
Privacy Preserving Decision Tree Mining from Perturbed Data

Li Liu
Global Information Security

eBay Inc.
liiliu@ebay.com

Murat Kantarcioglu and Bhavani Thuraisingham
Computer Science Department
University of Texas at Dallas

muratk, bhavani.thuraisingham@utdallas.edu

Abstract

Privacy preserving data mining has been investigated
extensively. The previous works mainly fall into two cate-
gories, perturbation and randomization based approaches
and secure multi-party computation based approaches. The
earlier perturbation and randomization approaches have a
step to reconstruct the original data distribution. The new
research in this area adopts different data distortion meth-
ods or modifies the data mining techniques to make it more
suitable to the perturbation scenario.

Secure multi-party computation approaches which em-
ploy cryptographic tools to build data mining models face
high communication and computation costs, especially
when the number of parties participating in the computa-
tion is large. In this paper, we propose a new perturbation
based technique. In our solution, we modify the data min-
ing algorithms so that they can be directly used on the per-
turbed data. In other words, we directly build a classifier
for the original data set from the perturbed training data
set.

1. Introduction

Due to increasing concerns related to privacy, various
privacy-preserving data mining techniques have been devel-
oped to address different privacy issues [17]. These tech-
niques usually operate under various assumptions and em-
ploy different methods. In this paper, we will focus on the
perturbation method that is extensively used in privacy pre-
serving data mining.

In this paper, we propose a new method that we build
data mining models directly from the perturbed data with-
out trying to solve the general data distribution reconstruc-
tion as an intermediate step. More precisely, we propose a
modified C4.5 [14] decision tree classifier that can deal with
perturbed numeric continuous attributes. Our privacy pre-
serving decision tree C4.5 (PPDTC4.5) classifier uses per-
turbed training data, and builds a decision tree model, which

could be used to classify the original or perturbed data sets.
Our experiments have shown that our PPDTC4.5 classifier
can obtain a high degree of accuracy when used to classify
the original data set.

The paper is organized as follows: Section 2 describes
related work. Section 3 introduce a privacy metric system
used to measure privacy in our work. Section 4 shows the
construction of the decision tree. Section 5 describes how to
build Naive Bayesian models from the perturbed data sets.
In section 6, we explain our PPDTC4.5 in detail. Section 7
presents our experimental results. In section 8 we conclude
with a discussion of future work.

2. Related Work and Motivation

Previous work in privacy-preserving data mining has ad-
dressed two issues. In one, the aim is to preserve customer
privacy by perturbing the data values [3]. In this scheme
random noise data is introduced to distort sensitive values,
and the distribution of the random data is used to generate
a new data distribution which is close to the original data
distribution without revealing the original data values. The
estimated original data distribution is used to reconstruct
the data, and data mining techniques, such as classifiers and
association rules are applied to the reconstructed data set.
Later refinement of this approach has tightened estimation
of original values based on the distorted data [2]. The data
distortion approach has also been applied to Boolean values
in research work [7, 16, 6].

Perturbation methods and their privacy protection have
been criticized because some methods may derive private
information from the reconstruction step [9]. Different to
the original noise additive method in [3], many distinctive
perturbation methods have been proposed. One important
category is multiplicative perturbation method. In the view
of geometric property of the data, multiplying the original
data values with a random noise matrix is to rotate the orig-
inal data matrix, so it is also called rotated based perturba-
tion. In [4], authors have given a sound proof of “Rotation-
invariant Classifiers” to show some data mining tools can
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be directly applied to the rotation based perturbed data. In
the later work [11], Liu et al have proposed multiplicative
random projection which provided more enhanced privacy
protection. There are some other interesting techniques,
such as condensation based approach [1], matrix decompo-
sition [20] and so on. As pointed out in [12], these recently
research on perturbation based approaches apply the data
mining techniques directly on the perturbed data skipping
the reconstruction step. Choosing the suitable data mining
techniques is determined by the method which noise has
been introduce. To our knowledge, very few works focus on
mapping or modifying the data mining techniques to meet
the perturbation data needs.

The other approach uses cryptographic tools to build data
mining models. For example, in [10], the goal is to se-
curely build an ID3 decision tree where the training set is
distributed between two parties. Different solutions were
given to address different data mining problems using cryp-
tographic techniques (e.g., [5, 8, 18]). This approach treats
privacy-preserving data mining as a special case of secure
multi-party computation and not only aims for preserving
individual privacy but also tries to preserve leakage of any
information other than the final result. But when the num-
bers of parties become bigger, the communication and com-
putation cost grow exponentially.

Our proposed approach is a modified C4.5 decision tree
algorithm [14] and adopt noise additive method. Our ap-
proach is suitable for the scenarios where many parties want
to perform data mining, but each of them only has a small
portion of the data. To get the global data mining patterns,
the various parties must share their data, but each party has
its privacy and security concerns. Our approach is the so-
lution for such a situation. In our approach, each party per-
turbs its data according to the distribution of a pre-set ran-
dom noise, and sends its perturbed data to the data miner.
The data miner collects the perturbed data sets from each
party, and also knows the distribution used to perturb the
data. Based on this information, the data miner builds a
classifier, and returns the classifier to every participating
party. Then each party can use this classifier to classify its
data. In this case, each party only knows its own data and
the classifier, and it does not have any knowledge about the
data of others. The data miner only has access to the per-
turbed data and the distribution of the noise data. This way,
privacy is preserved, and the communication and computa-
tion costs for each party are minimized.

3. Privacy Metrics

In the work [2], Agrawal and Aggarwal have proposed
a privacy measure based on differential entropy. We briefly
repeat the ideas here. The differential entropy h(A) of a

random variable A is defined as follows:

h(A) = −
∫

ΩA

fA(a)log2fA(a)da (1)

where ΩA is the domain of A. Actually h(A) is a mea-
sure of uncertainty inherent in the value of A in the statis-
tics. Agrawal and Aggarwal [2] based on this, proposed
that the privacy measure inherent in the random variable A
as Π(A).

Π(A) = 2h(A) (2)

For example, a random variable U distributed uniformly
between 0 and a has privacy Π(U) = 2log2(a) = a. Thus if
Π(A) = 1, then A has as much privacy as a random variable
distributed uniformly in an interval of length 1. Furthermore
if fB(x) = 2fA(2x), then B offers half as much privacy as
A. This can be easily illustrated as, a random variable uni-
formly distributed over [0, 1] has half as much privacy as
a random variable uniformly distributed over [0, 2]. In [2]
Agrawal and Aggarwal have also defined conditional pri-
vacy and information loss. For more detail please refer the
original work [2].

We choose this privacy measure in our work to quantify
the privacy in our experiments.

4. Overview of Decision Tree Construction

We propose a modified C4.5 decision tree classifier,
which builds the decision tree from perturbed data, and can
be used to classify both the original and the perturbed data.
The idea behind this approach is the following: when we
consider the splitting point of the attribute, we consider the
bias of the noise data set as well. We calculate the bias
whenever we try to find the best attribute, the best split point
and partition the training data.

The C4.5 algorithm is an extension of the ID3 algorithm,
and proposed by Quinlan in [14]. After years of improve-
ment, C4.5 algorithm is one of the best algorithms in han-
dling numeric continuous attributes [15]. It finds the best
splitting attribute and the best splitting point of the numeric
continuous attributes.

4.1. Splitting Criterion
Splitting criterion is very important in building a deci-

sion tree. It decides which attribute to use for the splitting,
and for the numeric continuous attribute, and also deter-
mines which value is used for this splitting. It determines
whether or not a decision tree is efficient. It dramatically af-
fects the classification accuracy. ID3 uses information gain
as splitting criterion. C4.5 algorithm uses information gain
ratio which takes the number of branches into account when
examining an attribute. The formulas of information gain
and gain ratio are given as follows:
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Info(S) = −
k∑

j=1

freq(Cj , S)
| S | × log2(

freq(Cj , S)
| S | )

(3)

InfoTestA
(S) =

n∑
i=1

| Si |
| S | × Info(Si) (4)

gain(TestA) = Info(S) − InfoTestA
(S) (5)

splitInfo(TestA) = −
n∑

i=1

| Si |
| S | × log2(

| Si |
| S | ) (6)

gainRatio(TestA) =
gain(TestA)

splitInfo(TestA)
(7)

Let S be the training set, | S | is the number of instance
in S, and freq(Ci, S) is the number of instance that
belongs to class i where i from 1, to n. | Si | is the number
of instance in the category Si. TestA is the attribute chosen.

4.2. Discretizing Continuous Attributes:
Binary Split Approach

C4.5 algorithm is also designed to handle numeric at-
tributes. Instead of using the fix range, C4.5 algorithm
searches among possible split points to find the best split
point. Let us assume that a numeric attribute Ai has the val-
ues {x1, x2, ..., xm} in increasing order. C4.5 partitions the
instances into two groups S1 and S2 where S1 consists of
the values up to and including xj , and S2 consists those that
have values greater than xj . For each of these partitions,
C4.5 computes the gain ratio and chooses the partition that
maximizes the gain ratio.

4.3. Stopping Criteria
The stopping criteria decides when to stop growing a de-

cision tree. In C4.5 Algorithm, the tree stops growing when
one of the two criteria is met. One is that all the instances
at the node have the same class label Ci; we say this node
is pure. Another is when the number of instances at the
node is less than or equal to a pre-set threshold number; we
say this number is minimum instance number of the node.
We use the same stopping criteria in our privacy preserving
decision tree C4.5 (PPDTC4.5) too.

5. Naive Bayes Classifier Construction over
Perturbed Data

As stated in [12], Naive Bayes classifier can be applied
directly on the perturbed data. For the completeness, we
briefly describe here.

5.1. Naive Bayes Classifier Overview
The Naive Bayes classifier labels a new instance by as-

signing the most probable class value. Besides, it assumes
that attribute values are conditionally independent given the
class value in order to simplify the estimation of the re-
quired probabilities. Using the above assumptions, Naive
Bayes classifier selects the most likely classification Cnb

as[13]

Cnb = argmaxCj∈CP (Cj)
∏

i

P (Xi|Cj) (8)

where X = X1, X2, ..., Xn denotes the set of attributes,
C = C1, C2, .., Cd denotes the finite set of possible class
labels, and Cnb denotes the class label output by the Naive
Bayes classifier.

Clearly, we need to calculate the probabilities P (Xi =
x|Cj) used in the Equation 8 based on the training data. In
practice, for numeric attributes, P (Xi = x|Cj) is estimated
by using Gaussian distribution N(μij , σ

2
ij . The required pa-

rameters, μij = E(Xi|cj) and σ2
ij = V ar(Xi|Cj), are es-

timated by using the training data. In Section 5.2, we show
how to estimate the parameters, μij and σ2

ij , using the per-
turbed training data.

5.2. Over Perturbed Numeric Data
We need to estimate μij and σ2

ij for each attribute Xi and
for each class label Cj using the perturbed numeric data to
construct a Naive Bayes classifier. In the perturbed data
case, instead of the original attribute value Xi, we only see
the Wi = Xi + R values. Let wt

ij be the ith attribute value
of the tth training data instance with class label Cj . In ad-
dition, we assume that there are n instances with class label
Cj .

We also know that wt
ij = xt

ij + rt
ij where rt

ij is the ran-
domly generated noise with mean zero and known variance
σ2

R. Using the above facts, we can show that the expected
value of w̄ij = 1

n .
∑n

t=1(w
t
ij) is equal to μij .

Since the sample variance S2 =
1

n−1 .
∑n

t=1 (wt
ij − w̄ij)

2 has an expected value σ2
ij + σ2

R,
we can use S2 and the known σ2

R to estimate the σ2
ij (i.e.

use S2 − σ2
R to estimate σ2

ij).
As a result, as long as we do not change the class labels,

we can directly construct Naive Bayes classifier from the
perturbed data. Even more, since the parameter estimations
done by using the perturbed data and the original data have
the same expected values, we should be able to get similar
classification accuracy in both cases.

To verify the above intuition, we have performed some
experiments using the Naive Bayes classifier from the
WEKA machine learning toolkit[19]. Using the same data
set with all six numeric continuous attributes, we construct
the Naive Bayes classifier from the original data set, and
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we get 79.7% classification accuracy. Similarly, if we di-
rectly construct the Naive Bayes classifier from the per-
turbed training data set and test it on the perturbed test set,
we get 78% classification accuracy. As expected, the two
classification accuracy values are very close.

6. Privacy Preserving Decision Tree C4.5
(PPDTC4.5)

In this section we will describe how to build a deci-
sion tree classifier from the perturbed training data set. We
will show threshold and random path selection two different
ways to build classifiers. The threshold algorithm gives rea-
sonably good accuracy for classifying the original data set.
The random path selection algorithm uses the probability
as weight and finds good splitting points for the attributes.
However, as we will see that randomly selecting the path to
partition the training data set does not build a good decision
tree classifier. We include the random path selection algo-
rithms mainly for comparison purposes as well as to pro-
vide some directions for future work to building decision
tree classifiers to classify perturbed data set. We believe
that with proper improvement on tight bounds of random
variables R, the performance of random path selection al-
gorithm can be improved.

The goal is to build a decision tree model from perturbed
data which can classify the original data set or perturbed
data set accurately. In our case, we do not know the orig-
inal xj values due to added noise. Instead, we observe
wj = xj + R where R is random noise which we know
its distribution. Clearly for a split point t for attribute Ai,
if we know the xj values, we use the following rule to split
instances into S1 and S2:

split(xj , t) =
{

S1, xj ≤ t
S2, xj > t

(9)

Since we do not know the xj values, therefore we can
only calculate the probability of wj belongs to S1 that for
given split point t and wj . Note that Pr{wj ∈ S1} =
Pr{wj − R ≤ t} = Pr{wj − t ≤ R}. Since we know
the cumulative distribution function of R, we can calculate
the probability easily. Let pS1(wj |t) is the probability that
wj belongs to S1 given the split point t and wj . Similarly
define pS2(wj |t) = 1 − pS1(wj |t). In general, let us define
pS(wj |t) is the probability that wj belongs to set S. Now
instead of splitting according to equation ( 9), we can use
the pS(wj |t) values to estimate the best split point and par-
tition the wj just as the original data xj would have been
partitioned.

6.1. Splitting Criterion Using Threshold
We can calculate the probability pS1(wj |t), for given

split point t for each wj value. This pS1(wj |t) value in-
dicates the likelihood wj ∈ S1. We can set a threshold, and

count the number of wj having a class label Cj and pSi
(wj)

value greater than the threshold. This can be expressed in
the form of equation as follows:

freq′(Cj , Si) =
∑

wj∈Si

(
Iwj∈Cj

, pSi
(wj) > threshold

)

(10)
In the above equation, we calculate the frequency of a

class value by using the pSi
(wj). Iwj∈Cj

is an indicator
function and returns 1 if wj has a class label Cj . The equa-
tion ( 3) is changed to as follow:

Info(S) = −
k∑

j=1

freq′(Cj , S)
| S | ×log2(

freq′(Cj , S)
| S | )

(11)
Using above equation ( 11), plus equation ( 4), ( 5), ( 6)

and ( 7) we can find the best splitting attribute and the best
splitting point for the numeric continuous attribute by max-
imizing the gainRatio.

6.2. Splitting Training Data by Threshold
The splitting criteria for the training data is straightfor-

ward.

splitThreshold(wj , t) =
{

S1, pS1(wj |t) > threshold
S2, pS1(wj |t) ≤ threshold

(12)
Noticed that the condition pS1(wj |t) > threshold is

equivalent to the condition pS2(wj |t) ≤ (1 − threshold),
vice versa. For example, condition pS1(wj |t) > 0.2 is
equivalent to the condition pS2(wj |t) ≤ 0.8.

Pseudo-code is shown in the Algorithm 1.

Using the threshold approach seems like a simple
method, but setting the appropriate threshold that will
lead to a successful classifier is not trivial. By definition
pS1(wj |t) is the probability that wj belongs to S1 given the
split point t and wj . When the split point t and perturbed
instance wj are given, the only uncertainty is the random
noise R. In another words, the choice of threshold is related
to the distribution of the random noise. In our experiments
we have used both the Uniform and Gaussian distributions
for random noise. The thresholds are different for these two
kinds of distributions. For Gaussian distribution, when the
threshold is set to 0.30, the classifier gives higher accuracy;
for Uniform distribution, when the threshold is set to 0.50,
the classifier gives higher accuracy. The experimental re-
sults are discussed in next section.

Another good way to decide the threshold is to keep it
flexible, just like what the C4.5 algorithm does to find the
best splitting point t for the numeric continuous attribute.
This would lead to good results, but the computation costs
are increased.
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Partition (Node N) ;1

if Stopping Criteria is Met then2

return;3

else4

Using ThresholdSplittingCriterion5

Compute the Best Attribute BestA and the
Best Splitting Point t ;
for each Instance wj in Node N do6

Calculate the pS1(wj |t) = p17

Based on the best splitting attribute BestA8

and the best splitting point t;9

if p1 > threshold then10

addChild(N.leftChild, wj);11

else12

addChild(N.rightChild, wj);13

end14

end15

end16

Partition (N.leftChild);17

Partition (N.rightChild);18

Algorithm 1: Partition Training Instances Using
Threshold

6.3. Classifying the Original Instance
Using the algorithm described in the previous two sub-

sections, we choose the splitting attributes and splitting
points that actually belong to the original data. We also
partition the perturbed training data as decided by our es-
timation of its original values. This way we can build a
decision tree classifier for the original data. Then when we
use it to classify the original data, we just classify the data
based on whether an attribute value is less than or greater
than the certain attribute splitting point. The pseudo-code
of classifying the original data is shown in Algorithm 2.

6.4. Splitting Criterion Using Probability as
Weight

We use the pS1(wj |t) and pS2(wj |t) values as weight to
rewrite all the equations as follows:

freq′′(Cj , Si, S) =
∑

wj∈S

(
Iwj∈Cj

× pSi
(wj)

)
(13)

In the above equation, we calculate the frequency of a
class value by using the pSi

(wj) as weights. Iwj∈Cj
is an

indicator function and returns 1 if wj has a class label Cj .
In order to normalize, we need to calculate the sum of the
total weights (i.e., sum of the all pSi

(wj) values)

w(Si, S) =
∑

wj∈S

(pSi
(wj)) (14)

for each Instance xj in X from the root node do1

Classify(Node N, Instance xj);2

if N is a leaf node then3

use the rule given at the leaf4

return class value;5

else6

Based on the attribute Ai used in N7

and the split point t;8

if xj(Ai) ≤ t then9

return Classify(N.leftChild, xj);10

else11

return Classify(N.rightChild, xj);12

end13

end14

end15

Algorithm 2: Classify Original Instances

Now using the above two definitions, we are ready to
redefine the conditional entropy using the pSi

(wj values.

Prob(Si, S) =
freq′′(Cj , Si, S)

| w(Si, S) | (15)

Info′(Si, S) = −
k∑

j=1

Prob(Si, S)×log2(Prob(Si, S))

(16)

Prob(Si, S) =
freq′′(Cj , Si, S)

| w(Si, S) | (17)

Info′(Si, S) = −
k∑

j=1

Prob(Si, S)×log2(Prob(Si, S))

(18)
Similarly, we need to update information gain of choos-

ing an attribute A with split point t.

Info′TestA
(S) =

2∑
i=1

| w(Si, S) |
| S | × Info′(Si, S)

(19)
Also, in calculating the splitInfo, we need to use

w(Si, S).

splitInfo′(TestA) = −
n∑

i=1

| w(Si, S) |
| S | ×log2(

| w(Si, S) |
| S | )

(20)
Now we can plug the above modified definitions to orig-

inal tests to choose the split point and attribute.
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gain′(TestA) = Info(S) − Info′TestA
(S) (21)

gainRatio′(TestA) =
gain′(TestA)

splitInfo′(TestA)
(22)

Now we can use the equation ( 22) to choose a split point
and an attribute. Please note that the main difference be-
tween the original equations used in C4.5 and ours is that we
use the probability of being in a certain partition as a weight
in the formulas. The rational behind this modification is the
following: If we write the original formulas, in clear form,
we can see that there exists an implicit indicator function
that assigns 0 or 1 based on the membership instances to set
S1 and set S2. Since we can not be sure whether a certain
instance is in S1 or in S2, we use the probability of being in
S1 or in S2 as a weight.

6.5. Splitting Training Data Set Using Ran-
dom Path Selection

This method is an alternative way to split the training
data into two after finding a split point and an attribute.
Again, in our implementation, we use a random split based
on the pS1(wj) and pS2(wj) values.

splitRandom(wj , t) =
{

S1, with prob. pS1(wj)
S2, with prob. pS2(wj)

(23)
Pseudo-code is shown in Algorithm 3.

6.6. Classifying the Perturbed Instance Us-
ing Random Path Selection

For each test instance wj in the perturbed data set W
and for each chosen split point in the constructed tree, we
calculate pS1(wj |t) = p1. Next we place the instance to
the left child of the node with prob p1 and to the right child
with prob 1 − p1. We continue with this until we reach a
leaf node. The Pseudo-code is shown in Algorithm 4.

7. Experimental Results

In our experiments, we use the data extracted from
the census database 1994 (“Census Income” or “Income”),
which can be downloaded from University of California,
Irvine (UCI), machine learning database repository 1. This
data set has fourteen attributes, six continuous and eight
nominal. It altogether has 48842 instances, separate as
training data 32561 instances and testing data 16281 in-
stances. The data is used to predict whether the income
exceeds 50K annually. We choose this data set to have fair

1http://www.ics.uci.edu/ mlearn/MLSummary.html

Partition (Node N) ;1

if Stopping Criteria is Met then2

return;3

else4

Using RandomSplittingCriterion Compute5

the Best Attribute BestA and the Best
Splitting Point t ;
for each Instance wj in Node N do6

Calculate the pS1(wj |t) = p17

Based on attribute BestA and splitting8

point t;
Let R be a uniform random value between9

[0, 1];
if R ≤ p1 then10

addChild(N.leftChild, wj);11

else12

addChild(N.rightChild, wj);13

end14

end15

end16

Partition (N.leftChild);17

Partition (N.rightChild);18

Algorithm 3: Partition Training Instances Using
Random Criteria

for each Instance wj in W from the root node do1

Classify(Node N, Instance wj);2

if N is a leaf node then3

use the rule given at the leaf4

return class value;5

else6

Calculate the pS1(wj |t) = p17

Based on the attribute Ai used in N8

and the split point t;9

Let R be a uniform random value between10

[0, 1];
if R ≤ p1 then11

return Classify(N.leftChild, wj);12

else13

return Classify(N.rightChild, wj);14

end15

end16

end17

Algorithm 4: Classify Noisy Instances
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comparison with reconstruction based techniques that re-
quire relatively large data sets. Since, in this paper, we fo-
cus on the numeric continuous attributes, we only keep the
six numeric continuous attributes in our data set. Also, for
efficiency purposes, we randomly choose 10000 instances
from the training data set, and keep all the instances in the
testing data set.

We use the noise addition frame work proposed in [3],
and add both Gaussian and Uniform random noise to each
attribute. When using Gaussian random noise, we know
that the variance σ2 can dramatically affect the results. We
use four different Gaussian distribution noise data with dif-
ferent variance values. To quantify the relative amount of
noise added to actual data, we used the Signal-to-Noise Ra-
tio (SNR), that is the ratio of variance σ2 of actual data to
variance σ2 of noise data [9]. We also use the privacy mea-
sure mentioned in section 3, to quantify the privacy loss.
The table 1 shows the five perturbed data sets with their
SNR values and privacy measures. In our experiments, we
only use one data set which perturbed by uniform noise,
shown as data5. We can see from table 1, when the SNR
value is higher, the variance σ2 of noise data is lower, thus
the perturbed data preserves less privacy. The uniform dis-
tributed noise is generated by a given data range. We can
calculate the SNR for each attribute for uniform noise data,
in our experimental data set, the SNR values for six attribute
are 1.3, 2.7, 1.2, 53.6, 1.9 and 1.1 respectively.

Table 1. Privacy measure of different data
sets

Data1 Data2 Data3 Data4 Data5
Noise Dis-
tribution

Gau-
ssian

Gau-
ssian

Gau-
ssian

Gau-
ssian

Uni-
form

SNR 1.7 1.3 1.0 0.5 N/A
Privacy loss 0.2183 0.1909 0.1619 0.1026 0.2604

7.1. Local vs. Global Data Mining
First note that by local data mining, each participant

mines its own data. By global data mining, we mean that
the participants share the data and mine to obtain global
patterns. As we have mentioned before, our approach is
suitable for the scenarios where many parties are participat-
ing to perform global data mining without compromising
their privacy. The data sets distributed among each party
can be horizontally or vertically partitioned. Horizontally
partitioned data means the instances are split across the par-
ties, and vertically partitioned data means the attributes are
split across the parties. Experimental results show that for
both types of partitioning local data mining results are less

accurate compared with those obtained from global data
mining. This supports the fact that extracting information
from globally shared data is better.

Table 2. C4.5 decision tree classifier accuracy
over horizontally partitioned data

Accuracy(%) data1 data2 data3 data4 data5
50 Instance 73.47 74.23 73.13 73.23 73.63
100 Instance 78.54 73.33 77.43 78.13 75.63
Accuracy(%) data6 data7 data8 data9 data10
50 Instance 74.63 72.37 74.23 76.27 77.73
100 Instance 78.77 75.4 78.13 76.2 77.77

We use the data set described in the previous sub-section
with six attributes. We randomly choose instances to form
small data sets with different sizes, denoted as group 1,
group 2 to group 10. We apply standard C4.5 classifier
on these data sets, and the accuracy numbers are shown in
Table 1. It is clear that when the number of instances are
increased, the C4.5 decision tree algorithm has better per-
formance.

Table 3. C4.5 decision tree classifier accuracy
over vertically partitioned data

Accuracy(%) 2 Attributes 3 Attributes 4 Attributes
5K Instance 77.54 77.84 78.9
32K Instance 78.06 78.51 79.05

Similarly we have removed some attributes from the ”In-
come” data set, and then applied standard C4.5 decision tree
classifier on the new data sets, and the accuracy of the clas-
sification results are shown in Table 2. We can see that when
the attribute number is increased the C4.5 decision tree al-
gorithm performs better.

7.2. Reconstruction Based Approaches Re-
sults

For comparison purposes, we report the data mining re-
sults obtained by using original data distribution reconstruc-
tion methods. We apply two notable reconstruction tech-
niques to the perturbed data set. The first technique is
Bayesian inference estimation (BE) based approach pro-
posed by Agrawal et al [3]. The second technique is the
principal component analysis (PCA) based approach pro-
posed by Kargupta et al [9]. Please refer to the original
work for the algorithms’ details.

We apply the two techniques on the five data sets. We
first reconstruct the original distribution, and then use this
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Table 4. Data Mining accuracy of applying
data mining techniques directly on 10k per-
turbed training data set.

Data mining on perturbed data set
Decision Tree C4.5 Classifier Accuracy (%)

Data Set Data1 Data2 Data3 Data4 Data5
Test on Original 79.61 79.04 77.73 77.32 80.29

Test on Perturbed 78.56 78.14 77.45 77.05 80.47

Naive Bayes Classifier Accuracy (%)

Data Set Data1 Data2 Data3 Data4 Data5
Test on Original 78.45 78.21 78.17 77.99 80.45

Test on Perturbed 78.08 77.78 77.46 76.47 80.29

Table 5. Data Mining accuracy with BE based
reconstruction technique.

BE based reconstruction technique
Decision Tree C4.5 Classifier Accuracy (%)

Data Set Data1 Data2 Data3 Data4 Data5
Test on BE-recon 91.91 90.50 86.26 93.97 86.35

Test on Original 24.45 25.17 69.32 35.96 78.72

Test on Perturbed 38.29 36.47 58.45 43.63 74.06

Original Data Mining Accuracy (%) 83.40

Naive Bayes Classifier Accuracy (%)

Data Set Data1 Data2 Data3 Data4 Data5
Test on BE-recon 88.68 87.09 84.32 94.59 77.53

Test on Original 26.30 21.66 23.01 23.08 76.46

Test on Perturbed 37.19 39.91 33.09 37.30 49.66

Original Data Mining Accuracy (%) 79.87

estimated distribution to build the data mining models. We
perform three different tests to compare data mining accu-
racy. In the first case, we test the classifier on the recon-
structed test data; in the second case, we test the classifier
on the original test data; and in the third case, we test the
classifier on the perturbed test data. The data mining mod-
els’ prediction accuracy is shown in the table 5 and table
6. As comparison table 4 shows the data mining accuracy
obtained directly from the perturbed data sets.

Our results indicate that, both reconstruction techniques
fail to produce good data mining models. This result is not
surprising, since ,in general, estimating data distributions
on finite data is a very hard problem. If we use this original
data distribution reconstruction phase as a intermediate step
to do privacy preserving data mining, we may not always
get good performance results. In the work [12], the authors
have investigated three different real world data sets, and

Table 6. BE based reconstruction technique
data mining accuracy.

PCA based reconstruction technique
Decision Tree C4.5 Classifier Accuracy (%)

Data Set Data1 Data2 Data3 Data4 Data5
Test on PCA-recon 99.23 98.16 98.34 95.10 99.61

Test on Original 70.31 71.71 72.35 68.42 76.86

Test on Perturbed 54.76 63.49 59.17 61.08 61.49

Original Data Mining Accuracy (%) 83.40

Naive Bayes Classifier Accuracy (%)

Data Set Data1 Data2 Data3 Data4 Data5
Test on PCA-recon 97.83 98.10 97.42 94.33 98.63

Test on Original 66.12 64.29 63.21 59.84 64.81

Test on Perturbed 46.08 41.71 39.07 28.05 51.08

Original Data Mining Accuracy (%) 79.87

Table 7. Proposed PPDTC4.5 data mining ac-
curacy.

Our Proposed PPDTC4.5 Classifier Accuracy (%)

PPDTC4.5 Threshold Method
Data Set Data1 Data2 Data3 Data4 Data5
Test on Original 80.74 79.69 76.63 77.02 80.29

Test on Perturbed 76.09 76.14 74.41 76.03 80.52

PPDTC4.5 Random Path Selection Method
Data Set Data1 Data2 Data3 Data4 Data5
Test on Original 78.72 77.21 77.67 78.01 80.31

Test on Perturbed 78.40 77.77 77.30 77.06 80.32

the reconstruction based approaches have failed on all those
data sets. These results support our motivation of finding
direct ways to perform privacy preserving data mining from
perturbed data.

7.3. PPDTC4.5 Classifier Accuracy
Using the data sets described earlier, we perform dif-

ferent experiments. Applying WEKA [19] C4.5 algorithm
on the original training data set to build the decision tree,
and classify the original testing data set, we get 83.40%
accuracy. table 4 shows the data mining accuracy when
apply data mining tools directly on the perturbed data
sets. Table 7 shows data mining accuracy of our proposed
PPDTC4.5 algorithms. We can see, when we use our pro-
posed PPDTC4.5 Threshold Method on these five data sets
to build the decision tree, and classify on the original data
set. We get higher accuracy than which classify on the per-
turbed data for data 1 and data 2; equivalent accuracy for
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Figure 1. Threshold Method of PPDTC4.5
Classifier Accuracy on 10K Uniform Per-
turbed Training Data 16K Original Test Data.

Figure 2. Threshold Method of PPDTC4.5
Classifier Accuracy on 32K Gaussian Per-
turbed Training Data 16K Original Test Data.

data 5; lower accuracy on data 3 and data4. The reason is
SNR value plays an important role here. Table 1 shows
different perturbed data sets with different SNR values.
When SNR less than 1.0 means the variance σ2 of noise
data greater than the variance σ2 of actual data. In other
words data 3 and data 4 are introduced more noise. Our
algorithm get good results when the SNR value is greater
than 1.0. When The threshold method builds a decision tree
classifier which is not suitable to classify the perturbed data
set, because our algorithm estimates the splitting point and
partition the training data as the original data would have.

To build a classifier to classify the perturbed data, we use
the probability as weight to find the best splitting point, and
use random path selection to partition the training data, so
far the classifier accuracy has not been improved much com-
pared with directly applying WEKA C4.5 algorithm. The

reason is when partitioning the training data set, and clas-
sifying the test data set, the random path selection method
does not bound the random noise R well. In the future, we
would like to find a better way to bound the R value, to
build a better classifier for classifying the perturbed data.

As we have seen in our experimental results, our pro-
posed PPDTC4.5 classifiers may not get very excited high
accuracy comparing with those obtained from directly ap-
plying data mining techniques to the perturbed data sets.
But comparing with reconstructed based approaches, our
methods obtain very good results. We try to represent the
message here is, avoiding to solving the hard distribution
problem, in stead, mapping the data mining functions to
construct privacy preserving data mining methods. This is
a promising direction. Furthermore, our experimental re-
sults have also indicated that when huge data set is avail-
able, white noise is no longer can prevent data mining tools
to abstract patterns. So directly mining the perturbed data
set is also a good approach when the data set is big enough.

In the PPDTC4.5 threshold method, we know that choos-
ing different threshold values affect the data mining accu-
racy. Choosing the threshold to get good data mining results
is related to the distribution of the random noise added to
the data and the data itself. In our experiments, when using
Uniform distribution random noise to distort the data, 0.5
is a good threshold to get a classifier with high accuracy;
when using Gaussian distribution random noise to distort
the data, 0.3 is a good threshold to get a classifier with high
accuracy. The relationship between data mining accuracy
and threshold values are shown in figure 1 and figure 2. The
best threshold should change from data to data. In other
words, this is dependent on the data property.

7.4. Algorithm Complexity
Given n instances, m attributes, and p label values, the

number of potential splitting points t of numeric continu-
ous attribute at most is n − 1. The complexity C4.5 algo-
rithm on training phase is O(nlgn + tmp). Our algorithm
evaluates the probability for instance wj for every given po-
tential splitting point t, which increases the complexity of
algorithm in the worst case scenario to O(ntmp). Since
our algorithm skips the steps of reconstruction the origi-
nal distribution for each attribute, the running time is very
reasonable comparing with the BE reconstruction algorithm
given in [3]. In BE reconstruction algorithm, there is a stop
parameter to determine when to stop the calculation of the
estimated distribution. The fact is, more loops calculation,
more running time and better accuracy of the estimated dis-
tribution. In our experiments, based on different choice of
the stop parameter, the running time of the BE reconstruc-
tion algorithm is raged from three to five times longer than
our proposed algorithm running on the same configuration
computers.
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8. Conclusion

We have proposed a modified C4.5 decision tree clas-
sifier which is suitable for privacy preserving data mining.
The classifier is built from the perturbed data set, and the
model can be used to classify the original data with high
accuracy. In the scenarios where many parties are partici-
pating to perform global data mining without compromising
their privacy, our algorithm decreases the costs of commu-
nication and computation compared with the cryptography-
based approaches. Our algorithm is based on the perturba-
tion scheme, but skips the steps of reconstructing the origi-
nal data distribution. The proposed technique has increased
the privacy protection with less computation time.

In the future, we will investigate various ways to build
the classifiers which can be used to classify the perturbed
data set. As we have mentioned before, with a better bound
of the random noise data R, using the probability as weight-
ing is an approach that needs further investigation.

As pointed out before, some data mining techniques can
be directly applied to perturbed data due to the perturbation
process still preserve some nature of the data. Naive Bayes
classifier can be directly applied to the additive perturba-
tion data, and Euclidean based data mining tools, e.g. k -
Nearest Neighbor Classifier, Support Vector Machines, and
Perceptrons Neural Network can be applied to the multi-
plicative perturbation data. But the data mining accuracy is
reduced due to the information loss in the process and some
data mining methods themselves may not have good perfor-
mance. As we know k - Nearest Neighbor is a simple but
poor performance classifier. Do we have the flexibility to
choose different data mining tools? In this paper we provide
a new direction which is modifying data mining functions
to suit the perturbed data. This absolutely enable us more
choices. Our proposed method skips the reconstructing the
original data distribution from the perturbed data. In this
way, the method performs privacy preserving data mining
without solving the hard distribution problem.

Data mining techniques are used to derive patterns and
high level information from data. Data mining results do not
cause the violation of privacy. One thing bring to our notice
is that when data set is big enough, perform data mining
techniques directly on the perturbed data sets, can obtain
good data mining accuracy. For example, applying decision
tree classifier to additive perturbation data can get good data
mining accuracy. This can be observed in our experimental
results. Privacy as a security issue in data mining area is
still a challenge.
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