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Abstract

In this paper we introduce the concept of homotopy equivalence for Hilbert C*-modules and investigate some properties
of this equivalence relation. We then present the homotopy equivalence in the context of Fredholm operators on Hilbert
C*-modules and classify these operators in terms of their index.
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1. Introduction

One of the main ideas of algebraic topology is to consider two spaces to be equivalent if they have ’the same shape’
in a sense that is much broader than homeomorphism. Homotopy theory studies topological objects up to homotopy
equivalence. Let X be a topological space. Then x, y ∈ X are homotopy in X, denoted x ∼h y, if there exists a continuous
map f : [0, 1] → X with f (0) = x and f (1) = y. Two topological spaces X and Y are called homotopy equivalent if there
exist maps f : X → Y and g : Y → X such that

go f : X → X and f og : Y → Y

are homotopic to the corresponding identities IX and IY . Homotopy equivalence is a weaker relation than topological
equivalence, i.e. homotopy classes of spaces are larger than homeomorphism classes.

It is interesting to point out that in order to define the homotopy equivalence, a relation between C*-algebras. Basic
homotopy theory for C*-algebras can be developed in an analogous way to the homotopy theory for topological spaces,
using the Gelfand-Naimark duality between pointed compact Hausdorff spaces and abelian C*-algebras. All the below
concepts are the non-commutative generalizations of the usual topological ones. First, we need to consider a certain
relation between morphisms as follows:

Let A and B be C*-algebras. Two morphisms ϕ, ψ : A → B are said to be homotopic, denoted ϕ ∼h ψ, if there exist
∗-homomorphisms γt : A → B, 0 ≤ t ≤ 1, such that γ0 = ϕ and γ1 = ψ and for every fixed element a ∈ A, the map
[0, 1] → B, t → γt(a), is continuous from the usual topology on [0, 1] to the norm topology on B. In other words, there
should exist ∗- homomorphisms which give norm continuous paths from ϕ(a) to ψ(a), for every a ∈ A.

Now, we can define the concept of homotopy for C*-algebras. Two C*-algebras A and B are homotopy equivalent if
there exist ∗-homomorphisms ϕ : A → B and ψ : B → A such that ψoϕ is homotopic to IA and ϕoψ is homotopic to IB.

In the next section, we will introduce the concept of homotopy equivalence of Hilbert C*-modules and check some
properties of this relation. For this end, let us recall some elementary notations of Hilbert C*-modules.

The concept of Hilbert modules was introduced by (Paschke, 1973) and (Rieffel, 1974) for the first time in a non-
commutative context. Hilbert modules are a straightforward generalization of Hilbert spaces where the scalar field C
is replaced by a C*-algebra. The origin of Hilbert modules is in operator theory, where they constitute an important tool
in areas like K-theory, quantum groups and several other areas.

A (right) Hilbert C*-module E over a C*-algebra A (or a Hilbert A-module) is a linear space that is also a right A-
module, equipped with anA-valued inner product ⟨., .⟩ that is C- andA-linear in the second variable and conjugate linear
in the first variable such that E is complete with the norm ∥x∥ = ∥⟨x, x⟩∥ 1

2 .

If the closed bilateral ∗-sided ideal ⟨E, E⟩ of A generated by {⟨x, y⟩; x, y ∈ E} coincides with A, we say that E is full.
We denote by LA(E) the C*-algebra of all adjointable operators on E (i.e. of all maps T : E → E such that there exists
T ∗ : E → E with the property ⟨T x, y⟩ = ⟨x,T ∗y⟩, for all x, y ∈ E).

Given elements x, y ∈ E, we define θx,y : E → E by θx,y(z) = x⟨y, z⟩ for each z ∈ E, then θx,y ∈ LA(E), with θ∗x,y = θy,x. The
closure of the span of {θx,y : x, y ∈ E} in LA(E) is denoted by KA(E) and elements from this set will be called compact
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operators.

A morphism of Hilbert C*-modules from a Hilbert C*-module E over A to a Hilbert C*-module F over B is a map
Φ : E → F with the property that there is a C*-morphism ϕ : A → B such that

⟨Φ(x),Φ(y)⟩ = ϕ(⟨x, y⟩)

for all x, y ∈ E. Two Hilbert C*-modules E and F, respectively, over C*-algebras A and B are isomorphic if there is
a bijective map Φ : E → F such that Φ and Φ−1 are morphisms of Hilbert C*-modules. The basic theory of Hilbert
C*-modules can be found in (Lance, 1995).

2. Homotopy equivalence of Hilbert C*-modules

We begin this section with the following essential definitions and then some properties will be presented.

Definition 1. LetA and B be two C*-algebras and E and F be two Hilbert C*-modules overA and B, respectively. Two
morphisms Φ,Ψ : E → F are said to be homotopic, denoted by Φ ∼h Ψ, if there exist morphisms Γt : E → F, 0 ≤ t ≤ 1,
such that Γ0 = Φ and Γ1 = Ψ and the map [0, 1] ∋ t 7→ Γt(x) is norm continuous for each x ∈ E.

Definition 2. Two Hilbert C*-modules E and F, respectively, over C*-algebrasA and B are homotopy equivalent, if there
exist morphisms Φ : E → F and Ψ : F → E such that ΨoΦ ∼h IE and ΦoΨ ∼h IF .

It is not difficult to check that the above relations are equivalence relations. Now, we state and prove some propositions for
homotopy equivalence on Hilbert modules. The next proposition shows that homotopy equivalence of Hilbert C*-modules
is a weaker relation than module isomorphism.

Proposition 3. Let E and F be two Hilbert C*-modules over C*-algebras A and B, respectively. If E and F are isomor-
phic, then E ∼h F.

Proof. Since E and F are isomorphic, there exists a bijective map Ω : E → F such that Ω and Ω−1 are morphisms. Now
put Φ = Ω and Ψ = Ω−1. Then ΨoΦ = IE ∼h IE and similarly ΦoΨ = IF ∼h IF . Hence E ∼h F.�
Proposition 4. Let E and F be two full Hilbert C*-modules over C*-algebrasA and B, respectively. If Φ,Ψ : E → F are
morphisms corresponding to C*-morphisms ϕ, ψ : A → B, respectively, and Φ ∼h Ψ, then ϕ ∼h ψ.

Proof. Since Φ ∼h Ψ, there exist morphisms Γt∈[0,1] : E → F such that Γ0 = Φ and Γ1 = Ψ. Now, consider the
C*-morphisms γt∈[0,1] : A → B corresponding to Γt∈[0,1]. By definition, for every x, y ∈ E, we have:

γt⟨x, y⟩ = ⟨Γt(x),Γt(y)⟩,

so
ϕ(⟨x, y⟩) = ⟨Φ(x),Φ(y)⟩ = ⟨Γ0(x),Γ0(y)⟩ = γ0(⟨x, y⟩).

Since E is a full HilbertA-module, we conclude that γ0 = ϕ. By the same argument, we obtain that γ1 = ψ. To complete
the proof, it is enough to show that the map t 7→ γt(a) is continuous for each a ∈ A. But both continuity of (Γt)t∈[0,1] and

∥γt⟨x, y⟩ − γt′⟨x, y⟩∥B
= ∥⟨Γt(x),Γt(y)⟩ − ⟨Γt′ (x), Γt′(y)⟩∥B
= ∥⟨Γt(x),Γt(y)⟩ − ⟨Γt′ (x), Γt(y)⟩ + ⟨Γt′(x),Γt(y)⟩ − ⟨Γt′(x),Γt′ (y)⟩∥B
≤ ∥⟨Γt(x) − Γt′(x),Γt(y)⟩∥B + ∥⟨Γt′(x),Γt(y) − Γt′(y)⟩∥B
≤ ∥Γt(x) − Γt′ (x)∥B∥Γt(y)∥B + ∥Γt(y) − Γt′(y)∥B∥Γt′(x)∥B,

imply that (γt)t∈[0,1] is a continuous path from ϕ to ψ and therefore ϕ ∼h ψ.�
Corollary 5. Let E and F be two full Hilbert C*-modules over C*-algebras A and B, respectively. If E ∼h F, then
A ∼h B.

Proof. Since E ∼h F, there exist morphisms Φ : E → F and Ψ : F → E such that ΨoΦ ∼h IE and ΦoΨ ∼h IF . Now from
proposition 4, we conclude ψoϕ ∼h IA and ϕoψ ∼h IB. HenceA ∼h B.�
Remark 6. It is well known that any C*-algebra A is a Hilbert A-module in a natural way, so if A ∼h B as two Hilbert
modules, then they are homotopy equivalent as C*-algebras. Conversely, if the C*-algebras A and B are homotopy
equivalent as C*-algebras, then they are homotopy equivalent as Hilbert modules since it is enough to consider the C*-
morphisms as module morphisms betweenA and B.
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Example 7. Let X be a contractible, compact and Hausdorff space and E be a Hilbert module over C*-algebraA. Recall
that C(X, E) has a C(X,A) module structure by the action ( f .F)(x) = f (x)F(x) and the inner product(

⟨ f , g⟩
)
(x) = ⟨ f (x), g(x)⟩

for every x ∈ X, f , g ∈ C(X, E) and F ∈ C(X,A). We show that C(X, E) and E are homotopy equivalent as two Hilbert
modules over C*-algebras C(X,A) andA, respectively.

First, assume that X is contractible. So, by definition, there exist x0 ∈ X and continuous maps αt : X → X such that
α0(x) = x0 and α1(x) = x for every x ∈ X.

Define, for each t ∈ [0, 1], the map Φt : C(X, E) → C(X, E) by Φt( f ) = f o αt. Then, obviously Φt are module
morphisms, because by considering ∗-homomorphisms ϕt : C(X,A)→ C(X,A) which are defined by ϕt(F) = F o αt, for
every F ∈ C(X,A), we have

⟨Φt( f ),Φt(g)⟩(x) = ⟨ f o αt, g o αt⟩(x)
= ⟨ f o αt(x), g o αt(x)⟩
= ⟨ f , g⟩(αt(x))
= ϕt(⟨ f , g⟩)(x).

Furthermore Φ0( f )(x) = f (x0) and Φ1( f )(x) = f (x) = IC(X,E)(x). Moreover it is easy to check that the map t 7→ Φt( f ) is
continuous for each f ∈ C(X, E). This shows that, Φ0 ∼h IC(X,E) as two module morphisms.

Now, define two module morphismsΦ : C(X, E)→ E andΨ : E → C(X, E) byΦ( f ) := f (x0) andΨ(e) := fe, respectively,
where fe(x) = e is the constant map. Then

Φ o Ψ(e) = Φ( fe) = fe(x0) = e = IE .

On the other hand
Ψ o Φ( f ) = Ψ( f (x0)) = f f (x0)(x) = f (x0) = Φ( f ),

so Ψ o Φ ∼h IC(X,E) and hence the result holds.

Corollary 8. Let X be a contractible, compact and Hausdorff space. Then

• C(X,A) ∼h A for any C*-algebraA.

• Let E and F be two Hilbert C*-modules over C*-algebras A and B, respectively. If E ∼h F, then C(X, E) ∼h

C(X, F).

Given two Hilbert C*-modules E and F over C*-algebras A and B, respectively, recall that the exterior tensor product
E⊗F of E and F is a Hilbert C*-module over the injective tensor productA⊗B ofA and B. Also, the morphism Φ1⊗Φ2
acts on E1 ⊗ E2 as

(
Φ1 ⊗Φ2

)
(x ⊗ y) = Φ1(x) ⊗Φ2(y) for each x and y in E1 and E2, respectively (see Lance, 1995). Using

these concepts, we have the following proposition.

Proposition 9. Let E1, E2, F1 and F2 be four Hilbert C*-modules over C*-algebras A1,A2,B1 and B2 , respectively. If
E1 ∼h F1 and E2 ∼h F2, then E1 ⊗ E2 ∼h F1 ⊗ F2.

Proof. Since Ei ∼h Fi, (i = 1, 2), there exist morphisms Φi : Ei → Fi and Ψi : Fi → Ei such that ΨioΦi ∼h IEi and
ΦioΨi ∼h IFi . Hence (Ψ1oΦ1) ⊗ (Ψ2oΦ2) ∼h IE1 ⊗ IE2 . But the morphisms (Ψ1oΦ1) ⊗ (Ψ2oΦ2) and (Ψ1 ⊗ Ψ2)o(Φ1 ⊗ Φ2)
are equal. Moreover the morphisms IE1 ⊗ IE2 and IE1⊗E2 are equal too. From these facts, we conclude that (Ψ1⊗Ψ2)o(Φ1⊗
Φ2) ∼h IE1⊗E2 . In the same manner, one can show that (Φ1 ⊗ Φ2)o(Ψ1 ⊗ Ψ2) ∼h IF1⊗F2 . Therefore E1 ⊗ E2 ∼h F1 ⊗ F2.�
3. Fredholm Operators and Homotopy Equivalence

We shall now study homotopy equivalence between Fredholm operators on Hilbert C*-modules. As before, we start by
reminding some basic notations. More related discussion can be found in (Exel, 1993).

Definition 10. Let E and F be two Hilbert C*-modules over C*-algebraA and let T be in LA(E, F). Suppose there is S
in LA(F, E) such that IE − S T is in KA(E) and IF − TS is in KA(F). Then T is said to be a Fredholm operator. If T is a
Fredholm operator, then the Fredholm index of T is defined by

ind(T ) = rank(Ker(T )) − rank(Ker(T ∗)).
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If T is a Fredholm operator, then the Fredholm index of T is an element of K0(A), indeed for any α in K0(A) there is a
Fredholm operator T such that ind(T ) = α. Recall that if A is a unital C*-algebra, Pn(A) = P(Mn(A)) (the set of all
projections of matrix algebra) and P∞(A) =

∪
n Pn(A), then K0(A) is defined as Grothendieck group G(D(A)) where

D(A) is the abelian semigroup (P∞(A)/ ∼◦,⊕) and

p ∼◦ q iff ∃ v ∈ Mm,n(A), p = v∗v and q = vv∗.

For more details about K-theory for C*-algebras, see (Wegge-Olsen, 1993).

Elementary properties of the Fredholm index are collected in the next proposition.

Proposition 11. (Exel, 1993) If T in LA(E, F) is a Fredholm operator, then

• ind(T ) = −ind(T ∗)

• If U ∈ LA(X, E) and V ∈ LA(Y, F) are invertible, then ind(VTU) = ind(T ).

• If T ′ ∈ LA(E, F) is such that T ′ − T ∈ KA(E, F), then T ′ is also Fredholm and ind(T ′) = ind(T ).

• If S ∈ LA(F, E) is such that IE − S T ∈ KA(E), then ind(S ) = −ind(T ).

• If T1 ∈ LA(E1, F1) is Fredholm, then ind(T ⊕ T1) = ind(T ) + ind(T1).

Proposition 12. (Exel, 1993) If T1 ∈ LA(E, F) and T2 ∈ LA(F, P) are two Fredholm operators, then T2T1 is Fredholm
and ind(T2T1) = ind(T2) + ind(T1).

One can also introduce homotopy equivalence for Fredholm operators as follows. Using this relation, we will be able to
classify Fredholm operators in terms of their index.

Definition 13. If T, S ∈ LA(E, F) be two Fredholm operators, we say that they are homotopic, denoted T ∼h S , if there
exists a norm continuous path from T to S consisting of Fredholm operators.

Before expressing the main proposition, we need the following two useful lemmas, the first ones shows that the index map
is locally constant and continuous in norm.

Lemma 14. (Exel, 1993) Let T in LA(E, F) be a Fredholm operator. Then There is a positive real number ϵ such that any
T ′ satisfying ∥T ′ − T∥ < ϵ is also Fredholm with ind(T ′) = ind(T ).

Lemma 15. (Exel, 1993) Let T ∈ LA(E, F) be a Fredholm operator with ind(T ) = 0. then there exists an integer n such
that T ⊕ IAn : E ⊕An → F ⊕An is an compact perturbation of an invertible operator.

We are now in a position to state and prove our main proposition.

Proposition 16. Let E and F be two Hilbert A-modules and T, S ∈ LA(E, F) be Fredholm operators. Then T and S are
homotopic if and only if they have the same index.

Proof. Suppose that T and S are homotopic Fredholm operators, and let t 7→ Vt be a continuous path of Fredholm
operators from S to T . Then by lemma 14, the map t 7→ ind(Vt) is continuous and hence constant.

To show the converse, we first observe that every Fredholm operator U with ind(U) = 0 is homotopic to identity. Indeed,
since ind(U) = 0, by lemma 15, there is an invertible operator V such that K = V − U is compact. Then the norm
continuous path t 7→ U + tK, t ∈ [0, 1], consists of Fredholm operators and connects U to V . Now, by (Wegge-Olsen,
1993, Lemma 4.2.3), V is connected to V |V |−1 where |V | is the polar decomposition of V . Also, by using the Kuiper result
(cf. Wegge-Olsen, 1993), V |V |−1 can be connected to identity and hence U is homotopic to identity.

Now, suppose that ind(S ) = ind(T ). Then both S T ∗ and T ∗T have index 0 and thus are homotopic to identity. Conse-
quently, the operators S , S (T ∗T ) = (S T ∗)T and T are homotopic.�
The following two corollaries are direct consequences from propositions 11 and 16.

Corollary 17. Suppose that E and F are two Hilbert A-modules. If T,T ′ ∈ LA(E, F) be two Fredholm operators such
that T − T ′ ∈ KA(E, F), then T ∼h T ′.

Corollary 18. Let E and F be two Hilbert A-modules, T ∈ LA(E, F) and S ∈ LA(F, E). If IE − S T ∈ KA(E), then
S ∼h T ∗.

Moreover we have the following important result.
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Corollary 19. Let E1, E2, F1 and F2 be four Hilbert C*-modules over a C*-algebra A and Ti ∈ LA(Ei, Fi), (i = 1, 2) be
two Fredholm operators. If T1 ∼h T2, then for some integer n, the operator

T1 ⊕ T ∗2 ⊕ IAn : E1 ⊕ F2 ⊕An → F1 ⊕ E2 ⊕An

is a compact perturbation of an invertible operator.

Proof. Follows immediately from (Exel, 1993, Proposition 3.16) and proposition 16.�
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