C.W. Gardiner

Handbook of Stochastic Methods

for Physics, Chemistry and the Natural Sciences

Second Edition
With 29 Figures

Contents

ı.		istorical introduction	
		Motivation	1
	1.2	Some Historical Examples	2
		1.2.1 Brownian Motion	
		1.2.2 Langevin's Equation	ϵ
	1.3	Birth-Death Processe's	8
	1.4	Noise in Electronic Systems	11
		1.4.1 Shot Noise	11
		1.4.2 Autocorrelation Functions and Spectra	15
		1.4.3 Fourier Analysis of Fluctuating Functions:	
		Stationary Systems	17
		1.4.4 Johnson Noise and Nyquist's Theorem	18
2,	Pro	bability Concepts	
	2.1	Events, and Sets of Events	21
	2.2	Probabilities	22
		2.2.1 Probability Axioms	22
		2.2.2 The Meaning of $P(A)$	23
		2.2.3 The Meaning of the Axioms	23
		2.2.4 Random Variables	24
	2.3	Joint and Conditional Probabilities: Independence	25
		2.3.1 Joint Probabilities	25
		2.3.2 Conditional Probabilities	25
		2.3.3 Relationship Between Joint Probabilities of Different Orders	26
		2.3.4 Independence	27
	2.4	Mean Values and Probability Density	28
		2.4.1 Determination of Probability Density by	
		Means of Arbitrary Functions	28
		2.4.2 Sets of Probability Zero	29
	2.5	Mean Values	29
		2.5.1 Moments, Correlations, and Covariances	30
		2.5.2 The Law of Large Numbers	30
	2.6	Characteristic Function	32
	2.7	Cumulant Generating Function:	
		Correlation Functions and Cumulants	33
		2.7.1. Example: Cumulant of Order 4: $(X_1X_2X_3X_4)$	35
		2.7.2 Significance of Cumulants	35

XIV	Contents
XIV	Contents

2.8	Gaussian and Poissonian Probability Distributions
	2.8.1 The Gaussian Distribution
	2.8.2 Central Limit Theorem
• •	2.8.3 The Poisson Distribution
2.9	Limits of Sequences of Random Variables
	2.9.1 Almost Certain Limit
	2.9.2 Mean Square Limit (Limit in the Mean)
	2.9.3 Stochastic Limit, or Limit in Probability
	2.9.4 Limit in Distribution
	2.9.5 Relationship Between Limits
	rkov Processes
3.1	Stochastic Processes
3.2	Markov Process
	3.2.1 Consistency – the Chapman-Kolmogorov Equation
	3.2.2 Discrete State Spaces
	3.2.3 More General Measures
3.3	Continuity in Stochastic Processes
`	3.3.1 Mathematical Definition of a Continuous Markov Process .
3.4	Differential Chapman-Kolmogorov Equation
	3.4.1 Derivation of the Differential
	Chapman-Kolmogorov Equation
2 5	3.4.2 Status of the Differential Chapman-Kolmogorov Equation
3.3	Interpretation of Conditions and Results
	3.5.2 Diffusion Processes – the Fokker-Planck Equation
	3.5.3 Deterministic Processes – Liouville's Equation
	3.5.4 General Processes
3.6	Equations for Time Development in Initial Time –
5.0	Backward Equations
3 7	Stationary and Homogeneous Markov Processes
	3.7.1 Ergodic Properties
	3.7.2 Homogeneous Processes
	3.7.3 Approach to a Stationary Process
	3.7.4 Autocorrelation Function for Markov Processes
3.8	Examples of Markov Processes
2.0	3.8.1 The Wiener Process
	3.8.2 The Random Walk in One Dimension
	3.8.3 Poisson Process
	3.8.4 The Ornstein-Uhlenbeck Process
	3.8.5 Random Telegraph Process
	e Ito Calculus and Stochastic Differential Equations

	Conte	ents XV
	4.2.1 Definition of the Stochastic Integral	83
	4.2.2 Example $\int_{t_0}^{t} W(t') dW(t')$	84
	4.2.3 The Stratonovich Integral	86
	4.2.4 Nonanticipating Functions	
	4.2.5 Proof that $dW(t)^2 = dt$ and $dW(t)^{2+N} = 0$	87
	4.2.6 Properties of the Ito Stochastic Integral	
4.3	Stochastic Differential Equations (SDE)	
	4.3.1 Ito Stochastic Differential Equation: Definition	
	4.3.2 Markov Property of the Solution of an	
	Ito Stochastic Differential Equation	95
	4.3.3 Change of Variables: Ito's Formula	
	4.3.4 Connection Between Fokker-Planck Equation and	
	Stochastic Differential Equation	96
	4.3.5 Multivariable Systems	
	4.3.6 Stratonovich's Stochastic Differential Equation	
	4.3.7 Dependence on Initial Conditions and Parameters	
4.4	Some Examples and Solutions	
	4.4.1 Coefficients Without <i>x</i> Dependence	
	4.4.2 Multiplicative Linear White Noise Process	
	4.4.3 Complex Oscillator with Noisy Frequency	104
	4.4.4 Ornstein-Uhlenbeck Process	
	4.4.5 Conversion from Cartesian to Polar Coordinates	107
	4.4.6 Multivariate Ornstein-Uhlenbeck Process	109
	4.4.7 The General Single Variable Linear Equation	112
	4.4.8 Multivariable Linear Equations	
	4.4.9 Time-Dependent Ornstein-Uhlenbeck Process	115
	•	
	Fokker-Planck Equation	
	Background	
5.2	Fokker-Planck Equation in One Dimension	
	5.2.1 Boundary Conditions	118
	5.2.2 Stationary Solutions for Homogeneous Fokker-Planck	
	Equations	
	5.2.3 Examples of Stationary Solutions	
	5.2.4 Boundary Conditions for the Backward Fokker-Planck	
	Equation	128
	5.2.5 Eigenfunction Methods (Homogeneous Processes)	129
	5.2.6 Examples	
	5.2.7 First Passage Times for Homogeneous Processes	136
	5.2.8 Probability of Exit Through a Particular End of the	
	Interval	
5.3	Fokker-Planck Equations in Several Dimensions	
	5.3.1 Change of Variables	
	5.3.2 Boundary Conditions	
	5.3.3 Stationary Solutions: Potential Conditions	
	5.3.4 Detailed Balance	148

5.

		5.3.5 Consequences of Detailed Balance	150
		5.3.6 Examples of Detailed Balance in Fokker-Planck Equations .	155
			15.
		5.3.7 Eigenfunction Methods in Many Variables –	
		Homogeneous Processes	165
	5.4	First Exit Time from a Region (Homogeneous Processes)	170
		5.4.1 Solutions of Mean Exit Time Problems	171
		5.4.2 Distribution of Exit Points	174
_		1 1 N 1: 1 0 D100 1 D	
0.		proximation Methods for Diffusion Processes	
		Small Noise Perturbation Theories	177
	6.2	Small Noise Expansions for Stochastic Differential Equations	180
		6.2.1 Validity of the Expansion	182
		6.2.2 Stationary Solutions (Homogeneous Processes)	183
		6,2.3 Mean, Variance, and Time Correlation Function	184
		6.2.4 Failure of Small Noise Perturbation Theories	185
	63	Small Noise Expansion of the Fokker-Planck Equation	187
	0.5	6.3.1 Equations for Moments and Autocorrelation Functions	189
		6.3.2 Example	192
		•	194
		6.3.3 Asymptotic Method for Stationary Distributions	
	6.4	Adiabatic Elimination of Fast Variables	195
		6.4.1 Abstract Formulation in Terms of Operators	
		and Projectors	198
		6.4.2 Solution Using Laplace Transform	200
		6.4.3 Short-Time Behaviour	203
		6.4.4 Boundary Conditions	203
		6.4.5 Systematic Perturbative Analysis	206
	6.5	White Noise Process as a Limit of Nonwhite Process	210
		6.5.1 Generality of the Result	21:
		6.5.2 More General Fluctuation Equations	21:
		6.5.3 Time Nonhomogeneous Systems	210
			217
		6.5.4 Effect of Time Dependence in L_{\uparrow}	
	0.0	Adiabatic Elimination of Fast Variables: The General Case	218
		6.6.1 Example: Elimination of Short-Lived	
		Chemical Intermediates	218
		6.6.2 Adiabatic Elimination in Haken's Model	223
		6.6.3 Adiabatic Elimination of Fast Variables:	
		A Nonlinear Case	227
		6.6.4 An Example with Arbitrary Nonlinear Coupling	232
			-
_			
7.		ster Equations and Jump Processes	
	7.1	Birth-Death Master Equations – One Variable	236
		7.1.1 Stationary Solutions	236
		7.1.2 Example: Chemical Reaction $X \neq A$	238
		7.1.3 A Chemical Bistable System	241
	7.2	Approximation of Master Equations by Fokker-Planck Equations	246
		7.2.1 Jump Process Approximation of a Diffusion Process	246

		Contents	XVI
		7.2.2 The Kramers-Moyal Expansion	. 249
	•	7.2.3 Van Kampen's System Size Expansion	
		7.2.4 Kurtz's Theorem	
		7.2.5 Critical Fluctuations	
	7 3	Boundary Conditions for Birth-Death Processes	
		Mean First Passage Times	
	/ . ¬	7.4.1 Probability of Absorption	
		7.4.2 Comparison with Fokker-Planck Equation	
	7.5	Birth-Death Systems with Many Variables	
	1.5	7.5.1 Stationary Solutions when Detailed Balance Holds	
		7.5.1 Stationary Solutions Without Detailed Balance 7.5.2 Stationary Solutions Without Detailed Balance	. 203
			. 266
		(Kirchoff's Solution)	
	76	7.5.3 System Size Expansion and Related Expansions	
	7.0	Some Examples	
		7.6.1 $X + A \rightleftharpoons 2X$	
		7.6.2 $X \stackrel{\gamma}{\rightleftharpoons} Y \stackrel{k}{\rightleftharpoons} A$. 267
		7.6.3 Prey-Predator System	
		7.6.4 Generating Function Equations	
	7.7	The Poisson Representation	
		7.7.1 Kinds of Poisson Representations	
		7.7.2 Real Poisson Representations	
		7.7.3 Complex Poisson Representations	. 282
		7.7.4 The Positive Poisson Representation	
		7.7.5 Time Correlation Functions	. 289
		7.7.6 Trimolecular Reaction	. 294
		7.7.7. Third-Order Noise	. 299
0	C	Alalla Distallanted Contours	
o.		stially Distributed Systems	201
	0.1	Background	
	0 2	8.1.1 Functional Fokker-Planck Equations	
	8.2		
		8.2.1 Diffusion	
		8.2.2 Continuum Form of Diffusion Master Equation	
		8.2.3 Reactions and Diffusion Combined	
	0.3	8.2.4 Poisson Representation Methods	
	8.3	Spatial and Temporal Correlation Structures	
		8.3.1 Reaction $X \frac{k_1}{k_2} Y$. 315
		8.3.2 Reactions $B + X = \frac{k_1}{k_2} C$, $A + X \to 2X$. 319
		8.3.3 A Nonlinear Model with a Second-Order Phase Transition	
	0.4	Connection Between Local and Global Descriptions	
	0.4		
	0 =	8.4.1 Explicit Adiabatic Elimination of Inhomogeneous Modes Phase-Space Master Equation	. 328 . 331
	0.3	8.5.1 Treatment of Flow	
		8.5.2 Flow as a Birth-Death Process	
		8.5.3 Inclusion of Collisions – the Boltzmann Master Equation.	
		8.5.4 Collisions and Flow Together	
		COLUMN TOWN TO SENIEL	. ,,,,

9.	Bis	tability, Metastability, and Escape Problems	
	9.1	Diffusion in a Double-Well Potential (One Variable)	342
		9.1.1 Behaviour for $D = 0$	343
		9.1.2 Behaviour if <i>D</i> is Very Small	343
		9.1.3 Exit Time	345
		9.1.4 Splitting Probability	345
		9.1.5 Decay from an Unstable State	347
	9.2	Equilibration of Populations in Each Well	348
		9.2.1 Kramers' Method	349
		9.2.2 Example: Reversible Denaturation of Chymotrypsinogen	352
		9.2.3 Bistability with Birth-Death Master Equations	
		(One Variable)	354
	9.3	Bistability in Multivariable Systems	357
		9.3.1 Distribution of Exit Points	357
		9.3.2 Asymptotic Analysis of Mean Exit Time	362
	<u>_</u>	9.3.3 Kramers' Method in Several Dimensions	363
		9.3.4 Example: Brownian Motion in a Double Potential	366
10.		antum Mechanical Markov Processes	
	10.1	Quantum Mechanics of the Harmonic Oscillator	373
		10.1.1 Interaction with an External Field	375
	40.	10.1.2 Properties of Coherent States	376
	10.2	2 Density Matrix and Probabilities	380
		10.2.1 Von Neumann's Equation	382 382
		10.2.2 Glauber-Sudarshan P-Representation	383
		10.2.3 Operator Correspondences	384
		10.2.5 Quantum Characteristic Function	386
	10.1	3 Quantum Markov Processes	388
	10	10.3.1 Heat Bath	388
		10.3.2 Correlations of Smooth Functions of Bath Operators	389
		10.3.3 Quantum Master Equation for a System Interacting	307
		with a Heat Bath	390
	10.4	4 Examples and Applications of Quantum Markov Processes	395
	10.	10.4.1 Harmonic Oscillator	395
		10.4.2 The Driven Two-Level Atom	399
	10.5	Time Correlation Functions in Quantum Markov Processes	402
		10.5.1 Quantum Regression Theorem	404
		10.5.2 Application to Harmonic Oscillator	
		in the P-Representation	405
		10.5.3 Time Correlations for Two-Level Atom	408
	10.0	Generalised P-Representations	408
		10.6.1 Definition of Generalised P-Representation	409
		10.6.2 Existence Theorems	411
		10.6.3 Relation to Poisson Representation	413
		10.6.4 Operator Identities	414

	Contents	71171
10.7 Application of Generalised P-Representations		
to Time-Development Equations		415
10.7.1 Complex <i>P</i> -Representation		416
10.7.2 Positive <i>P</i> -Representation		416
10.7.3 Example		418
References		421
Bibliography		427
Symbol Index		431
Author Index		435
Subject Index		437