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Abstract—Measuring visual quality, as perceived by
human observers, is becoming increasingly important in
the many applications in which humans are the ultimate
consumers of visual information. For assessing subjective
quality of natural images, such as those taken by optical
cameras, significant progress has been made for several
decades. To aid in the benchmarking of objective image
quality assessment (IQA) algorithms, many natural image
databases have been annotated with subjective ratings
of the images by human observers. Similar information,
however, is not as readily available for synthetic images
commonly found in video games and animated movies. In
this paper, our primary contributions are (1) conducting
subjective tests on our publicly available ESPL Synthetic
Image Database, and (2) evaluating the performance of
more than 20 full reference IQA algorithms for natural im-
ages on the synthetic image database. The ESPL Synthetic
Image Database contains 500 distorted images (20 distorted
images for each of the 25 original images) in 1920 x 1080
format. After collecting 26000 individual human ratings,
we compute the differential mean opinion score (DMOS)
for each image to evaluate IQA algorithm performance.

I. INTRODUCTION

Recent years have seen a huge growth in the acquisi-
tion, transmission, and storage of videos. In addition to
videos captured with optical cameras, video traffic also
consists of synthetic scenes, such as animated movies,
cartoons and video games. The burgeoning popularity of
multiplayer video games (esp. on handheld platforms) is
causing an exponential increase in synthetic video traffic.
In all these cases, the ultimate goal is to provide the
viewers with a satisfactory quality-of-experience (QoE).
Methods of evaluating the visual quality plays an im-
portant role in the optimal design of displays, rendering
engines and maintaining a satisfactory QoE in streaming
applications under given network constraints.

The ‘gold-standard’ in assessing the perceptual quality
of images and videos is to seek human opinion. But
conducting subjective studies is time consuming and
infeasible for many applications. However, the ground-
truth data obtained from human observers can be used to
benchmark different objective IQA algorithms which aim
at automating the process of visual quality assessment.

In this paper we present the results from a subjective
test conducted on synthetic images. The study included
25 high definition reference images, from which 500

images were created by the controlled addition of differ-
ent levels of five commonly encountered artifacts. Every
image was evaluated by 64 observers under controlled
laboratory conditions in a single stimulus experiment,
where the observers rated the visual quality on a con-
tinuous quality scale. The DMOS obtained augment the
previously released ESPL Synthetic Image Database [1]
[2] containing the unannotated pristine and distorted
images.

Some of the largest and most popular natural image
databases are LIVE Image Quality Database (LIVE) [3],
Tampere Image Database 2013 [4], Categorical Image
Quality Database [5] and EPFL JPEG XR codec [6]. The
performance of several publicly available state-of-the-art
full-reference(FR) IQA algorithms has been evaluated
for seven natural image databases in [7].

Recently Cadik et al. have developed a database of
computer graphics generated imagery with distortions
such as noise, aliasing, change in brightness, light
leakage, tone mapping artifacts, etc. and evaluated the
performance of six FR-IQA algorithms [8]. The authors
demonstrated that the FR-IQA algorithms were sensitive
towards brightness and contrast changes, could not dis-
tinguish between plausible and implausible shading and
failed to localize distortions precisely.

From our ESPL Synthetic Image Database, we con-
sider a larger number of photo-realistic images and
a broader class of distortions (transmission and com-
pression artifacts for synthetic images) than the work
by Cadik et al. [8] [9] in the hope of providing a
better representation of the types of images and artifacts
encountered in watching animated movies and playing
video games. The performance of FR-IQA algorithms
has also been evaluated, by using hypothesis testing
and statistical significance analysis. To the best of our
knowledge, we have considered the largest number of
FR-IQA algorithms in any previously published survey.
This provides the researchers a valuable tool by which
which they can evaluate the performance of the existing
and proposed objective IQAs on synthetic images.
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Fig. 1: Sample Synthetic Images in the ESPL database [1]

II. SUMMARY OF SUBJECTIVE STUDY
A. Source Images

For the purpose of this study, 25 synthetic images have
been chosen from video games and animated movies.
These high quality color 8-bit images (pixel values
ranging from 0-255) from the Internet are 1920x 1080
pixels in size. Some video games which were considered
were multiplayer role playing games (such as World of
Warcraft), first person shooter games (such as Counter
Strike), motorcycle and car racing games, and games
with more realistic content (such as FIFA). Some of the
animated movies, from which the images were collected,
are, The Lion King, the Tinkerbell series, Avatar, The
Beauty and the Beast, Monster series, Ratatouille, the
Cars series, etc. !

B. Distorted Images

For this database, three categories of processing arti-
facts have been considered, namely interpolation (which
arises frequently in texture maps, causing jaggedness
of crisp edges), blurring and additive Gaussian noise.
With the advent of cloud gaming, where the rendered
2D game images are streamed from the server to the
‘dumb’ clients, we have chosen to study the effect
of compression and transmission artifacts on computer
graphics generated images (which had been previously
considered only for natural scenes). For this database,
JPEG compression and Rayleigh fast-fading wireless
channel artifacts have been considered. For each artifact
type, four different levels were considered, resulting in
20 distorted image created from a single pristine image.

1) Interpolation: The original images were downsam-
pled using integer downsampling factors from 3
to 6, which are upsampled back using a nearest
neighbor approach.

2) Gaussian Blur: The RGB color channels were
filtered using a circularly symmetric 2D Gaussian
kernel with standard deviation ranging from 1.25

All images are copyright of their rightful owners, and the authors
do not claim ownership. No copyright infringement is intended. The
database is to be used strictly for non-profit educational purposes.

to 3.5 pixels. The same kernel was employed for
each of the color channels.

3) Gaussian Noise: Zero mean white Gaussian noise
was added to the RGB components of the images
(same noise variance were used for all the color
channels). The noise standard deviation ranged
from 0.071 to 0.316 pixels, using the imnoise
MATLAB function.

4) JPEG compression: The imwrite functionality of
MATLAB was used to compress the reference im-
ages using JPEG format. The bits-per-pixel (bpp)
ranged from 0.0445 to 0.1843.

5) Simulated Fast Fading Channel: The original im-
ages were compressed into JPEG2000 bitstreams
(with wireless error resilience features enabled and
64 x 64 code blocks) which were transmitted over
a simulated Ralyleigh-faded channel. The signal-
to-noise ratio was varied at the receiver from
14 to 17 dB to introduce different degrees of
transmission errors.
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Fig. 2: Histogram of differential mean opinion scores (DMOS)
for distorted images in the study. DMOS span most of the
quality range.

C. Subjective Testing Methodology

Since the number of images to be evaluated (525) was
prohibitively high for a double stimulus setup, a single
stimulus setup was used. We followed the single stimulus



continuous evaluation testing procedure in [10]. Subjects
evaluated the reference undistorted images in the same
session as the distorted images. This enabled us to derive
the differential score for all of the test images.

Every image in the database was viewed by each
subject, over three sessions of an hour each, separated
by roughly 24 hours. Each session was divided into two
sub-sessions of 25 minutes each separated by a break
of five minutes in order to minimize visual fatigue. The
64 subjects who participated in the test were graduate
and undergraduate students at The University of Texas
at Austin (Fall 2014), with ages ranging from 18-30
years, mostly without prior experience in participation of
subjective tests or image quality assessment. The gender
ratio of the subject pool was roughly 1:1.

Before the start of the experiment, the purpose of
the experiment was explained to each subject. A verbal
confirmation of 20/20 (corrected) vision was also ob-
tained. Subjects viewed roughly 175 test images during
each session which were randomly ordered using a
random number generator, and randomized for each
subject. Each testing session was preceded by a short
training session comprising of around 10 images in order
to familiarize themselves with the testing setup. The
training images were of different content, but had the
same type of distortions as the test images.

D. Subjective Testing Display

The user interface for the study was designed on
two identical PCs, one running Window and the other
Linux, on MATLAB, using the Psychology Toolbox
[11]. Both the PCs used identical NVIDIA Quadro NVS
285 GPUs and were interfaced with identical Dell 24
inches U2412M displays, which were roughly of the
same age and having identical display settings. Each
image was displayed on the screen for 12 seconds and
the experiment was carried out under normal office
illumination conditions. The subjects viewed the images
from roughly 2 - 2.25 times of the display height.

The screen resolution was set at 1920x1200 pixels,
but the images were displayed at their normal resolution
(1920x1080) without any distortion introduced by in-
terpolation. The top and bottom portions of the display
were gray. At the end of the image display duration, a
continuous quality scale was displayed on the screen,
the default location of the slider was at the center of
the scale. It was marked with five qualitative adjectives:
“Bad”, “Poor”, “Fair”, “Good”, and “Excellent” placed
at equal distances along the scale. After the subject has
entered the rating for the image, the location of the
slider along the scale was converted into a numerical
score lying between [0,100], after rounding to the nearest
integer. The subject could take as much time as needed to
decide the score, but there was no provision of changing
the score once entered or view the image again. The next
image was displayed once the score was entered.

E. Processing of Raw Scores

The raw human subject ratings were processed using
the same method as outlined in [10], [12]. In total 64
subjects participated in the study and each subject eval-
vated 525 images. 12 subjects were treated as outliers
and the ratings obtained from the remaining 52 subjects
were considered in the calculation of the final differential
mean opinion score (DMOS) for each image. In order to
take into account any variability in assigning the quality
by the human observers per session, the difference scores
were computed per session by subtracting the rating
assigned by the subject to a distorted image from the
rating assigned by the same subject to the corresponding
reference video per session. The standard error in the
DMOS scores was 0.6212 across distorted images.

III. PERFORMANCE OF OBJECTIVE IQA
ALGORITHMS

In the paper, we have evaluated the performance of 23
state-of-art FR-IQA algorithms on the ESPL Synthetic
Image Database, with the source code for the FR-IQA
algorithms coming from [7] and [31]. Table ?? lists the
IQA algorithms considered by name and paper citation.
It also shows the Spearman’s rank ordered correlation
coefficient (ROCC) between the DMOS and the IQA
predictions (after non-linear regression using a logistic
function in [3]) and the outlier ratio (OR), defined as
the percentage of the number of predictions outside the
range of £2 times of DMOS standard deviations [32].
Our study aims at benchmarking the performance of
different categories of IQA algorithms over different
distortion categories. Also, statistics of natural images
are somewhat different from synthetic images [2], which
should be kept in mind while studying the performance
of IQA algorithms typically used for natural images in
evaluating synthetic image distortions.

Overall, PSNR (row 22) is outperformed by other
objective IQA algorithms (except for SSIM on row
23), but PSNR performs reasonably well for additive
noise and fast-fading artifacts since it captures high-
frequency distortions. The SSIM and MS-SSIM IQA
algorithms, which perform exceedingly well on the LIVE
database [3], shows a less impressive performance on
our database, primarily due to the very low degree of
correlation with human judgment on certain classes of
distortions, such as interpolation, which has not been
studied in any of the existing databases of natural images
before. Almost all of the existing IQA algorithms fail
to predict the subjective ratings for the interpolation
artifact. Only MAD [5] achieves a reasonable perfor-
mance, which advocates multiple strategies for deter-
mining the overall image quality, based on whether the
distortions are near-threshold or supra-threshold. Low
down-sampling factors result in near-threshold artifacts,
which might appear almost imperceptible, especially at
normal viewing distances. Blurred images also show a



IQA Interpolation Blur Additive Noise JPEG Blocking Fast Fading Overall
ROCC [ OR || ROCC [ OR || ROCC | OR || ROCC | OR ROCC | OR ROCC | OR

1 Spectral Residual Based Similarity (SR-SIM) [13] 0.752 0 0.823 1 0.916 0 0.925 2 0.920 14 0.880 7.6

2 Feature Similarity Index (Color) (FSIMc) [14] 0.694 0 0.802 0 0.902 0 0.938 0 0.911 6 0.877 4.2

3 Feature Similarity Index (FSIM) [14] 0.692 0 0.801 0 0.902 0 0.940 0 0.907 5 0.876 4.6

4 Visual Saliency-Induced Index (VSI) [15] 0.692 1 0.811 0 0.914 0 0.880 0 0.923 13 0.872 5.6

5 Most Apparent Distortion (MAD) [5] 0.788 0 0.813 0 0.909 0 0.933 0 0.927 0 0.863 0.4

6 Gradient Similarity Measure (GSM) [16] 0.676 0 0.780 1 0.919 0 0.903 0 0.921 17 0.839 7.6

7 Information Content Weighted SSIM (IW-SSIM) [17] 0.761 0 0.823 0 0.902 0 0.933 1 0.925 3 0.827 1.0

8 Riesz-transform based Feature SIM (RFSIM) [18] 0.706 0 0.763 0 0.906 0 0.907 1 0.891 0 0.825 2.6

9 | Gradient Magnitude Similarity Deviation (GMSD) [19] 0.716 0 0.791 0 0.930 0 0.862 0 0.920 1 0.821 0.8

10 PSNR-HVS(modified) (PHVSM) [20] 0.657 0 0.712 1 0.896 0 0.849 2 0.898 1 0.809 3.0

11 PSNR-HVS(modified)-A (PHMA) [21] 0.661 0 0.713 1 0.859 0 0.842 2 0.896 1 0.806 2.8

12 Information Fidelity Criterion (IFC) [22] 0.728 2 0.792 0 0.837 0 0.913 0 0.850 3 0.791 8.0

13 Noise Quality Measure (NQM) [23] 0.753 0 0.837 0 0.880 0 0.919 0 0.859 2 0.790 2.4

14 Weighted Signal-to-Noise ratio (WSNR) [24] 0.617 1 0.745 0 0.845 1 0.873 2 0.886 0 0.783 4.2

15 PSNR-HVS (PHVS) [25] 0.652 0 0.651 1 0.865 0 0.817 3 0.896 1 0.769 3.4

16 PSNR-HVS-A (PHA) [21] 0.639 0 0.652 1 0.834 0 0.808 3 0.890 1 0.765 3.4

17 Visual Information Fidelity (VIF) [26] 0.716 0 0.788 0 0.874 0 0.901 0 0.761 7 0.755 4.2

18 Multi-Scale SSIM (MS-SSIM) [27] 0.623 0 0.646 0 0.908 0 0.871 0 0.903 5 0.699 8.4

19 Pixel Domain Visual Information Fidelity (VIFP) [26] 0.651 0 0.624 1 0.895 0 0.878 1 0.791 9 0.693 5.4

20 Visual Signal-to-Noise ratio (VSNR) [28] 0.607 1 0.611 1 0.848 0 0.756 6 0.884 1 0.690 6.8

21 Universal Quality Index (UQI) [29] 0.703 0 0.673 0 0.815 0 0.918 2 0.840 2 0.682 5.0

22 PSNR 0.565 0 0.481 1 0.864 0 0.695 8 0.846 1 0.590 9.2

23 Structural Similarity Index (SSIM) [30] 0.463 2 0.440 0 0.909 0 0.633 11 0.797 6 0.542 11.2
TABLE I: Spearman’s Rank Ordered Correlation Coefficient (ROCC) between the algorithm scores and the DMOS for various
IQA Algorithms and the Outlier Ratio (OR). PSNR is Peak Signal-to-Noise Ratio. HVS stands for Human Visual System. OR
for each distortion category has been calculated with 100 images and the overall OR has been calculated with 500 images. The
bold values indicate the best performing algorithm for that category.

[ [ PSNR [ MS-SSIM [ VIF [ NQM [ FSIM [ IW-SSIM [ SR-SIM [ GMSD [ MAD [ PHVSM
PSNR | ------ ---0-- -0-010}(00-0-0|-0-0-0|00-0-0]00-01-|-00000|00-0001]-0-0-0
MSSIM 1 | - 0---0| -0---0] -0---000---0] ----1- | ---000 |00-000] ----00
VIF T1-101 | -1---1 | ~—---- | ——---- 1 | ----- 0 | ---1-1 | --0-00] ----00 |---100
NQM T1-1-1 ] 1---1 | ccmom | mommoe [ mmomoo [ - 0 | -1-111 ] --0-0- ] ----00 | -1-1--
ESIM T-1-1 ] 1---1 [ —--0-- ~—-oo- | oo [ —---- 0 | ----- T | ---000 | ---000 | ----00
IW-SSIM T1-1-1] 11---1 [ ----- T [ ----- T [ ----- T | ------ 11111 ----0- | ---000 | -1--0-
SR-SIM I[1-10-] ----0- | ---0-0 | -0-000 ] ----- 0 [-00000] ------ 0000 | ---000 | ----00
GMSD T1111 ] ---111 | --1-11 | --1-1----111 [ ----1- ] --111L | ------ ] ----- 0 | ---1--
MAD T1-111 | 11-111] ----11] ----11 ] ---111] ---111 | ---111] ----- T | ------ [--1-1

PSNRHVSM | -1-1-1 | ----11 | ---011 ] -0-0-- | ----11 | -0--1-] ----11 | -=-0-- | 0--0-0 ] ------

TABLE II: Results of the F-test performed on the residuals between model predictions and DMOS values at 95% confidence
intervals. In each cell, the symbol of 6 entries indicates “Interpolation’, “Blur”, “Additive Noise”, “JPEG Blocking” , “Fast
Fading” and “Overall” respectively. ‘1’ (‘0’) indicates that the row IQA is statistically superior (inferior) than the column IQA,

)

implies statistical equivalence of the row and the column.

lower correlation with human scores. This indicates two
avenues of future research. Firstly we would like to study
the effects of varying display sizes on error visibility and
secondly, we find a significant performance gap for this
distortion category on which future researchers can work.

Overall, some of the recently proposed IQA algo-
rithms, such as FSIM [14], VSI [15], SR-SIM [13] and
MAD [5] are some of the algorithms that correlate best
with human perception in terms of ROCC. FSIM takes
into account image gradient magnitude and the phase
congruency (a dimensionless measure of significance of
local structure) and also uses it as a pooling strategy. VSI
and SR-SIM uses more sophisticated pooling strategies
based on visual fixations. Irrespective of whether the
image is natural or synthetic, IQA algorithms that use
more efficient pooling strategies by taking into account
the localized distortions perform better than other IQA

algorithms, as corroborated by [7]. Some of the IQA
algorithms which model different aspects of the human
visual system (HVS), such as NQM, VSNR, PSNR-
HVSM, perform worse than the top performing signal
driven IQA algorithms.

To determine whether the IQA algorithms are signifi-
cantly different from each other, the F-statistic, as in [3]
[12], was used to determine the statistical significance
between the variances of the residuals after a non-linear
logistic mapping between the two IQA algorithms. Table
IT shows the results for ten selected IQA algorithms
and all distortions. The value of ‘1’ (‘0’) indicates that
the row IQA is statistically superior (inferior) than the
column IQA, ‘-’ implies statistical equivalence of the
row and the column. Some of the best performing IQA
algorithms, such as NQM, FSIM, IW-SSIM, GMSD, and
MAD are found to be statistically superior to PSNR.
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