuron is

usually discontinuous in the image stack. Directly applying the

above methods to reconstruct the neuronal structures is therefore

inadequate. Researchers have recently proposed methods to trace

neurons or reconstruct the neuronal structure. Al-Kofahi et al.

progressively fitted and matched the primitive template structures,

spheres, ellipsoids, and cylinders in the image stack [9]. However,

this method did not address the situation that a neuron is

fragmented in an image space. Similarly, Zhao et al. investigated

the morphological characteristics of neurons [10]. Both the Al-

Kofahi and Zhao’s methods assumed that neuron fibers are

spherical, ellipsoidal, or cylindrical; however, neuron fibers in the

image stack are usually not as regular as this assumption suggests.

Zhang et al. assembled many skeleton structures as a single

neuronal structure [11]. However, this method considered only

2D neuron images. Lee et al. proposed a semiautomatic method

for 3D neuronal structure reconstruction [12]. Peng et al. reduced

the tracing problem as a variational problem by finding the
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geodesic shortest path [13]. Türetken et al. proposed a method

based on optimizing a carefully designed energy function [14].

However, none of these methods is specific for processing

numerous sets of volume data automatically.

This study presents a high-throughput computer method of

reconstructing the neuronal structure of the fruit fly brain. The

design philosophy of the proposed method differs from those of

previous methods. We propose first to compute the 2D skeletons of

a neuron in each slice of the image stack. The 3D neuronal

structure is then constructed from the 2D skeletons. Biologists tend

to use confocal microscopes for optimal images in a slice for

human visualization; and images in two consecutive slices contain

overlapped information. Consequently, a spherical object becomes

oval in the image stack; that is, neurons in the image stack do not

reflect the true shape of the neuron. This is the main reason we

chose not to work directly on the 3D volume.

The proposed method comprises two steps. The first is the

image processing step, which involves computing a set of voxels

that is a superset of the 3D centerlines of the neuron. The shortest

path graph algorithm then computes the centerlines. The

proposed method was applied to process more than 16 000

neurons. By using a large amount of reconstructions, this study

also demonstrated a result derived from the reconstructed data

using the clustering technique.

Author Summary

It is now possible to image a single neuron in the fruit fly
brain. However, manually reconstructing neuronal struc-
tures is tremendously time consuming. The proposed
method avoids user interventions by first automatically
identifying the end points and detecting the appropriate
representative point of the soma, and then, by finding the
shortest paths from the soma to the end points in an
image stack. In the proposed algorithm, a tailor-made
weighting function allows the resulting reconstruction to
represent the neuron appropriately. Accuracy analysis and
a robustness test demonstrated that the proposed method
is accurate and robust to handle the noisy image data.
Tract discovery is one of the most frequently mentioned
potentials of reconstructed results. In addition to a method
for neuronal structure reconstruction, this study presents a
method for tract discovery and explores the tract-
connecting olfactory neuropils using the reconstructed
results. The discovered tracts are in agreement with the
results of previous studies in the literature. Software for
reconstructing the neuronal structures and the reconstruc-
tion results can be downloaded from the Web site http://
www.flycircuit.tw. More details on acquiring the software
and the reconstruction results are provided in Text S1.

Figure 1. The rendered traced result (red) of a neuron overlaps with the volume rendering of the original image stack. For the
purpose of comparison, the result is translated a little from its original position.
doi:10.1371/journal.pcbi.1002658.g001

High-throughput Method for 3D Neuron Tracing
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The remainder of this paper is organized as follows: The Methods

section details the proposed method. The Results section presents

the tracing results, reconstructed neuronal structures, and an

application using the reconstruction results. In this study, we used

the Olfactory Projection Fibers from the DIADEM test data set [15] to

evaluate the accuracy of the proposed method. Each image in the

DIADEM test data set contains original image stacks and gold

reconstructions created by experts. This study defines the distance

between one reconstruction and the other, to evaluate the accuracy

of the reconstruction. The accuracy analysis is also demonstrated in

the Result section. The discussions are in the Discussion section.

Results

The Reconstructed Structure of Olfactory Projection
Neuron

The neural network system of the olfactory system of Drosophila

has received considerable attention from neural science research-

Figure 2. Two reconstruction results of optical nerves were demonstrated. Both (a) and (b) show the neurons (top) and the traced results
(bottom). The projection neuron connecting optical lobes has dense branches and complex morphology. In addition, the intensity of the neuron in
(a) has a wide dynamic range. The proposed method can manage these situations and make necessary corrections. When the whole process is
completed, the reconstructions of both neurons are complete with high fidelity.
doi:10.1371/journal.pcbi.1002658.g002

High-throughput Method for 3D Neuron Tracing
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ers. The experiment in this study traced the axon of the olfactory

projection neuron. Compared with other neurons, the axon of the

olfactory projection neuron is relatively simple because it usually

does not have a complex arborization structure.

The datum used for the demonstration was the Olfactory Projection

Fibers in the DIADEM dataset. For comparative purposes, the

traced result and the original image were rendered in the same

image, but with slight distancing (Fig. 1).

Reconstructed Structure of Projection Neuron
Connecting Optical Lobes

The neuronal structure is usually more complex than the

olfactory projection neuron. An example of this is the projection

neuron connecting two optical lobes. In this experiment, the

intensity of the neuron image spreads widely, and broken branches

emerge. The proposed method performs corrections necessary for

producing satisfactory results. Fig. 2 shows the traced results.

Tract Discovery
The traced results can be used to discover new information. An

important application involves determining tracts in the fruit fly

brain. Neuropils in the fruit fly brain are connected by neurons.

The connection between two neuropils, the Antenna Lobe (AL)

and the Lateral Horn (LH), were considered.

Approximately 16 000 neurons were processed, and the

reconstruction results were warped into a typical brain [16].

Among the reconstructed neurons, 401 traced results were

selected. Of the 401 neurons, 198 neurons innervate both the

LH and the AL in the right hemisphere without innervating the

LH or the AL in the left hemisphere. The remaining 203 neurons

innervate only both the LH and the AL in the left hemisphere.

The paths connecting the AL and the LH were then extracted.

Every path was evenly sampled, and hierarchical cluster analysis

was applied to the sampled paths. The hierarchical cluster

function supported by R [17] was used to complete this analysis.

Text S2 provides a schematic description of the different steps in

the process and a specific example of how the clusters are

discovered. The results show six clusters (Fig. 3), with three on

each hemisphere.

The projection neurons ascending from the antennal lobe (AL)

to the lateral horn (LH) form three tracts: inner antennocerebral

tract (iACT), medial antennocerebral tract (mACT), and outer

antennocerebral tract (oACT) [18][19]. These three tracts are the

major message channels from the AL to the LH. The computed six

clusters (Fig. 3) show that there are three clusters on both the left

and right hemisphere. A comparison of these clusters to the tracts

previously observed in the image data shows that they are the

same as the iACT, mACT, and oACT in both hemispheres.

Processing Time
Table 1 shows the processing time for every test datum chosen

from the DIADEM test data. Except for the I/O time, it requires

Figure 3. An illustration of olfactory PNs collection (left), the computed tract clusters (upper right) and the neuron image clusters
overlapping the computed cluster (lower right). Totally 198 olfactory PNs in the right hemisphere and 203 olfactory PNs in the left hemisphere
were selected.
doi:10.1371/journal.pcbi.1002658.g003

Table 1. Reconstruction time and accuracy.

Data Size (voxel) Time (sec.) Dis(N2, N1)

OP_1 5126512660 11.297 1.41496

OP_6 5126512660 5.234 1.87089

OP_7 5126512660 6.359 1.75834

OP_9 5126512660 10.39 1.65372

doi:10.1371/journal.pcbi.1002658.t001

High-throughput Method for 3D Neuron Tracing
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approximately 10 s for image preprocessing, tracing a single

neuron, and the e-approximation procedure. The experiments in

this study were performed using a PC with an Intel Core i7 920

processor and 8 GB memory space. The actual memory usage

was no more than 2 GB for all test data, including the optical

nerves.

Accuracy Analysis
Taking two reconstruction results, N1 and N2, from a set of

volume data containing a single neuron, we define the distance

from one reconstruction to the other. The distance from N1 to N2

is defined as follows. Let p be a point in N1. The distance from p to

N2 is defined as

dis(p,N2)~ min
q[N2

p,qk k2 ð1Þ

In (1), p,qk k2 is the Euclidean distance in the image space. The

distance from N1 to N2 is defined as

Dis(N1,N2)~
1

n

Xn

i~1

dis(pi,N2), where pi[N1 ð2Þ

This study computes the distance between the reconstruction and

the ground truth to analyze the accuracy of the method. Four data

sets in olfactory projection fibers in the DIADEM test data were used.

Figure 4. These two histograms show the distribution of the distances between points on one reconstructed result and a reference
reconstruction. The references are respectively our reconstruction (top) and the ground truth (bottom).
doi:10.1371/journal.pcbi.1002658.g004

High-throughput Method for 3D Neuron Tracing
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Because the points on the neuron fibers of the ground truth are

substantially denser than in the reconstruction, points on the

neuron branches of the reconstruction were sampled to produce

the same density of points on the neuron fibers. Let N1 and N2 be

the ground truth and our reconstruction respectively. We

computed Dis(N2, N1) for the four data sets; the distances ranged

from 1.4 to 1.87. Table 1 shows a summary of the experimental

results.

This study also investigates the profile of disp[N2
(p,N1) and

disq[N1
(q,N2). Fig. 4 shows the histograms. Most of the points are

within three voxels of the reference reconstruction. The maximum

difference is larger when the automatically reconstructed result is

the reference. This is probably because there are large nodular

structures in the projection neurons. Experts usually trace more

points to the boundary of the nodular structure. However, the

proposed method computes the centerline to represent the nodular

structures using fewer points. Consequently, a branch in the

reconstruction has a good chance of being shorter than the same

branch in the ground truth. Fig. 5 shows both the gold

reconstruction in the DIADEM data set and our reconstructed

result overlapped with the original neuron image. Large distances

appear in the green rectangular boxes. In this experiment, the

distance is measured in the number of voxels. Each voxel is

considered a unit cube.

Robustness Test
The robustness test was performed by first adding Gaussian

random noise to the datum, and then applying the proposed

method to compute the centerlines of the neuron. We tested five

cases for different noise levels. The noise levels were determined by

the standard deviation of the Gaussian distribution to be s = 20,

s = 30, s = 40, s = 50, and s = 60. The intensity value ranged

from 0 to 255. s increases in conjunction with the number of

visible voxels, but the percentage of visible voxels on the neuron

decreases (Fig. 6), making neuron tracing more difficult. Because

the image is contaminated by noise, keeping 70% of the brightest

visible voxels could lead to too many noisy voxels being included.

The visible voxel is defined in the Methods section. In the

robustness test experiment, therefore, instead of keeping 70% of

the brightest voxels, only 20% of the brightest voxels among the

visible voxels were kept.

To evaluate the robustness of the proposed method quantita-

tively in noisy images, in this study we also calculated the distance

between the reconstructed result and the gold reconstruction in the

DIADEM data set. As Fig. 7 shows, the distances between the

reconstructions and the ground truth are still manageable, despite

the noise level being at 60. Fig. 8 shows the traced results.

Although the current test demonstrated that the proposed method

is able to handle image data contaminated by Gaussian random

noise, the algorithm will not necessarily perform well in the face of

staining artifacts, which are common in biological specimens.

Methods

Image Acquisition
This section briefly details the technique used to label a single

neuron for observing neurons using confocal microscopy [20]. A

tiling heat-shock protocol in MARCM labeling was adapted to

cover most neurons born at different times. Animals were kept in a

37uC water bath for 3 min to 60 min, depending on the Gal4

driver used, with 50% overlapping periods throughout the entire

development from embryo to adult eclosion. In each case, GFP

expression was controlled by a specific Gal4 driver with the

expression being dependent on the stochastic removal of a Gal80

repressor by heat-shock-induced expression of a flippase protein

during mitotic recombination at cell birth. The Gal4 lines were

driven by the promoter of an essential protein for synthesis or

processing of one of the following neurotransmitters: acetylcholine

(Cha-Gal4), dopamine (TH-Gal4), GABA (Gad1-Gal4), glutamate

(VGlut-Gal4), octopamine (Tdc2-Gal4), or serotonin (Trh-Gal4).

Thus, an individual neuron of putative birth time and neuro-

transmitter type was labeled.

Sample brains were imaged using a Zeiss LSM 510 confocal

microscope with a 206C-Apochromat water-immersion objective

lens (N.A. value 1.2, working distance 220 mm). The following

settings were used in image acquisition: scanning speed 7,

resolution 102461024, line average four times, zoom 0.7, and

optical slice 1 mm. The voxel size of x:y:z is 0:3360:3361 mm. The

Figure 5. Both the gold reconstruction (top) and our tracing
result (bottom) overlap with the volume rendering of the
original image stack are shown. The green rectangles indicate the
regions where the large distances occur.
doi:10.1371/journal.pcbi.1002658.g005

High-throughput Method for 3D Neuron Tracing
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resolutions of the image stacks in the Olfactory Projection Fibers of the

DIADEM data set were the same.

All the data except those provided in the DIADEM data set

were acquired by neural biologists in the Brain Research Center,

National Tsing Hua University, Hsinchu, Taiwan. Every image of

a single neuron in 3D was segmented out of background brain

tissues semi-automatically with the help of software. Human aids

were provided to visually identify and select the neuron structure

in the image. There are cases that multiple single neuron images

were labeled from one brain. If these neurons could be clearly

discriminated in 3D with ease, the neuron images were also

segmented semi-automatically. Mostly, it took just few minutes to

Figure 6. The images were contaminated by different levels of Gaussian noise: (a) s = 20, (b) s = 30, (c) s = 40, (d) s = 50, and (e)
s = 60.
doi:10.1371/journal.pcbi.1002658.g006

Figure 7. The histogram for all five different noise levels. We can find that the distributions of five noise levels are almost the same.
doi:10.1371/journal.pcbi.1002658.g007

High-throughput Method for 3D Neuron Tracing
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Figure 8. The traced result (red) of the contaminated, s = 60 image stack overlaps with the volume rendering of the image stack.
doi:10.1371/journal.pcbi.1002658.g008

Figure 9. Three data of Olfactory Projection Neuron in the DIADEM data set are used to demonstrate the binarization method. The
neurons are rendered by the maximum intensity projection (MIP) method. Every row shows a neuron undergoing different levels of binarization.
From left to right, they are the original neuron image followed by the binarized results. From the second column to the last column, we kept 50%,
60%, 70%, and 80% of the brightest visible voxels where the visible voxels are voxels having a gray scale above 10. In the proposed method, we keep
70% of the brightest visible voxels, which are shown in column 4.
doi:10.1371/journal.pcbi.1002658.g009

High-throughput Method for 3D Neuron Tracing
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complete this step but a small number of difficult cases need more

than 10 minutes.

Image Preprocessing
First, a heuristic method was used to binarize the volume data of

an image stack containing a single neuron. The heuristic method

was designed based on the observation that biologists tend to set

up a confocal microscope for optimal human visualization of the

neuron in a slice. The heuristic approach in this study segments

the neuron by keeping 70% of the brightest ‘‘visible’’ voxels. An 8-

bit grayscale voxel is ‘‘visible’’ if it has an intensity above 10. This

method allows a sufficient number of voxels to be kept on the

neuron, while maintaining a low noise level. Each row in Fig. 9

shows the images of a neuron undergoing different levels of

binarization. The first column shows the original images, and the

fourth column shows the results obtained by the proposed

heuristic. Because the segmented result could still contain sparse

noise, we remove noise by eliminating small-sized connected

components in the volume. First, the 2D connected component

analysis was applied to each slice. All 2D 8-neighbor connected

components consisting of less than 9 pixels were removed. The 3D

26-neighbor connected component analysis was then applied to

the volume to remove all 3D 26-neighbor connected components

consisting of less than 30 voxels. After removing the small

connected components, the 2D morphological closing operator

was applied to each slice in the image stack to smooth the

boundary of the neuron. This step is necessary because without it,

the step that computes the 2D skeletons produces unwanted small

branches for rough boundary components.

The 2D skeletons of each slice were computed before

reconstructing the 3D neuronal structure. Let B be the volume

containing the binarized neuron, and denote the set of non-zero

voxels by BN. The 2D Euclidean distance transform was applied to

each image slice in B, and the 2D skeletons for each connected

component were computed based on the transformed result [21].

Let the set of points on the 2D skeletons be denoted by Q.

Figure 10. An example of the soma detection. (a) The MIP image of the original image stack. (b) Red dot indicates the center of the soma
calculated by the soma detection procedure. (c) A close view of the detected soma position.
doi:10.1371/journal.pcbi.1002658.g010

Figure 11. The black nodes represent the points in Q.
doi:10.1371/journal.pcbi.1002658.g011

High-throughput Method for 3D Neuron Tracing
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Fragmental Line Structures Assembling
Because there is only one neuron, Q should form a single 3D

connected component. If Q does not form a 3D connected

component (i.e., broken branches exist), then the Minimum

Spanning Tree (MST) technique is applied to compute the

connected component. A weighted graph was constructed based

on the 3D 26-neighbor connected components. Each vertex in this

weighted graph represents a 3D connected component. There is

an edge between a pair of vertices if the Euclidean distance in the

image space between the closest points in two connected

components is less than 5% of the largest image dimension. The

edge weight is the distance between the pair of closest points. The

MST of the graph was then computed using the Kruskal

algorithm. Once an edge was selected during MST construction,

points along the edge were sampled so that the distance between a

pair of consecutive points was approximately 1. These sampled

points were then added to the set Q. If there is more than one

connected component when the process terminates, only the

largest connected component is kept, and all the others are

removed from Q. For each point in Q, we identify whether it is a

candidate 3D end point by examining nine digital planes in the 26-

neighborhood [22]. The set of candidate 3D end points is denoted

by VE. The next step reconstructs the 3D neuronal structure from

Q.

Reconstruction of the Neuron Branches
Another weighted graph was constructed from the point set Q.

The shortest path algorithm employed in this study is the single-

source shortest path algorithm. Because a source point in the

graph should be given, this study defines the center of the soma as

the source. In the image, the soma is a set of high-intensity voxels

forming a spherical object. Geometrically, the Chebyshev center of

a set is the point within the set that is the farthest from the

boundary ([23] Ch. 8). An approximated Chebyshev center for the

center of the soma served as the source vertex in the graph.

A good approximation for the Chebyshev center of the soma is

a point in Q that is farthest from the boundary. The approximate

Chebyshev center is computed iteratively as follows. For each

point p in Q, we iteratively increase the radius, rp, of the sphere

centered at p until the sphere cannot enclose points totally in BN.

The center of the soma is the point c in Q that admits the largest

sphere enclosing points totally in BN and the largest sum of the

intensity. Fig. 10 shows an example of soma detection.

To push the 3D centerline toward the true center of the neuron,

it is important to identify the candidate branch points. A 2D skeleton

point is a candidate branch point if it has four or five neighboring

points in Q and the arrangement of four is isomorphic to one of the

patterns shown in Fig. 11. The set of candidate branch points is

denoted by Bps2D.

A weighted graph G = (V,E) was constructed from Q. V is a set of

vertices where each vertex is a point in Q. E is a set of edges (p, q),

where p and q are in Q and neighboring to each other in the

volume. The cost associated with the edge (p, q) is

f (p,q)~e{w(p,q) ð3Þ

where w(p, q) is as shown in (4).

w p,qð Þ~wdzwb: ð4Þ

In (4), wd is the Euclidean distance between p and q in the image

space. The traced branches should intersect at a single branch

point where a visual bifurcation point is present. To meet this

requirement, an edge close to a candidate branch point has a large

value for wb. Let bp be a candidate branch point. Consider the

sphere centered at bp with a radius R = 1.0 mm. If (p, q) is enclosed

in the sphere, then wb of (p, q) is g2d, where

d~minf p,bp

�� ��, q,bp

�� ��g. Otherwise, wb = 0. R is set to be

1.0 mm. This is because a sphere of the radius of 1.0 mm is

usually totally enclosed in the neuron in the bifurcation region.

Because the resolutions in the x-,y-, and z-directions are 0.33 mm,

0.33 mm, and 1.0 mm, respectively, a 66662 box was used to

approximate the sphere. To guarantee that wb is positive, set

g = 10.

In (4), the edges close to a branching point have a large

wb = g2d. Thus, these edges have a heavy weight, w(p, q), and light

cost, f(p, q). When the shortest path algorithm is applied, these

edges tend to become a part of the shortest path; thus, the

constructed shortest paths tend to keep the appropriate branch

points of the neuron branches.

Given the weighted graph and the source vertex c, the shortest

paths from c to all the points in VE can be computed by applying

the Dijkstra algorithm. Each path from c to a vertex in VE is called

Figure 12. The results of before (left) and after (right) removing
short branches inside the soma are demonstrated. The green
rectangles indicate the somas.
doi:10.1371/journal.pcbi.1002658.g012

Figure 13. A zoom-in view of the traced result. Red lines show the tracing results. The lines in (a) are zigzag shaped. However, they
become smooth when the e-approximation method is applied (b). The e was

ffiffiffi
3
p

.
doi:10.1371/journal.pcbi.1002658.g013

High-throughput Method for 3D Neuron Tracing
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a branch. A branch should be removed if the ratio between its

length and the length of the longest branch is less than 0.2. Such

short branches are usually branches in the interior of the soma.

These branches in the soma are not neuron fibers and they should

be removed. Fig. 12 shows the results of before and after removing

short branches.

The neuronal structure is reconstructed by iteratively selecting a

branch obtained in the previous step, followed by post-processing

as described in the following steps. Iterations stop when VE is

empty. A list (BpList) that stores the branch points formed during

the reconstruction process is required.

1. Select the longest branch, P, which is a branch from c to a point p

in VE. Remove p from VE. If BpList is not empty, compute the

physical distances between the points on P and the points in

BpList. Along the path from p to c, let b be the first point, such that

minq[BpList b,q
�� ��ƒ1.0 mm. In this case, b is considered the same

as q. Furthermore, P can be divided into two paths: from c to b,

and from b to p. The path from c to q is a subpath of a previously

reconstructed path, P9. In this case, the branch P is modified to be

the path from c to q of P9, and b in the path from b to p is replaced

by q. If no such pair exists, look for another pair (b9, q9), in which

q9 is from Bps2D and b9 is from the path along p to c. Let b9 be the

first point, such that minq0[Bps2D b0,q0
�� ��ƒ0.75 mm, and replace

b9 by q9 on the branch.

2. If P shares a common subpath from c to bp with a previously

reconstructed branch and bp is not in BpList, then bp is inserted

into BpList.

3. Because the skeletons were computed in 2D slices, false

candidate 3D end points exist. In this study, the candidate 3D

end points close to P are considered to be false end points, and

the branch is removed if the distance between its end points

and P is less than �rr, where �rr is the average of rp, p[Q.

Polygonal Path Approximation
The 3D centerline obtained by applying the shortest path

algorithm was not smooth because the graph is a grid graph

(Fig. 13(a)). To construct smooth centerlines, an e-approximated

polygonal path was calculated to approximate the centerline

computed by the shortest path algorithm. An e-approximation of a

polygonal path has fewer points on the path, within a small

deviation, e, from the original polygonal path (Fig. 13(b)). Text S3

details the algorithm for computing the e-approximation. All

experiments in this study adopted a value of
ffiffiffi
3
p

for e.

For the convenience of reproducing our results, the parameters

used in all these steps are summarized in Table 2.

Discussion

In this paper, we presented a computer method for recon-

structing neuronal structure from an image stack. Based on the

fact that biologists tend to use confocal microscopes for optimal

images in a slice for human visualization, we proposed processing

2D slice images first. 3D neuronal structures were then constructed

from the processed 2D images. Using this strategy, a high-

throughput method was designed. More than 16 000 neurons

were reconstructed and stored in the database [16]. A few of the

reconstructed neurons were incorrect, mainly because the

resolution of the optical microscope is not sufficient to distinguish

dense branches.

The features used to design the weights of the edges (Eq. 4) were

extracted from the 2D skeletons. One of the features is the branch

point; however, the proposed template matching method is unable

to detect all branch points. When a slice passes through the branch

point, and the two branches are respectively above and below the

slice, we are not able to detect the branch point. This problem

may cause errors in the location of the branch point.

Another weakness of the proposed method is related to

detecting delicate structures. The candidate 3D end points were

obtained from the 2D end points, and the end points close to a

branch were removed. Some small branches could therefore be

considered as noise and ignored. Thus, the reconstruction by the

proposed methods is inadequate for a study for which the details of

a neuron are extremely important, e.g. the study of neuron

dynamics [24].

Table 2. Parameters for reconstruction.

Image Preprocess
Fragmental line structures
assembling

Reconstruct the 3D
centerlines

Polygonal path
approximation

Initial threshold level 10, in a 256-gray scale image _ _ _

Threshold for the 2D
8-neighbor CC

9 _ _ _

Threshold for the 3D
26-neighbor CC

30 _ _ _

Maximum edge weight
to connect two components

_ 5% of the largest image dimension _ _

Radius R _ _ 1.0 mm _

g _ _ 10 _

Ratio for determine
branches in the soma

_ _ 0.2 _

Threshold for connecting
to a point in BpList

_ _ 1.0 mm _

Threshold for connecting
to a point in Bps2D

_ _ 0.75 mm _

e for path approximation
ffiffiffi
3
p

doi:10.1371/journal.pcbi.1002658.t002
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Currently, the DIADEM [15] data set is widely used in the

study of neuron reconstruction for accuracy evaluation. A scoring

system is provided. We used the DIADEM data set as ground

truth to evaluate the accuracy of the proposed method; however,

reconstructions obtained by the proposed method did not achieve

a good DIADEM score. The reasons are:

1. The neuron branches obtained were based on the 2D skeletons

in each slice. Thus, neuron branches obtained by the proposed

method are shorter than those traced by experts.

2. Our approach tends to merge branch points in a small region

to a single point. The proposed method could ignore some

branch points in the ground truth. However, each branch point

is highly weighted in the DIADEM metric so that our

reconstructed neuron could receive a serious penalty.

3. The DIADEM ground truth constructed by experts was

obtained using NeuroLucida. The traced neurons were

smoothed by spline interpolation. Coordinates of points on

the neuron branches are real numbers. We used a polygonal

line to approximate a neuron branch; coordinates of the points

are integer numbers. Consequently, a large error could occur

in estimating the radius of the neuron branches of our

reconstruction.

Although neurons constructed by the proposed method cannot

achieve a good DIADEM score, nevertheless, as shown in the

Results section, the reconstructed results are suitable for further

studies. In conclusion, the reconstructed neurons are sufficiently

reliable to support the analysis of the neural network.
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