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Abstract

Social networking sites such as Google+, Facebook, TwatterLinkedIn, are cloud ser-
vice providers for person to person communications. Theseddferent approaches to
building these sites ranging from SQL to NoSQL and NewSQL héasugmented SQL,
graph databases and others. Some provide a tabular refateseof data while others
offer alternative models that scale out. Some may sacrificet ACID (Atomicity, Consis-
tency, Isolation, Durability) properties and opt for BASBagically Available, Soft-state,
Eventual consistency) to enhance performance. Indepéonflarqualitative discussion of
these approaches and their merits, a key question is howede s$ystems compare with
one another quantitatively? This dissertation investigdhe viability of a benchmark to
address this question.

Our primary contribution is the design and implementatiba movel benchmark for
interactive social networking actions named BG (http:/Argthmark.org). BG’s design
decisions are as follows: First, it rates the performanca system for processing inter-
active social networking actions by computing two valuescidlites and Social Action
Rating (S0AR) using a pre-specified Service Level Agreemepd,. 3n example SLA
may require 95% of issued requests to observe a responsédatstee than 100 millisec-
onds. Second, BG elevates the amount of unpredictable dadaiged by a solution to a
first class metric, including it as a key component of the Skin(lar to the average re-
sponse time) and quantifying it as a part of the benchmaniiogess. It also computes the
freshness confidence to characterize the behavior of a weeistency technique. Third,
BG’s generated workload is characterized by reads and wsftasvery small amount of
data from big data. Fourth, BG is a modular, extensible fraamkwhat is agnostic to its
underlying data store. Fifth, BG employs a logical partitignof data to scale both ver-
tically and horizontally to thousands of nodes. This is e8akfor evaluating scalable
installations consisting of thousands of nodes. Finally,iB€udes a visualization tool to
empower an evaluator to monitor an in-progress benchmatkdamtify bottlenecks.

BG’s possible use cases are diverse. One may use BG to comgho®@tnast vari-
ous data stores with one another, characterize tradesiieiased with alternative physical
representations of data, or quantify the behavior of a data #n the presence of various
failures (either CP or AP of the CAP theorem) among the othdrs dissertation demon-
strates use of BG in two contexts. First, to rate an indussti@ngth relational database
management system and a document store, quantifying tedormance tradeoffs. This
analysis includes the use of a middle tier cache (memcachadi)ts impact on the per-
formance of each system. Second, to gain insight into altiemen design decisions for
implementing a social action by characterizing their bérawith different social graphs
and system loads. BG’s proposed framework is quite novel ppdoseveral new research
directions that benefit the systems research community.
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Chapter 1

Introduction

There has been an explosion of novel data stores with vaayitgtectures and design deci-
sions for managing the ever increased volume and varietgtaf groduced by applications
with unique and strict requirements. Academia, cloud seryroviders such as Google
and Amazon, social networking sites such as LinkedIn anels@ak, and computer in-
dustry continue to contribute systems and services witlelnassumptions. In 2010, Rick
Cattell surveyed 23 systems [25] and we are aware of 10 hsimee that writing. In his
survey, Cattell identified a “gaping hole” with a scarcity @rchmarks to substantiate the
claims made by the different systems. Good benchmarks aemésl because they settle
debates and enable the discipline to make rapid progre$sT88y are a component of a
scientific endeavor to understand alternative design asisquantify their tradeoffs, and
obtain insights to develop improved designs.

A good benchmark provides metrics that are relevant and rsleading. Prior to ad-
vent of data stores that sacrificed strong consistencyppeance metrics such as response
time and throughput sufficed. With advent of data stores pphatide weak consistency
techniques to enhance performance and data availabilityeirpresence of network par-
titions [112, 75], a benchmark must quantify the amount giredictable data (stale, in-
consistent, or simply erroneous data) produced by a data Et@]. This empowers an
experimentalist to quantify both the performance and thewarof unpredictable data
produced by alternative weak consistency techniques dotiasts.

BG [12], a social networking benchmark (visit http://bgblemark.org), was designed
to quantify these new metrics and address certain aspethe @attell’s hole that is too
large to address with just one benchmark. It was motivatethbyneed to evaluate the
performance of a transparent caching framework [48] d@ezlan the context of a social
networking site named RAYS [44]. Several social networkiitgsshave either developed
their own data store, e.g., Facebook’s Cassandra [69] arkedlin’s Voldemort [113, 72],
or use a NoSQL solution, e.g., FourSquare’s MongoDB [82]. B@iended to provide
insights into the performance of these systems.

We developed BG in 2012 and released a stable version of itnoadg 2013. Its
conceptual schema and thirteen actions are an abstradtitmtay’s social networking
sites such as Google+, Facebook and others. Table 1.1 peogidomprehensive list of

1Apache’s Jackrabbit and RavenDB, Titan, Oracle NoSQL, BationDB, STSdb, EJDB, FatDB, SAP
HANA, CouchBase.
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Action [ Facebook Google+ Twitter Linkedin YouTube FourSquare Galis Academia.edu Reddit.cor’r]i

View

Profile (VP) v v v v v v v v v
List

Friends (LF) v v v v v v v v 0
View

Friend v O O v O v O O O
Requests (VFR)

e " v Radlo Follow v Subscribe v Follow Follow Follow
Accept

Friend v 0 0 v 0 v m] 0 0
Request (AFR)

Reject

Friend v O O v ] v O O O
Request (RFR)

l:::dship (TF) Rergti)r\(/:?efrom Unfollow v Unsubscribe v Unfollow Unfollow Unfollow
View Top-K

Resources (VTR) v v v v v v v v v
View

Comments on v v v v v v v v '
a Resource (VCR)

Post Reply Recommend Post Add Add Post

Comment on v v toa a colleague’s Comment Comment on tag to answer to v
a Resource (PCR) tweet work on avideo a check-in alink a question

Delete Comment Delete the Withdraw Remove Delete Remove Delete

from a v v reply for recomm- comment comment on tag from answer to v
Resource (DCR) atweet endation on a video a check-in alink a question

Share Resource

(SR) v v Post a tweet Update profile Upload a video v v v v
View News

Feed (VNF) v v v v v v v v v

Table 1.1: Socialite actions and their compatibility widveral social networking sites.

the surveyed sites and a matrix that describes the comiggtdfitheir actions with those

abstracted by BG. The first column of Table 1.1 shows the #mrtections that constitute
BG. The name of each action is self explanatory. These ardesiagtions that read and
write a small amount of data. Except for the View News Feedbactall other actions

that reference members are binary consuming two membesiatgat. For example, the
two member ids specified with the View Profile action identifg member who is viewing
a profile and the member whose profile is being viewed. ThoBenacthat consume a
resource id either read the resource and its comments, yneadibmment on that unique
resource, or share the resource with other members.

BG’s database consists of a fixed numbem&mberandpageswith a registered pro-
file. Its workload generator implements a closed simulatmmdel with a fixed number of
threadsl’. Each thread emulates a sequence of members/pages pedarmsocial action
shown in Table 1.1. At any instance in time, an emulated mefpage who is actively
engaged in a social action is calleda@cialite While a database may consist of millions of
members/pages, at mdstsimultaneous socialites issue requests with BG’s worklead g
erator. Given a social graph, BG generates actions that &de Far example, it extends a
friendship from Member A to Member B only when they are natifids. It realizes this by
maintaining a representation of the social graph in its nrgn®G uses this representation
to ensure its emulated simultaneous members and resousesigue at an instance in
time.

While One may use BG for a variety of purposes, this dissertaiophasizes two use
cases. First, to rate one or more data stores to either igeiné performance limits of a
data store, compare the performance of different datastaith one another, or both using

2
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Figure 1.1: Throughput of an RDBMS as a functionlofwith the View Profile action,
10,000 members, 12 KB profile image size100 msecr=0%,/=0.27. Confidencex() is
shown in red. With 12 KB images, the RDBMS fragments the imagessmaller chunks
which introduce an additional overhead while retrieving tmages. This results in the
processor on the node hosting the RDBMS, getting fully utidlized limits its performance.

a single value. Second, to provide insights into the peréone of alternative designs and
algorithms with a different amount of system load. We décdach in turn.

BG rates a system witht leastoa percentage of actions observing a response time equal
to or less than3 with at mostr percentage of requests observing unpredictable data in
time units For example, an experimentalist may specify a workloath Wie requirement
that at least 95%(=0.95) of actions to observe a response time equal to orhess100
msec (3=0.1 second) with at most 0.1%=0.001) of requests observing unpredictable data
for 1 hour (A=3600 seconds). With such a criterion, BG computes two plessatings for
a system:

1. SoAR: Highest number of completed actions per second #iesfys the specified
criterion. Given several systems, depending on the apjitathe one with the
highest SOAR is more desirable.

2. Socialites: Highest number of simultaneous threadssthiztfy the specified SLA. It
guantifies the multi-threading capability of the data semd whether it suffers from
limitations such as the convoy phenomena [20] that dimassts throughput rating
with a large number of simultaneous requests. Given sesgsms, depending on
the application, the one with the highest Socialites ratnmay be more desirable.

These ratings are not a simple function of the average setwviee (S) of a workload.
The specified confidence), the tolerable response timg)( and the amount of unpre-
dictable dataf) observed from a system impact its SOAR and Socialitesgafiihe key
advantage of these ratings is that they reduce the perfaenaia system to two numbers,
simplifying communication of results, allowing definitiarf clear performance objectives
and enabling comparative studies. BG rates a data store lpsingpan increasing amount
of load starting from a low load to a high load’), emulating a mix of actions against
the data store. It computes the percentage of actierm®fidence values) that observe a
response time faster thahand provides insights into the system behavior. To illusira
Figure 1.1 shows the throughput of an industrial strengtitiomal database management
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system (RDBMS) as a function of the number of thre@dfor a read only actiony=0.
We show the different confidence values fox0.1 second. As we increase the number
of threads, the throughput of the system increases. Beyohcedds, a queue of requests
forms causing an increase in system response time. Thiflested in a lower value.
With 32 threads, almost all (99.83%) requests observe aonsgptime higher than 100
msec.

Second, one may use BG to study the behavior of alternativigrdesoices with a
varying amount of system load and different social graphgrakctitioner may specify a
tolerable response timegf) and use BG to either reason about the behavior of a design
choice or understand and discover trends about the behafvaor algorithm and its im-
plementation. For example, Figures 1.2 and 1.3, demoastratbehavior of two different
design choices, termed Push and Pull, used for implemefgedyfollowing actions (View
News Feed and Share Resource actions). Push pre-computesshiéeed for each mem-
ber and updates it every time there is a new feed for the merfiobdircomputes the news
feed for a member every time the member requests to view bdr #& SOAR rating is not
appropriate for an investigation of these alternativesbse the data set size increases as
a function of the number of Share Resource actions issuedebydtialites. Instead, it is
more appropriate to analyze the behavior of these altegsatvith different system loads.
We elaborate on this in the next two paragraphs.

As shown in Figure 1.2, with a lower imposed load)( the Pull architecture results
in a higher throughput when compared to Push. With interatedystem loadl{ = 50
toT" = 110), Push becomes superior to Pull. This is because with Peshevs feed is
already constructed and is retrieved without issuing a&ulthl queries. With a high system
load (I" > 110), Push and Pull switch places with Pull providing a higherfgrenance.
This is because the View News Feed action displays the tohafed resources. While
Pull retrieves only these 10 feeds, Push must retrieve ttiearews feed and sort it in the
application memory each time. This network transmissiah@ncessing time causes Push
to become inferior. An alternative implementation for Pusdy sort the shared resources
while updating a member’s news feed every time a new feedidbghed. This will reduce
the response time for the View News Feed action but will iaseethe response time for
the Share Resource action for Push. One may use BG to evaledteltavior of this and
other designs.

Figure 1.3 shows how the change in the number of friendsoff@ts) per member
impacts the observed throughput for these two design ceratidns. For these social
graphs with different fan-outs, the throughput observadgu®ull is higher than that for
Push. However, as we increase the number of friends per meh#ebserved throughputs
for both systems decrease and the gap in performance betnednand Pull becomes
negligible. Section 8.4 provides additional details alibase experiments.

Today’s BG is designed for high throughput data stores thatgss simple operations
that read and write a small amount of data. One may use BG forietywaf purposes
ranging from comparing different data stores with one agotih characterizing the perfor-
mance of a data store under different settings such as (I)aionode of operation with
alternative physical data organizations, see Section(8)1in the presence of a network
partition (either CP or AP in CAP [75]), and (3) when exercisthg elasticity of a data
store by adding or removing nodes incrementally. We havel@red BG to compare a

4
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Figure 1.2: Performance of Pull vs. Push with MongoDB for giH{11% Write) Mixed
workload of Table 8.9 fo# = 0.27. M = 10,000, P = 100, ¢ = 1,000, o = 10, ¢ = 100,
p = 10. For all workloads, 1% of the SR actions are issued by pages.
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Figure 1.3: Impact of modifying the number of friends per nbem(p) on the performance
of Pull and Push with MongoDB for a workload consisting of 1#%a& Resource action
and 99% View News Feed Actiod/ = 10,000, P = 100, ¢ = 1,000, o = 10, p = 10 and

0 = 0.27. For all workloads, 1% of the SR actions are issued by pages.

relational representation of a social graph with its JSOptegentation [14], quantify the
tradeoffs associated with alternative consistency teghes for a cache augmented rela-
tional data store [47], and others. Chapter 8 illustratesehese cases by comparing the
following 3 different data stores with one another:

e SQL-X: An industrial strength relational database manag@mystem with ACID
properties and an SQL query interface. Due to licensingioéisins, we cannot reveal
its identity and name it SQL-X.

e MongoDB version 2.4.8, a document store for storage andevetrof JavaScript
Object Notations, JSON. MongoDB is a representative NoS@@ltesn. See [25] for
a survey.



e CASQL: SQL-X and MongoDB extended with memcached serveivers.4.2 (64
bit). This implementation employs Whalin memcached cliersion 2.5.1 to com-
municate with the memcached server.

1.1 Thesis Contributions

BG is inspired by prior benchmarks that evaluate cloud sesvguch as YCSB [29] and
YCSB++ [88], e-commerce sites [4], and object-oriented [28] &ansaction processing
systems [53]. It is a benchmarking framework developeddored networks which tries to

answer questions such as:

1. What is the tradeoff associated with the alternative s&chires? Which component
of a data store becomes a bottleneck and dictates its SoAB@uidlites ratings?

2. Which systems perform better for what kind of workloads?
3. How do we compare one data store with another for a sodabmnking application?

4. What is the trade-off between ACID and BASE? Does the pedoa improve by
10% or a factor of 100? What percentage of reads produce unfakele data? Is it
0.001% or 10% of all issued reads?

5. Many NoSQL solutions claim scalability and elasticitythsir main benefit. How
well do these solutions scale when compared with one anfitheocial networking
workloads?

6. Which systems are truly mature? For example, how long ddake the system to
load 1 million entities? A few minutes or several weeks.

BG’s contributions are along the following six dimensiongsE it emphasizes inter-
active social actions that read and write a small amount . d8econd, it promotes the
amount of unpredictable data produced by a solution as acfass metric for comparing
different data stores with one another. The value of thigimetimpacted by BG’s knobs
such as the exponent of the Zipfian distribution used to geaeeferenced members and
the inter-arrival time between two socialites emulated byread. These knobs enable one
to approximate a realistic use case of an application totiffyampredictable data practi-
cally. Third, BG computes the freshness confidence to chenaetthe behavior of a weak
consistency technique for a data store. Fourth, BG simpkfiuation of data stores by
reducing their performance to two values: Socialites andabé\ction Rating (SOAR) us-
ing a pre-specified SLA. Fifth, BG is data store agnostic amdhaired nothing architecture
enables evaluating data stores with high processing dépehi Sixth, BG’s visualization
tool empowers an evaluator to quickly author databasesdifibrent characteristics and
invoke and monitor the benchmarking process for evaluaidgta store.



1.2 Thesis Outline

The rest of this dissertation is organized as follows. Chapstarts with a brief survey of
six different well-known benchmarks shown in Table 2.1: RER], RUBBoS [87] TPC-
C [53], YCSB [29], YCSB++ [88] and LinkBench [8]. For each benchknave describe
its data model and compare its characteristics with BG. Ch&pit&troduces the concep-
tual schema for BG’s social graph, its logical data model #éthirteen interactive social
actions. Chapter 4 describes the novel features of BG induidénextensible software
architecture that scales to evaluate the fastest datasst@teapter 5 describes the physi-
cal data design used by BG to create social graphs. ChaptercbssBG’s validation
mechanism used to compute the amount of unpredictable ddtimeshness confidence for
a solution. Chapter 7 emphasizes on BG’s rating mechanismnpuie the SOAR and
Socialites rating for a solution. Chapter 8 illustrates Ud8® to evaluate the performance
of a single node data store, demonstrates how BG can be useddostand performance
trends for different solutions and explains how BG can be tgexudy the scalability of
multi-node data stores. Finally Chapter 9 concludes by dssgrthe long term research
directions that shape the future of BG.



Chapter 2
Related Work

BG falls in thevector base@pproach of [98] that models application behavior as a fist o
actions and sessions (the ‘vector’) and randomly applieb aation to its target data store
with the frequency a real application would apply the actidine input workload file of
BG specifies the frequency of different actions and sessemrgjguring BG to emulate a
wide range of social networking applications. (See Talldat.three example mixes.) This
flexibility is prevalent with both YCSB [29] and YCSB++ [88]. ladt, our implementation
of BG employs the core components of YCSB and extends them wwhomes such as the
actions of Section 3.2, validation mechanism of Chapter gjidan, BGCoord, and BG’s
visualization deck. Those with hands on experience with YAB@BG familiar with the
following key modifications and extensions:

1. A more complex conceptual schema specific to social né&swvor

2. Simple table operations of YCSB have been replaced wittalsactions and ses-
sions.

3. BG consumes an SLA to compute two ratings for a data stor®R%md Socialites.
If no SLA is specified, BG executes the same as YCSB by imposingd &mount
of workload using a fixed number of threafls

4. BG quantifies the amount of unpredictable data produceddayaastore. techniques
and solutions.

5. BG also computes the probability of producing valid data dsnction of time to
characterize the behavior of a weak consistency technigéeeterm this freshness
confidence.

6. BG employs a shared-nothing architecture and constretite@ntained fragments
of its database to ensure concurrent socialites emulateddependent BGClients
are unique, see Section 4.3. This eliminates the need fodc@tion between BG-
Clients during benchmarking phase, enabling BG to scale t@a laumber of nodes.

7. BG includes a visualization tool to empower an evaluatanémitor an in-progress
benchmark and identify bottlenecks.
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[ [ TPC-C RUBBo0S RUBIS YCSB YCSB++ BG LinkBench

Target On-Line Transaction Online E-Commerce Cloud Cloud Interacincial Facebook’s Production
App Processing News Forums Auction Sites Services Services  wadydng Actions MySQL Deployment
jmob.ow2.org/ github.com/ github.com/ github.com/
URL www.tpc.org rubbos.html rubis.ow2.org brianfrank MiloPolte bbgchmark.org facebook
cooper/YCSB /YCSB Nlinkbench

1992 2002 2004 2010 2011 2013 2013

Year
introduced

Table 2.1: Overview of 7 benchmarks for simple operations.

Some of BG’s extensions to YCSB are similar to those that @iffeate YCSB++ from
YCSB. For example, the concept of multiple BGClients managed b@&$ed is similar to
how YCSB++ supports multiple YCSB clients. However, there #se differences. First,
YCSB++ includes mechanisms specific to evaluate table stodsas HBase. These in-
clude function shipping and fine grained access controte&tsof these, BG emphasizes
interactive social networking actions and their impleraginh with alternative data stores.
While extension 6 of BG (see the previous paragraph) is sirtolargest-intensive exten-
sion of YCSB++, it goes beyond simple ranges that partitiom éatoss multiple nodes.
BG logically partitions friendships and resources of meral@constructV self-contained
independent social networks whe¥eis the number of BGClients.

Second, YCSB++ consists of an elegant mechanism to quanéifyntonsistency win-
dow: The lag in acknowledged data store changes that areeotyy other clients for some
time due to the use of a weak consistency semantics suchrasiaveonsistency [112]. BG
captures the impact of such design decisions by quantiffniegamount of unpredictable
data and freshness confidence. All three metrics are in gyraard may co-exist in a
benchmark.

Finally, both YCSB and YCSB++ lack the concept of an SLA to rateatadstore.
SLAs are the essence of both A and C benchmarks of TPC [53].example, TPC-A
measures transactions per second (tps) subject to a resfpmesconstraint. BG is similar
as it employs SLAs to rate a data store, see Chapter 7. It exeift than TPC because it
focuses on social networking actions and incorporatesadigtable data as a component
of SLA.

Table 2.1 shows seven popular benchmarks developed andousegluate data stores.
Others [53] include the Wisconsin benchmark [19], TPC-E/&INDMS/Energy [32], Big-
Bench [49], and the Linked Data Benchmark Council (LDBC) [31]. Wisconsin bench-
mark is a single-user microbenchmark and amongst the vetygBBMS benchmarks. This
benchmark was developed to evaluate the various compowéhis a relational database.
The TPC-E simulates the OLTP workload of a brokerage firm. TP&tl TPC-DS are
decision support benchmarks. TPC-VMS extends TPC-C, TPC-E,HP&d TPC-DC
benchmarks by adding the methodology to obtain performanetrics for virtualized
databases. Finally, TPC-Energy augments the existing TiRChibearks with energy met-
rics. BigBench extends TPC-DS benchmark with semi-structaretiunstructured data
and is detailed in Section 2.4. The LDBC focuses on the graplpexdd data from different
applications, developing methodologies to evaluate tinopaance of graph databases.

Below, we present the alternative benchmarks shown in Tab)erting with the most
relevant. Each section compares BG with each alternativedd\feot repeat a discussion

9



Key feature \TPC-C RUBBoS RUBIS YCSB YCSB++ BG LinkBench

Unpredictable
reads
Parallelism v v v O v
SLA v O O O O
Inconsistency

Window . . - - v
Rating
mechanism
Visualization
Tool

U U ] ] U O]

SNEENENEREN

[
[
0]

|
|
|
|
|
<
|

Table 2.2: Key features of 7 popular benchmarks for simperaions.

of YCSB and YCSB++ in the aforementioned paragraphs. This eh@phcludes with a
discussion of the BigBench benchmark.

2.1 LinkBench

Similar to BG, LinkBench [8] is a benchmark developed for sboetworking systems.
Both have a complicated conceptual schema related to thatsotial networking sys-
tem and assume similar workload characteristics. The wadd consist of actions that
are similar to social interactions users perform in a sawglorking system which are
fairly simple and short-lived. However, LinkBench’s appebaliffers from that of BG.
BG simulates socialites performing social networking aiahile LinkBench uses work-
loads derived from traces of Facebook’s production dagbgstem. Unlike LinkBench,
BG’s workload is stateful, see Section 5.2. BG is data storestgnand emulates the en-
tire storage stack including in-memory caches while Link@&efocuses on their persistent
sharded MySQL storage layer only. To elaborate, at Facelmmkistent storage for the
social graph is provided by sharded MySQL databases. Faksbnemcached and TAO
cache clusters provide a caching layer that can serve mads,rso the MySQL layers
production workload is comprised of cache-miss reads dndriaes [8].

2.2 TPC-C

The TPC-C [71] benchmark from the Transaction Processing €ldaran on-line transac-
tion processing (OLTP) benchmark for comparing altereae@.TP solutions using various
hardware and software configurations. In sharp contrastsBiata store agnostic and one
may use it to evaluate the performance of any data store.

TPC-C involves a mix of five concurrent transactions of défartypes which include
entering and delivering orders, recording payments, dhgdtke status of orders, and mon-
itoring the level of stock at the warehouses. These traimsecto look-up, update, insert
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and delete, and must exhibit atomicity, consistency, tewleand durability (ACID) prop-
erties.

With the assumed ACID properties, TPC-C does not have a metraoinpute the
amount of stale data such as those available in BG and YCSB++. O B@antifies the
processing capability of a system using its throughputisisations per minute (tpm-C).
TPC-C reports this metric along with the total system co$p(#/C) where the system cost
is an approximation of the true cost of the vendor-suppliedign of the system to the
end-user including maintenance costs [53].

TPC-C introduced the concept of SLA in order to compute sygienformance. But
unlike BG for which the SLA requirement is an input parameket tan be adjusted for
different workloads, TPC-C measures throughput of a systaiewatisfying dixed SLA
that requires 90% of each type of transaction to have a regpiime of at most 5 seconds,
except stock-level which can be at most 20 seconds. Fingilyilar to the previously
discussed benchmarks, TPC-C supports parallelism and neayuisiple nodes to impose
a higher load on its target transaction processing system.

2.3 RUBIS and RUBBo0S

RUBIS is an auction site benchmark modeled after eBay.comastadeveloped due to ab-
sence of benchmarks for web sites with dynamic content amskbid to evaluate application
design patterns and application server’s performancalsitigy. Unlike BG which evalu-
ates data stores, the target application for RUBIS is thei@gifan server. So it does not
have a metric to compute the amount of stale data producedapglication and computes
the application performance in terms of the number of reigya®cessed per minute.

RUBIS implements the core functionality of an auction sitehsas selling, browsing
and bidding by implementing 26 user interactions with theligption data stored in a
relational database management system.

The benchmark generator tool for RUBIS emulates users giemgraorkloads for the
dynamic content sites. Similar to BG this tool can run on midtimachines and can be
used to emulate multiple concurrent clients and an inangasite of interactions with the
system.

RUBIS is extended with a tool which collects utilization gats (CPU, memory, net-
work bandwidth, etc.) on each of the client machines whilenmg the benchmark. At
the end of the benchmark execution, RUBIS displays detatigtisscs about the overall
throughput (requests/minute) and response time statistémilar to BG’s visualization
deck, this tool provides immediate insight into the systeshadvior by providing both big
picture and in-depth details.

RUBBOS [87] is very similar to RUBIS and is developed to evaluhteperformance
of application servers and their scalability. RUBBoS was nielafter slashdot.com and
implements the core functionality of an online news forurchsas browsing and submitting
comments and stories, reviewing stories and rating comsnent

RUBBIS and RUBBo0S assume their infrastructure produces caesatts and have no
means of quantifying either stale data or the duration oétinat the system produces stale
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data. Moreover, both benchmarks lack a framework to rateésasiare. These concepts are
supported by BG, differentiating it from RUBIS and RUBBOS.

2.4 BigBench

BigBench [49] is an end-to-end big data benchmark which wasldped based on a prod-
uct retailer. The business cases for the retailer were the draver for identifying the
five main category of queries that constitute BigBench’s waalll These categories are
. Marketing, Merchandising, Operations, Supply Chain and/ Besiness Models. They
motivate complex operations covering different dimensiohbig data analytics. Hence,
BigBench covers a variety of data (structured, semi-strectand un-structured) and their
associated analytic such as those used in support of desigpport applications.

BG is different because it emphasizes simple operationsntdsey OLTP style work-
loads. Moreover, BG abstracts the features of a social nkimgsite instead of a retailer.
Finally, BG assumes a data store may produce stale data whiBeBch assumes its target
data store provides the correct results always.
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Chapter 3

BG’s Conceptual and Logical Data
Models

This chapter describes BG’s data model used to evaluate tfapance of a data store
for interactive social networking actions. We start withanceptual design of data and
its reduction to two logical data models: relational and BISSubsequently, Section 3.2
and 3.3 describe the different actions and sessions s@oploytBG, respectively.

3.1 Conceptual Data Model

Figure 3.1.a shows the conceptual data model of BG’'s databasg the Entity-
Relationship (ER) data model [28]. The Member entity set cigsif accounts registered
with a social network that belong to individual people. Itfibutes include a unique
identifier and a number of string attributes such as firstndastname and others. The
number of these attributes and their lengths are configurgierameters and can be
adjusted to generate different database sizes.

In addition, each member may have either zero or 2 imagesh W latter, one is a
thumbnail and the second is a higher resolution profile im¥geile thumbnail images are
small and in order of KBs, the profile images are in order of #md hundreds of KBs if
not MBs. Typically, thumbnails are displayed when listingfids of a member and the
profile image is displayed when visiting a member’s profile.

A member may either extend an invitation to or be friends \aitlother member. Fig-
ure 3.1.a captures this using the “Invite” and “Friend” tiglaship set§ respectively.

A member may “own” resources such as images, a posted guestidechnical
manuscript, etc. These entities are grouped in one set ndResturces”. The existence
of a resource depends on it being “owned” by a member. HenceguRees is a weak
entity set and the participation of a resource in the “ownettitionship is mandatory.s A
member may post a resource, say an image, on the profile diemoember, represented
as a ternary relationship between two members and a resolrdais relationship, the
two members might be the same member where the member iagtisti resource on her

1An alternative captures both relationships with one Frieiationship set and uses an attribute to differ-
entiate between invitations and friendships.
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Send Invitation

Members

Receive Invitation

Posted on

Created by

anipulatiol

Resources

3.1.a Conceptual data model of BG’s database.

Members:{ Resources:{ GridFSIimages.Files.: {
auseridu . aan aridu . s "'id"' : i
“username”: “” “creatorid” : _,Iingt::s_' e

chunkSize" :
W walluserid“:

p "uploadDate” : “”
“firstname”: “type” : wds® -
“lastname”: “” “hody”: “ }

“gender” : ™ “doc”s

dob”: manipulation”:{ GridFSIimages.Chunks: {
“idate” : *" “mid® “ "id®
“Idate” : *” “modifierid”: “” “files_id" :

address™ type™ "data”

“email” L “content P ata
-’-’teIH : i o timestamp“: i }
ﬂimageidu:uu }

“thumbnailid”:"" }

“pendingFriends™:[]
“confirmedFriends™:[]

}
3.1.b JSON-Like data model of BG’s database.

Members(userid,username,pw,firstname,lastname,gender,dob,jdate,|date,address,tel,email, profileimage,thumbnail)

Friend(userid1,userid2,status)
Resources(rid,creatorid,wallUserid,type,body,doc)
Manipulation(mid,modifierid, rid, resourceCreatorid,timestamp, type,content)

3.1.c Relational data model of BG’s database.

Figure 3.1: Conceptual and logical data models of BG's databas
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3.2.a Conceptual data model of BG’s database.

Members:{
“userid”:""

»on

“username”:
oW
“firstname”:””
“lastname”:"”
“gender”:""
“dob”:""
“idate” "
“address”:””
“email” "
g
“imgid" "
“thumbid”:""”

“pendingFriends”:[]
“confirmedFriends”:[]

“NewsFeed”:[]

Resource:{

“rid”:"”
“creatorid”:””
“walluserid”:””
“type”:""
“body”:""
“doc”:"”

Manipulations:{
“mid”:"”
“rid”:””
“modifierid”:"”
“type”:"”
“content”:"”

o

“timestamp”:

SharedResources:{
“gpigr
“rid”
“recipients”:[]

ESridFSImages.FiIes:{
i
“length”:"”
“chunkSize”:"”
“uploadDate”:"”
“md5”:"”

}

GridFSImages.Chunks:{
iggh e
“files_id”:""
gy
“data”:"”

}

3.2.b JISON-Like data model of BG’s database.

Members(userid,username,pw,firstname,lastname,gender,dob,jdate,Idate,address, tel,email, profileimage,thumbnail)

Friend(useridl,userid2,status)

Resources(rid,creatorid,wallUserid,type,body,doc)

Manipulation(mid, modifierid,rid,resourceCreatorid,timestamp,type,content)
SharedResources(srid,rid,creatorid)
SharedResourceRecipients(srid, userid)

NewsFeed(userid,srid,rid,creatorid)

3.2.c Relational data model of BG's database.

Figure 3.2: Conceptual and logical data models of BG’s datalmasuding feed following
actions.
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Database parameters

Number of members in the database.
Number of pages in the database.
Number of friends per member.
Number of resources per member.
Number of followers per page.
Number of pages followed by each membier.

SR =

Table 3.1: BG’s database parameters and their definitions.

Term | Definition \

Account Any registered profile with a social network which can be
either a member or a page.

Action A logical social operation implemented by a web page and
invoked by a mouse click.

Inter-arrival time| ldle time between two socialite sessions emulated by one thread

Member It is an account registered with a social network system that
belongs to an individual person. Members can perform all BG’s
13 social actions. They can be friends with other members and fg
pages.

Page It is an account registered with a social network that is used to
connect people (members) to a topic, which can be a company,
celebrity, brand, etc.

Pages can be followed only by members,
do not follow anyone and do not have any friends.

Resource An entity that a socialite may browse and post a comment on,
e.g., an image.

Session A sequence of actions by a socialite.

Socialite A member/page engaged in a social session.

Think time Idle time between actions in a session.

Table 3.2: Social networking terms and their definitions.

llow

own profile. A member (either the owner or another) may coniroara resource. This is
implemented using the “Manipulation” relationship set. &mber may restrict the ability
to comment on a resource only to her friends. Figures 3.1db3ah.c show the logical
design of the ER diagram with both MongoDB’s JSON-like ana@trehal data models.
An experimentalist builds a database by specifying the rermab members A7) in the

social network, number of friends per membe), (and resources per membe),(see

Table 3.1. Some of the relationships might be generated esiher a uniform or a skewed
distribution. For example, one may use a Zipfian distributaath either (a) exponent 0.99
to model a uniform distribution that assigns 20% of friendsho 20% of members, or (b)
exponent of 0.27 to model a skewed distribution to assign 6£#endships (1 x ¢) to
20% of members [63].

16



Figure 3.2.a shows the remainder of BG’s schema that supports feedifglestions as de-
tailed in see Section 3.2. The “Invite” and “Manipulation™ relationship setsas#d in Figure 3.1.a
have been removed to make this figure readable. The Account entity sejeiseaalization of
Members (shown in Figure 3.1) and Pages entity sets. Pages are spgiciglstach as business,
celebrities, brands and etc. that share resources with their followersavehMembers. (See Ta-
ble 3.2 a for list of terms and their definitions.) Members also share resowitteother Members
who are their friends. These two relationships are captured using theSfrare” relationship sets.

A member owns a News Feed entity. The News Feed entity for a member displaypp the
events shared by Pages followed by the member or shared by her fri€hidsis captured using
the “Displays” relationship set. Figures 3.2.b and 3.2.c show the logicalrd&sighe ER diagram
shown in Figure 3.2.a with both MongoDB’s JSON-like and relational data leode

With this conceptual model, an experimentalist must specify the number of g&jyethe
number of followers for each page, and the number of pages followed by each membgein
addition to the parameters mentioned before, see Table 3.1. BG first ingemwethbers, their
friendship relationships and their resources into the data store. Nexgiitsrtee pages, creates the
following relationships and inserts the page resources, see Chapter 5.

One may specify BG workloads at the granularity of an action, a sessiamx of these two
possibilities. A session is a sequence of actions wilfink time between actions andinter-arrival
time between sessions. Table 1.1 shows BG’s list of actions and its compatibilitgevighal social
networking sites. We detail these in Section 3.2. Section 3.3 enumerates #rerdiffessions
supported by BG. One may extend BG with new sessions consisting of itragrimix of actions.

Similar to YCSB [29], BG exposes both its schema and its actions to be implementad by
experimentalist. Thus, the experimentalist may target an arbitrary data spefy its physical
data model for the conceptual data model of Figure 3.2.a, provide an imptkinarof the actions
of Table 1.1, and run BG to evaluate the target data store. In addition, pleeimentalist may use
BG to evaluate various physical data representations for a given datga sée Section 8.1. As
detailed in Chapter 7, these functionalities are divided between a Coondinatned BGCoord,
andN slave processes, named BGClients.

When generating a workload, BG is by default set to prevent two simultesngweads from
emulating the same member concurrently. This is to model real life user inteaetsoclosely
as possible. An experimentalist may eliminate this assumption by modifying a setting BGh
software.

3.2 Actions

This section details thirteen social networking actions that an experimentaljistseao define a
workload for a data store. We present each action by describing an imptiine of it using SQL-
X, MongoDB, and CASQL to highlight the significance of database parameteh as number
of friends per member and their impact on the performance of a data sthecthiiee data stores
are described in Chapter 1. A more in depth analysis of alternative phgsizadesign with the
different systems is provided in Section 8.1.

For the first two actions, we present SOAR numbers (see Chapter b)thsifiollowing SLA:
95% of requests observe a response time equal to or faster than 100mtise¢lbe amount of
stale data less than 0.1%. Member ids are generated using a Zipfian distrivittioexponent
0.27. Reported numbers were obtained from a dedicated hardwareplabosisting of six PCs
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SoAR (Actions/Second
SQL-X MongoD

$12,4£é:2&SQL(32,452) soL
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CASQL
-X

MongoDB CASQL MongoDB

1,000 MongoDB

100 |

101

No Image 2KB 12KB 500KB

Figure 3.3: SOAR of 3 different systems with View Profile arftbdent profile image sizes,
M=10,000,5=100 msecq=95%,e=1=0, §=0.27.

connected using a Gigabit Ethernet switch. Each PC consists of a 64 Gtz 4ntel Core i7-2600
processor (4 cores with 8 threads) configured with 16 GB of memory, B.6fBtorage, and one
gigabit networking card. Even though these PCs have the same exadtanddsere purchased
at the same time, there is some variation in their performance. To preventamg®lluting our
results, the same one node hosts the different data stores for all rafiings.node hosts both
memcached and SQL-X to realize CASQL. Either all or a subset of the rergdniodes are used
as BGClients to generate requests for this node, see Section 4.3. WithaterteSoAR values
greater than zero, either the disk, all cores, or the networking care @ittiver hosting a data store
becomes fully utilized. When SoAR is zero, this means the data store failed tiy HagiSLA with
one single threaded BGClient issuing requeats'=1.

3.2.1 View Profile, VP

View Profile (VP) emulates a socialite visiting the profile of either herself otteranember. Its
input include the socialite’s id and the id of the referenced menihe3G generates these two ids
using a random number conditioned using the Zipfian distribution of acc#ssapre-specifiet!
exponent (specified in the input configuration file by the experimentalist igthenchmarking a
system), see Figure 4.4. When the Socialite’s id is not equi}. tine output include#/,’s profile
attributes and the following two aggregate informatidn.'s number of friends[/,.’'s number of
resources (e.g., images). If the socialite is referencing her own predibga(ite’s id equalé/,'s id)
then VP retrieves a third aggregate informatioh's number of pending friend invitations.

VP retrieves all attributes df,. exceptU,’s thumbnail image. This includds,’s profile im-
age assuming the database is created with images, see Section 3.1. An implemeht&favith
the different data stores is as follows. With MongoDB (SQL-X), it retrgetlee document (row)
corresponding to the specifiéd. userid [14]. With MongoDB, VP may compute the number of
friends and pending invitations by counting the number of elements in pentkngs and con-
firmedFriends arrays, respectively. It may count the number of ressyposted oi/,.'s wall by
qguerying the Resources collection using the predicate “wallusefif’'suserid”. With SQL-X,
VP may issue different aggregate queries. With a CASQL system, VP mayraontwo differ-
ent keys usind/,’s userid: self profile when socialite’s id equdls’s userid and browse profile

2The exponenf used in this section is 0.27.
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when socialite’s id does not equél.’s userid. Section 8.1 describes other physical data designs
using SQL-X and MongoDB. Presence of a profile image and its size imusR Sf different
data stores for VP dramatically [97], see Section 8.1. Figure 3.3 showstfa@mpance of three
different systems for a BG database consisting of no-images, and a 2uffbttail image with
different sizes for the profile image: 2 KB, 12 KB, and 500 KB. Theg#rsgs constitute the x-axis

of Figure 3.3. The y-axis reports SOAR of different systems.

With no images, MongoDB provides the best performance, outperfornotig $QL-X and
CASQL by almost a factor of two. With 12 KB images, SOAR of SQL-X dropsndiatically from
thousands to hundretisWith 500 KB image sizes, SQL-X cannot perform even one VP action
per second that satisfies the 100 msec response time (with 1 thread)cipgpduSoAR of zero.
SoAR of MongoDB and CASQL also decrease as a function of larger isiagdecause they must
transmit a larger amount of data to the BGClient using the network. Howtigrdecrease is not
as dramatic as SQL-X.

CASQL outperforms SQL-X because these experiments are run with a warpihase that
issues 500,000 requests to populate memcached with key-value pairsipgitiautifferent member
profiles. Most requests are serviced using memcached (instead oXpQl/hile this does not
payoff* with small images, with 12 KB and 500 KB image sizes, it does enhance perioentd
SQL-X considerably.

3.2.2 List Friends, LF

List Friends (LF) emulates a socialite viewing either her list of friends otheromember’s list
of friends. This action retrieves the profile information of each friendthenpresence of images,
it retrieves only the thumbnail image of each friend. At database creation B@empowers an
experimentalist to configure a database with a fixed number of friends pebendp). This has a
significant impact on the performance of a data store. To illustrate, Figdreh®ws SoAR of the
alternative data stores for LF with three differentalues. per member. (The median Facebook
friend count is 100 [110, 9].) A large# value lowers the rating of all data stores. Overall, CASQL
provides the best overall performance with 50 and 100 friends per nienmWigh SQL-X and
CASQL the network on the data store and the node hosting the cachetiespdoecome the
bottleneck. With MongoDB the CPU on the node hosting the data store becaoitestilized.
Below, we describe implementation details of each system in order to explainetbenped results.

SQL-X must join the Friend table with the Members table (see Figure 3.1.c) to ¢ertipauso-
cialite’s list of friends. We assume the friendship relationship between two emsngrepresented
as 1 recordin Friend table, see Figure 3.1.c. CASQL caches the final results of thetldhand
enhances SoAR of SQL-X by less than 10% witlvalues of 50 and 100. With=1000, SQL-X
slows down considerably and can no longer satisfy the 100 msec resporesrequirement. The
CASQL alternative is also unable to meet this SLA because each key-vddugdasthan 1 MB, the
maximum key-value size supported by memcached. This renders memcalehedddecting all
requests issued by CASQL to SQL-X, producing zero for system S@A&R. may modify mem-
cached to support key-value pairs larger than 2 MB1(000 and each thumbnail is 2 KB) to realize
an enhanced SoAR with CASQL.

3We use SQL-X with the physical data design shown in Figurec3.This design can be enhanced to
improve performance of SQL-X by ten folds or more [14]. Seeti®a 8.1 for details.

4There are several suggested optimization to the source ebdeemcached to improve its perfor-
mance [86, 7]. Their evaluation is a digression from our nfatus. Instead, we focus on the standard
open source version 2.5.1 [77].

5See Section 8.1 for a discussion of representing friendshbrecords and its impact on SoAR.
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Figure 3.4: SoAR of List Friends with 3 different data stoassa function of number of
friends per member#), //=10,000,5=100 msecq=95%,e=1=0, 6=0.27.

With MongoDB, an implementation of LF may retrieve the confirmed friends eitherdmcu-
ment at a time or as a set of documents. With both approaches, the BG clienbgteetrieving the
confirmedFriends array of the referenced member, see Figure 3.1.boéitocument at time, the
client processes the array and for each userid, retrieves the pradilengnt of that member. With
a set at a time, the client provides MongoDB with the array of userids tovetaeet containing
their profile documents. With both, SOAR of MongoDB is inferior to the join aperof SQL-X.

3.2.3 Other Actions

View Friend Requests, VFR:This action retrieves a socialite’s pending friend requests. It retrieves
the profile information of each member extending a friend request invitatiowg alith her thumb-

nail (assuming the database is configured with images). Both the implementaditimedmehavior

of SQL-X, MongoDB, CASQL with VFR are similar to the discussion of LF.

Invite Friend, IV: This action enables a socialite, say B, to invite another member, say A, of the
social network to become her friend. With MongoDB, this action inserts 8&id into A's array

of pendingFriends, see Figure 3.1.b. With both SQL-X and CASQL, thisatipa inserts a row in

the Friend table with status set to “pending”, see Figure 3.1.c. CASQL intedidae memcached
key-value pairs corresponding to As self profile (with a count of pegdnvitations) and A's list

of pending invitation. A subsequent VP invocation that references #essealue pairs observes a
cache miss, computes the latest key-value pairs, and inserts them in tke cach

Accept Friend Request, AFR: Socialite A uses this action to accept a pending friend request
from Member B of the social network. With MongoDB, this action inserts (a)userid in B's
array of confirmedFriends, and (b) B’s userid in As arrays of comédFriends, see Figure 3.1.b.
Moreover, it removes B’s userid from A's array of pendingFrientfith both SQL-X and CASQL,

this operation updates the “status” attribute value of the row correspotwBig friend request to A

to “confirmed”, see Figure 3.1.c. CASQL invalidates the memcached keg-palus corresponding

to self profiles of members A and B, profiles of members A and B as visited leystiist of friends

for members A and B, list of pending invitations for member A.

Reject Friend Request, RFR:Socialite A uses RFR to reject a pending friend request from a
Member B. BG assumes the system does not notify Member B of this event. WiitigdDB,
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we implement RFR by simply removing B’s userid from the A's array of perfairemnds, see Fig-
ure 3.1.b. With both SQL-X and CASQL, RFR deletes the friend requestooresponding to B’s
friend request to A, see Figure 3.1.c. CASQL invalidates the key-valiig parresponding to A's
self profile and pending friend invitations from memcached.

Thaw Friendship, TF: This action enables Socialite A to remove Member B as a friend. With Mon-
goDB, TF removes As userid from B’s array of confirmedFriends and versa, see Figure 3.1.b.
With both SQL-X and CASQL, TF deletes the row corresponding to the fsigipdof user A and B
(with status equal to “confirmed”) from Friends table, see Figure 3.1.S&@Ainvalidates the key-
value pairs corresponding to the list of friends for users A and B, seffip of users A and B, and
profiles of users A and B as visited by other users (because their nafiitiends has changed).
View Top-K Resources, VTR:When BG populates a database, it requires each member to create
a fixed number of resources. Each resource is posted on the walboflamly chosen member,
including oneself’'s wall. View Top-K Resources (VTR) enables a socititetrieve and display
her top k resources posted on her wall. Both the valug ahd the definition of “top” are con-
figurable. Top may correspond to those resources with the highest nainthi&es”, date of last
view/comment (recency), or simply its id. At the time of this writing, BG supports$aisone. With
MongoDB, we analyzed two implementations. With the first, VTR queries thelRess collection

in a sorted order to retrieve tdpresources posted on a socialite’s profile. With the second, a sorted
array of resource ids for the resources posted on each memberswailed with the member’s
information; VTR queries this array to retrieve the topesource ids for a socialite and then queries
the Resources collection to retrieve the resources, see Figure 3.5.mtt€heequired issuing two
gueries and resulted in a performance lower than that observed withrtherfowith SQL-X and
CASQL, VTR gueries the Resources table and uses topered using their rid. CASQL constructs
a unigue key using the action and socialite userid, serializes the resultsaasgaand inserts the
key-value pair in memcached for future reference.

View Comments on Resource, VCRA socialite displays the comments posted on a resource
with a unique id (rid) using VCR action. BG generates rids for this action bgamly selecting

a resource owned by a member (selected using a Zipfian distribution). WitigdDB, we ana-
lyzed two different implementations. The first implementation supported thenschleown in Fig-
ure 3.1.b where the comments for every resource are stored within the rtadioip@rray attribute

for that resource. With this implementation, VCR retrieves the elements of mamjpusaray of

the referenced resource, see Figure 3.1.b. The second implementaatesa separate collection
for the comments named Manipulations, see Figure 3.5. With this implementation, V€liRg
the Manipulations collection for all those documents whose rid equals themnetr resource’id.
With SQL-X, VCR employs the specified identifier of a resource to query thaipllation table
and retrieve all attributes of the qualifying rows, see Figure 3.1.c. CASiDkteucts a unique key
using rid to look up the cache for a value. If it observes a miss, it involepribcedure for SQL-X

to construct a value. The resulting key-value pair is stored in memcachéduce reference.

Post Comment on a Resource, PCRA socialite uses PCR to comment on a resource with a
unique rid. BG generates rids by randomly selecting a resource ownedigynber selected using

a Zipfian distribution. It generates a random array of characters athenent for a user. The
number of characters is a configurable parameter. With MongoDB, PCR leritepted by either
generating an element for the manipulation array attribute of the selectenlgessee Figure 3.1.b
or generating a document, setting its rid to the unique identifier of the refmter@source and
inserting it into the Manipulations collection, see Figure 3.5. With SQL-X and@AFCR inserts

a row in the Manipulation table. CASQL invalidates the key-value pair cooredipg to comments

on the specified resource id.
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Delete Comment from a Resource, DCRThis action enables a socialite to delete a unique com-
ment posted on one of her owned resources chosen randomly. Withdid&8ngn implementation
of DCR either removes the element corresponding to the comment from the utzdicip array
attribute of the identified resource, see Figure 3.1.b or removes the dotuoressponding to
the comment posted on the referenced resource from the Manipulatitetioo, see Figure 3.5.
With SQL-X and CASQL, DCR deletes a row of the Manipulation table. CASQARlidates the
key-value pair corresponding to comments on the specified resource id.

Share Resource, SREach member (page) in BG’s social graph can share a resource shen(#)
either publicly or with a list of specific members. If shared publicly, then tlseusce will be
available for all the members who are friends with the owner of the resdareefollowing the
page). If shared specifically with a list of members, then the resource is mailable to those
members only.

When an experimentalist creates a BG database with pages, BG requhieseaber to follow
a fixed number of pageg) and each page to consist of a fixed number of resourgesThese
resources are created on the page’s own wall and can be shaiedypwlih all the followers of
the page or specifically with a list of them. Share Resource (SR) actiotesreabocialite to share
resources she owns with all her followers or a subset of them. We analgzimplementations of
this action using MongoDB and SQL-X. With the first implementation, Pull, every émesource
is shared, a new record for the shared item is created [100]. Thisdrecaintains the resource
information as well as some meta information such as a list of followers allowesktthe shared
resource (recipients in Figure 3.2.b). The second implementation, PishdexPull as follows. It
maintains a News Feed entity for each follower and inserts the sharedaesouthis entity [100],
see Section 8.4 for details.

The SR action requires the memberid of either the member or the page who erthdateton,
the resourceid for the resource owned by the member which is going tcabedsiith followers
(the resource is owned by the socialite performing the action) and a listlofvérs allowed to
see the shared item. If this list is set to -1 then the resource is shared witk &lldwers of the
resource owner. This is the only action that can be emulated by pagesarB&so be configured
to issuer% of SR actions by pages antl{ r%) of them by members. The value otan be given
to BG as an input parameter in the configuration file.

Both the number of followers per pagé &nd the number of friends per membgy (hay impact
the throughput observed with different data stores using workloadlsistong of SR actions. For
example with the Push approach, every time a celebrity (page with more thah@0dollowers)
shares a resource, the News Feed entities for all its followers need fwlb&ed, see Section 8.4.2
for more details.

View News Feed, VNF:Each member of BG owns a News Feed entity. The VNF action enables a
socialite to retrieve her news feed and display theiaopsources shared with the member. These
resources may be shared publicly or privately with the member by other mestheis following.

The definition of topk is configurable. This action requires the memberid of the Member emulating
the action, and the value férand returns a list ok resources satisfying the order required by the
application, as the events in the member’s news feed.

An implementation of this technique may use the design of the Share Resouroeaadttows.
With the first one, Pull, upon a VNF action, the pages followed by the membenemtiends are
gueried. Next, all the resources shared by these members/pages vehéthar shared publicly or
specifically shared with the member are retrieved. Finally thektopteria is applied to limit the
number of shared resourcesi@nd the finalk resources are returned as the events displayed on
the member’'s News Feed. With the second implementation, Push, the eveatswhihra member
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(publicly or privately) are maintained in a structure (News Feed entity) gadted upon an SR
action. So a VNF action only retrieves this News Feed structure for each enemulating the
action.

The performance of VNF is impacted by the number of friends per membengd number of
pages followed by each membej).(With a larger value of andp for a member, VNF will require
retrieving a larger amount of data that results in slower service times.

Computing the SoAR for a data store with a workload consisting of VNF andciibna de-
pends on the duration of the experiment, see Section 7.3. This is becausawithease in the ex-
periment duration, a larger number of SR actions are emulated and the ed/$df each member
will consist of larger number of events resulting in slower response tingka éower throughput.

3.3 Sessions

A sessioris a sequence of actions performed by a socialite. BG employs the Zipfiaitatisin

to select one of thé/ members to be the socialite. The selected session is based on a probability

computed using the frequencies specified for the different sessionsdnfiguration file. A key

conceptual difference between actions and sessions is the condeipikdime,e. This is the delay

between the different actions of a session emulated on behalf of a so@&itwupports the concept

of inter-arrival time (/) between socialites emulated by a thread with both actions and sessions.
Currently, BG supports 8 sessions. The first session is the starting poitiitef remaining 7

sessions. These sessions are as follows:

1. ViewSelfProfileSessiod VP(m;), VTR(m;)}: A Memberm; visits her profile page to view
her profile image (if available), number of pending friend requests, nuwibeonfirmed
friends, and number of resources posted on her wall. Next, the memberdistspi: re-
sources.

2. ViewFrdProfileSessio VP(m;), VTR(m;), LF(m;), VP(m;), VTR(m;) | m; € LF(m;))}:
After viewing self profile and togk resources, Memben; lists her friends and picks one
friend randomly,m;. Next,m; viewsm;'s profile andm;'s top k resources. lin; has no
friends, the session terminates without performing the two actionson

3. PostCmtOnResSessidiVP(m;), VTR(m;), VP(Mand), VTR(Myand)y VCRErand) | rand
€ VTR(myand), PCREand), VCR(rrana) }: After viewing self profile and tog: resources,
Memberm,; views the profile of a randomly chosen membey,,.q, lists m,qn4's top k
resources, and picks one resource randomly,,. If there are no resources, the rest of the
actions are not performed. Otherwise, views comments posted @f,,,4, POSts a comment
onr,.nq and views all comments on,,,q a second time.

4. DeleteCmtOnResSessidV,P(m;), VTR(m;), VCR(r4nd), DCRand) | Trand EVTR(M;),
VCR(rrqnq) }: After viewing self profile and tog: resources, Membern,; views comments
on one of her own randomly selected resourgg, , deletes a comment from this resource
(assuming it exists), and views commentsiop,, again. Ifr,..,q has no comments, she
skips the remaining actions and the session terminates.

5. InviteFrdSessiof,VP(m;), VTR(m;), LF(m;), IF(m;), VFR(m;) | m; N LF(m;) = 0}: After
viewing self profile and tof resources, Member.; lists her friends, and selects a random
memberm; who has no pending or confirmed relation$higith m;. (If all members of the

®Includes friendship, pending invitation from; to m;, and pending invitation from; to m.
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database arey;’s friend then the remaining two actions are not performed.) She invites
to be friends and concludes by listing her own pending friend requests.

6. AcceptFrdReqgSessiofiyP(m;), VTR(m;), LF(m;), VFR(m;), AFR(m;) | m; € VFR(m;),
VFR(m;), LF(m;) }: After viewing self profile and tog: resources, Memben; lists her
friends and pending friend requests. Next, she picks a pending freaneest by member
m; and accepts this friend request (if any). She reviews her friendestqusecond time
and concludes by listing her friends. 7i; has no pending friend requests, she skips the
remaining actions and the session terminates.

7. RejectFrdReqSessiofP(m;), VTR(m;), LF(m;), VFR(m;), RFR(n;) | m; € VFR(m;),
VFR(m;), LF(m;) }: After viewing self profile and tog: resources, Memben; lists her
friends and pending friend invitation to select an invitation from membgr She rejects
friend request fromm;, views her own friend requests and lists her friends a second time. If
m; has no pending friend requests, she skips the remaining actions andsfumserminates.

8. ThawFrdshipSessiofiYP(m;), VTR(m;), LF(m;), TF(m;) | m; € LF(m;), LF(m;) }: After
viewing self profile and to resources, Member; lists her friends and select a friend;
randomly. Nextn; thaws friendship withn;. This session concludes with; listing her
friends. Ifm; has no friends, she skips the remaining actions and the session terminates.

Note the dependency between the valuengfandm; with ViewFrdProfileSession, InviteFrdSes-
sion, RejectFrdReqSession, and ThawFrdshipSession. For exaniiplé/iewFrdProfileSession,
m; must be a friend ofn;. If m; has no friends, the session terminates without performing the
remaining actions.

3.4 Summary

This chapter described the conceptual data model of BG and its reductiwa togical data mod-
els, JSON and relational. In addition, we described the different actimhs@ssions supported
by BG. Conceptually, BG is a stateful benchmark. It generates actiahsession requests that
are meaningful. For example, it does not issue an Invite Friend action ladfled Socialite A
to Member B if they are friends. Similarly, with a session such as DeleteCmtGeRsi®n that
enables Socialite A to delete a comment created on one of the resources oster wall, BG
generates a comment that is guaranteed to exist prior to invocation of thecBi@Rand of this
session. Section 5.2 describes how BG implements these concepts physically.
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Chapter 4

An Extensible and Scalable
Benchmarking Framework

BG is a scalable benchmark that utilizes multiple nodes to generate requdsthigrscalable data
stores. It is an extensible framework with the following two architectural acomepts: one or more
BGClients and one BGCoord. The BGCoord is a coordinator that startstapd the BGClients,
gathers performance statistics from the BGClients and aggregates thethretpged rates a data
store per discussions of Chapter 7. Each BGClient is an extensible cemtpbhiat exposes BG’s
conceptual database schema and its social networking actions, antbdataisalization and shut
down for implementation by an experimentalist, see Chapter 3. This makes B&ai@agnostic
by empowering an experimentalist to tailor BG to any data store and use itsurmt@ohality to
initialize the data store, create a database, populate the database with natatege pre-specified
mix of actions using a fixed number of threads, and rate a data store. fihef@ach BGClientis a
plug-and-play infrastructure that is modular and configurable. Its thirde&ons are modules and
one may extend BG with new actions by authoring new modules. A BGCliens geadnfiguration
file that specifies a mix of actions and sessions, the degree of skew théd &ie used to reference
members, and the duration of an experiment specified either as a fixed taofidinme or a fixed
number of requests issued to the data store.

Next section describes BG’s input configuration file and how it can led i invoke a valid
workload. Section 4.2 describes the the software architecture of BGQligmpre components,
its extensibility and how an experimentalist may introduce new commands as modhirhedly,
Section 4.3 describes how multiple BGClients partition a social graph in ordentrate requests
without synchronizing with one another to scale to a large number of ndd@s.discussion in-
cludes a novel decentralized implementation of Zipfian named D-Zipfian R&ipfian ensures
the distribution of generated requests is not impacted by the degree bélmmrs i.e., the number
of BGClients used to generate requests in a scalable manner. We detaild@smechanism in
Chapter 7.

4.1 Mix of Actions

One may evaluate a data store by specifying a workload consisting of a metiofis. Three ex-
ample workloads are shown in Table 4.1. Note that it is acceptable to speoifag the frequency
of an action as it causes BG to not issue that action. An action may reéeo@ecor more entities
(e.g., members, resources, comments used by the actions). BG selectsitite dadi¢he entity us-
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BG Very Low Low  High
Social Type | (0.1%) (1%) (10%)
Actions Write Write  Write
View Profile Read 40% 40%  35%
List Friends Read 5% 5% 5%
View Friend Requests Read 5% 5% 5%
Invite Friend Write 0.04% 0.4% 4%
Accept Friend Request Write | 0.02% 0.2% 2%
Reject Friend Request Write |  0.02% 0.2% 2%
Thaw Friendship Write |  0.02% 0.2% 2%
View Top-K Resources Read | 49.9% 49%  45%
View Comments on a Resource | Read 0% 0% 0%
Post Comment on a Resource | Write 0% 0% 0%
Delete Comment from a ResourcéNrite 0% 0% 0%
Share Resource Write 0% 0% 0%
View News Feed Read 0% 0% 0%

Table 4.1: Three mixes of social networking actions.

ing either a random or a Zipfian distribution as specified by the configurtiéggoisee Section 4.3.1.
For example, with the View Profile action, the configuration file may specify seeofithe Zipfian
distribution to select a member performing this action and the use of a randwoibudien to select
the member whose profile is being viewed. Similarly, the Thaw Friendship aetidipfian distri-
bution generates the identity of a member to emulate the action and a random tiistribiselect
one of this member’s friends to thaw friendship

In addition, each workload is symmetric. A symmetric workload is one that doeshange
the state of the database characterized by its size and the structure ofialsgsaph. With a
workload involving write actions, the database size remains constant ontglibtpe of the records
inserted equals the total size of records deleted from the databasetr(dtare of a social graph
is determined by the number of friends per member. In order for it to remaimamnged, workload
involving updates should maintain the number of friends per member and thesnofrddomments
posted per resource constant (The number of friends per membdd skmain the same as the
initial number of friends inserted per member and the number of comments pustedsource
should remain the same as the initial number of comments posted for eactcedsdine workload
mixes of Table 4.1 ensure a constant database size and a fixed sqeiestjrecture by ensuring the
following two conditions:

e As the size of each comment posted on a resource is constant, the totalrnafnmssy
comments inserted should be equal to the total number of comments deleteddrsystdm.
This is possible by specifying an equal percentage for the Post Commée¢spurce and
Delete Comment From Resource actions.

e The rate at which friendships are generated should be equal to the vatéch friendships
are being thawed from the system. This is possible if the percentagesexpémifine friend-

BG is developed using YCSB's core modules and inherits it§ddm and Latest distributions that can
be used to select a member for emulating an action.
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Figure 4.1: SoAR for 3 mixes of read and write actions for ¢hd#ferent data stores,
M=10,000, 12 KB image size;=100, = 100, =100 msecn=95%,7=0.01%,e=1=0,
6=0.27.

ship actions (Accept Friend Request, Reject Friend Request, ThandBhig and Invite
Friend) satisfy the following constraints:

1. Percentage of Invite Friend = percentage of Reject Friend Requestcentage of
Accept Friend Request

2. Percentage of Thaw Friendship = percentage of Accept Friendd3eq

An experimentalist may specify an arbitrary mix of actions as a workload figidg new set
of parameters (percentage for actions and distribution). Figure 4.1ssBowR of the different
systems with the 3 mixes for a database with 10,000 members and 100 friermdsmpéer. Mon-
goDB? outperforms SQL-X for the different mixes by almost a factor of 3. TheSQA is sensitive
to the percentage of write actions as they invalidate cached key-valugqaising read actions to
be processed by the RDBMS. With a Very Low (0.1%) write mix, CASQL odgrer MongoDB
by more than a factor of 3. With a high percentage (10%) of write action&ARSuf CASQL is
slightly higher than MongoDB.

The observed trends with SQL-X and MongoDB change depending omithef VP and LF
actions. In Figure 4.1, MongoDB outperforms SQL-X because the émguof VP is significantly
higher than LF. If this was switched such that LF is more frequent than ®#® 3QL-X would out-
perform MongoDB. A system evaluator should decide the mix of actiorexh@sthe characteristics
of a target application.

4.2 Extensibility and Modularity

In addition to being configurable, BG is modular and extensible. Hencep@yeadapt BG by
modifying or updating it to support new data stores and new applicatiofireagents. BG consists

of loosely-coupled modules/components allowing each component to be rdodifte minimal
impact on the rest of the systénFigure 4.2 shows BG's components. The Generator component,

2We use MongoDB with its strict write concern which requirastewrite to wait for a response from the
server [58]. Without this option, MongoDB produces staleadéess than 0.01%).
3As BG was developed on top of YCSB'’s core functionality iténits some of YCSB’s modules [29].

28



« Throughput

* Avg/Min/Max response time

+ Amount of unpredictable data Config File
(See Chapter 6)

BGClient
Generator
BGClient
Threads
Measurement Validation
(See Chapter 6)

Data Store Interface

Data Store

Figure 4.2: BGClient architecture and its components.

produces both the data loaded into the data store during the load phase aratkload (see Sec-
tion 4.1) issued to the data store during the benchmarking phase. This cemponsists of two
sub-components: ActionGenerator and DataGenerator. The Actiong2@neodule is responsible
for generating the actions that need to be issued against the data stese.aftions depend on the
mix of workload specified (by the configuration file) for the benchmarkingse. The DataGener-
ator is responsible for populating the data store with data during the load entifythg member
ids that participate in an action. The member distribution controls the activityflaviile different
members (see Section 8.4). A member with a higher activity level is picked nemyedntly to is-
sue actions to the data store. These components allow for introducing oialadions or member
distributions easily.

BG’s Measurement component provides methods to quantify the time useedatexifferent
actions. It can be easily extended to measure, summarize and reporeriemrance metrics. The
Validation component is responsible for computing the amount of unpretéafala as detailed in
Chapter 6. One may modify and extend the algorithms in this module with minimal impathen
components. And finally, the Data Store Interface component is fully eéxpas available to be
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tailored to other data store back-ends to evaluate new data stores. Wascasschow BG can be
extended in more details.

e New Actions: Introducing new actions within BG is simple and can be done ie Steps.
The first step is to define the interface for the action, this is the name of the attovalue
it returns and the parameters required for the action, for example the Hitrewdship action
requires two memberids, one identifies the socialite performing the action arsé¢bad
is the target member of this action. Next the ActionGenerator is extended withothe
of the action to identify the memberids. In our example, this is picking socialite A @sing
distribution, picking the second member from the friends of Memtferidsuing the action,
updating BG's internal data structures and logging the appropriate infomrazquired for
validation. The final step is to measure the duration of the action by addingtibe &o the
measurement component.

e New Distributions: BG can also easily be extended to support differemifdisons to gen-
erate memberids. For this purpose, the DataGenerator component ceeiiied to create
the new distribution by assigning probability of references for each ofrtbebers. Next,
BG can be configured to use the new distribution to select members when egaletions.

e New Data Store Back-ends: BG can be used to evaluate new data stioiesaim be done by
introducing a new implementation of the Data Store Interface class for the tagestore.
This class should implement all the social actions that have an interface irction@ener-
ator.

BG is extensively being used all around the world and its highly modular nlesigimizes the
effort required for using and extending it. We conducted a surveybaf BG's users to understand
its usability, extensibility with a variety of NoSQL data stores and ease of saftwjpdate, see
Appendix A for the surveys. These members were familiar with Java aredlD& Tools and had
a good understanding of their data store’s functionalities. 88% of the merfingrd BG easy to
install, and claimed to be comfortable using BG and extending it for a new data $tigure 4.3
shows the average number of hours spent by these users to externd B&iif data stores.

4.3 Scalable Request Generation

Today’s data stores use techniques that may fully utilize resources (€& detwork bandwidth)
of a single node benchmarking framework. For example, Whalin client foncaehed (CASQL)
is configured to compress key-value pairs prior to inserting them in theecéiatecompresses key-
value pairs upon their retrieval to provide the uncompressed version talligs, ¢.e., BG. Use of
compression minimizes CASQL'’s network transmissions and enhances itshiacite by reducing
the size of key-value pairs with a limited cache space. It also causes thef@GR&node executing
BG to become 100% utilized for certain workloads. This is undesirable bedha resulting SOAR
reflects the capabilities of the benchmarking framework instead of the daga sto

To address this issue, BG implements a scalable benchmarking framewogkausimared-
nothing architecture, see Figure 4.4. Its software components are agsfollo

4BG is stateful and maintains the information about membieiesnds and pending friendship relation-
ships in its internal data structures. This is required gteofor BG to perform valid actions. For example if
Member A and Member B are already friends BG should not tryetoegate a friend request from Member
A to Member B.
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. A coordinator, BGCoord, computes SOAR and Socialites rating of a ttatatsy implement-
ing both an exhaustive and a heuristic search technique. Its input & gepecifications
and parameters of an experiment, see Table 7.2. It computes the fractimrkbdbad that
should be issued by each worker process, named BGClient, and comteantoaith that
BGClient. BGCoord monitors the progress of each BGClient periodicallyseamtes their
current response time and throughput, and reports these metrics to BGdization deck
for display, see Item 3. Once all BGClients terminate, BGCoord aggretiedmal results
for display by BG’s visualization deck.

. A BGClient is slave to BGCoord and may perform three possible taskst, [Eieate a
database. Second, generate a workload for the data store that igeransith the BGCoord
specifications. Third, compute the amount of unpredictable data prodydbe data store.
It transmits key metrics except for the amount of unpredictable data to Bd@edodically.
At the end of the experiment, it computes all metrics and transmits them to BGCoord

. BG visualization deck enables a user to specify parameter settings ©Go@®@, initiate
rating of a data store, and monitor the rating process, see Appendix B.

Once BGCoord activatedy BGClients, each BGClient generates its workload independently

to enable the benchmarking framework to scale to a large number of nodesealize this by

constructing the physical database of Section 3.1 to consistlofical self-contained fragments.
Each fragment consists of a unique collection of members, resouraktheinrelationships. BG

can realize this because it generates the benchmark database. B@€sigrss a logical fragment
to one BGClient to generate its workload. This partitioning enables BG to implenmispieness

of concurrent socialites, i.e., the same member does not manipulate the databakaneously.

Note that construction of logical fragments has no impact on the size of t{feicphdatabase and
its parameter settings such as number of friendships.
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Figure 4.4: BG’s shared nothing architecture.

With BG, an experiment may specify a Zipfian distribution with a fixed expoaadtvary the
number of BGClients, value aV. BGClients implement a decentralized Zipfian, D-Zipfian [13],
that produces the same distribution of references with different valu@é. oThis enables us to
compare results obtained with different number of BGClients with one anotfverimplement
D-Zipfian to incorporate heterogeneity of nodes (hosting BGClients) evbiee node produces re-
guests at a rate faster than the other nodes. D-Zipfian assigns more It fastest node by
assigning a larger logical fragment to it and requiring it to produce mapeesis. Hence, tha’
BGClients complete issuing requests at approximately the same time. For detai&igfidh, see
Section 4.3.1.

Figure 4.5 shows the throughput of MongoDB as a function of threBjith@t emulate concur-
rent socialites. Presented results pertain to different number of BGClierfteming View Profile
(VP) action with D-Zipfian and exponent 0.27. The Socialites rating is thetheofgeach curve
along the x-axis. While it is 317 with 1 BGClient, it increases 3.2 folds to 1024 &ith6) BG-
Clients. A solid rectangular box denotes the SoAR rating with a given nunfilBsGlients. It also
increases as a function af; from 15,800 with 1 BGClient to 33,200 with 16 BGClients. With 1
BGClient, the client component of MongoDB used by the BGClient to communidittets server
component is limiting the observed ratings. We know it is not the hardwareptatiecause we
can run multiple BGClients on one node to observe higher ratings. Fouicphy®des are used
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Figure 4.5: MongoDB’s throughput as a function®fwith View Profile (VP) action and
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6=0.27.

in the experiments of Figure 4.5. Both SOAR and Socialites rating remain ugetidrom 8 to 16
BGClients. D-Zipfian ensures the same distribution of requests is generighetito 16 BGClients.

4.3.1 D-Zipfian: A Decentralized Implementation of Zipfian

With most applications, a uniform random distribution of access to data itemsidsitymot real-
istic due to Zipf’'s law [122]. This law states that given some collection of datasif¢he frequency
of any data item is inversely proportional to its rank in its frequency tables mieans the data item
with the lowest rank in the frequency table will occur more often than the datawiéh the second
lowest rank, the data item with the second lowest rank in the frequencyw@btecur more often
than the one with the third lowest rank, and so on and so forth. By manipuliéngxponerito
that characterizes the Zipfian distribution one may emulate different rutbsimib such as: 80% of
requests (ticket sales [33], frequency of words [122], profile fopk) reference 20% of data items
(movies opening on a weekend, words uttered in natural language, neaitzesocial networking
site).

Use of multiple BGClients raises the following research question: How do B@iSI@oduce
requests such that their overall distribution conforms to a pre-speciig@d distribution? One
solution, named Replicated ZipfiaR{Zipfiar), requires each BGClient to employ the specified
Zipfian distribution with the entire population independently. R-Zipfian is éffeavhen BG pro-
duces workloads with read only references. It also accommodatesdeteinus nodes where each
node produces requests at a different rate as each BGClient ussstitleepopulation to generate
the Zipfian distribution.

However, with BG, R-Zipfian introduces additional complexity in two casesst,Fifferent
BGClients might be required to reference a unique data item at an instance in tnaer to model
reality. For example, they might be required to emulate a unique user of d setiarking site
performing an action such as accepting friend request. R-Zipfian wegldre additional software
to coordinate multiple BGClients to guarantee uniqueness of the refereatadtems. Second,
BG measures the amount of unpredictable data produced by a data s#tgrevaskloads that are a
mix of read and write actions. It time stamps these to detect unpredictable Radgfian would

5See Equation 4.1 in Section 4.3.1.
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Figure 4.6: Performance of MongoDB with two different numbeBGClients.

require BG to utilize synchronized clocks [70, 78, 43, 61, 93] to deteptadictable reads. Both
complexities are avoided by partitioning data items across BGClients.

With partitioning, BGCoord assigns a disjoint set of data items to each BGClieBG@lient
issues requests that reference its assigned data items only. This é8G@nts reference unique
data items simultaneously. Moreover, the potential read-write and write-wriféiats are localized
to each BGClient and its partition, enabling it to quantify its observed amoumtedictable data
using its own system clock and independent of the other BGClients.

With N BGClients, each BGClient must reference data items such that the overatiudion
of references conforms to a Zipfian distribution with a pre-spec#fiddoreover, the resulting dis-
tribution must remain constant as a functionofi.e., the degree of parallelism employed by BG.
This property is not trivial to realize because each BGClient has atsobte original population
and issues requests independently. As discussed in Section 4.3.1, B@&dlent uses the original
6 with a subset of the population, the resulting distribution becomes more unéfenve increase
the value ofN. This is not desirable because it produces experimental results thatratie and
difficult to explain. For example, one may quantify the processing capabil&ycache augmented
SQL (CASQL) data store [48, 86, 7] witly andny, BGClients (; < n9) and observe a lower pro-
cessing capability withi, because its distribution pattern is more uniform (which reduces the cache
hit rate with a limited cache size). This is avoided by making the Zipfian distributidepi@ndent
of N.

Problem Statement

With a Zipfian distribution, assumingy/ is the number of data items, the probability of data item
is:

_1
7;(1—6‘)

M
Zm:l(m(ll—ﬂ) )

wheref characterizes the Zipfian distribution.
Assuming data items are numbered 1MQ a centralized implementation of Zipfian is as fol-
lows:

pi(M,0) = (4.1)

1. Compute the probability of each data item using Equation 4.1.
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2. Compute array A consisting @ff elements where the value of the first element is set to the
probability of the first itemA[1] = p;(M, ), and the value of each remaining element
is the sum of its assigned probability and the probabilities assigned to the ysewie- 1
elementsAli] = Z;.:lpj(M, 0),1 < i < M. The last element of the array)/], should
equal 1 because sum of tli¢ probabilities equals one. If this value is slightly lower than 1
then setitto 1.

3. Generate a random valu®etween 0 and 1. Identify tHé" element of the array that satisfies
the following two conditions: a) A{] is greater than or equal tq and b) Either Ak-1] has
a value lower tham or is non existent (becaugeis the first element of A). Produdeas the
referenced data item, < k < M.

For an example, see discussions of Table 4.2 in Section 4.3.1.

The challenge is how to parallelize this simple algorithm such #aBGClients reference
data items and produce a distribution almost identical to that of one BGClierensiing data
items. Below, we differentiate between local and global probability of a data titeprovide a
mathematical formulation of the problem.

Each data itemi has a local and a global probability of reference. Its local probabiliégigies
its likelihood of reference by its assigned BGCliénwith m;, data items. One possible definition of
the local probability of an objedtis provided by Equation 4.D,(my, §). An algorithm may either
use this definition or provide a new one, see Crude in Section 4.3.1 andfiarziip Section 4.3.1.
The global probability of data iterhassigned to BGClient is a function of its local probability
and the ratio of the number of references performed by BGCli€t,) relative to the total number
of references@) by N BGClients:

10
¢i(M,0,N) = Hk x pi(my, 0) (4.2)

With 1 BGClient, N = 1, local and global probability of a data item are identieg{M,0,1) =
pi(myg, 0), because all data items are assigned to one BGChent- M, and that BGClient issues
all requests, i.e.% = 1. With 2 or more BGClients, the global probability of a data item is lower
than its local probabilityg; (M, 6,1) < p;(my,0). See discussions of Table 4.2 in Section 4.3.1.

In sum, a parallel implementation of Zipfian with° BGClients may manipulate either the
number of data itemsi(;) assigned to each BGCliehtand their identity, the definition of the local
probability of an object, the number of reference®() made by BGClienk, or all three. Note
that by manipulating),, we are not shortening the execution time of one BGClient relative to the
others, see Section 4.3.1. To the contrary, as detailed in Section 4.3.1fignZipanipulates)y,
to require a mix of fast and slow BGClients to complete at approximately the same Timgis
important because if one BGClient finishes considerably sooner tharhéesdhen the degree of
parallelism is no longeN .

A mathematical formulation imposes the following constraint on a parallel implememtaitio
Zipfian: ¢;(M,0,N) ~ ¢;(M,0,1) foralli and N > 1. It states the computed global probability
of each data itena with two or more BGClients should be approximately the same as its computed
probability with one BGClient.

The concepts presented in this section are demonstrated with an example extlsection
using two n@ve and intuitive ways to parallelize the centralized implementation of the Zipfian.
They pave the way for the correct parallel implementation, D-Zipfian ofi@ed.3.1. The reader
may skip to Section 4.3.1 for the final solution.
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Data item Zipfian/Crude withNV = 1 Crude withV =3

i pi(12,0.01) = ¢;(12,0.01,1) Ali] pi(4,0.01)  ¢;(4,0.01,3)

1 0.319014588 0.3190145880.477558748 0.159186249
2 0.160616755 0.479631343 0.240440216 0.080146739
3 0.107512881 0.587144224 0.160944731 0.053648244
4 0.080866966 0.668011191 0.121056305 0.040352102
5 0.064838094 0.732849284 0.477558748 0.159186249
6 0.054130346 0.786979631 0.240440216 0.080146739
7 0.046469017 0.833448647 0.160944731 0.053648244
8 0.04071472 0.874163368 0.121056305 0.040352102
9 0.036233514 0.9103968820.477558748 0.159186249
10 0.032644539 0.943041421 0.240440216 0.080146739
11 0.029705152 0.972746574 0.160944731 0.053648244
12 0.027253426 1 0.121056305 0.040352102

Table 4.2: Example with 12 data items afwD.01.

Example and Two N&dve Approaches

This section uses a small population consisting of twelve data itdsl@) to demonstrate the
concepts presented in Section 4.3.1. In addition, it describes tive techniques to parallelize
Zipfian and their limitations.

Table 4.2 shows the local and global properties of the individual data itéthdend 3 nodes,
N=1andN=3. lIts first column shows the individual data items numbered from 1 to 12etisnd
and third columns correspond to one nodé & 1) and show the local and global probabilities
of each data item with the exponent 0.@£0.01, and the values of Array A used by a central-
ized implementation to generate the Zipfian distribution, respectively. To implefigfian, an
implementation generates a random vatleetween 0 and 1, say=0.5. It produces data item 3 as
its output because A[3] exceeds 0.5 and A[2] is less than 0.5. (See Steih@ pseudo-code to
generate data items in Section 4.3.1 for a precise definition of selecting A[i].)

With N BGClients, sayV=3, a technique namedruderange partitions data items across the
BGClients as follows: BGClient 1 is assigned data items number 1 to 4, BGClieasgigned data
items number 5 to 8, and BGClient 3 is assigned data items number 9 to 12. Itausa$oR 4.1
with m; = 4 and the originab value (0.01) to compute the local probability of each data item, see
the fourth column of Table 4.2. The fifth column of Table 4.2 shows the gloledialnility of each
data item with Crude using Equation 4.2 assuming each BGClient pro%uoéseferences, ie.,
O = 3 x Oy. These are significantly different than those with 1 BGClient, compare 2ddbthn
columns, and do not satisfy the mathematical constraint presented in Se8tibn 4

Crude may assign data itemsabBGClients in several other ways including:

e Hash (instead of range) partition data items using theirtwassignm, data items to BG-
Clientk.

e Provide BGClients with m; assigned data items. Next, each BGClient would use the cen-
tralized implementation of Zipfian (see Section 4.3.1) with the entire populationererefe
a data item. If the referenced data item is not one ofrthedata items then BGClierit
discards this request and generates a new one.
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Figure 4.7:¢;(M, 0, N) of data items with three different techniquég=12, =0.01, and
N={1, 3}.

While these enable each BGClient to generate a Zipfian distribution indepgndbe resulting
distribution (across alV BGClients) is dependent on the value/gf As we increase the value of
N, the resulting distribution becomes more uniform, see Figure 4.7.a. Note thaVwghthe same
distribution is repeated 3 times because each BGClient generates its distribdéperiiently with
my=4 andf#=0.01. Hence, a data item that was referenced infrequently Aith is now accessed
more frequently. Unless Crude manipulates either its definition of local pilitpaof a data item
(p;) or the number of references issued by a BGClient, the results of Tabtem&in unchanged.
A variant of Crude, nameblormalized-Crudgedefines the local probability of a data iteras

D = %. This definition utilizesM (instead ofm;) to normalize the probability of data
items a’ézszligned to each BGClient. With one node, it is identical to the centralizGdrZipcause

its denominator equals Iy = M and the sum of the probability of data items equals 1). With
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more than one node, the global probabilities produced by Normalizede@mnedmore uniform than
Crude, see Figure 4.7.b assumiig= 3 x O. Note that the most popular data item with= 1
has a global probability that is almost twice that with= 3. Section 4.3.1 shows that with a minor
adjustment, Normalized-Crude is transformed into the final solution.

D-Zipfian

We present D-Zipfian assuming BGClients are homogeneous and praduests at approximately
the same rate. Subsequently, Section 4.3.1 extends the discussion todretersyBGClients that
produce requests at different rates.

Homogeneous BGClients

With N BGClients, D-Zipfian construct®/ clusters such that the sum of the probability of data
items assigned to each clusterﬁs Given a clustek consisting ofm;, elements and assigned to
BGClientk, D-Zipfian overrides the local probability of each data iteas follows:
pi(Ma 0)

P S (M) 3
This definition of local probability is identical to that used by Normalized-@rud-Zipfian is
different because it constructs clusters by requiring the sum of pilitpaof data items assigned
to one cluster to approximatﬁ. Thus, denominator of Equation 6.1 approximaﬁgs Details of
D-Zipfian can be summarized in two steps.

In this first step, BGCoord computes the probability of access tdfhdata items using Equa-
tion 4.1. Next, it constructd/ clusters of data items such that the sum of the probability ofithe
data items assigned to clusfeis +, > p;(M,0) = . Finally, it assigns clustét to BGClient
k by transmittin§ the identity of its data items to BGClieit (A heuristic to construct clusters is
described in the following paragraphs.)

In the second step, each BGClient adjusts the probability of its assigneitetiasausing Equa-
tion 6.1. Note that the denominator of Equation 6.1 approxim%tetsacause BGCoord assigned
objects to each BGClient with the objective to approxim%te Finally, each BGClient uses its
computed probabilities to generate array A to produce data items, see Se8tlhnGeneration of
the requests by each BGClient is independent of the other BGClients.

One may construct clusters of Step 1 using a variety of heuristics. We ai$alttwing simple
heuristic. After BGCoord computes the quota for each BGClienQk, = % it assigns data
items to the BGClients in a round-robin manner starting with the data item that hagytiest
probability. Once it encounters a BGClient whaggis exhausted, BGCoord attempts to assign the
data item with the lowest probability to this BGClient as long agjifds not exceeded. Otherwise,
it removes this BGClient from the list of candidates for data item assignmeprbdeeds to repeat
this process until it either assigns all data items to BGClients or runs out ofiB@€ If the later,
the coordinator assigns the remaining data items to one of the BGClients

Figure 4.7.c shows D-Zipfian's produced probability with 1 and 3 BGCliemtk122 data items.
When compared with Figures 4.7.a and 4.7.b, D-Zipfian approximates the abr@jstribution
closely.

SAlternatively, with a deterministic technique to partitidlata items into clusters, each BGClient may
execute the same technique independently to compute.itsssigned objects.
"With the discussions of Section 4.3.1, this is the fasteSCB&ht always.
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Figure 4.9:y? analysis of centralized Zipfian with D-Zipfian as a functidrfavith differ-
ent number of data items/.

We use chi-square statistic to compare the distributions obtained Witk 1 with those
obtained usingNV > 1. The chi-square statistic withh > 1 is computed as followsy? =

sM (qi(M’eéﬁg\;’gig])‘“’l))Q. A smaller value ofy? is more desirable. Wheg? = 0, it means
the probability distribution withV > 0 is identical to that withV = 1.

Figure 4.8 shows thg? statistic as a function o BGClients with 10,000 data items and three
differentd values. A smallef value results in a more skewed distribution. Obtained results show
distributions with a handful of BGClients\{ < 8) are almost identical t&v = 1 asy? value is
extremely small. With tens of BGClients, thé value is higher because there is a higher chance of
the sum of probabilities assigned to each BGClient to deviate f;%orﬁ'his is specially true with a
more skewed distributiord=0.01. One way to enable D-Zipfian to better approximate a probability
of & for each BGClient is to increase the number of data itemsThis is shown in Figure 4.9 with
three different values af/ and9=0.01. As we increase the value bf, the y? statistic becomes
smaller and approaches zero.

Heterogeneous BGClients

Itis rare for one to purchase PCs that provide identical performaksan example, on January 24,
2012, we purchased four identical Desktop computers configured mighi7-2600 processors, 16
Gigabyte of memory, and 1 TB of disk storage. When using them as BGCligatsbserved one
node to be considerably faster than the others. This fast node is almasfasier than the slowest
node. This discrepancy violates the assumption of Section 4.3.1 thabwi Clients, each BG-
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Ri Ry Ry Ri| 2

1 1 2 2 1011
1 125 15 2| 0.07
1 2 2 2 | 0.06
1 1 1 2 | 0.12
1 4 4 4 | 0.16

Table 4.3: Processing rate of four BGClients and their impacthe y* statistic, N=4,
M=10K, 6=0.27.

Ry Ry R3 Ry X
1 1 2 2 | 1.91E-08
1 125 15 2| 1.49E-10
1 2 2 2 | 1.08E-09
1 1 1 2 | 1.19E-10
1 4 4 4 | 6.13E-09

Table 4.4:y? improves dramatically with the refined D-ZipfiaN=4, M=10K, #=0.27.

Client issue%]{, of requests. This increases the errpf)(between the distributions observed with
N > 1andN = 1. As an example, Table 4.3 shows observed with five different configurations
of four heterogeneous BGClient®; denotes the rate at which a BGClient issues requests, see the
first four columns of Table 4.3. The last column shows fRevalue wherd=0.27, comparing the
observed theoretic%lbrobabilities with 1 BGClient, i.eN = 1. Each row corresponds to a differ-
ent configuration of BGClients. For example, the first corresponds to atxBGClients where
two BGClients are twice faster than the other two BGClients. This results insefyoérvalues)
significantly higher than those shown in Figure 4.8.

To address this limitation, we change the first step of D-Zipfian (see Sec8dt) 40 construct
clusters for each BGClient such that their total assigned probability isopiopal to the rate at
which they can issue requests. Its details are as follows. Step 1 assjgas ab BGClientt with
the objective to approximate a total probabllltyfka— for this BGClient (instead o§v) With

=1 J

this change, the distribution witlv BGClients becomes almost identical to that of one BGClient,
see Table 4.4.

Discussion

Section 4.3.1 used the observed theoretical probabilities by considerihgctigrobability of a

data item in combination with the number of reque X\EXPZ(M(J@ ik This study does not consider
J

the actual generation of requests using a random number generaaoisbatwould require a too
long a diversion from our main topic. We do wish to note that the considexdzhpilities are the

foundation of generating requests and, without them, it is difficult (if notassjble) to generate

8We compute the observed theoretical probabilities by ragmeach BGClienk: to multiply its computed
probabilities for a data item with its number of issued resgsielivided by the total number of requests issued

i Oy Xpi(M,0)
by all the BGCIlentsm.
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Figure 4.10: y? analysis of an implementation of D-Zipfian generating resfsie This
analysis compares centralized Zipfian's probability fdfedent data items with D-Zipfian
as a function of different degrees of parallelism (x-axig}=10,000,0=0.27.

references that produce a Zipfian distribution. An implementation of D-Zipfi#h actual request
generation is analyzed in Figure 4.10. The y-axis of this figure shdwatatistic, quantifying the
difference in observed probabilities with a centralized Zipfian when coadpaith D-Zipfian and

different degrees of parallelism (x-axis). As we increase the numtisswed requests, D-Zipfian
resembles its centralized counterpart more closely.

With Section 4.3.1, one may apply the concepts of Section 4.3.1 to reduce theahg® val-
ues by several orders of magnitude and very close to zero. The ide&okosvs. Once objects are
assigned to the different BGClients, the number of references issue86Clientk is normalized
relative to the total probability of its assigned objects. Thus, assuming tlohimank issues a total
of O requests, each BGCliehtwould issueD;, requests:

> it pi(M, 0)
Zj'vzl ZZZJI pi(Mﬂ 0)

While this enhances the? statistic dramatically, its potential usefulness is application specific. For
example, a benchmarking framework may consist of a ramp-up, a ramp-@mna a steady state.
Such a framework collects its observations during its steady state. Thg stageimight be defined
as either a duration identified by conditions that mark the ramp-up and thedampphases or a
fixed number of requests. With the formér,is not known in advance and the system may not use
Equation 4.4. Even whe@ exists, different values ab;, might be undesirable because different
BGClients finish at different times. This is because participating nodesauvered to be identical
and those BGClients with the lowesy; finish sooner, reducing the degree of parallelism.

We considered constructingvirtual BGClients { > V) with several such BGClients mapped
to one physical BGClient [45, 102, 95]. This is beneficial as long adfitbapproximates the quota
assigned to each physical BGClient. In our experiments, we obsenggdibke improvement
because approximating the appropriate quota for each virtual BGClieairi#s more challenging
as we increase the value Bf see discussions of Figure 4.8 in Section 4.3.1.

For an analysis of how BG generates requests while preserving the idtdistigbution refer
to [63]

Ok:OX

(4.4)
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Chapter 5
BG’s Physical Data Design

One may implement how BG creates a social graph in different ways. Tdiesees constitute
alternative physical data designs for BG. A physical design in turn impetsBG generates its
actions. This is specially true for the write actions because BG strives tlupeovalid ones, e.g.,
BG emulates Member A thawing friendship with Member B only if they are frieddigs chapter
describes one physical design that we have implemented and releasedtlicedomain (see
http://bgbenchmark.org for details). We provide its details in the next sectiobseguently, we
describe how BG uses this design to generate its actions.

5.1 Social Graph

Prior to generating a workload for a data store, it must be populated wittia goaph correspond-
ing to the social actions emulated by the workload [18]. BG’s DataGenearanoponent is executed
to create and insert the data for the social graph into the data store ctiem 8€2. A social graph is
identified by its number of Accounts that are specialized into either indivitieahbers or pages. It
consist of a fixed number of member¥ §, pages P), number of friends per membep), number
of followers per page.f, number of pages followed by each membh&rgnd number of resources
owned by each member or pag8,(see Table 3.1. While the number of members for a social graph
must be non-zero, its number of pages may be set as 0. With0, BG will not insert pages in
the data store and will not create following relationships between membensaged. There are
multiple ways of creating the friendship and following relationships in a socelty Here, we
describe our design and implementation. To simplify discussion and withoubfigeserality, we
use the term BG to refer to this physical data design.

BG creates a social graph with the same number of friends per membero Bs#smes the
same number of followers for each page and the same number of pagestblby each member.
In addition, BG creates an equal number of resources owned by eanbenand page. Each
resource is posted on a randomly selected member’s wall which may be theceswner's own
wall, see Section 3.1. BG creates following relationship between membersaged pnly if the
following conditions are satisfied (see Table 3.1):

e ox 1< M
o (Pxu)/o<M
e P < M (This condition is required for BG to create deterministic following relationships
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e <P

o | <M

Using these assumptions, BG generates the social graph using two detécrfiunistions that
result in deterministic friendship and following relationships between vammgsunts. For ev-
ery Memberi with o > 0, BG generates the following relationships with pag&€s P), ((i +
1)%P), ..., ((i + 0)%P). With o = 0 it does not create any following relationships between mem-
bers and pages. The maximum value that can be assigpés fa For the same MemberBG also
generates friendship relationships with memljéis- % +M)%BM), ...,i—1,i+1, ..., ((i+ %)%M)
where the maximum value ofis M — 1. The limitation of generating friendships in this manner is
that only an even number of friends can be inserted for each membep/i.2+ 0 . This is trivial
to resolve by assigning friendships in one direction where Mermbhas the following members as
friends: (i + 1)%M, ..., ((i + ¢) % M)

BG can also use multiple threads, to load the data for a social graph. In this case the social
graph is divided intd" dis-joint social graphs, each with an equal number of members and.pages
This division occurs if the following four conditions hold true:

=

.T>¢
e £>p
o F>u
o Mxo=L£xy

Otherwise, BG does not create the social graph. BG uses these detgenfumistions during
the benchmarking phase to identify the existing relationships in the socidi gragder to issue
valid actions, see Section 5.2. In this case, in addition to the social gragmetars, the benchmark
will need the number of threads used for the loading phas®|oadthread$T’), as one of its input
parameters.

Once the sub social graph for each thread is decided, each thredelscrelationships between
the members and pages of its sub social graph using the aforementiotidrfsn Each thread
also inserts resources for each member and page. If’fthassigned by the experimentalist for
the load phase violates one of the conditions described above then theB@wfork invokes a
deterministic function and selects the greatest thread count les¥ tian satisfies these conditions
and uses that to construct the sub social graphs and load the dataaiei$usction is used in the
benchmarking phase to manipulate the numloadthreads parameter giveiinpstgmarameter to
BG by the experimentalist and set it to the actual thread count value thatsgdgo construct the
sub social graphs and load the data store.

With N BGClients, the D-Zipfian distribution (see Section 4.3) divides the sociglhgiato
N sub social graphs. WheR # 0, the number of followers per page) @nd the number of
pages followed by each membey) @re utilized to manipulate the sub-social graphs generated by
D-Zipfian for each BGClient. In this case once D-Zipfian creates the saialsgraph, in a post
processing step the members for the sub social graphs are shufftethatic

1. Total probability of members assigned to each BGClient remains almodt equa

2. The total number of members assigned to each BGClient is equal.
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Figure 5.1:y? analysis of the new D-Zipfian distribution used for feedduling actions
for M = 1,000,000 as a function of number of BGClients with three different valoéd
for D-Zipfian.

The second condition is required in order to load an equal number of gEgemembery) and
can be achieved by shuffling the members with the least probability acrosaribes sub social
graphs for BGClients. BG also ensures that the the number of pagesexssigeach BGClient
is equal. For example a social graph with = 100,000, P = 100, ¢ = 100, p = 10, o = 10
and. = 10,000 is divided to four social graphs with 4 BGClients where each social gnagtthe
following characteristicsM = 25,000, P = 25, ¢ = 100, p = 10, o = 10, ¢« = 10,000. This
allows us to compare the evaluation results gathered using different nawhB&Clients for the
same social graph characteristics. For evaluation of extreme caseassscénarios for which all
the members in a social network are following a single page, breaking tte gaaph into multiple
sub-graphs may not be possible.

The changes made to the D-Zipfian algorithm impact the request distributiwehth® impact
increases as the number of BGClients increase. Figure 5.1 shows the asheutr introduced
using they? analysis described in Section 4.3.1. As shows in this figure, the amounbofrro-
duced is negligible and decreases as the skewness in the distributioasdscfe-Zipfian exponent,
0).

Next, each BGClient loads its own sub social graph into the data store aedages the rela-
tionships between members and pages within its own sub graph. In additbrB&&lient may use
multiple threads during loading the data into the data store. This can only hidppempreviously
mentioned conditions hold true for the BGClient’s sub social graph and timdewuof load threads
the BGClient is using during its loading. Once the social graphs are loattethendata store, BG’s
ActionGenerator uses the distribution of actions provided as an input to ensaleial actions, see
Section 4.2. This generator uses the D-Zipfian distribution to decide thdisopiarforming each
action.

5.2 Stateful Request Generation

BG generates meaningful requests by maintaining in-memory data structatresintain the state
of the database. As an example, consider the Accept Friend RequdR} é&tion. To ensure this
command is meaningful, BG maintains data structures that track each member iampe tidéng
friend invitations. BG selects a Member A with a list of pending friend invitatidwesxt, it selects a
member from this list randomly for use with the AFR action. If there are no mesniéhn a list of
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] Action \ Lock Member A Lock Membera

A Thaws Friendship with B Yes Yes
A Accepts B’s Friend Request Yes No
A Invites B to be Friends Yes Yes
A Rejects B’s Friend Request Yes No

Table 5.1: Four of BG’s write actions and how they lock members

pending friend invitations then BG increments a no operation count. At thefeaid experiment,
BG reports this number to the experimentalist. An experiment with a high notapecaunt does
not reflect the workload intended by the experimentalist and its metrics shotiloe associated
with the workload.

BG is thread safe and employs synchronization primitives such as semaphoraddition, it
locks the members referenced by the write actions to ensure multiple threads idsue simulta-
neous actions that cause one to become meaningless. As an examplesratwesidhaw Friendship
action. When using one thread to emulate Socialite A who thaws friendship withbleB, BG
locks both Members A and B prior to issuing the command. This prevents arbtbad from em-
ulating Socialite A performing the same action simultaneously. It also preveotscarcent thread
from emulating Socialite B who thaws friendship with Member A. Table 5.1 show$ailr write
actions that impact friendship and whether they lock either one or both members

One may turn the locking feature of BG off. This may cause concurreaadlsto issue con-
current actions that may cause one or more to become a no operation. Hhidsmaause a data
store to detect integrity constraint violations and throw exceptions.

5.3 Uniqueness of Simultaneous Socialites

BG supports a closed emulation model consisting of a fixed number of simulistigeads issuing
actions against a data store. Each thread emulates a socialite and BG eosu@rent socialites
are unique at any point in time. In other words, the members selected to enmolateaseous
actions against the data store are unique. This is required in order to emaahtg in which a
social network’s member accesses or manipulates data using one adtivedsgjon.

With BG, the uniqueness of the socialites is implemented using a local data strtratimain-
tains if an account (member or page) is busy or not. Once a BG threadda@cidmulate an action
and decides the member/page to use, it looks up the status of the member/pageldteatistruc-
ture. If the member/page’s status is busy, which means it has been piclaubther thread to
emulate a simultaneous action, BG finds the next non-busy member/page tr itseattion by
linearly searching through the data structure. If it fails to find a non-busyber, it does not issue
an action against the data store resulting in a no operation, see Sectiohibfihds a non-busy
member/page, it changes its status to busy, issues the action against theréataats for the ac-
tion to complete and then changes the status of the member/page to non-hasy.pEnformed in
thread-safe manner using latches. Once the status of a member is setbiasypit-can be selected
by other threads to emulate actions against the data store.

With multiple BGClients, each BGClient issues request by selecting memberstéromn sub
social graph, so checking a BGClient's local data structure is suffiaimhho coordination between
the BGClients is required to ensure the uniqueness of the simultaneous ennukaders.
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Chapter 6

Unpredictable Data

Today’s data stores strive to be scalable, highly available, and fastedlize these objectives,
a system may employ techniques introducing delayed propagation of updatesidesirable race
conditions, that result in stale, inconsistent or erroneous output, cedictermed as unpredictable
data. Example techniques that produce unpredictable data include useeakaonsistency tech-
nigque such as eventual [112, 103] and use of a cache [47] in a mdmaeesults in dirty reads [56]
and inconsistent cache states [46, 86].

With an increase in this kind of design approaches, it is becoming incréagngortant to
understand the implications of to what extent provision of unpredictableitigt@ves the perfor-
mance. This motivates the need for a framework quantifying the amounpoédictable data [94].
There are many metrics that can be used in this framework to quantify dataessfi®r an archi-
tecture. Some of these are as follows:

e Probability of observing an accurate value a fixed amount of time¢ s@gonds, after an
update occurs [114], termed as freshness confidence.

e Amount of time required for an updated value to be visible by all subsegaads. This is
termed inconsistency window [114].

e Percentage of reads that observe a value other than what is exppaedified as the per-
centage of unpredictable data [12].

e Probability of a read observing a value fresher than the previous oeadspecific data item,
termed monotonic read consistency [114].

e Age of avalue read from the updated data item. This might be quantified in téxassmns
or time [10, 11].

e How different is the value of a data item from its actual value? For examjile asmember
who has 10 friends, a solution may return 9 friends for the member whearelifferent
solution may return 20 friends. An application may prefer the first [10, 11]

Each of these metrics may provide a new insight into a system’s behavior atesigh deci-
sions. A variant of the first two metrics are quantified by benchmarkimgeveorks such as [94, 88].
BG [12] is the only benchmark to evaluate the correct execution of opesatiosupport of in-
teractive social networking operations. Today’s BG supports two ohtbeementioned metrics:
percentage of unpredictable data and freshness confidence.
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Many of today’s applications may tolerate some amount of unpredictable lds¢aved by data
stores [99]. For example, with social networks, once a member posts a staisage, it can be
visible to others after 2 minutes and the members may find this acceptable. Onghbkatt, some
applications such as banking applications may not tolerate unpredictableTtatathe amount of
unpredictable data (stale, inconsistent or erroneous data) prodyadabstores has a significant
impact on its possible use by an application. A novel feature of BG is its ability&mtify the
amount of unpredictable data produced by a data store for an applickttmes so by computing
a list of acceptable values for each read using the timestamp for both réasriége actions, and
comparing the acceptable values with the observed values. One may usathis to characterize
the trade-offs associated with different architectures. It can alssée o specify an SLA when
rating different data store solutions, see Chapter 7.

BG also uses the timestamp for read and write actions to quantify the frestorefstence
(%) which is the probability of observing an accurate value a fixed amduirhe after an update
occurs. The amount of unpredictable data and freshness confidemdmth workload and data
store dependent.

In this chapter, we describe BG’s validation mechanism which is used tdifyutre amount
of unpredictable data. This is presented in two parts. First, we descnibedlidlation is performed
for all actions excluding the feed following actions, namely, View News Faettbn and Share
Resource Action. Subsequently, we include feed following actions. Welede this chapter by
describing the scenarios for which the current validation algorithm fail®nepaite the amount of
unpredictable data accurately.

6.1 Validation

This section describgalidation as the process of quantifying the amount of unpredictable data
produced by a data store and presents BG’s modular and configuedidi@ion component.

Conceptually, BG is aware of the initial state of data items in the database @yngréhem
using deterministic functions supporting an analytical model) and the chdngdue applied by
each write actioh There is a finite number of ways for a read of a data item to overlap with
concurrent actions that write it. BG enumerates these to compute a rangeeptable values that
should be observed by the read operation. If a data store produd#éerard value then it has
produced unpredictable data. This process is navaéidationand BG'’s physical implementation
is as follows.

Validation might be an online or an offline technique. While an online technigperts the
correctness of a value produced for a read operation immediately aftempletes, an offline
technique would quantify the amount of unpredictable data after a benkloarapletes generating
its specified workload. The latter does not quantify the amount of unpeddiicdata while the
experiment is running. A validation component may implement either extremagd)ydorid design
that reports the amount of unpredictable data after some delay based ltotdtea resources. BG
decouples generation of requests to quantify the performance of atdegafrom the validation
phase, performing validation in an off-line manner. By doing so, BG prtsvéhe validation phase
from exhausting the resources of a BGClient and reduces the numbede$ required to generate
requests to evaluate a data store.

1For example consider the Accept Friend Request (AFR) acfi@®G. When the AFR operation is issued
by Member A to confirm friendship with Member B, then the writperation increments the number of
friends of each member by one. Or when a write operation iseHy Member A to unfriend B then Bs
news must not appear in As feed retrieved by the View News Pél&) action of BG.
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Figure 6.1: There are four ways for a write Of to overlap a read aob;: It may either start
before the read and end in the middle of the read operaltigi, Gtart in middle of the read
and end before the read end§y, start in the middle of the read and end after the read
operation {I3), or start before the read and end after the ré&g) (

During the benchmarking phase, each thread of a BGClient invokegian.a&ll actions except
for the Share Resource action generate one log record. There atgpwgoof log records, a read
and a write log record corresponding to either a read or a write actiorseTlbg records are written
to separate files. One file for the read log records and a second fileefarritie log records. During
the validation phase, BG processes these log records to quantify the tamfhcimpredictable data
produced by a data store [12].

A log record consists of a unique identifier, the action that produced it ateeitttm referenced
by the action, its socialite session id, and start and end time stamp of the actereathiog record
contains its observed value from the data store. The write log recordimeeither the new value
(namedAbsolute Write LogAWL, records) or change (namé&klta Write Log DWL, records) to
existing value of its referenced data item. The log records generatecef&@hire Resource action
contain information about the referenced data item (e.g. the resourgedbeired by the member)
and the members the resource is being shared with. The start and end time ctaagh log record
identify when an action that either reads or writes a data item begins andBniShey enable BG
to compute the 4 possible ways that a write operation may overlap a readiopesae Figure 6.1.
During validation phase, for each read log record that referendastden D;, BG enumerates all
completed and overlapping write log records that referéna® compute a range of possible values
for this data item. If the read log record contains a value outside of this thegéts corresponding
action has observed unpredictable data.

To elaborate, BG uses the set@DWL records to compute all serializable schedules that a
data store may generate. The theoretical upper bound on the numbéedtikes is;!. However,
BG computes fewer schedules because it does not consider the edapmng DWL records. BG
identifies these by detecting when the end time stamp of one is prior to the stag sé¢bnd.
This produces an accurate range of possible values for the reaatioperThis is best illustrated
with an example. Consider the four log records of Table 6.2 where 3 DWards overlap 1
read log record. Theoretically, there is a maximum of six (3!) possible i@ythe updates to
overlap one another. However, the actual number of possibilities is{fi@/NL1,DWL2,DWL3},
{DWL2,DWL1,DWL3}}, because DWL3 has a start time stamp after both DWL1 and DWL2.
Thus, assuming the value 6f; is zero at time zero, acceptable values for the read-dre0, 1, 2,
flagging the observed value 3 as unpredictable. If one had assumedsible schedules incorrectly
then value 3 would have appeared in the acceptable set. This would hdireneal Readl as valid
incorrectly.
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| Operation id| Type | Data item| Start| End | Value |

Readl Read D, 0 10 3
DWL1 Write D, 1 3 -1
DWL2 Write D, 2 4 1
DWL3 Write D, 5 6 2

Figure 6.2: Example log records.

Log records produced by one BGClient are independent of thoskiped by the remaining
N — 1 BGClients because BGCoord partitions members and resources among @ie8&log-
ically. Thus, there are no conflicts across BGClients and each BGClienperégrm validation
independently to compute number of actions (sessions) that observedigtgble data. During
rating, BGCoord collects these numbers from all BGClients to compute thalbgercentage of
actions (sessions) that observed unpredictable data, see Chapter 7.

Depending on the duration of the experiment, a BGClient may produce arlargber of log
records. These records are scattered across multiple files.

6.1.1 Validation of Actions Excluding Feed Following Actions

We now discuss the implementation details of the validation technique used foatiradiBG'’s
non feed following actions. Currently, there are two centralized implemensatibthis validation
phase using interval-trees [30] as in-memory data structures and ag@rsisre using a relational
database. The latter is more appropriate when the total size of the write lmglsezxceeds the
available memory of a BGClient. The former is fast when there is a sufficireotat of memory
to stage the write log records in interval trees. This enables the validatiee pheead the log files
once to process both read and write log records in one pass. The inteevanaintains the start and
end time stamp of the write log records for each data itBsn,The validation phase assumes three
different kind of interval trees for: (1) each member and write actionsithpact her friendships,
(2) each member and write actions that impact her pending friend invitatiodg3aeach resource
that is annotated with a write action. It constructs interval trees for a merabeufice on demand
as it reads the write log records in memory, creating them when one doegisbtor a member
id (resource id) for the corresponding action. Once the write log recard staged in memory,
the validation phase retrieves the read log records. It employs the membesadice id) and the
action to identify the interval tree with the relevant write log records. Nexgesuhe start and end
time stamp of each read log record to enumerate the number of ways it owsithpke different
write actions by querying the interval trees.

Both in-memory and persistent implementations of validation are optimized foleanikdom-
inated with actions that read data items [3]. These optimizations are as follimst. ifRhere are
no update log records then there is no need for a validation phase; thatiealighase terminates
by deleting the read log file(s) and reporting 0% unpredictable readson8guwrrite log records
are processed first to construct a main memory data structure (indep@hdeterval-trees or the
RDBMS) that maintains each updated data item and its value prior to the first@gitecord and
after the last write log record on that item, start time stamp of the first write layadeand the end
time stamp of the last write log record on that item. This enables BG to quickly ssdpeune)
read log records that either reference data items that were never digdataot exist in the main
memory data structure), or were issued before the first or after therigst (there is only one pos-
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Workload Number of| Number of | Number of In-memory Validation
read prunedread  write Structure Creation duration
logs logs logs duration (msec) | (msec)

0.1% Write Actions| 2,414,569 | 2,194,486 3,343 47 10,047
1% Write Actions | 2,327,587 | 1,446,998 39,922 281 10,281
10% Write Actions | 1,592,701| 481,317 343,224 1172 22,735

Table 6.1: Validation duration for three workloads of Tablg

sible value for these and available in the main memory data structure). Third, letitipads may
process the read log records by accessing the aforementioned detarstwith no semaphores as
they are simply looking up data. This makes the validation phase suitable for mgte®Us as it
employs multiple threads to process the read log files simultaneously.

Table 6.1 shows the duration of the validation phase for the three worktesisibed in Ta-
ble 4.1 using the interval tree approach. These workloads emulate 2@@ishissuing actions
against the data store for 900 seconds. As shown in this table, as wasedte percentage of
writes, the number of write actions and the amount of time it takes to construat-themory
structures increases. The increase in the duration of processing Vestagiwell as the reduction
in the number of read logs that can be pruhedrease the overall rating duration.

A key limitation of in-memory implementation using interval trees is that it may exhaest th
available physical memory, causing the operating system to exhibit a thgdsétavior that results
in an unacceptably long validation process. This is specially true with highhghput multi-node
data stores and cache augmented data stores such as KOSAR thas peqoests in the order of
millions of actions per second. In such cases, one should employ the altensing an RDBMS.

We have also examined a preliminary implementation of the validation phase uspigeva
duce [37] that requires the log files to be scattered across a distributsgiditan. Such a deploy-
ment is warranted once BG is deployed at a large scale to evaluate mamgrdifiata stores.

6.1.2 Validation for Feed Following Actions

The View News Feed (VNF) action of BG retrieves the tomost recent resources shared with a
member by those she follows. A socialite, Member A, shares resourcesthsirshare Resource
(SR) action. Member A may share a resource either publicly with all the merfdlknsing A or
with a select list of members following A. Conceptually, BG is aware of the initaksof feed for
every member and changes the value of each member’s news feed ypaiaded SR action by
adding the shared resource to it. A related SR action for Meriibéeed is one that is issued by
Member; followed by Memberi. Note that this discussion applies to pages as well. For each VNF
action, BG enumerates all the relevant SR actions and computes a list ptaueefeed values
(list of acceptable resources). If the data store returns a value otlnremthat is expected then
unpredictable data is observed.

During the benchmarking phase BG generates two write log recordsdbiS#f action and one
read log record for each VNF action. The first write log record conthiestart and end time stamp
of the action, the memberid of the member issuing the action and the resourdhil relsource
being shared. The second log record also contains the start and endampefer the action, the

2With an increased number of updates, the probability of dingpa data item before an update on the
data item reduces.
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resourceid of the resource being shared and the list of followersghanee is shared with. If the list
of followers is set to -1 the resource is shared publicly with all members foillpthis member. The
read log record contains start and end time stamp for the VNF action, the miéridoehe member
retrieving her news feed and the list of resourceids that are displayéd 8G is also aware of
the initial friendship/following relationships for members and pages. In adglitie discussed in
section 6.1 it logs the changes made to the friends of a mémbering validation BG maintains
two additional interval trees. One for the shared resources and the meethbg are being shared
with and another for the members and the resources they are sharing vathmembers. Upon
encountering a read log record for a VNF action, BG computes the list of ersmitilowed by the
member performing the VNF action at the time of the read using the start and erstaime logged
for it by querying the interval trees described in Section 6.1. Next, it fatidkhe resources shared
by these members until that point of time. It only retrieves the list of reseubhzd are either shared
publicly with all followers or are specifically shared with this member. It themgares this list
with the list of resources retrieved from the data store for the membeds feesome write actions
may overlap with the VNF action (write actions modifying friendship relationsbhipgerforming
SR actions), BG computes a super-set of acceptable lists containingaeissu If the News Feed
retrieved form the data store is not a subset of any of the lists in the competteitien the data
store has produced unpredictable data. This is best illustrated with an lexa@gmsider the five
log records in Table 6.1.2. Assume Member B is only following Member A and MemAlowns
Resources 1 and 2.

Operation id| Type | Dataitem | Start| End | Value
AWL1-1 Write | Member A| O 3 1
AWL1-2 Write | Resourcel| 0 3 -1
AWL2-1 Write | Member A| O 5 2
AWL2-2 Write | Resource2| 0 5 {B,C}
Readl Read | Member B | 4 6 {1,2}

AWL1-1 and AWL1-2 belong to the same SR action. AWL1-1 indicates that MerAlshares
Resourcel and AWL1-2 indicates that Resourcel is shared publiclytifidd with value = -1).
Similarly AWL2-1 and AWL2-2 are created by the same SR action. AWL2-1 atdethat Member
A shares Resource2 and AWL2-2 indicates that Resource2 is shareM@mber B and Member
C. Read1 indicates that Member B retrieves her news feed and ob&asesrcel and Resource2
in it. BG's validation for Read1, finds all the members followed by Member B (ma&kRample only
Member A). Next, it retrieves all the SR actions initiated by the members Membefdidea/ing
and either completed before the read or overlapped with it. In this examplelAINnd AWL1-2
completed before the read and AWL2-1 and AWL2-2 overlap with it. Froraghi retrieves those
that either share a resource publicly (AWL1) or share it specifically widmiider B (AWL2) and

3In BG, once a following relationship between a member andge g created, it can not be modified.
This is because in BG pages can only participate in feedvialip actions and all other BG actions involv-
ing modification of friendship/following relationshipsieaonly applicable to members and the relationships
between them.

4As the list of friends for a member depends on the completdaaerlapping write actions, BG computes
a set of friend lists for the membe$,. The same holds true for the resources shared by members@nd B
computes a set of acceptable shared resources by each mentherfriends list,S,.. The final set of
acceptable resources displayed on a member’s news feedadgesian product of; and.S,. Computing
this product is expensive so BG computes the uniafi.dbr each list inSy as the list of acceptable resources
to be displayed on a member’s feed. By doing so BG computep@iogmation of the member’s news feed.
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Figure 6.3: Freshness confidence for CASQL with TTL invalmatmechanisms for a
workload consisting of 10% write actions= 120 buckets A = 600 seconds.

uses them to compute a set of acceptable resource lists for Member @&'drighis example these
are the two acceptable sefs} and{1,2}. If the VNF Readl observefl,3} then it had observed
unpredictable data. Hence, in this example it did not observe unpredidtale

6.1.3 Freshness Confidence

The validation phase also computes the probabilifydf a read observing the freshest value at most
t units of time after the update on the same data item was completed, freshnigdsremn The log
records are processed only once to compute both the amount of unpgbéelidata and freshness
confidence. The experiment duratiak, is divided intob time buckets each with a duration %ff
units of time. Each bucket; maintains the total number of read operatioRs, J between% X 1

to % x (i + 1) units of time (wheré) < i < b) after the last write on the relevant data item, i.e.,
the last write is retrieved by querying the relevant interval tree. Theyrafsotain the number of
valid reads that did not observe unpredictable data for the same pé&§i9d The probability of
observing the freshest value for a read at ntastits after the write is computed by findirdgor
whicht = % x (i + 1) and computing the following (see Figure 6.3):

21V
;;Zl Ry,
This metrics is important for applications such as news feed which are tbl@ramissing
content but are timely. For example, let us assume Member A follows 100 merabdreach
member produces at least 1 event every three minutes. Member A may toletateing the last
content produced by each of the producers in the last three minutes fiedaerAt the same time,
it will be undesirable if she does not see events produced more than 3 sague say 1 hour
ago. This means even though Member A encounters an unpredictablehreagpplication can
tolerate the missing events. Thus computing the amount of unpredictabldseads good metric
when evaluating alternative solutions of news feed. A better metric is to cortipatarobability
of observing the freshest value at mestnits of time after the write on the same data item is
completed.
Figure 6.3 shows the freshness confidence for CASQL systems with &xedif time to live
(TTL) values: 10, 30, 60, 90, 120 and 300 seconds. Use of TTL ialmnative to using an

52

pi = (6.1)



% Unpredictable Data

40~ 98.15%
99.96% . ae=mTT H
30l e 99.2%  _ .m==""""
R e P o --" TTL=120 secs
,
4
©99.9%
20p 99.54%
99.87%_ .u-'- _“_ ________ 88.43% 87.77%
x-"_ T TTTEE===- B I e ]
10k TTL=60 secs
- <96.24% 79E9% 79.82%
EENETE e el e S
o * ‘ TTL230 58c5 ™
1 10 50 100
T
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invalidation technique [47, 86]. It is a simple technique that invalidates aedaehtry once its
life time expires. While it reduces software complexity, it produces unptaulie data. Figure 6.3
shows the freshness confidence for a fikeécreases with higher TTL values which means it takes
a longer time for the value of updates to be available for all reads occutfti@gthe update.

6.1.4 Evaluation

We used BG's ability to compute the amount of unpredictable data to analyzeatleedffs for a
CASQL system employing a time to live (TTL).

Figure 6.4 shows the behavior of the system with three different TTL saR@ 60, and 120
seconds, as a function of the number of BG thredds\Ve assume 10% of actions are writes (see
Table 4.1). As expected, obtained results show a higher TTL value ra@saltsigher percentage of
unpredictable data. A higher TTL value also enhances performancA®QC by increasing the
number of references that observe a cache hit. This is shown with & pigiteentage of request that
observe a response time faster than 100 magevith 7=100: « increases from 79.8% with a 30
second TTL to 98.15% with a 2 minute TTL. In essence, a higher TTL valbareres performance
of CASQL at the expense of producing a higher amount of stale data.

6.2 Discussion

The current implementation of the validation technique is an implementation of ataftiesign
choices. This implementation targets a common use case scenario and willrkab\ath cases:

1. With high throughput data stores that process millions of operationsepeng an experi-
mentalist may not be willing to wait for hours to obtain an accurate measure afttbent
of unpredictable data. They may be interested in a sampling approachdhiatgs an inac-
curate and quick measure of the amount of unpredictable data.

2. The consistency requirements of one application might be differenati@ther. For example
with a social networking system, apart from the data value, the order plaglisnay also
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Figure 6.5: An example showing the limitation of BG’s validat mechanisms with an
overlapping read and write log record for data itém

matter. We may have a solution that retrieves the correct comments for a phatisflays

them in the wrong order resulting in miss-interpretations and miss-communicafidre
current implementation of BG’s validation, does not emphasize on the ofddrserved

values but can be extended to maintain the order of data items to be displaydzh&ezl on
recency) and use that in its evaluation of unpredictable data. The valisaéohanism can
also be further extended to evaluate the solutions based on the acclirasylts returned.
For example, if the desired order for the commentids for a photo is 1,2,3,40%téoR that

returns 2,1,3,4,5 is more accurate than one that returns 1,5,4,3,2.

3. BG’s validation mechanism consumes the start and end timestamps fordrwdteactions
to compute a list of acceptable values for every read. This may lead torsxseioas which the
amount of unpredictable data reported by BG may not be accurate. WitreFdy the write
action modifying the value of data ited; starts at timé . ite stare @Nd €NAS atyyrite ends
but the actual update is committed to the data store attfime. commit, DEIWeertite start
and twrite,endS- The read action for the value of data itdhy, starts at timé,..,q,s¢qrc aNd
ends at timaread,end > tread,start such thattwrite,commit < tsta’rt,read < twrite,end and
tread,end < twrite,end- l0€allY, the read should observe the updated value as it started after
the update had been committed to the data store. BG’s current validation riseclvéh not
report any stale data, if the read observes the old value rather thard&iedpalue. For such
a scenario, one may need to extend BG’s validation mechanism with more comqdieis.

Below, we describe an extension to today’s validation component andsdiscliost of design
choices for it. We organize these in a taxonomy consisting of three intardepesteps: Runtime
configuration, Log processing, and Validating. Below, we describlk s@p and its possible design
choices in turn.

As suggested by its name, the Runtime configuration component configeresotiules em-
ployed by the validation phase. This component is used once. Its ouggeifiep the components
used by the validator at runtime. This output is based on the following inpatrpeters:

e How much memory should be allocated to the validation phase? The providedcaaltrols
how much of the write log records are staged in memory prior to processiddag records,
preventing the validation phase from exhausting the available memory.

SThis can happen with CASQL solutions with invalidation dstency mechanisms, for which once the
update is committed to the underlying data store, the cporeding cached key-value pair needs to be deleted
as a part of the write action.
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e How long should the validation process run for? The specified duratidategcthe number
of processed read and write log records. A duration shorter thanethaired to process all
log records may produce inaccurate measures of the amount of uripbdelicads.

e Whatis the degree of parallelism used by the validation process? It id ta\parallelize the
validation process by partitioning the log records using the identity of theareaeted data
items. With a RAID disk subsystems and multi-core CPUs, it is sensible for thearzenp
that streams the log records to partition them (this is the map function of a MapR&ed
job). This facilitates independent processing of each partition usingexeiff thread/core to
guantify the amount of unpredictable data.

e What sampling technique should be used by the validation phase? The valigedess
may use a host of sampling techniques that should be identified at cotiiguiene. These
are listed under the Log Processing step and detailed below.

The Log Processing phase reads the log records from the log file anesses them to create the
data structures needed for the validation process. It may use a samplingjtexto decide which
log records are processed in order to reduce the duration of the vatigdtase. A disadvantage
of sampling is that the amount of reported unpredictable data may not beaseccd sampling
technique may be based on:

e Data item/operation type: The validation process may focus on a subsetaoitetas by
processing their read and write log records. It may process those datitigh either the
highest frequency of reference, largest number of write log recanbst balanced mix of
read and write operations, and others. Alternatively, it may processdiredords produced
by a subset of operations.

e Time: A second possibility may require the validation process to sample a fixedahtd
time relative to the start of the benchmarking phase, e.g., process one nfifagdiles ten
minutes into the benchmarking phase or process the log records gersudtegithe peak
system load, e.g., shoppers during Christmas time.

e Number of processed log records: A third possibility requires the validatiocess to sam-
ple a fixed number of log records, e.g., 10K log records, 20% of logrdso®lative to the
start of the benchmarking phase, 2 out of every 10 log records,thedso

e Random/Custom: A final possibility is for one to come up with a custom samplingagipr
where log records satisfying a specific condition are processed bwlidaton process, e.g.,
log records generated by members is a specific geographical locations.

The Validating phase can execute at the same time as the Log Processia@ptias responsible
for computing a list of acceptable values for each read and comparindg#eeved value with the
computed list. One can implement custom validation approaches which dealiffétterat data
types such as primitive, array type or user-defined and apply difféieds of manipulations to
identify the list of acceptable values for a read.
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Chapter 7

Rating a Data Store

To rate a data store is to compute a value that describes the performance of theodatiisa
workload. BG computes two possible ratings for a data store, named SodRBauialites. The
Social Action Rating, S0AR, of a data store is its highest number of simultarsmzial actions
completed while satisfying the pre-specified SLA. The Socialites rating quemnttie maximum
number of simultaneous members that may access the data store while satisyimg-tpecified
SLA. Figure 7.1 illustrates these two ratings using MongoDB as an exampleowis the SOAR of
MongoDB is approximately 35,000 while its Socialites rating is 1025.

Figure 7.2 shows BG’s software components that rate a data store. inbkske multiple BG
Clients BGClient), one BG CoordinatorBGCoord), and one delta analyzer. BGCoord, issues
commands to BGClients to either create BG’s schema, construct a databddeadit, or generate
a workload for the data store. A BGListener on each BGClient node facdimaenmunication
between BGCoord and its spawned BGClient. One may host multiple BGListenetdferent
ports on a node. A configuration file informs the BGCoord of the diffeBfBListeners and their
ports. (Itis possible to extend BGClient with the functionality provided by B&iner to eliminate
the BGListener all together). Ea&GClient implements the 13 actions of Table 1.1 for the target
data store. In addition, they include the design elements outlined in Chapteedlitera scalable
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Figure 7.1: BG’s SOAR and Socialites rating.
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Figure 7.2: Software components of BG’s rating mechanism.

request generation framework. TB&Coord employs a heuristic search technique that conducts
experiments, each with a fixed number of thredtausing the target data store. The number of
conducted experiments is a function of the true SoAR rating of the data $iren this value is

in the order of a few thousands, BGCoord conducts between 10 to 20eimgperiments. When
the value is in the order of one hundred million, BGCoord may conduct bet&@do 60 unique
experiments. It may load the database in between experiments and use &giitadang technique

to expedite the rating process. This chapter describes these two cortgoon®action 7.1 and 7.2,
respectively.

The duration of each experimen) conducted by BGCoord is dictated by thelta Analyzer.

The maximum value of is the duration specified by the SLA,. A smaller value of is desirable
because it expedites the rating process. Ideakyhould be the smallest possible value that reflects
the behavior of a data store as if the experiment was running falve discuss the computation of

0 in Section 7.3.

This chapter concludes with an analysis of the agile delta loading technigdetha delta
analyzer. It quantifies the observed speedup when compared with @ nagichanism that does
not utilize these technigues. Obtained results show a factor of 4 to more @rspeg&dup with the
proposed techniques.

1BGCoord caches the results of different experiments ankklop their observed throughput when the
heuristic search attempts to repeat an experiment withaime$’ value.

57



7.1 Heuristic Search

BGCoord conducts several experiments, each with a fixed number ati§ire It employs a heuris-

tic algorithm to vary the value df’ to impose a different amount of load on the data store. These
threads are spread across fieBGClients. At the end of each experiment, each BGClient reports
its observed number of unpredictable reads, and the percentageie$tethat observed a response
time equal to or faster than that required by the SIBA, This experiment isuccessfuls long as

all of the following hold true: 1) observed average percentage ofadtigiable reads across all
BGClients is less than or equal to the SLA specified tolerable amount of diofakle reads, and

2) the percentage of requests that observe a response time less tigaialadoghe SLA specified
response timef) is greater than or equal to the SLA specified percentage Qtherwise, this
experiment hafailed to meet the specified SLA.

One approach to compute SOAR and Socialites rating of a data store is tactergariments
starting withT'=1 and incremeni’ by one every time an experiment succeeds. It would maintain
the highest observed throughput and the higfiesalue. And, it terminates once an experiment
fails (see Assumption 1 below) to satisfy the SLA, reporting the highestredde¢hroughput as
SO0AR and the largest as Socialites rating of the data store. A limitation of this strategy is that it
requires a substantial amount of time. For example, in Figure 7.1, Mongapiosts a Socialites
rating of 1025,7'=1025. An exhaustive search starting with 1 thread and assufxirig) minutes
would require more than 7 days.

BGCoord employs heuristic search to expedite rating of a data store. Tgesliees rating of
a data store by conducting fewer experiments than an exhaustive .s€harsliechnique makes the
following 3 assumptions about the behavior of a data store as a functibn of

1. Throughput of a data store is either a square root function or aagenverse parabola of
the number of threads, see Figure 7.9.a.

2. Average response time of a workload either remains constant or $esraa a function of the
number of threads, see Figure 7.9.b.

3. Percentage of stale data produced by a data store either remainsi\tonstareases as a
function of the number of threads, see Figure 7.9.c.

These are reasonable assumptions that hold true in most cases. Beltwwmabze the second
assumption in greater detail. Subsequently, we detail the heuristic for SodBacialites rating.
Finally, we describe sampling usinag/alues (smaller than) to further expedite the rating process.

Figure 7.9.b shows the average response tiRE)(of a workload as a function &f. With one
thread,RT is the average service tim&)of the system for processing the workload. With a handful
of threads,RT" may remain a constant due to use of multiple cores and sufficient networkisind
bandwidth to service requests with no queuing delays. As we increaseitfigen of threadsRkRT
may increase due to either (a) an increass attributed to use of synchronization primitives by the
data store that slow it down [20, 64], (b) queuing delays attributed to ftiliged server resources
whereRT=S+Q and(Q is the average queuing delay, or both. In the absence of (a), the tipoug
of the data store is a square root functiorfpkee Figure 7.9.a. In scenario (§)js bounded with a
fixed number of threads since BG emulates a closed simulation model wheead thay not issue
another request until its pending request is serviced. Moreovét]ascreases, the percentage of
requests observing aRT lower than or equal t@ decrease, see Figure 7.9.d.

The heuristic search technique to compute Socialites rating of a data stésenstiaran exper-
iment using one thread,;=1. If the experiment succeeds, it doubles the valu&.olt repeats this
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process until an experiment fails, establishing an interval for the valdé dthe minimum value
of this interval is the previous value @f that succeeded and its maximum is the valu€'dhat
failed. The heuristic performs a binary searchoin this interval to compute the higheBtvalue
that enables an experiment to succeed. This is the Socialites rating of theatatalt is accurate
as long as Assumption 1 is satisfied, see Figure 7.9.a.

The heuristic to compute SOAR is similar to Socialites with several key diffesenéérst,
BGCoord maintains the highest observed throughput with &aghlue, Ar. It stops doublingl’
once an experiment produces a throughput lower thafor fails to satisfy the pre-specified SLA as
is the case with the square root curve of Figure 7.9.a). This is the poiotetea7" in Figure 7.9.e.
Next, it searches the intervag( 2T). It may not simply focus on the interval (T,2T) because the
peak throughput might be in the interv@ I, see Figure 7.9.e. We now describe the SoAR rating
approach in more detail.

Computing the SoAR of a system, the global maxima, is a well-known problem in matioal
optimization. One may compare it as a search space consisting of nodes edwbrnode corre-
sponds to the observed throughput with an imposed system T9adTthe node with the highest
throughput that satisfies the pre-specified SLA identifies the SOAR ofy8tera. To identify this
node, the BGCoord implements two techniques to navigate the search spabdedniques as-
sume the aforementioned assumptions and are detailed in this section. This absdidiscusses
scenarios that violate our assumptions and suggests a possible agpnoadigate the search space.

The first technique, name&dptimal, is guaranteed to compute the SoAR for the system. The
second technique, namépproximate is a heuristic search technique that computes the SoAR
of a system with+10% margin of error. Both techniques realize the search space by conducting
experiments where each experiment imposes a fixed {Badr( the system to observe a throughput
that may or may not satisfy the pre-specified SLA. Each experiment iseafdtie search space.
While the search space is potentially infinite, for a well behaved system, $istsrof a finite
number of experiments defined by a system load (valug) dfigh enough to cause a resource such
as CPU, network, or disk to become 100% utilized. A fully utilized resourdatdis the maximum
throughput of the system and imposing a higher load by increasing the eglli¢with a closed
emulation model) does not increase this observed maximum. A finite vallidimits the number
of nodes in the search space.

Both Optimal and Approximate navigate the search space by changing tieeofdluimposed
load. Both techniques traverse the search space in two distinct phaséslienmbing phase and a
local search phase. The local search phase differentiates Optimmalfsproximate. Approximate
conducts fewer experiments during this phase and is faster. Howev&pAR rating incurs a
margin of error and is not as accurate as Optimal. Below, we describe thdimmbing phase
that is common to both techniques. Subsequently, we describe the loceh séaDptimal and
Approximate in turn.

BGCoord implements the hill climbing phase by maintaining the thread cdunt.j that re-
sults in the maximum observed throughpnt-) among all conducted experiments, i.e., visited
nodes of the search space. It starts an experiment using the lowstti@aystem load, one thread
(T" = 1) to issue the pre-specified mix of actions. If this experiment fails then thegrptiocess
terminates with a SOAR of zero. Otherwise, it enters the hill climbing phaseewhigicreases the
thread count tdI" = r x 1" wherer is the hill climbing factor and an input to BGCoord. (See
below for an analysis with different values of) It repeats this process until an experiment ei-
ther fails or observes a throughput lower thar), establishing an interval for the value Bfthat
yields the SOAR of the system. Once this interval is identified, the hill climbingeptaminates,
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providing the local search space with the identified interval. Below, weriteslbow Optimal and
Approximate navigate this interval in turn.

The local search phase inputs the limited interval identified by a starting atidgetnread
count. The starting thread countfg and the ending thread count is the currént The peak
throughput, S0AR, may reside in either the intervgl, () or (£, 7). Optimal identifies the peak
throughput as follows. It focuses e}hand conducts experiments wi%l =+ n threads to determine
the slope of the curve in each direction. If both slopes are negative thgrothtT is the peak and
the throughput is reported as the SoAR of the data $t@éherwise, it focuses on the interval that
contains the peak (the interval which has the increasing slope), seleatéddpmint of this interval
and continues to compute the slope on either of its sides to decide the interpabthis in and this
continues until the SOAR of the system is established.

Approximate navigates the interval identified by the hill climbing phase diftbreihtreats the
start of the interval as the point with the highest observed throughputgualb points that have
been executed and its end as the point with the lowest thread count thdt failleen executes an
experiment with the mid-point in this interval. If this experiment succeeds hadrees a through-
put higher than\, then the heuristic changes the start of the interval to focus on to this paint a
continues the process. Otherwise, it changes the end point of the Intepesthis point and contin-
ues the process until the interval shrinks to consist of no more pointsAppximate approach
is not guaranteed to find the peak throughput (SoAR) for a system. Itfm@rerror depends on
the behavior of the data store and the climbing faetdiith our synthetic experiment (see below),
it produces a result that is withitt10% of the true SOAR for the system. Below, we describe an
example to illustrate why Approximate incurs a margin of error.

Consider a scenario where the experiment succeedsyitireads and increases the thread
count to7. With T the experiments succeeds again and observes a throughput highénehan
max throughput observed wit%i. Thus, the hill climbing phase increases the thread couff to
(assuming a climbing factor of 2;=2). With 27", the experiment produces a throughput lower
than the maximum throughput observed before. This causes the hill climhamepo terminate
and establishes the interval (27) for the local search. While the local search phase of Optimal
considers an interval ranging fro§1to 2T, Approximate considers only the intervalto 27". With
Figure 7.9.e, Approximate eventually selects T as the thread count fordkdlpeughput.

Both these techniques visit tens and hundreds of states although the Sothig §ystem may
be in orders of thousands and millions. We used a quadratic funeti@h? + b7 + ¢ =y (a = 1
andb > 1), to model the throughput of a data store as a function of number of thissding
requests against it. The vertex of this function is the maximum throughput, Sa#Rs computed
by solving the first derivative of the quadratic functioli: = g The Optimal solution and the
Approximate must compute this value as the SoAR of a system modeled usingthierfiu We
select different values df and ¢ to model diverse systems whose SoAR varies from 100 to 100
million.

Every time the BGCoord executes an experiment with a given valig a@fmaintains the ob-
served throughput in a HashMap. When exploring points in an intervagei$ this HashMap to
identify repeated experiments. It does not repeat them and simply lockeupbserved through-
put using the HashMap. This is significantly faster than executing aniexget. Figure 7.3 shows
the number of visited states. When SoAR is 100 million, the Optimal technique dsrisiiexper-

2If the slope on both sides is positive, valuespfs increased and two new points in the intervals are
explored. This continues until the slope on one side is pesind the slope on the other side is negative, or
until there are no more points in the two intervals to be esgaloWith the latter the Optimal solution fails to
compute the SoAR for the system. Based on our assumptiotettéeis not possible.
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Figure 7.4: Number of experiments conducted to compute SeaRthe Optimal and the
Approximate techniques.

iments to compute the value @fthat maximizes the output of the function. Ten states are repeated
from previous iterations with the same valuelaf To eliminate these, the heuristic maintains the
observed results for the different valuesiond performs a look up of the results prior to conduct-
ing the experiment. This reduces the number of unique experiments to 44isThis! times the
number of experiments conducted with a system modeled to have a SOAR (f/bigd is several
orders of magnitude lower than 100 million).

Figure 7.4 shows the number of unique experiments executed with eachtetkiméques. Fig-
ure 7.5 shows the ideal SOAR as well as the computed SoARs by the two teebifig the different
curves. As shown in Figure 7.5 the Optimal solution always computes thetexp8oAR for the
system and the Approximate approach reports a value which is withi¥i; of the expected SOAR
value. However, in some cases the Optimal approach conducts morémxpisrand visits more
states in order to find the solution, see Figure 7.4. This is because forchsse the Optimal so-
lution, executes a larger number of experiments before it discards ilgé¢nzd do not contain the
peak.

The total number of visited states is computed by summing the number of experareatsed
in the hill climbing phase and the number of experiments executed in the limitechggease. For
both techniques this value is dependent on the value of the climbing factaralAdimbing factor
may increase the number of experiments executed in the hill climbing phase ltkeéosearch
interval is identified. Whereas a large climbing factor may increase the nuofilexperiments
executed in the limited search phase as it may result in a larger searchlirgeeviigure 7.6.
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Figure 7.7.a and 7.7.b show the impact of three different climbing factorseonumber of
states visited by the Optimal and the Approximate techniques as a function ob&f 8r the
system. With these results, with a higher SoAR for the system, a larger climluitog fasitis fewer
states for both techniques.

Deciding the appropriate value for the climbing factor depends on the vaatkésued and the
behavior of the data store as a functiorfofOne approach is to start with= 2 and adjust its value
at the end of every experiment in the hill climbing phase. The first expetirnes with7 = 1 and
observes\T; as its throughput. Now we increase the number of threa@qtas the initial value
for r is 2 and note down the observed throughpub@s. If ﬁ—% > r then we increase the value of
r by a factor of two else we do not change its value.

Finally, for a system that violates our assumptions, both Optimal and Approximay fail
to identify system SoAR. For example, Figure 7.8 shows a system wherdseeved throughput
is not a increasing function of system load. In such a case, both OptirdaApproximate may
become trapped in a local minima and fail to identify the peak throughput of/#tera. A possible
approach may resemble simulated annealing that performs (random) jumpajpe éscal minima.
We do not discuss this possibility further as we have not observed arsyis¢ violates the stated
assumptions.
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During its search process, BGCoord may run the different experimetitsavghorter duration
(6) than A to expedite the rating process< A. Once it identifies the ideal value &f with o for
SO0AR (Socialites), it runs a final experiment withto compute the final SOAR (Socialites rating)
of a data store. A key question is what is the ideal valug?ideally, it should be small enough
to expedite the time required to rate a data store and, large enough to enatned®&a data store
accurately. There are several ways to address this. For examplmayneompare the throughput
computed withy andA for the final experiment and, if they differ by more than a certain pergenta
repeat the rating process with a largeralue. Another possibility is to employ a set of valuesdfor
{01, 92,...,0;}. If the highest twa); values produce identical ratings, then they establish the value of
o for that experiment. The number &Walues in the set should be small enough to render the rating
process faster than performing the search with

The value of§ is an input to BGCoord. An experimentalist computes this value using the Delta
Analyzer, see Section 7.3. If it is left unspecified, BG udefor the rating process.

7.2 Agile Loading Techniques

With those workloads that change the state of the database (its size,tehiatias, or storage
spacé), one may be required to destroy and reconstruct the database agtheiibg of each ex-
periment to obtain meaningful ratings. To illustrate, consider an asymmetric &®&oad that
generates more friendships than thawing them, resulting in a larger numfremnalships among
members. Use of this kind of a workload across different back to bgoérexrents results in each
experiment imposing an action such as List Friend for a member with a largéyerof friends. If
the data store becomes sloviers a function of the database size then the observed trends cannot be
attributed to the different amount of offered lodd) olely. Instead, they must be attributed to both
a changing database size (difficult to quantify) and the offered loadvam this ambiguity, one
may recreate the same database at the beginning of each experimentpéhatededestruction and
creation of the same database may constitute a significant portion of the redoesp. As an ex-
ample, the time to load a modest sized BG database consisting of 10,000 membé@0#iiends
and 100 resources per member is 2 minutes with MongoDB. With an industgabgirrelational
database management system (RDBMS) using the same hardware platfsriiméhincreases to

7 minutes. With MySQL, this time is 15 minutes, see Appendix A for details. If thegaifma
data store conducts 10 experiments, the time attributed to loading the data stordinset® the
reported numbers, motivating the introduction of agile data load techniquepé¢dliee the rating
mechanism.

This section presents the following data loading techniques. The firstitgehnnamed
Database Image Loadin®BIL, relies on the capability of a data store to create a disk image of
the database. DBIL uses this image repeatedly across different exp&gifibe second technique,
namedRepairDB restores the database to its original state prior to the start of an experithent.
proposed implementation of RepairDB is agnostic to a data store and doesqonotra database
recovery technique. Depending on the percentage of writes and thestdatacharacteristics,
RepairDB may be slower than DBIL.

3Using workloads that insert/delete data to/from the daigesthe underlying storage space of the data
store may change from the initial state in such a way thaiopednce of an experiment may differ greatly
from a previously executed experiment.

4An example from YCSB is Workload D that inserts new records indata store, increasing the database
size. Use of this workload across different experiments witdifferent number of threads causes each
experiment to impose its workload on a larger database dieehvmnay slow down a data store.
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The third technique, namddadFree does not load the database in between experiments. In-
stead, it requires the benchmarking framework to maintain the state of theagatabits memory
across different experiments. In order to use LoadFree, the warldiod its target data store must
satisfy several conditions. One requirement is for the workload to be syiomé must issue
write actions that negate one another in the long run. An example symmetritoadnkith BG
issues Thaw Friendship (TF) action as frequently as Invite Friend (& )Pecept Friend Request
(AFR). The TF action negates the other two actions across repeatethesipis, see Section 4.1.
This prevents both an increased database size and the possible deflgtebhenchmark database
from friendship relationships to thaw. See Section 7.2.3 for other condifiagovern the use of
LoadFree.

In scenarios where LoadFree cannot be used for the entire ratinglathastore, it might be
possible to use LoadFree in several experiments and restore the datesiag either DBIL or
RepairDB. The benchmarking framework may use Hyisrid approach until it rates its target data
store. Section 7.4 shows the hybrid approaches provide a factor abfiveelve speedup in rating
a data store.

The primary contribution of this section is several agile data loading tectmiguaise with
the cloud benchmarks. Note that the overhead of loading a benchmablaslats a recognized
topic by practitioners dating back to Wisconsin Benchmark [19, 39] andZ%)7116, 117], and by
YCSB [29] and YCSB++ [88] more recently. YCSB++ [88] describesikk loading technique that
utilizes the high throughput tool of a data store to directly process its gedetata and store itin an
on-disk format native to the data store. This is similar to our DBIL techniquedL s different in
three ways. First, DBIL does not require a data store to provide suatl.dnstead, it assumes the
data store provides a tool that creates the disk image of the benchmarasatatze its loaded onto
the data store for the very first time. This image is used in subsequentregpés. Second, DBIL
accommodates complex schemas similar to BG’s schema. Third, DBIL doesquirter knowledge
about load balancing mechanisms implemented within a multi-shard data storeralnel esed to
load the appropriate data on each sRaRbth RepairDB and LoadFree are novel and apply to data
stores that do not support either the high throughput tool of YCSB-theodisk image generation
tool of DBIL. They may be adapted and applied to other benchmarking Wwanks that rate a data
store similar to BG.

The following 3 sections describe an implementation of DBIL, RepairDB, avatiEree with
BG. As shown in Figure 7.2, BG assumes BGCoord issues commands to BS@ieither create
BG’s schema, construct a database and load it, or generate a wor@tahe fdata store. We now
describe DBIL, RepairDB, and LoadFree in turn.

7.2.1 Database Image Loading

Various data stores provide specialized interfaces to create a “disk inoAdlbé database [85].
Ideally, the data store should provide a high-throughput external &lthat the benchmarking
framework employs to generate the disk image. Our target data stores ¢MBndg/lySQL, an
industrial strength RDBMS nam@&QL-X) do not provide such a tool. Hence, our proposed tech-

SWith multi-shard MongoDB, the data is initially loaded orttee primary shard and then chunks are
dispersed across all the shards for better load balancirith DBIL once the disk image for each shard is
created after the load balancing is completed, the imag®earsed repetitively to avoid the load balancing
process for subsequent loads which may be slow. For examitieaw 18 shard MongoDB and two sec-
ondaries for each shard, it takes almost 24 hours to loadial gwaph with 100,000 members and wait for
chunk migration/balancing to complete. with DBIL the suipsent loads were reduced to 9 minutes.

5Due to licensing restrictions, we cannot disclose the naitleigsystem.
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Figure 7.10: Comparing the loading duration for DBIL with l@aglduration for using BG
to construct a social graph of 100,000 members using diffesterage mechanisms for the
data store.

nique first populates the data store with benchmark database and thestggits disk image. This
produces one or more files (in one or more folders) stored in a file systemawAexperiment starts
by shutting down the data store, copying the files as the database for thetatataand restarting
the data store. This technique is termed Database Image LodaBig, In our experiments, it
improved the load time of MongoDB with 1 million members with 100 friends and 106uress
per member by more than a factor of 400. Figure 7.10 compares the amdimeéaff takes to load
a social graph consisting of 100,000 members using DBIL with using BG tstieart the database
for a data store that stores its data on disk, an MLC SSD and a virtudl disk reason copying an
image of a database using DBIL is faster than constructing the social gsapip BG is because it
does a sequential read and write of a file. BG’s construction of the sgreiph is slower because
it generates members and friendships dynamigallihis may cause a data store to read and write
the same page (corresponding to a member) many times in order to update afpidoemation
(a member's JSON object) repeatedly (modify friends). In addition, it alsst manstruct index
structure that is time consumihg

With DBIL, the load time depends on how quickly the system copies the filesipiegao the
database. One may expedite this process using multiple disks, a RAID dslstern, a RAM disk
or even flash memory. We defer this analysis to future work. Instead, foltbesing, we assume a
single disk and focus on software changes to implement DBIL using BG.

Our implementation of DBIL utilizes a disk image when it is available. Otherwisesttdreates
the database using the required (evaluator provided) metho8sibsequently, it creates the disk
image of the database for future use. Its implementation details are specifiata state. Below,

"With disk and the MLC SSD the disk on the node hosting the data ecomes the bottleneck. With the
virtual disk, the CPU of the node hosting the data store besaime bottleneck as now all the data is written
to the memory. DBIL is faster than this approach as it elingsdhe overhead of locking and synchronization
on the data store.

8Constructing the social graph using BG without actuallyiisg calls to the data store takes less than a
second showing that BG does not impose any additional ogdnivbile loading the social graph into the data
store.

%In addition, with MongoDB, there is also the overhead of lngkand synchronization on the data store

Owith BG, the methods are insertEntity and createFriendshith YCSB, this method is insert.
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we present the general framework. For illustration purposes, weaildedww this framework is
instantiated in the context of MongoDB. At the time of this writing, an implementatiothef
general framework is available with MongoDB, MySQL and SQL-X.

We implemented DBIL by extending BGCoord and introducing a new slave coemathat runs
on each server node (shard) hosting an instance of the data stoeeBGRlient and BGListener are
left unchanged.) The new component is narb&ImageLoadeand communicates with BGCoord
using sockets. It performs operating system specific actions suctppadibe, and shutdown and
start the data store instance running on the local node.

When BGCoord loads a data store, it is aware of the nodes employed bwtthetdre. It
contacts the DBImagelLoader of each node with the parameters specifiiee lmad configuration
file such as the number of membefd), number of friends per membei), number of BGClients
(V), number of threads used to create the imdge;), etc. The DBImageLoader uses the values
specified by the parameters to construct a folder name containing thediffetders and files that
correspond to a shard. It looks up this folder in a pre-specified pétie lfolder exists, DBIm-
ageloader recognizes its content as the disk image of the target stopcaeeds to shutdown
the local instance of the data store, copy the contents of the specified ifiaidehe appropriate
directory of the data store, and restarts the data store instance. Wittdadldata store, the order
in which the data store instances are populated and started may be impoitattite itesponsibility
of the programmer to specify the correct order by implementing the “MultiStwed’ method of
BGCoord. This method issues a sequence of actions to the DBImagelafadeh server to copy
the appropriate disk images for each server and start the data stae serv

As an example, a sharded MongoDB instance consists of one or moreg@atiin Servers,
and several Mongos and Mongod instances [84]. The Configuraéore® maintain the metadata
(sharding and replication information) used by the Mongos instances t® goeries and perform
write operations. It is important to start the Configuration Servers prior dodds instances. It
is also important to start the shards (Mongod instances) before attaclkemgtththe data store
cluster. The programmer specifies this sequence of actions by implementingShardStart” and
"MultiShardStop” methods of BGCoord.

7.2.2 Repair Database

Repair DatabaseRepairDB marks the start of an experimerfis¢,,:) and, at the end of the ex-
periment, it employs the point-in-time recovery [74, 73] mechanism of the tat@a ® restore the
state of the database to its stateélgt,,;. This enables the rating mechanism to conduct the next
experiment as though the previous benchmark database was destidygedew one was created. It
is appropriate for use with workloads consisting of infrequent write astittrexpedites the rating
process as long as the time to restore the database is faster than destndyiegeeating the same
database.

In our experiments (see Section 7.4), RepairDB was consistently sloweDBH.. Hence,
RepairDB is appropriate for use with those data stores that do not pra\bddL feature (or with
those experiments where RepairDB is faster than DBIL).

With those data stores that do not provide a point-in-time recovery mechahisivenchmark-
ing framework may implement RepairDB. Below, we focus on BG and destnbealternative
implementations of RepairDB. Subsequently, we extend the discussion to ¥QEBCSB++.

The write actions of BG impact the friendship relationships between the merabdrpost
comments on resources. BG generates log records for these actiodsiicodetect the amount of
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No. of friends per member] | Speedup Factor
10 12
100 7
1000 2

Table 7.1: Factor of improvement in load times with RepairDBew compared with re-
creating the entire database, target data store is Mongd>H,00K, p=100.

unpredictablé! data during its validation phase at the end of an experiment. One may implement
point-in-time recovery by using these log records (during validation phasestore the state of
the database to the beginning of the experiment.

Alternatively, BG may simply drop existing friendships and posted commentseurdate
friendships. When compared with creating the entire database, this elimieatestructing mem-
bers and their resources at the beginning of each experiment. The aofdmprovement is a
function of the number of friendships per member as the time to recreatedhignstarts to domi-
nate the database load time. Table 7.1 shows RepairDB improves the load timagé V& by
at least a factor of 2 with 1000 friends per member. This speedup is higtiefewer friends per
member as RepairDB is rendered faster.

BG’s implementation of RepairDB must consider two important details. First, it present
race conditions between multiple BGClients. For example, with an SQL solutienmay im-
plement RepairDB by requiring BGClients to drop tables. With multiple BGClients,succeeds
while others encounter exceptions. Moreover, if one BGClient creatssiships prior to another
BGClient dropping tables then the resulting database will be wrong. Wempremdesirable race
conditions by requiring BGCoord to invoke only one BGClient to destroy #igtiag friendships
and comments.

Second, RepairDB’s creation of friendships must consider the numBeof(BGClients used
to create the self contained communities. Within each BGClient, the number ad$hfea ;) used
to generate friendships simultaneously is also important. To address this, Veenemt BGCoord
to maintain the original values éf and7;,.,4 and to re-use them across the different experiments.

Extensions of YCSB and YCSB++ to implement RepairDB is trivial as theyisbie$ one
table. This implementation may use either the point-in-time recovery mechanismatd atdre or
generate log records similar to BG.

7.2.3 Load Free Rating

With Load Free, the rating framework uses the same database acrossndiéieperiments as long
as thecorrectnes®f each experiment is preserved. Below, we define correctnesse§uéntly, we
describe extensions of the BG framework to implement LoadFree.

Correctness of an experiment is defined by the following three criterist, Biie mix of actions
performed by an experiment must match the mix specified by its workload. rticydar, it is
unacceptable for an issued action to become a no operation due to repsaigidthe benchmark
database, see Section 5.2. For example, with both YCSB and YCSB++,ta dplration must
reference a record that exists in the database. It is unacceptabfedrpariment to delete a record

11See Chapter 6 for the definition of unpredictable data.
12The factor of improvement with MySQL is 3.
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that was deleted in a previous experiment. A similar example with BG is when sadatadxreated
with 100 friends per member and the target workload issues Thaw Fripr(d3N) more frequently
than creating friendships (combination of Invite Friend and Accept FiRagliest). This may cause
BG to run out of the available friendships across several experimeintg usadFree. Once each
member has zero friends, BG stops issuing TW actions as there exist magsfiips to be thawed.
This may introduce noise by causing the performance results obtained @xpeement to deviate
from their true value. To prevent this, the workload should be symmetritthat the write actions
negate one another. Moreover, the benchmarking framework must masntéicient state across
different experiments to issue operations for the correct records.

Second, repeated use of the benchmark database should not caastichs issued by an
experiment to fail. As an example, workloads D and E of YCSB insert adesith a primary key
in the database. Itis acceptable for an insert to fail due to internal lagicak in the data store such
as deadlocks. However, failure of the insert because a row with theksgnegists is not acceptable.
It is caused by repeated use of the benchmark database. Such fpidlites the response times
observed from a data store as they do not perform the useful was&r{ia record) intended by
YCSB. To use LoadFree, the uniqueness of the primary key must berpeesacross different
experiments using the same database. One way to realize this is to requirestbiasses of YCSB
to maintain sufficient state information across different experiments to imsigie records in each
experiment.

Third, the database of one experiment should not impact the performasides computed by
a subsequent experiment. In Section 7.2, we gave an example with YCSiBeaddtabase size
impacting the observed performance. As another example, consider Bi&anetric to quantify
the amount of unpredictable reads. This metric pertains to read actionsb&i/e either stale,
inconsistent, or wrong data. For example, the design of a cache augnuatéestore may incur
dirty reads [56] or suffer from race conditions that leave the cacti¢rendatabase in an inconsistent
state [46], a data store may employ an eventual consistency [112, 1B8ijdee that produces either
stale or inconsistent data for some time [88], and others. Once unprédid&th is observed, the
in-memory state of database maintained by BG is no longer consistent with thefsteelatabase
maintained by the data store. This prevents BG from accurately quantifygngntftount of stale
data in a subsequent experiment. Hence, once unpredictable datansdhbseone experiment,
BG may not use LoadFree in a subsequent experiment. It must employ@Bheor RepairDB to
recreate the database prior to conducting additional experiments.

LoadFree is very effective in expediting the rating process (see Set#yras it eliminates
the load time between experiments. One may violate the above three aforemectitergon and
still be able to use LoadFree for a BG workload. For example, a workloabtrbeg asymmetric
by issuing Post Comment on a Resource (PCR) but not issuing Delete Corinomra Resource
(DCR). Even though the workload is asymmetric and causes the size oftdimada to grow, if the
data store does not slow down with a growing number of comments (due td inskew structures),
one might be able to use LoadFree, see Section 7.4. In the following, weBlet®implementation
of LoadFree.

To implement LoadFree, we extend each BGClient to execute eithmmartimeor repeated
mode. With the former, BGListener starts the BGClient and the BGClient terminatesit has
either executed for a pre-specift€camount of time or has issued a pre-specified number of re-
qguests [29, 88]. With the latter, once BGListener starts the BGClient, the BA&Ces not termi-
nate and maintains the state of its in-memory data structures that describe tlé gtatdatabase.
The BGListener relays commands issued by the BGCoord to the BGClientswikgts.

3pescribed by the workload parameters.
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We extend BGCoord to issue the following additioftalommands to a BGClient (via BGLis-
tener): reset and shutdown. BGCoord issues the reset command vadetadts a violation of the
three aforementioned criteria for using LoadFree. The shutdown comisiasdied once BGCoord
has completed the rating of a data store and has no additional experimemisuing the current
database.

In between experiments identified by EOE commands issued by BGCoordid&@aintains
the state of its in-memory data structures. These structures maintain the pandignfirmed
friendship relationships between members along with the comments posteaorcessowned by
members. When an experiment completes, the state of these data structiged is populate
the data structures corresponding to the initial database state for thexpexineent. BGClient
maintains both initial and final database state to issue valid actions (e.g., Mengjeyuid not
extend a friendship invitation to Member B if they are already friends) amahtify the amount of
unpredictable data at the end of each experiment, see [12] for detalils.

7.3 lIdeald

BG computes the SOAR and Socialite rating for a data store given a pre-egesifA require-
ment. The SLA consists of four parameters: tolerable response finggrcentage of actions to
observe the given response tinag,amount of unpredictable data,and duration for which these
requirements should hold truéy. The duration of the rating process is a function of the num-
ber of conducted experiments and the duration of each experimentiie number of conducted
experiments depends on the heuristic search process and whetheg#test&oAR or Socialites
rating.

Below, we focus on SoOAR and how to determine the duration of each expgrimelt is
undesirable to selectavalue equal ta\, i.e.,d = A, becausé\ is an input parameter and its value
might be large, resulting in a long rating process. The challenge is to iden#ua ford such
that it reflects the behavior of the system with- A and is the smallest possible value that satisfies
the following: 1) Computes the same SoAR/A&Ss 2) It is sufficiently long in duration to generate
the pre-specified workload. The workload generated with the ishbuld resemble the workload
that was given to the benchmark as an input (same distribution for act@tigrwise, the numbers
observed may be incorrect because different actions may haveediffegrvice times. For example,
consider a mixed workload of four actions with the following probabilities: 0®902, 0.003,
0.005 where the first action has a service time of 1 second. With a small viatué.e.,o = 1
second) and with 1 thread’(= 1), BG may only generate the first action and never have a chance
to generate other actions. This is because BG supports a closed simulatidnatiadieer actions
have very low probabilities of reference and the service time for the fitstrais equal to the ideal
0. In this case the workload generated by BG will not resemble the actuatiedemorkload and
the results gathered may not be accurate.

3) To estimate the ideal, we should observe the system processing the workloadsieaaly-
state This state is one whose resource utilization and observed throughmat @bange in time.
Hence, the observed performance will continue to hold into the future. tNatex system reaches
the steady-state after its warm-up phase. For example, with data storesssGO&8QLs, requests
observe a higher response time during the warm up phase when theizaole: Once the cache

Prior commands issued using BGListener include: creatersahload database and create index, Exe-
cute One Experiment (EOE), construct friendship and drajatgs. The EOE command is accompanied by
the number of threads and causes BG to conduct an experimprgdsure the throughput of the data store
for its specified workload (by BGCoord). The last two comnmaimplement RepairDB.
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Figure 7.11: System throughput as a function of experimenatcbn with different im-
posed load against the system for a fixed workload.

reaches a state that produces a constant hit rate for a workloadstegtart to observe the average
response time. Thus, a steady-state is reached by requiring a "warpeupt that is supported by
BG. In the following discussion, we separate a discussianfam the warm-up period, assuming
BG is configured with the correct duration for this period. The apprtpnalue ford is both
workload and data store dependent. This value can be decided in eopesging phase (using the
Delta Analyzey and then given to the BGCoord as an input parameter.

Figure 7.11 shows the observed throughput for a data store as a funétthe experiment
duration with different amount of load() imposed against the data store. As shown in this figure,
an increase in the thread coufit)(results in a higher observed throughput. For this workload, with
T = 16, the network on the node hosting the data store gets fully utilized resulting in tkienoma
observed throughput for the syst&nFor all values ofl’, smaller experiment durations result in
either an incorrect workload issued against the data store or and dyistai@ store. However, as
we increase the experiment duration, the observed throughput frodathestore and the resource
utilization for the node hosting the data store stabilize identifying a range eptatale values for
J.

Next the BGCoord will usé to conduct the rating experiments which compute the SoAR and
Socialites rating for a data store for a given workload. If the pre-@msing phase fails to compute
a value foré (6 < A) which satisfies the conditions above, it will piék= A as the duration for
the rating experiments. For example, with a workload consisting of feed fioigpactions, Share
Resource action (SR) and View News Feed action (VNF), the data séagggsas more SR actions
are issued against the data store. The complexity of the VNF action is a funéttbe database
size, causing the observed throughput to change as a function of pleeiregnt duration. This
prevents the Delta Analyzer from computing an idéailue, see Figure 7.12. However, this is not
important for this class of experiments because one may use BG to quantiigttaeior of different

BIncreasing the thread count to a value greater than 16 willmprove the observed throughout for the
system suggesting the SOAR of the system to be observed witead count equal or lower than 16.
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7.12.a: Mixed High (11%) Write workload of Table 8.9
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7.12.b : Mixed Very Low (0.2%) Write workload of Table 8.9
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Figure 7.12: Importance of experiment duratiohdn the throughput of MongoDB for two
different workloads of Table 8.9. With both workloads, thelta Analyzer fails to compute
the ideald. 7' is the thread count picked by the Delta Analyzer for Delta isia.

algorithms with one another. With these, the SoAR rating is not relevant aridette Analyzer
does not apply.

In Figure 7.12, with small values @, the duration is not sufficiently long, the pre-specified
workload is not generated and the numbers observed in these experareentst accurate. As the
value of§ increases the observed throughput decreases. This is becausenther of issued SR
actions increases the size of the database and this increase impacts dhseadspe for different
actions.

7.3.1 Delta Analyzer

The Delta Analyzer uses an iterative process to compute the ideal valuelbtonsists of two
steps: 1) identifying the amount of load to impose on the data store which restiies data store
becoming 100% utilized (this load is defined by the number of thre&)ieihulating concurrent
socialites), and 2) computing the ideal valugdafsing thel computed in Step 1.

The analyzer first emulates 1 thread issuing the pre-specified workgmadsathe data store
for duration oft seconds.t is determined as the amount of time required for the data store to
reach a steady-sate. The steady-state is identified by monitoring the d&ta bairavior. This
includes monitoring both the resource utilization on the data store and its edsdgmoughput
for the given workload in discrete windows ¢fseconds. Once the resource utilization and the
observed throughput fom consecutive windows varies by less tha%, the experiment halts.
Next, the final resource utilization (average disk queue, network utilizatiemory utilization and
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CPU utilization) on the data store is used to predict the appropriate threatd(@)uhat may result
in the data store utilizing at least one of its resources completely. Next thezanases BG with
T = ¢ x T threads to impose the specified workload on the data stotesBmondsdis an inflation
factor which is used to speed up the process of finding the thread cainttilizes the data store
resources completely).

It also monitors the resource utilization on the data store to identify if its predictiosre
correct and ifl" results in the data store becoming fully utilized. If it does tfieis selected for the
second phase of the analysis, else the resource utilization with the cliregwut the inflation factor
are used to predict the new thread count. This process continues urdil gighresources on the
node hosting the data store become fully utilized or the data store node’s utilifatithe various
thread counts does not vary by more théid. Once the value fof" is decided, Delta Analyzer
conducts multiple rounds of experiments imposing a workload generatédhmgads with various
durations. It starts by assignidg= 1 second and increasédy a factor of two in each iteration.
The workload issued against the data store (mix of actions) and the otre@lighput for each
experiment is monitored. The issued workload is compared with the pre-splegifirkload and
the observed throughput is compared with the observed throughputlf previous experiments.
The minimumd value which results in a constant overall throughput {4 marginal error) form
consecutive experiments Yalues) and generates a workload similar to the pre- specified workload
will be selected as the idealvalue for the given workload and data store. For example, if the
experiments withh = 2, 4 and 8 seconds all result in almost the same throughput and generate the
appropriate workload, thefqy = 2 second is selected as the idéalalue. Next, the BGCoord of
BG employs this value to rate the data store. Figure 7.13 and Figure 7.14 welsihdehavior
of MongoDB and SQL-X in terms of observed throughput (actions/stcas a function of the
duration of the experiment). TheT" used by the Delta Analyzer for each experiment is available
in the image caption. Thi¥ is predicted to result in full resource utilization for the data store. The
ideal value fow is highlighted in each graph. Figure 7.13.a shows 8 experiments are ¢eddvith
different durations shown on the x-axis. In these experiments, theicarizetween the observed
throughput with the first six experiments was higher than the tolerable tiideshosen at 5%. The
next 3 experiments met the requirement and the one with the small@&tseconds) was chosen.
The workload in Figures 7.13.b and 7.13.c are different than those ind=iguir3.a resulting in a
different thread count that utilizes resources completely.

In addition, the number of conducted experiments to find three conseexjpeximents that
meet the requirements for computing the idesl fewer. Similar observations are shown with SQL-
Xin Figure 7.14. However, with SQL-X, the number of conducted experisnesth workloads
involving writes is higher.

7.4 An Evaluation

This section quantifies the speedup observed with the 3 proposed loachmipiges and the Delta
Analyzer using the 10% Write workload of Table 7.3. With the data loading tqubks, we consider
two hybrids: 1) LoadFree with DBIL and 2) LoadFree with RepairDB. S¢heapture scenarios
where one applies LoadFree for some of the experiments and reloadgdbask in between. With
the Delta Analyzer, we focus on both aivea data loading technique and DBIL to quantify the
observed speedup.

In the following, we start with an analytical model that describes the total tiopgenexd by BG
to rate a data store. Next, we describe how this model is instantiated by theatitegltechniques.
Subsequently, we describe how the idéampacts the overall rating duration. We conclude by
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7.13.b : Very Low (0.1%) Write, T=4
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7.13.c : High (10%) Write, T=4

Figure 7.13: Computation of idealfor MongoDB for three different workloads of Ta-
ble 7.3. With the List Friends workload, the Delta Analyzesigs 7' = 2, with the Very
Low workload, it picksT" = 4 and with High it picksT" = 4 as the thread count for Delta
analysis. The load imposed Hyresults in the network on the data store becoming 100%

utilized.
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Figure 7.14: Computation of idealfor SQL-X for three different workloads of Table 7.3.
With the List Friends workload, the Delta Analyzer picks = 4, with the Very Low
workload, it picksT = 4 and with High it picksT = 2 as the thread count for Delta
analysis. The load imposed Hyresults in the network on the data store becoming 100%
utilized.
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Database parameters
Number of members in the database.
Number of friends per member.
Number of resources per member.
Workload parameters

Total number of sessions emulated by the benchmark.
Think time between social actions constituting a session.
Inter-arrival time between users emulated by a thread.
Exponent of the Zipfian distribution.

Service Level Agreement (SLA) parameters
Percentage of requests with response time.
Max response time observed byrequests.
Max % of requests that observe unpredictable data.
Min length of time the system must satisfy the SLA.

Environmental parameters
Number of BGClients.
Number of threads.
Duration of the rating experiment.
Incurred Times

Amount of time to create the database for the first time.
Amount of time to recreate the database in between experiments.
Number of rating experiments conducted by BGCoord.
Number of times BGCoord loads the database.
Total rating duration.

‘b%&i

> 2 Q

>3 ™ 9

S S I A

Table 7.2: BG’s rating parameters and their definitions.

. . List Friends| Very Low High
BG Social Actions Type (0.1%) Write | (10%) Write
View Profile Read 0% 40% 35%
List Friends Read 100% 5% 5%
View Friends Requests Read 0% 5% 5%
Invite Friend Write 0% 0.04% 4%
Accept Friend Request Write 0% 0.02% 2%
Reject Friend Request Write 0% 0.02% 2%
Thaw Friendship Write 0% 0.02% 2%
View Top-K Resources Read 0% 40% 35%
View Comments on Resource Read 0% 0% 9.9%
Post Comment on a Resource | Write 0% 0% 0%
Delete Comment from a ResourcéNrite 0% 0% 0%

Table 7.3: BG workloads consisting of a mix of social netwngkactions used for ideal
experiments.
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M Action | DBIL RepairDB LoadFree LoadFree + DBIL LoadFree + RepairDB
¢ 165 157 157 165 157
100K | v 8 26 0 1.9 6.4
A 290 481 200 228 270
¢ 361 351 351 361 351
500K | v 10 165 0 2.5 41.2
A 514 2205 394 431 847
¢ 14804 14773 14773 14804 14773
1000K | v 31 588 0 7.75 147
A 15188 21284 14816 14932 16433

Table 7.4: BG’s rating of MongoDB with 1 BGClient using High wto&d of Table 7.3,
¢=100, p=100,0=3 minutes A=10 minutes, ang=11. All reported durations are in min-
utes. The hybrid techniques used either DBIL or RepairDB f@raximately 25% of the
loading experiments.

M DBIL RepairDB LoadFree LoadFree + DBIL LoadFree + RepairDB
100K 6.8 4 9.6 8.7 7

500K 8.4 1.9 10.7 10.1 5

1000K | 11.7 8 12 11.9 10.8

Table 7.5: Observed speeduf) (vhen rating MongoDB using agile loading techniques.

presenting the observed enhancements and quantifying the obseeeztlippelative to not using
the proposed techniques.

7.4.1 Analytical Model

With BG, the time required to rate a data store depends on:

e The very first time to create the database schema and populate it with datacahhie
done either by using BGClients to load BG’s database or by using high thpotigools
that convert BG’s database to an on-disk native format of a data tdedet( denote the
duration of this operation. With DBIL; is incurred when there exists no disk image for the
target database specified by the workload paraméter®, ¢, ¢, o andp, and environmental
parameterN and others. In this case, the value(owith DBIL is higher than RepairDB
because, in addition to creating the database, it must also create its disk onagarke use,
see Table 7.4.

e The time to recreate the database in between rating experimentd/ith DBIL and Re-
pairDB, v should be a value less thgnWithout these techniques,equals(, see below.

e The duration of each rating experimefit,

e Total number of rating experiments conducted by BGCongrd,
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e Total number of times BGCoord loads the databaseThis might be different than with
LoadFree and hybrid techniques that use a combination of LoadFree witithtér two tech-
nigues.

e The duration of the final rating round per the pre-specified SAA,

The total rating duration is:
A=C(+(wxv)+(nxd)+A (7.1)

With LoadFreew equals zero. The value of is greater than zero with a hybrid technique that
combines LoadFree with either DBIL or RepairDB. The value dfifferentiates between DBIL
and RepairDB, see Table 7.4. Its value is zero with Loadfree

By settingr equal to¢, Equation 7.1 models a hee use of BG that does not employ the
agile data loading techniques described in this chapter. Suciva tezhnique would require 1927
minutes (1 day and eight hours) to rate MongoDB with 100K members. Thertvirdf Table 7.4
shows this time is reduced to a few hours with the proposed loading techniGiisss primarily
due to considerable improvement in load times, see the first two rows of TabléNdte that the
initial load time () with DBIL is longer because in addition to loading the database it must caenstru
the disk image of the database.

The last six rows of Table 7.4 show the observed trends continue to heldvith databases
consisting of 500K and 1 million members. In addition, when rating a data stére ifA is used
as the duration of each rating experiment, then the overall duration foeafting process will
improve. An obvious question is the impact of the discussed techniques wiladeother pieces
alone relative to the riee use of BG ¢=() and whené = A? Amdahl's Law [2] provides the

following answer:
1

STy T (72
where S is the observed speedup,is the fraction of work in the faster mode, ahds speedup
while in faster mode. The next two paragraphs will describe how theseatorg are computed for
the speedup results shown for various agile data loading techniqueseaidealvy rating duration.

With only focusing on the data loading techniques, the fraction of work doribe faster
mode is computed ag = “TXC and the speedup while in faster mode is computed ulsiﬁgg.
With LoadFreey is zero, causing: to become infinite. In this case, we compute speedup using
a large integer value (maximum integer value) fdoecauses levels off with very largek values.
Figure 7.15 illustrates this by showing the valuesadis the value of with 0.92 (1 million member
database) using differektvalues.

When only changing the idealfrom § = A to ideald, the fraction of work done in the faster

mode is computed ag = "TXA. With a fixed rating duration, e.qdé = 180 seconds,f will be

computed ag = %180 Similarly, k is computed ag& = % andk = % respectively.

When we use both an agile data loading technique and theddsahputed by the Delta An-
alyzer in our rating experiments, the following are used to compute the ogpeldup compared
to the ndve usage of BG withh = A sndé = 180 seconds respectivelyf = MA(”XA) and

_ (wxO+(mxA) _ (wx{)+(nx180) _ (wx¢)+(nx180)
k= o tixe) andf = A andk = “ S e

16\ith LoadFree, a value af higher than zero is irrelevant asequals zero.
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Figure 7.15:S as a function of.

Data Store| Action | DBIL RepairDB LoadFree LoadFree+DBIL LoadFree+RepairDB

¢ 165 157 157 165 157
MongoDB | v 8 26 0 1.9 6.4

A 290 481 200 228 270

¢ 2514 2509 2509 2514 2509
MySQL v 4.7 1206 0 1.2 302

A 2613 15816 2552 2571 5868

¢ 158.5 153.5 153.5 158.5 153.5
SQL-X v 5 30 0 1.3 7.5

A 253 525 197 214 279

Table 7.6: BG's rating of MongoDB, MySQL and SQL-X with 1 BGCliemsing High
workload of Table 7.3)/=100K, $»=100, p=100,w=11, = 3 minutes,A = 10 minutes,
andn=11. All reported durations are in minutes. The hybrid teghas used either DBIL
or RepairDB for approximately 25% of the loading experiments

7.4.2 Observed Speedup with Load Techniques

Table 7.5 shows the observed speed6ip for the experiments reported in Table 7.4. LoadFree
provides the highest speedup followed by DBIL and RepairDB. Theithybchniques follow the
same trend with DBIL outperforming RepairDB. Speedups reported in Tablare modest when
compared with the factor of improvement observed in database load time betveeeery first and
subsequent load times, compare the first two raendr) of Table 7.4. These results suggest the
following: Using the proposed techniques, we must enhance the perfoentéd other components
of BG to expedite its overall rating duration. (It is impossible to do better thar@lnad time of
LoadFree.) A strong candidate is the duration of each experimiobfducted by BG. Another is
to reduce the number of conducted experiments by enhancing BG'stieseiarch technique.
Reported trends with MongoDB hold true with both MySQL and an industriahgth RDBMS
named!’ SQL-X. The time to load these data stores and rate them with 100K member deisbas

"Due to licensing restrictions, we cannot disclose the naitigi®system.
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Data Store| DBIL RepairDB LoadFree LoadFree+ DBIL LoadFree+ RepairDB
MongoDB | 6.8 4 9.6 8.7 7
MySQL 11.6 1.9 11.8 11.8 5
SQL-X 7.6 3.6 9.6 9 6.8

Table 7.7: Observed speeduf)(when rating MongoDB, MySQL and SQL-X with
M=100K for High workload of Table 7.3.

shown in Table 7.6. While SQL-X provides comparable response time to MXBgblySQL is
significantly slower than the other two. This enables BG’s rating of MySQLbs®ove the highest
speedups when compared with théuegtechnique, see Table 7.7.

7.4.3 Observed Speedup with Load Techniques and Ideal

This section analyzes the observed speedup with tvedue computed using the Delta Analyzer,
highlighting its usefulness to expedite the rating process. We assume tlainblaxperiments are
required to compute the SoAR of the systems. We compare this with two alterolatices ofs.

First, when? is set to the SLA duration specified by the experimentalist,di=). Second, when

an experimentalist sets the valueddfased on experience. In particular, when we first started using
BG'’s rating mechanism, we quickly converged on 180 seconds as suiffjdieng to rate different
data store effectively, i.e4=180 seconds. The following considers these alternative choicés of
values with both the DBIL technique and aivetechnique that re-loads the database each time.
Table 7.8 shows the parameters used for the analytical model for bothd@d&gnd SQL-X with

a social graph of 10,000 members.

Figure 7.16 shows the observed speedup observed with MongoDBthsimgalytical models
of Section 7.4.1. Its x-axis shows different SLA duration§ (anging from 3 minutes to 10 hours.
The y-axis shows the observed speedup. The speedup is most draittatteewelta computed by
the Delta analyzer because it computes a value of 4 secondsdee Figure 7.16.a. In this figure,
as the value of\ increase on the x-axis, the duration of each experiment becomes loitlydroth
DBIL and ndve. With the Delta Analyzer the duration of each experiment is kept conataht
seconds, enhancing the observed speedup. The gains are moreaigmith DBIL because the
time to recreate the database at the beginning of each experiment is sidiyifiaater than that
with naive, 50 seconds versus 11 minutes.

Figure 7.16.b shows the scenario where the valugisfkept constant at 180 seconds. As the
duration specified by the SLA increases, the observed speeduplmFoasgse the portion of work
that does not benefit from a shorter experiment time dominates, see EgédaioThese results
highlight the importance of using Delta Analyzer to compute the duration ofeequériment instead
of either estimating it or defaulting to the SLA duration.

Figure 7.17 shows the observations made with MongoDB hold true with the )SQystem.
Figure 7.18 compares the speedup observed with both SQL-X and M&gs[a function of the
duration specified by SLA and used as the duration of each experidaext,The observed speedup
is higher with MongoDB because its database creation time at the beginniagloEgperiment is
faster. Thus, the fraction of work that benefits from the uséadmputed using the Delta Analyzer
is more dominant, see Equation 7.2.
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Table 7.8: Parameters used for speed up evaluation foral gpaph with 10,000 members.
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Figure 7.16: Speedup computed with MongoDB when compatieguse of ideab for
rating vs. the use of twé values for two loading techniques: DBIL andive. Table 7.8
shows the parameters used for this computation. To gendratgraphs the following
values were assigned : 3, 6, 10, 12, 60, 600 minutes. The Very Low (0.1%) Write

workload of Table 7.3 was used for these experiments.
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Figure 7.17: Speedup computed with SQL-X when comparingisieeof ideab for rating
vs. the use of tw@ values for two loading techniques: DBIL andive. Table 7.8 shows
the parameters used for this computation. To generate apdgthe following values were
assigned ta\: 3, 6, 10, 12, 60, 600 minutes. The Very Low (0.1%) Write woadoof
Table 7.3 was used for these experiments.
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Figure 7.18: Speedup computed with SQL-X and MongoDB whenparing the use of
the DBIL loading technique and ideafor rating vs. the use of the nee loading technique
ando = A. The following values were assignedAoto generate this graph: 3, 6, 10, 12,
60, 600 minutes. The Very Low (0.1%) Write workload of Tabl8 Was used for these
experiments.
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Chapter 8

BG’'s Alternative Use Cases

One may use BG for a variety of purposes. This includes comparing tf@mpance of different
data stores with one another, quantifying the tradeoffs associated withagiNerdesign decisions
such as weak consistency techniques, characterizing the behaviataahthing algorithms in the
context of biological databases and programming paradigms and oth@sschiapter focuses on
the first two use case of BG. BG can be used to both compare various selbticomputing their
So0AR and Socialites rating, see Chapter 7, and study their behavior leystiading observed
trends. Comparing the performance of alternative solutions is importanpesvitles the experi-
mentalist with possible inefficiencies and bugs. This will allow an applicatioeldper to pick the
solution which is better for her application and also help data store vendorsvieneir solutions.
In addition, understanding the behavior of a solution by analyzing trenids aibserved behavior
will help an application developer to make predictions about the systemibeiravarious scenar-
ios and take the appropriate steps to improve the performance of her épplidawill also help
data store vendors improve the functionality and behavior of their systedifferent scenarios.
Section 8.1 highlights the importance of physical data representation onrtbenpence of a single
node data store. It describes the use of BG to compare and contriasisvahysical data models
for the data stores introduced in Chapter 1. The results gathered pinosidhts about how the
data model for a single node data store can be modified to improve its perfmnmlaraddition, it
uses the obtained rating results to identify trade-offs between the difsieanstores for its various
workloads.

Section 8.3, emphasizes on the use of BG to study the scalability claims of iffenehi-
tectures. We first identify the factors impacting the scalability of a data state¢hem use those
factors to investigate their impacts, understand tradeoffs between tloerparices of the alterna-
tive architectures and learn about the formed bottlenecks limiting their beh¥veouse the results
of our first study from Section 8.1 to select the architecture which resuttseifest single node
performance for BGs workloads and utilize BG's rating mechanism to cteaize the impact of
sharding, replication, processing capability and data set size on a mudtiehestered MongoDB'’s
performance.

Finally Section 8.4 uses BG to explore two alternative architectures enakkuyféllowing
actions. Real-time computing of news feed for users is now a key featuramy popular social
networking systems. This computation is not trivial due to the combination afedeannection
networks, low latency requirements and high throughput for most remshtrelevant activities.
Hence, developing an architecture that considers all these factorssuits in the best performance
is one of the challenging research topics. We describe each of the atciete namely termed as
Push and Pull, in detail, and demonstrate the tradeoffs between them. Qaes $talis on using
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BG to understand the factors impacting the performance of these archéeatiwell as the trends
in their observed behaviors.

8.1 Use of BG to Study Performance of a Single Node Data
Store

In this section, we use BG to investigate alternative physical data orgamitationiques to enhance
the performance of an industrial strength relational database manageyatath (RDBMS) and a
document store named MongoDB. First, we highlight the importance of @dydita design and
its impact on the performance of a data store. Second, we illustrate the theeBE benchmark to
evaluate alternative physical representations for a given data st@eepirt SOAR ratings using
one SLA: 95% of actions observing a response time equal to or fastet @i@amilliseconds. Given
several data organization techniques, the one with the highest SoARI{apger 7) is superior.

The RDBMS represents the so-called SQL solutions that employ the jointoparal imple-
ment the concept of transactions that support ACID properties. MdBgepresents systems that
employ a JSON representation of data to eliminate the join operator and scalentelty. While
horizontal scaling is important and discussed in Section 8.3, the perfoenwdrac single node is
equally important. For example, Section 8.1.1 shows that a change in how thilmieges (used
to display friends of a member) are managed by MongoDB enhances its BoRzero to more
than seven thousand. Horizontal scalability is not a substitute for sudgahgata design decisions
(and vice versa).

In general, with a scalable system, the faster the performance of a sirtgethe fewer nodes
one needs [105]. Consider two solutions that utilize the same system. Withanasd data design,
say A, a single node provides 10 times the performance of a basic data desidnis means a
service provider with a 1,000 node deployment using design B may provedsathe performance
with 100 nodes using design A. This lowers hardware cost, rack spaokng requirement, and
power consumption. More significantly, if each node fails on average ¢éveee years, then design
B will see a failure every day, while design A will see a failure less than eneey 2 weeks.

The data design techniques that we investigate are as follows. First, \yzeaiadternative
designs to store and retrieve images. Many social networking sites stbnetieve the profile
image of a user and the thumbnail image of their friends. With the RDBMS, wigzmahether
these images should be stored as files in the file system, as a BLOB in the RRBM $ybrid
of the two. With MongoDB, we investigate the use of its Grid File System (Gridtf@mbnails
as an array of bytes in the member document, and as files in the file systeme ddwsions
have a profound impact on the observed system performance. WithXS@G’s Social Action
Rating (SoAR) of the right design is more than forty times higher than a basigrdeithout the
optimizations. With MongoDB, SoAR of the right design is seven thousand whigl®asic design
has a SoAR of zero.

Second, with a relational data design, we consider whether pendind frieitations and con-
firmed invitations should be stored in one table or two different tables. With,eae consider
whether a friendship should be represented as one or two rows. \Wevelike two table design
enhances SoAR of SQL-X by 33% when write actions occur frequer@B6j1 The observed differ-
ence between one and two row representation of a friendship is neglilitzlddition, we consider
migrating the workload of simple analytics performed by a read action (sugtosgng the number
of friends for a member) to write actions. A key negative finding here isrtfaérialized views of
our industrial strength RDBMS do not support this concept effectivélg consider an alternative
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that requires a developer to implement the analytics as columns of a row @ndtsdt it enhances
So0AR by more than a factor of two when write actions are infrequent.

Third, we analyze the use of two middle-tier caches, memcached and Ehtadbok up the
results of social actions instead of computing by issuing queries to a data Bioth memcached
and Ehcache are in-memory Key-Value Stores (KVSs) that augment atdetato implement two
different architectures. A central premise of our study is that thereffisisnt memory to accom-
modate the entire database [66, 90]. This renders the results obtainethiacache augmented
data stores comparable with the data store in stand alone mode. Our expdri@sulta show
Ehcache provides the highest SOAR rating. It enhances the perfoeno&our data stores by more
than a factor of 5 when a workload utilizes the CPU of the server hostinglatarstore fully. It
enhances SoAR by more than a factor of 50 when the workload exhaastetivork bandwidth
link to the server, utilizing it fully, see Section 8.1.7 for details.

BG models a database consisting of a fixed number of memBéysaith a registered pro-
file. Each member profile may consist of either zero or 2 images. With the latieintage is a
thumbnail and the second is a higher resolution image. While thumbnails areyddplaaen list-
ing friends of a member, the higher resolution image is displayed when a meisiteaumember’s
profile. An experiment starts with a fixed number of friend¥ &énd resources per member. This
section assumes a database of 10,000 memBérs=(10, 000) with no pages P = 0), 2 KByte
thumbnail images and 12 KByte profile images. We also consider larger datawéh larger num-
ber of members and databases with no images. All experiments start withdrdsfand resources
per member.

An ideal physical data design is one that maximizes SoAR of a system. All SafR)s in
this section are established with the following SLA: 95% of requests obsergsponse time of
100 milliseconds or faster with unpredictable (stale) data lower than 0.1%. deatgns using
materialized views and cache augmented RDBMSs may produce stale datarnmibeis because
the RDBMS may propagate updates to the materialized view asynchronot@\tafter is due to
write-write race conditions between the RDBMS and the cache [46].

Figure 3.1.c shows the relational design of BG’s database. Index s&adate constructed on
the appropriate attributes to facilitate efficient processing of read actimrsexample, with View
Profile action referencing a member with a specific userid, say 5, a hask fadlitates efficient
retrieval of the member corresponding to this userid. Members table mayirsiages as BLOBSs.
Alternatives are discussed in Section 8.1.1. Computing either list of friengemding friends
requires a join between Members and Friends table. Section 8.1.5 exptarad materialized
views and its alternatives to migrate the work of read actions to write actiomefioputing simple
analytics. We report SOAR of these designs with an industrial strengtiorelhdata store naméd
SQL-X.

Figure 3.5.a shows the JSON design of BG’s database tailored for use withd®B. For each
member);, this design maintains three different arrays:

e pendingFriends maintains the id of members who have extended a friend imvitafid;.
e confirmedFriends maintains the id of members who are friendsMjth
¢ wallResourcelds maintains the id of resources (e.g., images) postefoprofile.

One may store profile and thumbnail image of each member either in the file systamgpMIB’s
GridFS, or as an array of bytes. Figure 3.5 shows the last two choidesn iMages are stored in the
GridFS, the imageid and thumbnailid store the profileimageid and thumbnailimagéidiages of

1Due to licensing agreement, we cannot disclose the ideottiyis system.
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the Members collection (instead of the array of bytes shown in Figure 3%ea)ion 8.1.1 discusses
these alternatives and shows one design provides a SoAR significarktbyr ltligin the other two.

In the next 3 sections, we provide additional details about BG’s actiahthair implementation
using both the relational and JSON representations. We discuss chatigephysical organization
of data and their impact on the SOAR of SQL-X and MongoDB. We analy2d:Saf SQL-X with
different mixes of actions, see Table 4.1. Post Comment and Delete Conwttiensare eliminated
because we have no improved designs to offer for this action.

To simplify discussion, we classify BG’s actions into those that either reaadlite data. A read
action is one that queries data and retrieves rows without updating themiteAawtion is one that
either inserts, deletes, or updates rows of the RDBMS. Column 2 of Tabidehiifies different
read and write actions.

All reported SOAR numbers are based on a dedicated hardware platforsisting of six PCs
connected using a Gigabit Ethernet switch. Each PC consists of a 64 GitHZ.4ntel Core i7-2600
processor (4 cores with 8 threads) configured with 16 GB of memory, B.6fBtorage, and one
Gigabit networking card. One node hosts SQL-X at all times. All other sade used as BGClients
to generate workload for this node. With all reported SOAR values griepizero, either the disk,
all cores, or the networking card of the server hosting a data storeneefudly utilized. We report
on use of two networking cards to eliminate the network as a limiting resourceen\8bAR is
reported as zero, this means a design failed to satisfy the SLA.

8.1.1 Manage Images Effectively

There is folklore that an RDMBS efficiently handles a large number of smalj@sawhile file
systems are more efficient for storage and retrieval of large imagesf8ti BG, we show physical
organization of profile and thumbnail images in a data store impacts its SOAR datingtically.
For example, if thumbnail images are not stored as a part of the profildwsguepresenting a
member then the performance of the system for processing the List FLiEpddtion is degraded
significantly. This holds true with both MongoDB and SQL-X. Performant8@L-X is further
enhanced when profile images are stored in the file system. The same ddeddhtue with
MongoDB. Below, we provide experimental results to demonstrate thesevalisns.

The LF action of BG retrieves the thumbnail image and profile information ofdiseof a
member, the attributes of Member table shown in Figure 3.1.c. Figure 8.1 she\8®#AR rating
of LF with SQL-X and MongoDB with 100 friends per member. While SQL-Xfpans a join
between two tables (Members and Friends of Figure 3.1.c) to perform tivs aflongoDB looks
up an array of member identifiers (confirmedFriends of Figure 3.1.b forefeeenced Member
JSON instance). With SQL-X, we consider thumbnails stored in either the fitersyor the record
representing the member. With MongoDB, we consider thumbnails stored iniidt$=Br System
(GridFS) or as an array of bytes in the JSON-like representation of a nelite both systems,
storing the thumbnail image as a part of the member profile enhances SoARohthe system
from zero to a few hundred. In these experiments, the CPU of the dagdbsticomes 100% utilized.
Itis interesting to note that, with a single node, the join operation of SQL-X in@xéssarily slower
than MongoDB’s processing of cofirmedFriends array to retrieve miecs corresponding to the
friends of the member.

The performance of SQL-X for processing View Profile (VP) action & B enhanced when
profile images araot stored in the RDBMS. An alternative is to store them in the file system with

2BG can be used to evaluate various physical organizatiomagés such as storing them in an RDBMS,
in the file system or other alternative approaches like tirapéemented within Haystack [17].
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Figure 8.1: SoAR of LF with different organization of 2 KB timbnail image, M=10K,
¢=100.
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Figure 8.2: SO0AR of SQL-X for processing a workload consgptdf 100% View Profile
action with images stored as either BLOBs or in the F5;10K, ¢=100.

a member record maintaining the name of the file containing the correspondifiig pnage [97,
16]. Figure 8.2 shows the SoAR of SQL-X with these two alternatives fordifferent image
sizes: 2 KB and 12 KB. (As a comparison, with no images, SOAR of SQL-XL& 746 for this
workload.) A small image size, 2 KB, enables SQL-X to store the image inline witm#raber
record, outperforming the file system by a factor of 3. SQL-X limit on stoimgges inline is 4
KB BLOB sizes. Beyond this, for example with 12 KB image sizes, its perfoomatiminishes
dramatically, enabling the file system to outperform it by more than 40 folds.

MongoDB’s GridFS provides effective support for images and its S@AEbmparable to the
use of the file system with profile images equal to or smaller than 12 KB. It dotpes the file
system by more than a factor of two with very large profile images, e.g., 500tkBworth noting
that SQL-X outperforms MongoDB with image sizes smaller than 4 KB by inliningnthreprofile
records. Beyond this limit, MongoDB outperforms SQL-X. Similar to the thumkdiadussions, if
profile image sizes are known to be small in advance then one may inline them waithddB by
representing them as an array of bytes in the Members collection, see Bi§ua. Key considera-
tions include MongoDB’s limit of 16 Megabyte for the size of a document ardrttpact of large
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Social Action \ One Record per Friendship \ Two Records per Friendship

Member 1's | SELECT count(*) FROM Friends SELECT count(*) FROM Friends
number WHERE (inviterID=1 OR inviteelD=1) | WHERE inviterID = 1 AND status = ‘C’
of friends AND status="C’

SELECT m.* FROM Member m,

Friends f SELECT m.* FROM Member m,
Member 1's | WHERE ((f.inviterID=1 and Friends f
list of m.MemberID=f.inviteelD) OR WHERE f.inviteelD=1 and
friends (f.inviteelD=1 and f.status='C’ and
m.MemberID=f.inviterID)) m.MemberID=f.inviterID
and f.status = ‘C’
Member 1
invites INSERT INTO Friends values (1, 2, 'P")
Member 2
Member 2 1. UPDATE Friends SET status = ‘C’
accepts UPDATE Friends WHERE inviterID=1 and inviteelD=2
Member 1's | SET status =‘C’ 2. INSERT into Friends (inviteelD,
invitation WHERE inviterID=1 and inviteelD=2 inviterID, status) values (1, 2, ‘C)
Member 2
rejects DELETE FROM Friends
Member 1's | WHERE inviterID=1 and inviteelD=2 and status='P’
Invitation
Member 1
thaws DELETE
friendship FROM Friends
with WHERE (inviterID=1 and inviteelD=2) OR

Member 2 (inviterID=2 and inviteelD=1) and status="C’

Table 8.1: One record and two record representation of adsieip with one table, Friends
table of Figure3.1.c.

documents on actions that do not require the retrieval of the profile imageexample, the List
Friend (LF) action does not require the profile image. MongoDB provigesiterface to remove
some attribute values of a document while constructing a query. For exaomglenay query the
Members collection for a document with userid 1 and not retrieve the profilgdogthe qualifying

document by issuing the following expression: db.member fituderid”:1,“profileimage”:false).

8.1.2 Friendship

The concept of friendship between two members is central to a social tkétgite. The first

column of Table 8.1 shows most of BG actions that exercise this conceptsddtisn evaluates the
alternative design of data with both a relational and a JSON representatiamportant consider-

ation is how to represent the thumbnail image of each member displayed whdrakstefriend of

another member. This was discussed in Section 8.1.1. Hence, all SoAdesni@e in this section
use a BG database configured with no images.
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Social Action \ One Record per Friendship Two Records per Friendships

Member 1's | SELECT count(*) SELECT count(*)

number FROM Frds FROM Frds

of friends WHERE frdID=1 OR frdID2=1 WHERE frdID = 1

Member SELECT m.* FROM Member m, Frds { SELECT m.*

1's WHERE ((f.frdID=1 and FROM Member m, Frds f

list of m.MemberID=f.frdID2) OR WHERE f.frdID1=1 and

friends (f.frdID2=1 and m.MemberID=f.frdID2
m.MemberlD=f.inviterID))

Member 1

invites INSERT INTO PdgFrds values (1, 2)

Member 2

Member 2 1. DELETE FROM PdgFrds WHERE | 1. DELETE FROM PdgFrds WHERE

accepts inviterID=1 and inviteelD=2 inviterID=1 and inviteelD=2

Member 1's | 2. INSERT into Frds (frdID1, frdID2) | 2. INSERT into Frds (frdID1, frdiD2)

invitation values (1, 2) values{(1, 2), (2,1}

Member 2

Rejects DELETE FROM PdgFrds

Member 1's | WHERE inviterID=1 and inviteelD=2

Invitation

Member 1

thaws DELETE FROM Frds WHERE

friendship (frdID1=1 and frdID2=2) OR

with (frdiID1=2 and frdID2=1)

Member 2

Table 8.2: One record and two record representation of adsieip with two tables, Frds
and PdgFrds.

8.1.3 Relational Design: A Tale of One or Two

With a relational design, one may represent pending and confirmeddtigisdas either one or two
tables. With each alternative, a friendship might be represented as eitherdwo rows. We
elaborate on these designs below. Subsequently, we establish their 8oAdR Obtained results
show that a two table design is superior to a one table design.

Figure 3.1.c shows a one table design that employs an attribute named “stadifférentiate
between pending and confirmed friendships: A 'C’ value denotes arowadi friendship while a
'P’ value denotes a pending friendship. The second column of Tabld8vissthe SQL commands
issued to implement the alternative BG actions with this design. Note the use ofatiiggu(“OR”)
predicates in the qualification list of the SQL queries. A designer may simplietljeeries and
eliminate their use of disjuncts by representing a friendship with two rec@lasresulting queries
are shown in the third column of Table 8.1. The design changes the implemerah@meept
friendship (fourth row of Table 8.1) into a two SQL statement transactiouiimplementation,
all transactions are implemented as stored procedures in SQL-X.

An alternative to the one table design is to employ two different tables andasegmsending
friend invitations from confirmed invitations, see Table 8.2. This eliminates tiaus’ attribute
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SoAR(Actions/Second)
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Figure 8.3: SOAR of SQL-X with either one or two tables for gieny and confirmed
friendships with two workloads)/=10K and$=100. Each friendship is represented as
two records.

used with the one table design. However, the data designer is still faced witiéinma to repre-
sent a friendship either as one row or two rows in the table correspotuthg confirmed friends.
The second and third row of Table 8.2 shows the SQL commands with theseossibifities. A
key difference is that SQL queries are simpler with the two record design.

When comparing the alternative designs, the two record design requirestooage space than
the one record design. However, its resulting SQL queries are simplethiioraand reason about.
With one user issuing requests (single threaded BG), the larger numizsroofls does not impact
the service time of issued queries and update commands because indiexesrizcilitate retrieval
and manipulation of the relevant records. In a multi-user setting with a mix of aed write
actions, see Table 4.1, the two table design outperforms the one table désigithe& frequency of
write action is high enough to result in conflicts. Figure 8.3 shows SoAR sEtheo alternatives
with each friendship represented as two records. Observed SoAR witk af very low (0.1%)
write actions is almost identical for the two designs due to the use of indexwsaand a low
conflict rate. With a mix of high (10%) write actions, the two table design outpadahe one table
design by more than 30%. We speculate this is due to ACID property of tamssislowing down
the one table design as it is used concurrently to process both pendirapaiirined friendship
transactions. The two table design reduces this contention among carilyuereecuting actions.
For example, the query to compute the number of pending friend invitatiomsfi@mber no longer
competes for the same data as a transaction that thaws friendship betwerarbers.

8.1.4 MongoDB: List Friends

With MongoDB, BG's List Friend (LF) action is most interesting because ittmetsieve the docu-
ments pertaining to the friends of a referenced member. These can besek&ither one document
at atime or all documents at once. With the former, LF is implemented by issuingratguetrieve
the basic profile information for each confirmed friend. With the latter, theeslhisiris used with
the $in operator to construct the query issued to MongoDB. This opesalieets all the documents
whose identifiers match the values provided in the list. With an under utilizednsysiéew BG
threads), the second approach provides a response that is appsdxiing times faster than the
first. This is because the first approach incurs the overhead of issuiligple queries across the
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network for each document. The SoAR of these two alternatives is almagidalebecause the
CPU of the server hosting MongoDB becomes 100% utilized.

MongoDB supports a host of write concerns, see [80] for details. Westigate two, termed
normalandsafein MongoDB’s documentation. Both are implemented by MongoDB's java client.
The normal write concern returns the control once the write is issued taitlee df the client. The
safe write concern returns control once it receives an acknowleugnoen the server. With a low
system load (BG with one thread), the normal write concern improves thhage/eesponse time
of MongoDB by 13%. It does not, however, improve the processingluéify of the MongoDB
server and has no impact on its SOAR when compared with the safe writerooridoreover, in
our experiments, it produced a very low 0.1%) amount of unpredictable reads.

8.1.5 Migrate Work of Reads to Writes

Due to a high read to write ratio of social networking sites, one may enhamegdnage service time

of the system by migrating the workload of reads to writes. With RDBMSs, anetwrealize this

is by using materialized views, MVs. Section 8.1.6 discusses this approddhaws that it slows
down write actions so dramatically that it is difficult to argue they are intemactit’presents an
alternative nametflanualthat does not suffer this limitation. However, Manual requires additional
software and incurs the overhead of a development life cycle (desigfermeptation, debugging
and testing).

8.1.6 Read Mostly Aggregates as Attributes

Social networking sites present their members with individualized “small tiosilyf104], aggre-
gate information such as count of friends. BG models these using its VidileRP) action that
provides each member with her count of resources, friends, andngefigtnd invitations. One
may implement these in two ways: 1) Compute the aggregates each time the VP aictvokés!,

2) Store the value of aggregates, look them up to process VP, and maimairughto date in the
presence of write actions that impact their value. An example SQL querintp&ments the for-
mer, termedasig is illustrated in the first row of Table 8.1. The latter migrates the workload of
read actions to write actions. It is appropriate when write actions are irdregBelow, we present
two alternatives to implement the second approach.

One may use Materialized Views (MVs) of SQL-X to store the value of BG's Erapalytics
and require the RDBMS to maintain their value up to date. This was implementelibasstd-irst,
we define one MV for each aggregate of the VP action. The resulting 3viewe two columns:
userid and the corresponding aggregate attribute value. Next, we aurthdl that joins these
three views with the original Member table (using the userid attribute value), inguieng a table
that consists of each member’s attributes along with 3 additional attribute valiesenting each
aggregate for that member. This table is queried by the VP action to look uplie of its simple
analytic instead of computing it.

One may configure SQL-X to refresh MVs either synchronously or@symously in the pres-
ence of updates. The asynchronous refresh is in the order of, lvawsing the MV to contain stale
data. BG quantifies these ampredictablereads. Below, we discuss this in combination with the
observed SoAR.

With no profile image and a read workload that invokes the VP action only,utih®eed MV
improves SoAR of SQL-X by more than factor of 6 from 19,020 to 119,746 mstmer second.
With a workload the performs infrequent (0.1%) writes, asynchronowgennd processing updates
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Figure 8.4: SOAR witlBasicdatabase design of Figure3.1.c, materialized vieMg)(for
aggregates as attributes with both synchronous and asymmis mode of refresh, and
developer maintainedanual) aggregates as attributes with no images.

enables MVs to enhance SoAR of SQL-X by almost a factor of two, seed-Bjd. However, this
causes 31% of reads actions to observe unpredictable (stale) datamdhat of unpredictable data
increases to 72% with a high frequency (10%) of write actions, enhai@9AdR of SQL-X by a
modest 11%.

The synchronous refresh mode of MVs eliminates unpredictable dataegowas shown in
Figure 8.4, it degrades SoAR of SQL-X significantly. This is becausesstiown write actions
dramatically. As an example, the service time of the Accept Friend Requiéstastion is slowed
down from 1.7 millisecond t©1.94 seconds with an under-utilized system, i.e., one BG thread.
These service times are not interactive, rendering MVs inappropria&Gt workload.

An alternative to MVs, nametanual is for a software developer to implement aggregates
as attributes by extending the Member table with 3 additional columns, one dbragmregate.
When a member registers a profile, these attribute values are initialized to Eleeodeveloper
authors additional software (either in the application software or in the RBRMthe form of
stored procedures and triggers) for the write actions that impact thegmit@ttvalues to update
them by either incrementing or decrementing their values with one. For exathpldeveloper
extends a write action that invites Member 1 to be friends with Member 2 to inctehenumber
of pending friends for Member 1 by one as a part of transaction thattapdhe Friends table, see
Section 8.1.2.

Manual speeds up the VP action by transforming 4 SQL queries into omeefolin queries in-
clude retrieval of the referenced member’s profile attribute valuestodénends, count of pending
friend invitations, and count of resources. In our experiments, Manteanced SoAR of SQL-X
for processing the VP action by the same amount as MVs. When write act®imgraquent (0.1%),
Manual enhances SoAR of SQL-X by almost a factor of two and outpegdVs, see Figure 8.4.
With frequent (10%) write actions, Manual continues to outperform MdEver, its SOAR is two
times lower than Basic due to the overhead of write actions updating attributetsansactional
manner with ACID properties. Note that response time of write actions remderadtive with
Manual, faster than 2 milliseconds with an underutilized system.

SA 1,141 fold slow down.
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Figure 8.5: Alternative cache augmented SQL architectures

Basic Basic Boosted Boosted| memcached Ehcache
SQL-X MongoDB | SQL-X MongoDB
No Image | 0.1% Write | 12,322 12,097 | 33,694 11,434 55,634 271,760
10% Write | 13,976 8,492 28,503 8,222 49,006 286,260
12 KB Profile | 0.1% Write| 305 0 11,820 8,451 11,888 147,845

Image 10% Write | 300 0 10,977 6,385 10,271 144,672

Table 8.3: SOAR of alternative designs for two write worldoaf Table 7.3 for 10,000
members.

A draw back of Manual is the additional software and its associated seflevelopment life
cycle (design, implementation, testing and debugging, maintenance). ltslkagtages include
interactive response times for both the read and write actions with no ciaigld reads.

8.1.7 Cache Augmented Database Management Systems, CADBMS

With both MongoDB and SQL-X, a developer may avoid issuing queries toataestiore by caching
its output,valug given its unique inputey This is the main motivation for middle tier caches [62,
27, 118, 38, 36, 68, 5, 6, 91, 56]. This section focuses on a spsdificlass that employs in-
memory Key-Value Stores (KVS) with a simple put, get, delete interface. Itsaseis as follows.
The developer modifies each read action to start by converting its inputep. aNlext, it looks up
the KVS for a value. If the KVS returns a value then the value is produséukteoutput of the action
without executing the main body of the read action which issues data staiesju@therwise, the
body of the read action executes, issues data store queries to comple &.ea output of the
read action), stores the resulting key-value pair in the KVS for futurgarskreturns the output to
BG.

The developer must modify each write action to invalidate key-value pairsatkaitnpacted
by its insert, delete, update command to the data store. For example, the writethatienables
Member 1 to accept Member 2’s friendship request must invalidate 5&ew-yairs. These corre-
spond to Member 1's profile, list of friends and list of pending friendsl lember 2’s profile and
list of friends.
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Basic Basic Boosted  Boosted
SQL-X MongoDB| SQL-X MongoDB
No Image | 0.1% Write | 15,593 11,715 | 22,512 11,312
10% Write | 3,477 8,541 7,388 8,913
12 KB Profile | 0.1% Write| 201 0 5,487 8,137

Image 10% Write 198 0 3,509 6,574

Table 8.4: SoAR of alternative designs for two write worklazf Table 7.3 for 100,000
members.

The maximum number of unique key-value pairs is a function of the number wibees and
read actions. With a database of 10,000 members, the View Profile action ofid&Gopulate
the KVS with 10,000 unique key-value pairs. With all six read actions of B®, Rable 4.1, the
KVS may consist of a maximum of 60,000 unique key-value pairs. The KVSauoagist of fewer
key-value pairs because BG may not reference some members due seamfrthe Zipfian distri-
bution [13] of access to pick userids.

There are two categories of in-memory KVSs: Client-Server (CS) ante8sddress Space
(SAS), see Figure 8.5. With CS, the application server communicates with¢he @ message
passing. A popular CS KVS is memcached [77]. With SAS, the KVS runs indteesas space of
the application. Examples include Terracotta’s Ehcache [108] and JBadse [22]. SAS KVSs
implement the concept of a transaction to atomically update all replicas of edkeg-in different
application instances. Both CS and SAS architectures may support replictkiey-value pairs and
implement consistent hashing to enhance availability of data and implement elastidisgussion
of these topics is a digression from our focus. Instead, we focus opettiermance of a single
cache instance. With memcached, the cache server is a process hostiffenrent server than the
one hosting the data store. With Ehcache, the cache instance executeaddrtbss space of the
BGClient.

In the following, we focus on the impact of the KVS with a very low (0.1%) aridgdn (10%)
frequency of writes. With these workloads, both MongoDB and SQL-o¢igle comparable SoARs
as either the CPU or network bandwidth of the server hosting the KVS bect6@26 utilized.
Hence, without loss of generality, we present SOARs observed withX6@ding either memcached
or Ehcache.

Table 8.3 presents SoAR of the alternative designs when the databaségsie with either
no images or 12 KB profile image sizes with two different mixes of workloadbesg& results
show Ehcache provides the highest SOAR, outperforming memcached bytimaor a factor of 13
(5) with images (no images). This is because it runs in the same addressasptie BGClient,
avoiding the overhead of transmitting key-value pairs across the netwdriteserializing them. In
these experiments, the four core CPU of the server hosting BGClientlitariehcache) becomes
100% utilized, dictating the overall system performance. (This bottleneglaies why there is
no difference between SQL-X and MongoDB once extended with Elecach is interesting to
note that the SOAR of Ehcache with 12 KB images is almost twice lower than thahwithages.
This is due to network transmission of images for invalidated key-value pair®asing network
utilization from 30% to 88%.

With memcached, the four core CPU of its server becomes 100% utilized waendhe no
images, dictating its SOAR rating. With 12 KB profile images, the network bandvbietdomes
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100% utilized dictating SOAR of memcached. In these experiments, memcachiedpcoduce
key-value pairs at a rate of 2 Gbps as its server was configured with bpe @etworking cards.

8.1.8 A Comparison of Alternative Designs

In addition to presenting SOAR of memcached and Ehcache, Table 8.3 Sw\® of the Basic
SQL-X and MongoDB data designs when compared with their Boosted dltesiaBoosted incor-
porates all of the best practices presented in the previous sectioms fxdbe use of cachésWith
both SQL-X and MongoDB, the Basic data design is inferior to the Boostethatiee because it
is inefficient and utilizes its 4 core CPU fully.

With Boosted and no images, the CPU of the server hosting the data stomadsed00%
utilized, dictating its SOAR. This is true with both SQL-X and MongoDB and the twokivads,
0.1% and 10% frequency of writes. These results suggest SQL-Xgses BG’s workload more
efficiently than MongoDB because its SOAR rating is two folds higher.

With 12 KB profile images, both SQL-X and MongoDB continue to utilize their CBIlY fwith
the Basic data design. With Boosted, the network becomes 100% utilized d@atkslitheir SOAR
rating. Table 8.4 compares the SoAR rating for the Basic and Boosted dedighongoDB and
SQL-X for a social graph with 100,000 membefd (= 100, 000). With the Basic design and no
images, for both SQL-X and MongoDB the CPU of the node hosting the data lste@omes the
bottleneck. With images, for MongoDB the CPU continues to be fully utilized it 8QL-X the
disk becomes the bottleneck. With the Boosted design and without imagesrkefvtioe SQL-X
server becomes the bottleneck, whereas with MongoDB the CPU of thetdeg¢ansde becomes
100% utilized. With images, for both Boosted SQL-X and Boosted MongoDRBeh&ork becomes
the bottleneck.

4The presented SoAR for memcached and Ehcache use the Bdastedksign.
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8.2 Use of BG to Study Scalability of a Data Store

In recent years a number of new systems have been designed whigthepsoalability for simple
read/write operations such as the operations in social networks. Tignddshese systems is
optimized for different workloads and is impacted by the following trad€f@®$ that may impact
the scalability of data stores.

e Read vs. write performance: In a social networking application, it is diffio predict which
data will be read or written next. A higher read throughput can be adhigveither moving
the work of reads to writes or by using cache augmented architectures [47

e Performance vs. durability: Writes may either be synchronized to diskddfie@ system
returns success to the user or stored in memory and flushed to disk atteniaté29]. The
advantage of the latter is enhanced system performance. Its disadvespagsible data loss
(non flushed writes) in the presence of failures. If writes are perfdmsgnchronously, they
may produce unpredictable data [112].

e Performance vs. consistency: According to the CAP theorem, distribystenss cannot
satisfy consistency and availability in the presence of network partitions.y Matoday’s
data stores utilize weaker consistency techniques such as eventusiersto synchronize
replicas. Replication is used to improve availability, prevent data loss, drhea perfor-
mance. Eventual consistency mode avoids high write latency by allowingasptide out
of synch, resulting in users observing unpredictable data.

e Data model: Flexible data models used in NoSQL solutions simplify upgrading fie ap
cation to support new entities and enhance scalability of a data store hidipgoa simple
schema and a put/get interface with less overhead.

e Row-based vs. column-based representation: In row-based stalaafea record’s fields are
stored contiguously on disk. With column-based storage, different calgammbe stored sep-
arately on different servers. Row-based storage supports effasienss to an entire record
and is ideal if we typically access a few records in their entirety. Columaebarage is
more efficient for accessing a subset of the columns from multiple retogdsher.

Rick Cattell in his paper [25] does a survey of more than 20 scalable dats siad their
characteristics, and claims that although the performance on a single muitaxeds important,
a key feature of these systems is their shared nothing horizontal scaimteature which enables
them to complete a large number of simple read/write operations per secoralsdHgoints out
at the scarcity of benchmarks to evaluate and compare the scalability ofthesstores with one
another.

BG is a data store agnostic benchmark which can be used to evaluate thmliscalaims
of various data stores and compare them with each other in a fair mannés.sB&ed nothing
architecture, see Section 4.3, makes it a perfect choice for evaluatimgtfegmance of various
scalable data stores with increased capabilities. In this section we use B@nhinexthe scala-
bility characteristics of MongoDB for the simple operations of Web 2.0 [7]iagtions such as
social networking systems. By simple operations, we refer to reads oswhgeaccess or modify
a small amount of data from big data and do not contain complex queries)eojojps or large
table scans. A cloud service provider such as a social networking sitestaxdyon a small set of
servers. As the number of members and their request rates increasgetiexin the stack must
scale to support additional load. This is why evaluating the scalability of datassused in social
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networks is becoming more and more important. Understanding the scalabilayibebf these
systems provide data store vendors with insights to address the limitations ofdhdion. This
can be helpful as it allows them to add features and functionality to theiuptedo become more
competitive in their market segment and advocates different softwarbanddvare architectures
opening several research directions that will benefit the community.diti@d, application devel-
opers should consider the scalability behavior of various data storék@fattors that impact them
for their applications in order to predict the performance of their systeniffareht scenarios and
make decisions about how to improve it.

8.3 Scalability

In contrast to traditional RDBMSs such as SQL-X, NoSQL and NewSQI] §&ta stores are de-
signed to scale to thousands and millions of users performing read and gtiitesa BG's SOAR
rating is ideal to evaluate the scalability claims of these data stores. One magtehiae scalability
as a function of the database size, size of a hardware platform hostidgtehstore, or both. Below,
we describe each in turn.

Table 8.5 shows the SOAR of a single node with different database sizegieAncrease the
size of the social graph from 100K to 500K, the impact on a workloadisting of either the View
Profile or List Friends action is minimal. With 500K, MongoDB utilizes the availalleGB of
memory fully. With an increase to a 1 million (1M) member social graph, the SoAResi Profile
drops several folds due to formation of a transient disk queue and &igh%) CPU utilization.
With workloads consisting of a mix of write actions, the disk queue becomesguemnt, causing the
SoAR of MongoDB to drop to zero. This also holds true with the 500K socigbly. Though, the
impact is characterized by examining the percentage of actions that satis®y h For example,
with 500K and a Very Low (0.1%) write mix, BG reports 75% of actions observesponse time
faster than 100 milliseconds. This percentage drops to 50% with the 1M meodi@rgraph.

One may increase the size of a hardware platform in two ways, verticallgraaamtally. The
termvertical scaling refers to increasing the resources of a single node to improvefiisrpance.
These resources might be CPU cores, mass storage devices, amooeinofy, and the num-
ber/capacity of networking cards. Table 8.6 shows the observed Sa#ARa 64-bit Dell PC con-
figured with 16GB RAM and an Intel(R) Core(TM) i7-4770 CPU @3.40GlHzcpssor, and either
one or two 1Gbps networking cards. With a read only workload that issitlesy the View Profile
or List Friends action and a mixed workload consisting of Very Low (0.1%it&¥, the available
network bandwidth is the limiting resource. Thus, by increasing the numbeeteforking cards
from one to two, MongoDB scales vertically to double its SOAR with the same $AR.discuss
the 10% mix of write actions and why its performance does not improve as ticathabelow in
the context of multiple shards for one node.)

Horizontalscaling refers to distributing both the data and the load of an applicatiorsatiars/
servers. Its typical hardware platform is based @hared-nothingrchitecture [106] consisting of
many nodes where each node has its own memory, CPU cores, and mags d@rices. One may
realize such a hardware platform using commodity off-the-shelf PCs.idrséttion, we report on

5The reported SoAR values in this section are with MongoDRiegr2.4.9. Those reported in Section 8.1
are using MongoDB version 2.0.8. These two sections werttenrat different times and 2.4.9 was not
available when conducting the experiments reported ini@e8t1. With MongoDB version 2.0.8 using the
Dell PC, the reported SoAR with High (10%) Write would incredsom 4,143 to 5,730. With the same
workload using MongoDB version 2.4.9 and the ZT PC of Sec8dn the reported SoAR with the same
workload reduces from 6,574 to 4,856. This is comparablagéactumbers shown in Table 8.3.
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Table 8.5: SOAR Rating for single node MongoDB with threeatigint database sizes:
100k member, 500k member and 1M member social graphsgwithi 00 andp = 100.

Very Low | High

View Profile | List Friends| (0.1%) | (10%)

Write Write

M = 100K 7,699 295 3,866 | 3,069
M = 500K 7,586 246 0 0
M =1M 1,381 281 0 0

Very Low | High
View Profile | List Friends| (0.1%) | (10%)
Write Write
1 Network card 7,699 295 3,866 3,069
2 Network cards 15,684 581 7,514 4,143

Table 8.6: Vertical scalability for a single node MongoDB #&fixed social graph consist-
ing of 100k membersy = 100 andp = 100.

the horizontal scalability characteristics of MongoDB using a cluster o#tRi6Dell PCs with the
same aforementioned specifications. See Table 8.5 for SOAR with one hitile duster.

MongoDB partitions BG’s social graph across the nodes of a sharéug architecture in
order to scale horizontally. Its software architecture consists of thmre@aoents:

1. A shard is anongodinstance that contains a subset of the database. It might be deployed
as either a standalone or a replica set. A standalone mongod instance isndugy plaemon
process for the MongoDB system that processes data requests, anatag format, and
performs background management operations. A replica set consistsimary mongod
instance and one or mosecondarymongod instances. These instances are deployed on
different nodes of a shared-nothing hardware platform. They emabléple nodes to have
a copy of the same data, thereby ensuring redundancy and facilitatingatsatting.

. A mongosrouting component processes queries from the application layer, degsrthie
nodes (shards) with the relevant fragment of data, and routes thestsda the correspond-
ing mongod instances to process these operations. A mongos instanos results to the
application directly.

A config serveccomponent stores the cluster metadata. This metadata includes details about
which fragment (shard) holds which ranges of documents/chunksaf nengos instances
communicate with the config servers and maintain a cache of the metadata foatbeds
cluster. MongoDB supports deployment of either one or three configeiser With three
config servers, the metadata across all config servers should be &lemtia production
deployment, one config server may act as a central point of failurecéj@me may deploy
exactly three config server instances to improve data availability.

These components might be deployed in one server or across differeats. We elaborate on
these in turn.
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With one server, one may deploy multiple shards and one mongos instangaritidn BG
benchmark’s social graph across the shards. This is most usefolavede is configured with two
or more mass storage devices. In our experiments with one mass storageasheltwo networking
cards, we observed the SOAR of MongoDB to improve with a High (10%) mixr@é actions from
4,143 with 1 shard to 6,939 with 3 shards. We attribute this 67% improvement tdlomgoDB
uses a readers-writer [81] lock per shard (mongod instance). Toeseenable concurrent read
actions to access the database simultaneously and grant exclusive tacaesingle write action.
With 3 mongod instances, the concurrency of the system is enhanced tovanm@GoAR. We
observed no improvements in SOAR beyond 3 shards on a single nodethidbiie Table 8.5 with
1 shard and the 10% mix of write actions, no resource becomes the bottlenduieads wait for
one another. With 3 shards, the network of the MongoDB server beciuheatilized.

Figure 8.6.a and 8.6.b show two different deployments of the componentsrdDB. Both
deploy each shard as a replica set consisting of one primary and twodseEs assigned to dif-
ferent nodes of a 3 node shared-nothing architecture. Thesedigliogv 3 replica sets in different
colors. The primary of a replica set is denotedSasvheresi is the identity of the replica set. The
corresponding secondaries are denotef24s ; where the value of is either 1 or 2.

With both architectures, a BGClient thread opens a connection to a mon¢gmsdasnd issues
all it queries to that instance. This mongos instance is co-located with a. skiéndn the data
referenced by the BGClient resides in a different shard, the mongas aesdirects the query to the
appropriate node for processing and returns the résuiltsing BG, we observed the configuration
of Figure 8.6.a to provide a slightly lower SoAR with a High (10%) mix of write acioWe
attribute this to (a) the message passing overhead between config setaacés, and (b) a fully
utilized network bandwidth of each server configured with 1 Gbps neingréard. Hence, we
focus on the second configuration for the rest of this section.

We analyze the impact of varying the number of nodes by analyzing thegpaad scaleup of
So0AR. These terms are defined as follows:

e SOAR Speedup: With a fix sized social graph and a workload, this metrittifjga the im-
provement in SOAR as we increase the number of nodes in the hardwdoemlaldeally,
with twice as many nodes, SOAR should double. This is termed linear spegpeedup em-
ulates a service provider with a fixed database size that becomes pojthlanvincreasing
number of simultaneous socialites. It evaluates whether doubling the nufrmimates would
provide the same SLA with twice the number of socialites, i.e., SOAR.

e SOAR Scaleup: To quantify this metric, one increases both the size of tis gmaph and
the number of nodes in the hardware platform proportionally, quantifyo®RSwith each
configuration. Ideally, the SOAR should either remain a constant or imp®ualeup emu-
lates a service provider with a fixed number of socialites (members accélssisgrvice at
the same time) and an increasing number of members (data set size). It gaamiiéither
increasing the number of nodes proportional to the size of the socidl grapld provide the
same SLA.

Both metrics use a base hardware platform consisting of a fixed numbede§hat is increased
in size. The choice of the hardware platform is arbitrary. Below, we illtestize flexibility of BG
by using a base hardware platform consisting of one node to quantifR Spedup and a base
hardware platform consisting of 3 nodes for SOAR scaleup.

5To minimize the impact of network communication, one maytlgomongos on the same node as the
BGClient.
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Figure 8.6: Two alternative deployments for a multi-nodengoDB.
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Figure 8.7: Implementing 18 MongoDB replica sets on 6 nodes.

With the experimental results of the next two sections, the mongod instarecde@oyed as a
replica set consisting of one primary and two secondary instancese arethree times as many
shards as nodes since the SoAR of a single node is enhanced with 8. dharéxample, with six
nodes, there are 18 replica sets as shown in Figure 8.7. We configureghgiostances to use the
secondary instances for processing read actions [83]. This resaltadme balanced distribution of
workload across the nodes as a mongos instance has a choice of tvedmpdecess a read action.
Below, we describe SOAR speedup and scaleup in turn.

SO0AR Speedup

The database size used for the base hardware platform has a signifipact on the observed
speedup. This is because the amount of data per node decreasesrasease the number of
nodes. With a sufficiently high number of nodes, the data assigned to edeHits in the memory
of each node, boosting the performance of each node dramatically. ©hisl wesult in a super-
linear speedup where witN nodes, the speedup relative to one node is higherihafo illustrate,
assume a base hardware platform consisting of one node with a 1M scagidl gnd a workload
consisting of the View Profile action. Table 8.5 shows a SoAR of 1,381 withnoxle. With 10
nodes and beyond, the size of the social graph per node drops beGivriembers. Table 8.5
shows the SOAR of each node increases to 7,699. This is more than a 5di@dsa in SOAR of a
single node, resulting in a super linear speedup.

We decided to sidestep the impact of memory by using a social graph smatjretwoiit in the
memory of our base configuration consisting of one node. This is the 188« graph of Table 8.5.
Next, we increased the size of the base configuration to 3 and 6 nodetjfging the SoAR of
MongoDB with each configuration. Figure 8.8 shows the speedup asdoraf the number of
nodes with three different workloads consisting of 100% List Friend actl®0% View Profile
action, and the High (10%) Write mix of actions. With all workloads, the netwearkdwidth of the
nodes of MongoDB becomes 100% utilized, dictating its SOAR. None of th&l@ams observe a
linear speedup (labeled as "Linear” in figure 8.8).
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Figure 8.9: MongiDB'’s scale up as a function of the number afesoand size of social
graph. For each member in the social graphk; 100 andp = 100.

SOAR Scaleup

Figure 8.9 shows the observed SoAR scaleup as we increase the ndmbeées of a base configu-
ration consisting of 3 nodes to 6, 9, and 12 nodes. Similar to the discus$iSestmn 8.3, we used
a 100K sacial graph with the 3 node base configuration. The size of th& goaph is increased
to 200K with 6 nodes, 300K with 9 nodes, and 400K with 12 nodes. The nuoflfeends and
resources per member is fixed at 100. Figure 8.9 shows the scalewgetehnistics of MongoDB
is better than linear. This is because the network card of the nodes is 102%duvith the base
configuration. As we increase the number of nodes, the number of némgarards increases to
enhance the performance better than linear. With all configurations, thenkeg cards of all
nodes were 100% utilized.

8.3.1 Discussion

Today, there is no explicit metric to compare the alternative scalable data stitheone another.
And for two systems with improved scalability one cannot decide if a systefassbatter than
another for a given workload. One approach to solve this problem isvelajfea scalability metric
with a score $calability Scorgthat is both data store and workload dependent. With a workload,
one may use this score to reason about the scalability characteristics t&f stal@ and compare
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different data stores with one another. A data store with the highest singke $0AR/Socialites
rating and the highest Scalability Score is most desirable.

Scalability Score Model

The Scalability Score is a numeric measurement of horizontal and vertadabdity for a sys-
tem. Consider an initial load or data set sizy, defined by the social network characteristics such
as the number of members, number of friends per member and number ofcesper member
loaded onto arV; node data store. The peak throughput of this data store is the SOAR matiihg f
Let’s denote this rating aSp, n,. This system scales up$p, n, < Sp,,n,. In other words, if we
increase the data set size by a factok @hd increase the number of physical nodes hosting the data
store by a factor ok, and if the new configuration results in an equal or higher SoAR rating, then
that system scales up. We can use this information to decide if a system is mlat@descompared
to the other by computing the Scalability Sco( of the systems for a given workload as follows:

55 = DNz (8.1)
SDl,Nl

A system with a highef'S has better scaleup characteristics and may scale to a larger number
of nodes when compared to another system with a loSveiscore. For example, assume single
node data stored and B provide the same SoAR rating on the same hardware platform for a given
workload and data set size. Increasing the data set size and the numioeles hosting the data
store by a factor of two for results in a SOAR 1.2 times higher than before. On the other hand,
increasing the data set size and the number of nodes hosting the dataystofactor of two for
B results in a SOAR 2.5 times higher than before. For these two systeémessults in a higher
Scalability Score and has better scale up characteristics.

The same discussion can be extended and applied for speedup anadysistacal scalability.
For example, assume single node data stdraad B provide the same SoAR for a fixed workload
and data set size. When we double the amount of memory on the node hostitegdlstoresd’s
SO0AR rating improves by a factor of two bit's SoAR rating improves by a factor of 1.5. In this
scenario, the Scalability Score computed for vertical scalability analysisi®higher than that of
B, so A provides better vertical scalability characteristics. In addition, this metridoeamsed to
identify the cost effectiveness of a solution.

104



8.4 Feed Following

Social networks are highly dynamic. They may grow and evolve quickly vdtltenal members,
communication edges and appearance of new social interactions in theyingdsocial graph.
These services are valuable as long as they are popular among their memhb&rsnotivates
developers to constantly improve the overall user experience by infragnew social networking
actions. Examples include “Personalized Recommendations”, “Top andaddt"News Feed” as
described below.

e Personalized Recommendations: Personalized recommender systems hegrsndertiify
items of interest. “People You May Know” feature of Facebook suggestplp on Facebook
that a user is likely to know. These may be chosen based on mutual frisadsand edu-
cation information, networks a user is a part of, contacts they have impmntechany other
factors [42]. “Suggested Communities” feature of Google+ recommendscmities that a
user might want to participate in [119]. These are decided based omsdactors such as
communities that are related to the ones a user has created or previously }dindube’s
“Recommended for You” videos suggests videos a member might like badest previous
viewing history and its related videos [120].

These recommendations are generally made in two ways. First, by computisignitaity
between items (friendships, videos, communities, etc.) and recommending ilaias te
what the user has expressed interest or interacted with. Secondcblating the similarity

between members in the system and recommending items that are interesting far simila

members [50].

e Top and Hot: The “Top and Hot” feature usually shows selected exematatynteresting
content that are spreading across the social networking system. magd®e breaking news,
beautiful photos, unexpected videos, etc. Examples of this featureafailge’s Trends dis-
playing latest trending topics and videos on YouTube and a resouramilgrinsight into
what's happening in web video [121], Google+’s Hot and Recommendatiife which
helps members find and interact with popular content outside their circlesdskathin
Google+ [52] and Twitter's Top Tweets which selects and re-tweets sortteeahost in-
teresting tweets spreading across Twitter [109]. These contents aegghalgorithmically
derived from common metadata (similar keywords in the title, tags, descriptomnents
and etc.) within a set of items that are currently rising in popularity becaugméicant
number of people view or interact with them.

e Feed Following: In a social networking system such as Facebook,|&oagd Twitter, a
member’s “News Feed” captures the most recent events(activities) tfdmeds or those she
is following. In Facebook, news feed displays the latest headlines a@fedely the events
of a user’s friends and the pages she follows [26]. The home activitpftalwitter [21] is
similar to Facebook’s news feed. It contains a list of the recent activitthbge members
she follows, including their tweets and whom they have chosen to follomntigc&imilarly,
the Home Stream of Google+ [51] displays posts that have been shared mémber. The
displayed content might be shared specifically with the member, shared witlir¢hethe
member is in, or shared publicly.

Some of these actions require time consuming computations and, in some cEses$,Al
techniques while processing a large amount of data.
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We have maintained BG up to date by extending it with additional social netvgpédtions as
they become popular. This section focuses on “Feed Following” a popodtgal action offered in
social networking systems. This action seems radically different comparteé others offered in
a social networking system and is considered as a challenging big dditzatipp [99].

Many social networking systems allow their users to follow the events peatloyg other mem-
bers or entities (e.g. pages) in social networks and produce a pkrsdrfaed consisting of these
events for them. The “follow” relationship may be symmetric such as the frigpdslationship in
Facebook where if Membet and Membe3 are friends, MembeA (consumer) follows/observes
the events produced by MembBr(producer), e.g., status messages and comments posted by Mem-
ber B. Similarly, MemberB follows and consumes the events produced by MemeiThis rela-
tionship is asymmetric with Twitter where Memhdrmay follow the tweets produced by Member
B whereas MembeB may not follow the tweets produced by Memh&1{99]. The events dis-
played in the news feed for Membdrmay be classified into two categories: First, events produced
by MemberB such as MembeB becoming friends with Membet', MemberB posting a comment
on a picture uploaded by Membeér, and others. Second, events (say a comment) produced on a
content (say an image), owned by a MemBerFor example, Membeb posting a comment on a
picture uploaded by Membés.

News Feed is personalized for each member, and there are three tagg that must be consid-
ered to produce it: What to show, in what order and when? Social nigtwgosystems must ensure
that the events available in a member’s feed are relevant, interesting and tifoelis purpose,
algorithms are designed [60, 59, 34, 35] that process thousandseoitippevents to identify those
that a member is most likely to engage with by viewing the event or interacting withliking,
sharing or commenting on it. One approach to realize this is to assign an emgageetric to each
event related to a member’s personalized feed displaying thenogst recent events with the high-
est overall engagement value for the member in some order specified methber. Computing
a single engagement value is challenging as different types of eventsawaydtiferent levels of
importance. For example, posted comments may be more important compared torrilegsbn
addition, members may also be more interested in events by some of the membeoidinemnbre
than those produced by others. For example, Membray be more interested in events produced
by her top friends. Thus, if one of her non top friend’s event prtidnaate is significantly higher
than that of her top friends (say for the last one hour), the calculatidheoéngagement metrics
should ensure Membet's feed displays her top friends’ events and not only her non top fsend
events.

The term “Social Graph” usually refers to the connections betweenlgpedp participate in
a social networking service. The social graphs pertaining to sociabnkgvare massive in scéle
In every system, there are a group of members consider&beial members who have a high
consumption rate and retrieve their news feed frequently. On the othdr tieme are a group of
members who are consideredRavermembers [57]. These members contribute significantly more
events than a typical member (higher production rate). For example, thegnodyce more friend-
ships/follower relationships, post more comments and upload more photpgally the Power
members constitute 20% of the members and produce approximately 80% oétite va social
networking system [57, 55]. Thus, the Power members skew the aviersg®f event production
by members. As Power members are involved in more friendship events thagsuciated with a

’In Facebook users can customize their feed to not show epesdsiced by a specific user [40], they can
also edit their privacy settings to stop the display of eseg@nerated by them on a specific user’s feed [41].

8Facebook, for example, boasts (as of May 2011) 500 millidquausers, each with an average of 130
friends [99].
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higher level of social support from the social network. This incredle probability of members
interacting with the events produced by them and increases the likelihooéioétents appearing
on other’s news feeds

The performance of feed following actions (producing an event byduymer and consuming
news feed by a consumer) depends on the producer fan-in, confanvaut,producers’ production
rates and consumers’ consumption rates, see Section 8.4.1. And due fioatoonbof dense con-
nection networks, skewed number of producers followed by a méefhbew-latency requirements
(tens of milliseconds) for the feed following actions, extremely high evesdymtion and news feed
query rates and skewed consumption and production rates for mémleraputing the news feed
for members is complicated and deciding to pre-compute or re-compute itdlon@@mber requires
complicated strategies. For example, studies show the median number o$ fiteralmember in
Facebook is 100, the average number of photos uploaded or liked by aenen890 [101], the
average number of comments per post is 9 [65] and the average numtmnuofents on posts in
fan pages is 300 [107]. Hence, the average size for the news feeddy member is large. These
characteristics argue that re-computing the news feed query every timmbhanaccesses it may
not always be efficient, motivating use of materialized views, caches avel feed computing
architectures [99].

The news feed is tolerant for missing content [99]. For example, letsrestMemberA fol-
lows 100 Power members. Each Power member produces at least 1 esgntlgee minutes.
MemberA may tolerate not seeing the last event produced by each of the predudee last three
minutes in her feed. This means even though Memba&ncounters an unpredictable read (see
Chapter 6) which can be mapped to 100 unpredictable reads (one forethiepgoduced by each
Power producer), the application can tolerate the missing events. Thusittogie percentage of
unpredictable reads may not be a good metrics when evaluating alternatieeniempations of news
feed with solutions that result in unpredictable data. A better metric might béapseel time from
when an event is produced by a producer till the event is available folagisy the consumers (in-
consistency window), see Chapter 6. When considering different nrepdree may aggregate this
metric as the probability of reading the freshest event (freshnessleané) units of time after the
event was produced. This probability can be added as a new SLA eewgritt for the applications
and used while rating architectures, see Chapter 7. An example SLAeswrit can be as follows:
95% ( = 95%) of requests observe a response time equal to or faster thar81:801(00 msecs)
milliseconds while at least 80% (freshness confidence) of readsveltberfreshest value at most 1
minute (A = 1 minute) after the update.

The rest of this section describes the social graph used by BG to modtdetidollowing
actions discussed in Section 4.1. The objective of this section is to use B®ltrexlifferent
paradigms for feed following actions. We will mainly look into two different eggrhes named

®0One challenge here is that studies show that a member'sifrigiways have more friends than the mem-
ber herself and only 10% of members have friends who on agdrage smaller network than theirs arguing
that member’s tend to be friends with members who are aseaa\them or more active in event produc-
tion (i.e. friendship) [57]. So Non-Power members who damtiduce much events are most likely to have
friends similar to themselves making the computation ofagregnent metrics more challenging. And simi-
larly, Power members are most likely friends with other Pomembers and as event production by members
increases, there is more competition for what makes it istesnfeed and that makes the computation of the
engagement metrics even more challenging

100n Facebook some consumers follow over 1000 producers;sofihitow a few.

1Some consumers visit the social networking site constanigygering requests for their feed query each
time, while others visit it once a week or less often.
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PushandPull with SQL and NoSQL systems, and use BG to understand their unique whatcs
and tradeoffs in terms of throughput and response time.

8.4.1 Social Graph Characteristics and News Feed Analytical Model

Benchmarking graph-oriented applications are increasingly becomingntli@ Big Data applica-
tions, such as social networks. These applications can be represesiigcaSocial Graph The
term Social Graph is an abstract representation of the relationshipsdrepgeple who participate
in a social networking system. It can be illustrated by drawing a g@@h £), where members
are represented by verticdg), and their relationships are represented by directed edgeagréwn
between the vertices which determine the fan-out and fan-ins for theagrtic Facebook an edge
may imply a friendship (both friends consume the events produced by atigeanor a following
relationship (members follow pages and consume the events producedbytges). With the first
the consumer-producer relationship is symmetric. With the second, the reldpiaa asymmetric.
Twitter’s follow relationship is another example of the asymmetric relationships.

The news feed for every member only displays thenost recent events related to those a
member is following. Ideally, thesk are most relevant to the member. The news feed can be
modeled as an abstraction that assumes every news feed requestiibeMe(R 4), retrieves all
the recent? events produced() by those members followed by Membdrin the related social
graph and then applies other filters to decide the final events displayednibétel’'s news feed.
Assuming a directed edge from vertekto vertex B, E4 g, indicates that Memben follows
MemberB, news feed of MembeA is defined as:

Ra= |J Cs (8.2)
VE4 peG

WhereC'; is the recent events produced by Member

So when MembeH retrieves her feed all events produced by each producer that Mémber
is following is gathered and a subset of relevant events is presented toetnéer. With feeds,
members don’t expect to see all events from their followed produces feed retrieval paradigm
can use this to drop some events and return feed query results with loweylata addition, as
shown in Figure 8.10, member behavior in a social networking system adimiled based on four
criteria that further impact the development of a feed retrieval archiwctlinese criteria are as
follows (see Table 8.7):

e Consumption rate: which is computed as the number of times a member retrieesdir
t units of time. A member who accesses her feed infrequently is referrecatdlans-Social
member and one who retrieves her feed very frequently is referrecst&asial member.

e Production rate: which is computed as the number of events produced bynaaman ¢
units of time i.e., frequency at which friendships are formed and thawedrbgraber. A
member who produces events at a high rate is termed as a Power member arfob aloes
not produce events frequently is termed as a Non-Power member.

e Number of producers followed (fan-out): which is computed by summing theber of
member’s friends (in a symmetric relationship) and the number of produgelnses pages

?Recency may have different definitions, i.e. the last 10 &vgenerated by a producer.
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Term Definition

Consumer Members who retrieve their news feed.
Producer Members or Pages who share resources with their followers.
These resources will be posted on their followers’ news feed.
Social Members with a high consumption rate who access their news
feed frequently.
Non-Social Members with a low consumption rate who do not access their
news feed frequently.
Power Members and Pages with a high production rate who share resourcesaeiiith th
followers frequently.
Non-Power Members and Pages with a low production rate who do not

share resources with their
followers frequently.

Fan-out Number of producers followed by a member.

Fan-in Number of members following a member or a page.

Super-Follower] Members following more than 1,000 producers (members or pages).
Celebrity Pages with more than 1,000,000 followers.

Active Members with both a high production and high consumption rate.

Table 8.7: Terms describing members of a social network.

that she is following(in an asymmetric relationship). Members following a lamyeber of
other members/pages (1, 000) are referred to as Super-FollowEts

e Number of followers (fan-in): which is computed by summing the number of membe
friends (in a symmetric relationship) and the number of members which are fiofjdwis
member (in an asymmetric relationship). Members followed by a large numbermobers
(> 1,000, 000) are considered as Celebrittés

So for a consumer with a low consumption rate the feed paradigm may preéwiottive member
may retrieve her feed and delay delivering events to her feed for all tithes.

8.4.2 Two Feed Following Architectures

In this section we emphasize on two alternative architectures for feed foliaetions (View News
Feed action and Share Resource action of BG). We demonstrate thatitierstof the social graph,
member activity level (exponertin D-Zipfian) and percentage of updates (i.e., Share Resource
action) impact the performance results. One can use the results provitkesisection to develop a
new architecture which targets each of these dimensions for an improdedpance. For example

an architecture may retrieve the resources shared by a producer vigth production rate at View
News Feed query time, while the resources shared by a producer with préaluction rate are
pushed to members in advance [100].

13The average Facebook consumer follows 130 producers [99].
The most popular producer on Twitter as of May 2011 is theesingdy Gaga, with over 10 million
followers [99].
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Figure 8.10: Dimensions used for characterizing membeaWwehin a social networking
system.

Pull Approach

A trivial implementation of displaying a feed is to re-compute it every time a membekésva
View News Feed (VNF) action. Every time a producer generates an eseg the Share Resource
(SR) action of BG, its attributes such as the time of creation and list of recipfeitts public
sharing, this is -1, and for private sharing the list contains the memberitteosé members the
resource is shared with) are stored into the data store, see Figure 8.11.

When a member retrieves her feed using BG’s View News Feed actiom lissof all producers
followed by her is queried, next the tapresources shared by them (either publicly or specifically
with this member) are retrieved and displayed in the member’s news feekl fftay be the: recent
events, or thé most relevant events and etc.).

With the pull approach, modifications to friendship relationships incur ndiadel overhead.
For example, assume Membdrstops following MemberB. With Pull the next time Member
A retrieves her news feed, a list of producers followed by her is rettieVhis list will no longer
contain Membei3. Next all resources shared by these producers, either publiclyoifigally with
MemberA, are queried. As Membds is no longer in the list of producers followed by Membér
the resources shared by Memltiewill not be displayed in MembeA’s feed.

In addition, with social networking applications that allow modification to gdaedravents
such as shared resources, once a producer updates an edertgarpreviously (e.g. edit her status
message), the next time her followers access their feed, the updatezhwefrshe event will be
retrieved and displayed on their feed.
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8.11.a: MongoDB’s JSON-like data model

Members(userid,username,pw,firstname,lastname,gender,dob,jdate,|date,address,tel,email, profileimage,thumbnail)

Friend(userid1,userid2,status)

Resources(rid,creatorid,wallUserid,type,body,doc)

Manipulation(mid,modifierid,rid,resourceCreatorid,timestamp,type,content)

SharedResources(srid,rid,creatorid)

SharedResourceRecipients(srid,userid)

8.11.b : SQL-X’s relational data model

Figure 8.11: BG's logical data model for feed following aatsowith a pull approach.

With a Pull approach, for a workload consisting of only feed following ai¢SR and VNF

actions), a higher percentage of SR action, reduces the performizheadata store. This is because
higher percentage of SR actions (writes) results in a larger databasewasritioad executes. This
may result in a higher response time for View News Feed actions, as nowl#ted queries are
issued on a larger data set size, see Figure 8.12. In addition, the nuimiembers/pages followed
by a member impacts the performance of the View News Feed action with the Fadigra. For
members with a large fan-out (following a large number of members/pagesyNF action will
observe a higher service time as it will retrieve a larger number of shasedirces.

Figure 8.12, shows that the member activity distribution (identified by expgahehthe D-
Zipfian distribution, see Section 4.3.1) also has an impact on the perforronaRedl. With a more
skewed distribution, the feed for the follower’s of Power producersaaitisist of a larger number
of shared resources. As the VNF action retrieves thektopost recent shared resources for a
member, sorting a larger number of events for these members becomes pemsiex and reduces
the performance of the system.

Push Approach

An alternative to the Pull is the Push approach. In this approach thedeegdry member is pre-
computed and stored in the data store and maintained up to date upon all SkauecBeactions.
So every time a producer generates an event by invoking BG’s ShamiRRe action, the list of
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Throughput(Actions/Sec)

1,200
L@ °
1,000 , e G
800+ . . "' . Qe 1o}
b o
O
600 -
J- S ° 0=0.99 _.-® .
P R R Lt E LR EE R - FEEE PR o----0" 6=001
400[-,- 0=0.27 .5 7 -
P _o----- Q----- [ R O -mmmm e L g—--‘_g’_'__ &
I N R S ki A--emmmmmommAmTT
200"~
1 1 1 1 1 1 1 1 1 1 |
10 20 30 50 70 T 90 100 110 120 130 150

8.12.c : 80% Share Resource Action, 20% View News Feed Action

Figure 8.12: Impact of member activity distributiaghiq D-Zipfian) on MongoDB'’s perfor-
mance for three different workloads using a Pull architextwhen) = 10, 000, P = 100,

v = 1,000, o = 10, ¢ = 100, p = 10. For all workloads 1% of the SR actions are issued by
pages.
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8.13.a: MongoDB’s JSON-like data model

Members(userid,username,pw,firstname,lastname,gender,dob,jdate,|date,address,tel,email, profileimage,thumbnail)
Friend(userid1,userid2,status)

Resources(rid,creatorid,wallUserid,type,body,doc)

Manipulation(mid,modifierid, rid,resourceCreatorid,timestamp,type,content)

SharedResources(srid,rid,creatorid)

SharedResourceRecipients(srid,userid)

NewsFeed(userid,srid,rid,creatorid)

8.13.b : SQL-X’s relational data model

Figure 8.13: BG's logical model for feed following actionstiva Push approach.

members following that producer is queried, and the shared resourcsheg (added) to these
members’ feed. Now the feed for a member is always constructed, up t@datavailable for
her upon request without any additional queries. The disadvantatfésofpproach is obvious
when the relationships between consumers and producers changeif &loansumer decides to
stop following a producer, all the events generated by that produeel toebe removed from the
consumer’s feed. On the other hand if the consumer decides to follow @moelcer, the events
generated by that producer need to be retrieved and merged with the already present in the
member’s news feed. For example, if the friendship between Member A amabler B is thawed,
all resources shared by B should be removed from As feed and eisavAnd if Member B and
Member C become friends, all resources shared by B should be ad@é&dfeeed and vice versa.

The Push approach is more effective for Social members who constetriBve their feed by
invoking VNF actions. For these members, using a Pull approach whiompges the member’s
feed upon every request is not ideal. However, for Non-Social mesnieo do not follow many
producers, reconstructing the feed upon every Share Resouior am@y be wasteful work and
reduce the performance of the system.

There are two alternatives for the Push approach (Figure 8.13 shevaata model used for
both alternatives with MongoDB and SQL-X). In the first alternative, #®ource shared by the
producer along with all its attributes is pushed into the consumers’ feesh(Content In the
second approach, the reference for the shared resource byothepr is added to the consumers’
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Figure 8.14: Comparing the average response time of MongabB®’s feed following
actions with two Push alternatives: Push Content and Pushd®eile 7" = 1, M =
10,000, P = 100, ¢ = 100, p = 10,. = 1,000, o = 10, § = 0.99.

feed Push Referenge As shown in Figure 8.14 the average response time for generatingseven
(BG’s Share Resource action) with the Push Content is higher than thveith&ush Reference with
MongoDB. On the other hand the average response time for retrievidgde¢he Push Content

is lower than that of the Push Reference. This is because with PusteRegeupon a View News
Feed action a list of references to all shared resources that neediispbayed on the consumer’s
feed is retrieved. But then the actual content of each of the rescaisereeds to be queried which
increases the average response time for the View News Feed action.

With social networking workloads that allow modifications to the events geeterthe imple-
mentation that pushes the entire event to the member’s feed will perforne &eri will need to
update the event in every following consumer’s feed. In order to suppplications which provide
this functionality we will use Push Reference in the rest of this documenfaralr evaluations
and would refer to it as Push for simplicity.

With the Push approach and a workload that has a higher percentageaatiSns, the size of
the database as well as the size of the feed for every member increase widts tineeworkload ex-
ecutes. This increase depends on the expahehD-Zipfian distribution which decides members’
activity. For social graphs with very skewed distribution, where some mentiase both a very
high production and consumption raftive membersconsumers following the Active members
will have a larger feed size compared to consumers not following the Attrabers (as the Active
members will share more resources and produce more data).
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Workload #=0.01|60=0271]6=0.99
1% Share Resource, 99% View News Feed 347 209 17
10% Share Resource, 90% View News Feed 762 272 37
80% Share Resource, 20% View News Feed 805 679 50

Table 8.8: Impact of skewness in member activity level (exgyad in D-Zipfian) on the
maximum number of events pushed to a member’s feed for thoekleads and three
different values of): 0.01, 0.27 and 0.99, whefe=0.01 is a very skewed distribution and
0=0.99 is considered as uniform distributiab = 10,000, P = 100, « = 1,000, o = 10,

¢ = 100, p = 10. For all workloads 1% of the SR actions are issued by pages.

In BG, each member’s activity is characterized by the D-Zipfian distribigiexponentd. The
member with the highest probability of reference has both the highestgrodand consumption
rate. With a single BG client, BG constructs friendships such that Active menare friends
with other Active members and Non-Active members are mostly friends with dtbarActive
members, see Chapter 5. Table 8.8 shows the impact of D-Zipfian's exipppoe the number of
shared resources added to the feed for the most Active member (this mismiane likely to be
friends with other active members because of the way BG constructsdhignsg so is one of the
members with the largest number of shared resources in her feed).

As shown in Table 8.8 for all workloads, the more skewed the distribution ishiteer is
the maximum number of shared resources pushed into the most Active merfdeet! This is
because with a fixed number of members (ilé¢. = 100) and a fixed number of Share Resource
actions (i.e. 100), with a skewed distribution, Active members will generate en@nts (assume
one Active member issues 80 Share Resource actions) compared to thctii@members (20
Share Resource actions will be issued by the remaining Non-Active memBershose members
following the Active members will have larger number of shared resouncieir feed (maximum
of 80 events). But with a uniform (less skewed) distribution, and the saimder of members and
Share Resource actions, the Share Resource actions will be dividely ecross all the members
and the number of events pushed into each member’s feed will be fewehthskewed distribution
scenario. The figure also shows that with a higher percentage of Bhaceirce actions the number
of shared resources pushed into the most Active member’s feed willasereThis is because a
higher percentage of Share Resource action results in higher numbéailafhared resources.

With BG and MongoDB, there are two alternative implementations for the Pustt odiferred
to asPushandSorted Insert Pushwith the former, every time a Share Resource action is invoked
by a producer, the shared event is pushed to the news feed for adlthvedrs of that producer.
When a View News Feed action is invoked by a member, the entire news fedtefmember is
retrieved by the application and the tbfis computed and displayed to the member. With the latter,
every time a Share Resource action is invoked by a producer, the shaocenice is pushed into the
news feed for all her followers in a sorted manner (depending on thegingdrequired by the View
News Feed action). Now when a member tries to view her news feed, thedbared resources
from her feed are retrieved and displayed in her news feed. Whenazethprith Push, Sorted Insert
Push results in a higher average response time for BG’s Share Resatian and a lower average
response time for BG’s View News Feed action.

The skewness of member activity distribution has an impact on the perfoenoiacdata store
for various workloads for both the Push alternatives. Figure 8.15 ab@ sBiow the performance of
MongoDB as a function of number of simultaneous thredgsgsuing requests against MongoDB,
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Figure 8.15: Impact of member activity distribution (expohd in D-Zipfian) on Mon-
goDB'’s performance for three different workloads using abParichitecture whed/ =
10,000, P = 100, ¢« = 1,000, o = 10, ¢ = 100, p = 10. For all workloads 1% of the SR

actions are issued by pages.
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BG Mixed Very Low Mixed High
Social Type (0.2%) (11%)
Actions Write Write
View Profile Read 0% 0%
List Friends Read 0% 0%
View Friend Requests Read 0% 0%
Invite Friend Write 0.04% 4%
Accept Friend Request Write 0.02% 2%
Reject Friend Request Write 0.02% 2%
Thaw Friendship Write 0.02% 2%
View Top-K Resources Read 0% 0%
View Comments on a Resource | Read 0% 0%
Post Comment on a Resource | Write 0% 0%
Delete Comment from a ResourcéNrite 0% 0%
Share Resource Write 0.1% 1%
View News Feed Read 99.8% 89%

Table 8.9: Two mixes of social networking actions includiagd following actions.

with different member activity distributions, for three different workloaBer Push, with all three
workloads, the increase in the skewness of the distribution, decreasesrfbrmance of the system
and the percentage of reduction increases as the percentage ofR&lsangce action increases.
This is because with a more skewed distribution constructing the feed footiseimers’ following
Active producers becomes more expensive.

For Sorted Insert Push, with lower than 10% write actions, the skewrfigagraber activity
distribution does not impact the performance of the system. This is becatlskwer percent-
age of updates, the news feed for members, including those followingeActembers, consists
of a smaller number of items and the insertion sort is performed quickly with miniveathead.
But as we increase the percentage of writes to 80%, the observedmpanite decreases with a
more skewed member activity distribution. This is because the news feed fobeng following
Active members contains a larger number of shared resources whick dtow the insertion sort
performed while Share Resource action is invoked.

Evaluation

We now describe the experimental results we gathered by comparing thePBsifi,and Sorted
Insert Push approaches described in Section 8.4.2. We examine theobetidhese models by
modifying the workload characteristics as well as the member activity distrib(giggonen® for
D-Zipfian). The metric we focus on is the throughput (actions/seconthadsf the SoAR for the
system. This is because with workloads involving feed following actions tlee$ithe database and
the SOAR of the system change depending on the duration of the ratingregpg see Section 7.3.
For this kind of workloads understanding the trends for the data store daren workload seems
more relevant and appropriate. All experiments are executed using Gadidht and is ensured
that the benchmarking framework does not become the bottleneck.

In the first experiment we studied the performance of Pull versus RusBarted Insert Push
with MongoDB for two workloads consisting of both feed following actiond ather BG actions
such as actions that modify friendship relationships: IF, AFR, RFR,8d-Table 8.9. As mentioned
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Figure 8.16: Impact of member activity distribution (expohd in D-Zipfian) on Mon-
goDB’s performance for three different workloads using at&binsert Push architecture
whenM = 10,000, P = 100, ¢« = 1,000, o = 10, ¢ = 100, p = 10. For all workloads 1%
of the SR actions are issued by pages.

118



Throughput(Actions/Sec)
3,000

PUIl Ac---mmmeee- 4
2,500F : o gt
2,000 o
Push Lo----- Opfngenam0 T
- A
DLB00 A o -
S P oren a
R L TR, 2 &0 ©----- o o R T Jupup—— )
1,000+ ;’4," Sorted Insert Push
- TEEr- S o
500/
<]
| | | | | | | | | | |
10 20 30 50 70 T 90 100 110 120 130 150
8.17.a:0=0.27
Throughput(Actions/Sec)
5,000
Pull
_____ Becemeee Ao
4,000~ . “ 4
&
3,000+
s Lk Push
B e e PSP UL P e el Q- ee
2000 F . e -0 e
L R o
0--ro@nennas p: o o
K e PP A et e RREEEE Q----- O----- O - -0
1,000*’,' l," Sorted Insert Push
UOPT -RELLE Q----- o "
ﬁ L L L L L L L L L L I}
10 20 30 50 o 90 100 110 120 130 150

Figure 8.17: Performance of Pull vs. Push and Sorted Insesti vith MongoDB for a
High (11% Write) Mixed workload of Table 8.9 for two differemtember activity distri-
butions (exponent of D-Zipfian). M = 10,000, P = 100, = 1,000, o = 10, ¢ = 100,
p = 10. For all workloads 1% of the SR actions are issued by pages.

in Section 8.4.2 changes in friendship impact the feed for members. Theditdbad we look into
consists of 10% friendship modification actions, 1% Share Resource acttbB89% View News
Feed action.

For this workload withd = 0.27 and a low load T" < 50) Pull performs better than Push,
see Figure 8.17.a. This is because Push needs to construct the fegdriomember upon every
update which introduces an additional overhead. With medium Fgaet (7" < 110) Push performs
better than Pull. This is because Push constructs the feed for every memalees the percentage of
View News Feed action is higher than the Share Resource action, Pu#ik nes better response
time for retrieving feed for consumer’s following Active producers ameter overall performance
compared to Pull. With a high load’(> 110), once again Pull performs better than Push as with an
increased number of updates the overhead of constructing memberdesakies (as Push retrieves
the entire feed and then computes the kppWith the same workload and a uniform distribution
(9 = 0.99) Pull performs better than Push. This is because now all members haanibeastivity
level and pre-computing the news feed for members will be less efficiempaced to re-computing
it, see Figure 8.17.b.

As shown in Figure 8.17, the performance of Sorted Insert Push is botr han Pull and
Push for different member activity distributions. This is because every timgédate occurs (SR
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Figure 8.18: Performance of Pull vs. Push with MongoDB foremyM_ow (0.2% Writes)
Mixed workload of Table 8.9 for two different member actyvdistributions (exponernt

of D-Zipfian). M = 10,000, P = 100, : = 1,000, o = 10, ¢ = 100, p = 10. For all

workloads 1% of the SR actions are issued by pages.

action is invoked or BG'’s friendship modification actions are invoked), éseurces displayed for
a member’s feed need to be recomputed and sorted which reduces itszerte.

We also compared the performance of Pull, Push and Sorted Insertwbs¥iongoDB for a
workload consisting of a low percentage of BG’s friendship modificatitioas, see Table 8.9. This
workload consists of 0.1% BG’s friendship modification actions (IF, AFRRRTF), 0.1% Share
Resource action and 99.8% View News Feed action. As shown in Figuref8riiis workload
both with a skewed and a uniform member activity distribution, Pull results intariggerformance
compared to Push and Sorted Insert Push. This is because the pgecafriidnare Resource action
is so low that the database size and feed size for members do not incteeldg. gAlso, Push
and Sorted Insert Push need to reconstruct member feeds whershignicire modified which
introduces additional overhead and reduces their performance oednpa?ull.

In our next set of experiments we set the number of friends per memb@y 160 and 1,000 and
evaluated the performance of Pull, Push and Sorted Insert Push anatatefor a fixed workload
with MongoDB. ¢ = 1000 emulates Super-Follower members, see Table 8.7. For all valugs of
Pull performs better than Push and Sorted Insert Push as it eliminatestheas of pre-computing
member’s feed. But as shown in Figure 8.19 the difference between theadiltes decreases as the
value of¢ increases. This is because with a larger valuesf@ member follows a larger number of
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Figure 8.20: Impact of modifying the number of followers page () on the performance
of Pull and Push with MongoDB for a workload consisting of 1#a& Resource action
and 99% View News Feed Actiod/ = 10,000, P = 100, ¢ = 100, p = 10 andf = 0.27.
For all workloads 1% of the SR actions are issued by pages.

producers and the resources shared by them need to be retrievsatimutto compute the member’s
feed which reduces Pull's performance.

In addition, we looked at the impact of having 100, 1,000 and 10,000 fotboper paged on
the performance of Pull and Push architectures for a fixed workloadMatingoDB. In BG with
a fixed value ofM and P, an increase in the value ofresults in members following 1, 10 and
100 pages (values @f) respectively. As shown in Figure 8.20, as we increase the valugtioé
performance of all three approaches decreases. With Push and Bmeet Push, this is because
every time a Share Resource action by a page is issued, the sharedeas®mds to be pushed into
the news feed for a larger number of followers. In addition each membewfoa larger number
of members/pages, so her feed will contain a larger number of events. @iomfpk for a larger
number of events is more time consuming, reducing the performance of thé\éiew Feed actions
for the members.
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Figure 8.21: Performance of MongoDB and SQL-X with Push aode8l Insert Push for
three different workloads)/ = 100, 000, P = 100, ¢ = 100, p = 10, ¢ = 10,000, o = 10
andd = 0.99. For all workloads 1% of the SR actions are issued by pages.
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Figure 8.22: Performance of MongoDB and SQL-X with Pull faete different workloads.
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The same trend holds true for the Pull architecture as with a fixed numbemalbens, increase
in the number of followers per page will result in an increase in the numbpag@és followed by
each member. Hence, a larger list of producers is queried to constmertnder’s feed.

As show in Figure 8.20, as we increadeom 1,000 to 10,000, the performance of Sorted Insert
Push becomes superior to that of Push. This is because with an incréaseatue of. the number
of producers followed by each member and the size of the member’s nedsnfereases. With
Push every time a VNF action is invoked the entire feed is retrieved by the appficsorted and
displayed to the member. With a low percentage of updates, this introduce®sroead which is
larger than the overhead introduced by sorted insertion required figdSosert Push.

Finally in the last set of experiments we studied the behavior of MongoDBS&dd X, a re-
lational data store for three different workloads with Push, Sortedtifsesh (Figure 8.21) and
Pull (Figure 8.22) architectures. As shown in these figures for almoskp#ériments, the perfor-
mance of MongoDB is superior to that of SQL-X. With SQL-X and both altévea, the disk of
the node hosting the data store becomes the bottleneck. For Push, Seet¢dlsh and Pull, with
MongoDB the CPU of the node hosting the data store becomes the bottleneck.
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Chapter 9
Future Work

Social networks are emerging in diverse applications that strive to revégnse of community for
their users. These diverse applications range from financial welssitbsas online trading system
to academic institutions [1]. BG is the foundation of a benchmark to evaluatetfe@imance of a
data store for processing social networking actions such as viewing aensmlofile, extending
a friendship request to a member, accepting a friendship request, aard athshown in Table 1.1.
BG’s current implementation is used on a daily basis to evaluate the perfagrnfinovel architec-
tures that enable high throughput, low latency data stores and providétuasights that enable
introduction of novel designs and implementations.

We plan to maintain BG as a state of the art benchmark. This chapter focugsm@ research
directions that shape our activities towards this end. We categorize thesean those that impact
the core design decisions of BG and those that extend it for use with atii@ms, applications, and
systems.

9.1 BG's Design Decisions

9.1.1 Closed versus Open Simulation Model

BGClients generate requests using a fixed number of thréadSach thread emulates a random
member of a social networking site performing one of BG's thirteen actioms rdndomly selected
member is conditioned using the D-Zipfian distribution. This is termed a closed &onutaodel
because a thread does not emulate a new member generating a new actiis emitillation of a
current member completes. This model may include a think time between emulatidfeérd
members issuing actions. Historically, this is a model of a financial institution witted fiumber
of tellers (ATM machines) witll” concurrent customers (threads) performing financial transactions
simultaneously [54]. Example transactions might include checking accelsmde, withdrawing
and depositing money into an account, transferring funds betweenrdgscaad others. These and
others are the standard OnLine Transaction Processing (OLTP) wdekEmulated by the TPC-C
benchmark [54].

An open emulator is a more realistic model of a social networking site [96] (aaimsites in
general). With this model, the emulator generates requests based onegifeed arrival rate,
A. This model is depicted in Figure 9.1 where a factory generates membergsu®a social
networking action independently. (A member who is performing an action is teasecialite)
The factory does not wait for the data store to service a request ibsuadocialite. Instead, it
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Figure 9.1: Closed and open emulation of socialites issuttigras to a data store.

generates\ requests per unit of time using a distribution such as random, uniform, asdPoI\
Poisson distribution results in a pattern of requests that is bursty. This mears average and
the number of simultaneous requests at an instance in time might be higher. than

While the open emulator is more realistic, its design and implementation requiresfal car
study. This is because today’s data stores service requests at sigi ratk that the emulator
must support\ values in the order of a million without exhausting its CPU resources. In additio
the emulator must generate requests in a burst consistent with the Poigsibatiis. Evaluating
the feasibility of such an open emulator and its implementation in BG is one othee fiesgarch
direction for BG.

9.1.2 Decentralized BG

BG employs a shared-nothing architecture and scales to a large numlzetes!, preventing either
the CPU, network, or memory resources of a single node from limiting its stg@meration rate.
Its software architecture consists of one coordinator/gralients, termed BGCoord and BGClient,
respectively. In our experiments with an 8 core CPU, a multi-threaded B@Gieble to utilize
all cores fully as long as the client component of a data store does rfet fuim the convoy
phenomena [20]. When the client component of a data store limits vertidabditg, as long as
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there is a sufficient amount of memory, one may execute multiple instancesQié3@ on a single
node to utilize all cores. BG scales horizontally by executing multiple BGCliemtsadlifferent
nodes. BGCoord is responsible for initiating the BGClients, monitoring thegrpss, gathering
their results at the end of an experiment, and aggregating the obtainéd teeompute the SOAR
of a data store.

Once the BGClient instances are started, they generate requests iheleghewith no synchro-
nization. This is made possible using the following two concepts. First, a BGGmtements
a decentralized partitioning strategy that declusters a benchmark sagél igto N disjoint sub-
graphs whereV is the number of BGClients. A BGClient is assigned a sub-graph to generate
requests referencing members of its assigned sub-graph only. Whilatéstdre is not aware of
this partitioning, the data generated and stored in the data store doegpoodés theN disjoint
graphs. One may conceptualize each sub-graph as a province vitimesgsanay perform BG’s ac-
tions with one another only. This means citizens of different provinces rotyiew one another’s
profile or perform friendship actions with one another.

Second, BG employs a novel decentralized implementation of the Zipfian disiripnamed
D-Zipfian [13, 63], that ensures the distribution of requests to the diffeamembers and resources
is independent olV. Thus, the distribution of access with one node is the same as that withlsevera
nodes. D-Zipfian in combination with partitioning of the social graph enab@sRitilize N nodes
to generate requests without requiring coordination until the end of theriexgnt, see [12, 15, 13]
for details.

While BG scales to a large numbers of nodes, its two concepts may fail to evahuae data
stores objectively. As an example, consider the architecture of Figunet®ge an application is
extended with a cache such as KOSAR or EhCache [47]. This caclangeivork consists of a
coordinator that maintains which application server has cached a copyatd dtem in its KOSAR
JDBC. When one application server updates a copy of the data item, its KOBBR informs
the coordinator of the impacted data item. In turn, the coordinator invalidatepyaat this data
item that resides in the KOSAR JDBC of other application servers. With aetkgattern of
access to members and a workload that exhibits a low read to write ratio, alizentrcoordinator
may become the bottleneck and dictate the overall system performancefofémentioned two
concepts employed by BG fail to cause the formation of such a bottlenecklaborate, each
application server references data items that are unique to itself sinceigaemssub-graph is

127



unigue and independent of the other sub-graphs. Hence, oncelaatpn server updates a cached
data item, BG does not exercise the coordinator informing KOSAR JDBC athanapplication
server.

To address the above limitation, we are extending BG to empMd&GClients with one social
graph. The key concept is to hash partition pages, members and resaaross th&/ BGClients.
Each BGClient is aware of the hash function and employs the original Zigigrbution (instead
of D-Zipfian) to generate member ids/page ids. When a BGCIERC; references a data item that
does not belong to its assigned patrtition, it contacts the BGClient that owrsféinenced data (say
BGC;) to lock that data item for exclusive use BGC; and to determine if its intended action is
possible.BGC; grants the lock request if there is no existing lock on the referenced dataite
the action is possible, enablid§GC; to proceed to generate a request with the identified data item
to the data store. Once the request is serviggd(; contactsBGC; to release the exclusive lock
on the referenced data item to make it available for use by other BGClientsdd@sign raises the
following interesting questions:

e When BG(C) fails to grant an exclusive lock to the referenced data item due to an existing
lock, how should the framework handle the conflict? Three possibilitiessafi@laws. First,
it may block BGClient A until the referenced data item becomes available.n8e@anay
return an error to BGClient A to generate a different member/resourcalittypagain. Third,
it may simply abort this action and generate a new action all together. We intejudmify
the tradeoff associated with these two possibilities and their impact on both thbudien
of requests and the benchmarking framework.

e What is the scalability characteristic of the proposed technique? Theggdpequest gen-
eration technique requires different BGClients to exchange messagek tnid unlock data
items and to determine the feasibility of actions. We plan to quantify this overhehdsa
impact on the scalability of this request generation technique. This intuitiandkeaable
us to propose refinements to enhance scalability.

e How different are the obtained results withdisjoint social graphs (current version of BG)
and one social graph (the proposed change)? This question applies¢sistems that may
use the current version of BG. We intend to repeat our published iexpets such as those
reported in [14] to quantify differences if any.

An investigation of these questions shape another research directiBfor

9.2 Extensions And Use Cases
9.2.1 Actions

A social networking system is identified by two kind of workloads:
1. Interactive workloads that read or write a small amount of data frordditig, and

2. decision support and business intelligence workloads consistingadftiaal queries that
read a large amount of data from big data and involve complex and resoteasive queries
such as those analyzing online behavior of users for marketing pwpt&e92].

Thus far, BG has captured the essential features of the first wosklmatbcusing on thirteen
interactive social actions. These are an abstraction of actions peddiyne member in a social
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networking system, see Table 1.1. A similar study must be conducted fordbedseorkload. This
would extend BG with new actions such as friend/follower suggestiondupteecommendations,
sentiment analysis and etc. A challenge is to identify the appropriate perfoemaetric to measure
and report. The metric should be objectively measurable and allow for nggaltirend or statistical
analysis of the performance of alternative systems and design decisMmenvision generating
social graphs with a set of well known results for a complex action, priedtizased on their
quality. Given an experimental data store, BG would analyze the qualityspbreses provided
for an action in this workload. It may compute the amount of time required faata store to
approximate the different responses based on their qliafitghallenge is to generate social graphs
that are realistic, model analytics that are a relevant abstraction of tleotaped by different
social networking sites, and reduce meaningful data to compare alteroatiices with one another.
With the second workload, another metric that might be of interest is the arobtinte required
to load database [49]. An option is to aggregate (weighted aggregatehthatof time to load a
fixed amount of data into a data store with BG’s other performance metricS§AR and Socialites
rating) and introduce a new combined metric indicating a data store’s perioana

9.2.2 Applications

Most social networking systems also provide media access and reteeviges for their members.
Examples include, displaying images and streaming audio/video. For sulatedipps, apart from
the timeliness of the action, the quality of the response is also important. An gbiviture re-

search direction is to extend BG to evaluate these metrics and provide ingigbes/&loping new
algorithms for multimedia access and retrieval.

In addition, as BG is an extensible benchmark (see Chapter 4), it can basitjapted to eval-
uate the performance of data stores used for other big data applicatamasshealthcare or space
related scientific applications. ldentifying these applications and their cfiesitics, and extend-
ing BG to support them is an interesting future research direction. This abetithe benchmark
generator detailed in the next section.

9.2.3 Benchmark Generator

Although BG is an extensible benchmarking framework and a new actionasaly be added as a
module, yet some actions require accessing multiple entities with a specific relagi@md logging
relevant information. This is important in order for BG to create valid actiowlsgerform an error-
free validation. For example, BG's Accept Friend Request action (AFRjuires two member
entities, invitor and invitee, and there should exist a pending friend reopitgsted from the invitor
to the invitee. So in order for BG to emulate a valid AFR action by Member A, it si¢edind a
Member B who has initiated a friend request to Member A and accept thatiomitén addition, the
appropriate log records for the change in the two members’ friendshipemding friend requests
need to be generated for the action.

BG maintains all relationships between different entities (friendship: menmensbers, pend-
ingRequests: members-members, following: members-pages, own: memabausces and post:
comments-resource) in its internal in-memory data structures. Currently extending BG with a
new action, the developer must author software to select appropriatesefitétieanembers), access
the appropriate data structures (pendingRequests:members-membeansdifiydhem accordingly.

1This effort would be different than simply extracting a sograph from a site such as Twitter and using
it for evaluating an algorithm in that the social graph isateel with a pre-specified set of known answers.
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For example with the Accept Friend Request action by Member A, the peneiugE’ts:members-
members structure is queried to find a Member B that has initiated a friendstegudember A.
Next, the AFR action is issued against the data store, the entry related tontliegeequest is
removed from the data structure maintaining the pending requests, anditlieemelship is added
to the data structure maintaining the friendship relationships. The code fofr thil is provided
by the developer. The developer also needs to provide code to getierafgpropriate log records.
With the previous example, this includes two log records for the two membersdfigps: one
indicating that A has been added as B’s new friend and the other indicatin® thas been added
as As new friend. And one log record for the invitee’s pending regredationships indicating that
A no longer has a pending invitation from B.

A future research direction for BG is to convert it to a Benchmark Geoefeamework [67].
The main objective of this research will be to develop a general framethiatknputs the actions
and their meta data and extends BG with the appropriate modules for the nemsaditio minimal
(hopefully no) additional software from the developer. This framewudy be provided with a
specification file from the developer that provides a high-level descnigidhe new action. For
each action the description is split into four distinct parts:

1. The particular entity sets and their number involved in an action. For exaiies Friend-
ship action involves two entities of the Member entity set.

2. The dependencies between the entities for an action. With Thaw Fripndisé second
member must be friends of the first member).

3. The action behavior. For example, the second member is selected uasimpanrdistribution
from among the friends of the first members.

4. Log record information. For example, a log record indicating that thergemember’s
invitation is removed from the first member’'s pending friend requests, &tmgd indicating
the the first member is added as the second member’s friend and a log iretioating that
the second member is added as the first member’s friend.

This framework will consist of interfaces which allow developers to intredoew entity types,
dependencies, behaviors and log record types. And it will use theiplésaes provided by the
developers in the configuration files to create and add the new action modd( aatomatically.
This effort is justified by the fact that there are an increasing numbeigaddia applications with
many different set of actions, see Section 9.2.2 .

9.2.4 End System Design

Another future research direction is to use BG to explore topics that ameeoést for today’s social
networking applications. There are several topics that warrant fueiporation such as elasticity,
and availability and fault tolerance.

Scalability has always been an important aspect of distributed data steignsi€see Sec-
tion 8.3); and with the continuous drop at the cost of computers, scalingtaés to larger number
of nodes continues to rise. Today one of the main challenges with distribatadibres is to pro-
vide scalability and fault tolerance without sacrificing performance. Andith a larger number of
data store nodes, the probability of failure is higher, affecting the pegfoce of the system, differ-
ent distributed data stores strive to impalement a quick and efficient teehfagtailure detection
and recovery.
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Designing a system with a desired degree of fault tolerance is difficulteandres understand-
ing factors affecting data store’s availability characteristics. In this stuslyill use BG to study
the different fault tolerance techniques used in distributed data stoe#srebovery mechanisms,
the amount of time it takes for the systems to recover and the system paraimgigcting these.
The results of this study can:

e help adesigner to understand important trade-offs and choose ap&appe system architec-
ture and fault tolerance technique which allows for greater scalability@ngtness without
significantly sacrificing functionality and performance,

e help an application developer to pick the data store which results in a higtiempance and
availability,

e provide researchers from both industry and academia with interestitigradies in this area
and a way to objectively compare the effectiveness and efficiencyvofind existing tech-
niques in this area.

The challenge with performing this study is that there are many different ddiridults and
introducing all of them is almost impossible [29]. The simplest way to perfoisrstindy is to start
a BG workload, kill one or more data store nodes while BG is issuing the wamiidgainst the data
store, and observe any resulting errors and performance impact. kilérgpth store can represent
various data store failure scenarios including software, hardwaresaviconmental failures. A
similar approach is to use tools such as NISTNet [24], ModelNet [11Epaulab [115] to emulate
network layer faults.

9.2.5 Introducing Skewness in Social Graph

With today’s BG, the structure of the social graph is dictated by a unifortnilalition. For in-
stance, all pages have the same number of followers, all members folloartteeraimber of pages,
the profile and thumbnail image sizes for all members are the same and alboresderces and
comments posted on the resources have the same size in bytes.

Data skewness may change the performance of the system especiallyeimexiases. For
example the performance of the system when a set of larger size res@re retrieved will be
different from when a set of smaller size resources are retrievedet@eving the news feed for
a member following a large number of pages may be slower than retrievingahéofollowing a
smaller number of pagés

In addition while evaluating a data store using BG, the change in the size chthstdre may
impact its performance. For this kind of data stores one may come up with symmetkimads
which try to maintain the data store state as constant, see Section refsec:mitudinig skewness
into BG’s data results in identifying symmetric workloads more challenging.

A research direction for BG is to modify its design to address the descrédtadskbewness.

2A simple approach is to use a random number generator toel#tidsize of the data to be inserted.
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Appendix A

Survey’s Used to Evaluate BG’s
Extensibility

We used the following three surveys to evaluate BG’s usability and extensibilitgse surveys
were filled anonymously.

A.l Surveyl

Data Store: Date:

1. How would you rate yourself on a scale of 1-5, with 5 being the most fanaihdrl being
the least familiar with each of the following topics?

112|345
Performance benchmarking O/o|jo|o|.
ER-Diagrams and conceptual schemal | O | O | O | O
Social networks O/o|jo|Oo|o
Assigned data store Oo|o|/go|o|0

2. On a scale of 1-5 how comfortable are you with the following:

Understanding benchmarking
Understanding BG’s actions
Working with you assigned data stofe

Ooog -
ggigis
ddjw
gog) &
gjojgjo

3. How many hours did you spend on the following:

<lhr| 1-5hrs| 5-10 hrs| >10 hrs

Understanding BG’s conceptual schema [ O O O
Understanding BG’s actions O O O O
Learning about your assigned data stgre [J O O O
Developing a logical schema with

your data store for BG O O O O
Modifying the logical schema you

designed in support of BG’s actions O O O O
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4. Which of the following did you use to do your homework?
0 BGBenchmark.org
0 BG’s Google forum
[0 BG Presentation slides
0 BG’s Paper
(1 BG’s source code
[ Other:

A.2 Survey 2

Data store: Date:
Please take a few moments to complete our BG usability survey. Your respaitideslp us address
any issues that you may have and improve our software.

1. How would you rate yourself on a scale of 1-5, with 5 being the most fanaitidr1 being
the least familiar with each of the following topics?

Databases (client/server architectufe
Assigned data store

1123|415
Java o/gojo|b|o
Any Java IDE Tool Oo|/o|jo|o|o
BG O|o|(o|o|d
D oo o|ag
O|o(go|o|d

2. Based on completing this homework on a scale of 1-5 how comfortableocarevigh the
following (5 being the most comfortable and 1 being the least comfortable):

1/213|4]5
Understanding BG’s objective Oo|o|go|o|d
Installing BG O/ojgo|o|d
Resolving installation issues O/o|jo|o|d
Using BG with sample clients O/o|jo|o|.
Using BG to connectto yourdatastofed | O | O | O | O
Using BG to create schema for your
data store O|/0o|jo|jg|d
Using BG to load your data store O/o|jg|o|d
Understanding BG’s input parameters O | O | O | O | O
Resolving BG related runtime errors
and exceptions Oo|o(/go|o|0

3. How many hours did you spend on the following:
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<lhr| 1-5hrs| 5-10 hrs| >10 hrs
Designing the logical model for your
data store (overall hours
including hours spent for partl) O O O O
Implementing creation of connection
to the data store O O O O
Testing creation of connection to your
data store (-testdb) O O O O
Implementing the schema creation phase
for your data store O O O O
Understanding the parameters required for the
schema creation O O O O
Testing the schema creation code for
your data store O O O O
Setting up BG to create the schema for
your data store O O O O
Implementing the load phase for your data store [ O O O
Understanding the parameters required for the
loading phase O O O O
Testing the load phase for your data store O O O O
Setting up BG to load your data store O O O O
Understanding BG’s output parameters O O O O
4. Please respond to the following:

Not | Not Very

At | Very | Often| Often | N/A

All | Often
How often did you access the bgbenchmark.ong
when using/extending BG? O O O O O
How often did you read the postings on
the BG Google Group? O O O O O
How often did you post in the BG Google group? [ O O O O
How often were your problems solved using
the bgbenchmark.org or the BG Google group®? O O O O O
How often did you contact the TA for help? O O O O O

5. Please rate the following criteria for BG.
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Poor

Fair

Neutral

Good

Excellent

Ease of installation

Software dependency

Installation or first use experience

Repeated usage experience

Timeliness of the installation

Compatibility with hardware/software

gggooo

gggood

gggood

gggood

Ooooo:o

Quiality of documentation for
schema creation and load phase

O

O

O

O

O

Appropriateness of the documentatio
for schema creation and load phase

O

O

O

O

O

Usability of the documentation
for schema creation and load phase

O

O

O

O

O

Usability of BG to create schema
for your data store

Timeliness of schema creation

Usability of BG to load your data stor

rany
11%2

Timeliness of loading

Feedback provided by BG during loa

r=}
=

Informative errors

Overall Usage/Experience

ggiooogo

ggiooogo

ggiooogo

ggiooogg

Oooooono

6. How long have you used BG for?

7. What do you dislike about BG so far?

A.3 Survey 3

Data store:

8. What suggestions do you have to improve BG?

Date:

Please take a few moments to complete our BG usage survey. Your respafideelp us
address any issues that you may have as well to improve our software.

1. Based on completing this homework on a scale of 1-5 how comfortablecarevigh the
following (5 being the most comfortable and 1 being the least comfortable):

Understanding BG’s objective

Using BG’s command line interface

Implementing BG’s actions for your data store

Understanding BG’s input parameters

Resolving BG related runtime errors and exceptign

Understanding BG's output

Owgoog -
Ogigioioigis

Oggood w

Ooooogls
Ooo0oogio

2. How many hours did you spend on the following:
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<1lhr| 1-5hrs| 5-10 hrs| >10 hrs
Designing the logical model for your data stare
(overall hours including hours spent for
partl and part2) O O O O
Understanding BG’s actions
(requirements and functionality) O O O O
Implementing BG'’s actions O O O O
Testing all the actions implemented O O O O
Understanding how to use BG’s
command line interface O O O O
Setting up BG to issue a workload
against the data store O O O O
Understanding BG’s output parameters O O O O
3. Please respond to the following:
Not | Not Very
At | Very | Often| Often | N/A
All | Often
How often did you access the bghenchmark.org
when using/extending BG? O O O O O
How often did you read the postings on
the BG Google Group? O O O O O
How often did you post in the BG Google
group? O O O ([l U
How often were your problems solved using
the bgbenchmark.org or the BG Google group?] O O O O
How often did you contact the TA for help? O O O O O
4. Please rate the following criteria for BG.
Poor | Fair | Neutral | Good | Excellent
Repeated usage experience O O O O O
Quality of documentation for BG’s
actions O O O O O
Appropriateness of the documentation
for BG's actions O O O O O
Usability of the documentation for
implementing BG’s actions d O O O O
Usability of BG to issue actions
against the data store O O O O O
Feedback provided by BG during
issuing actions against the data store [J O O O O
Informative errors O O O ([l O
Intuitive output O O O O O
Overall Usage/Experience O O O O O

136




Appendix B

BG’s Visualization Deck

One may obtain invalid ratings from a data store for a variety of reasomgnaifirom invalid
parameter settings to BGClients becoming fully utilized. We use the bettteneck nodéo refer
to a node of the system with either a fully utilized CPU, network bandwidth, osistasage device
(disk or flash). BG’s interface empowers its users to visualize eachipattitg node and utilization
of its resources to detect bottlenecks, see Figure B.1. In addition, itesniébusers to perform the
following tasks: specify values for parameters used to populate a da¢a start loading the data
store, specify values for parameters used to initiate a multi-node BGCliestiegnt, start rating a
data store and monitor its progress. This tool is useful for analyzing tAR @nd Socialites rating
of a data store and detecting when the obtained ratings are invalid.

BG
VISUALIZATION MACHINE HEALTH
DECK

MALHINE HEALI H

Figure B.1: BG’s Visualization Deck.
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Appendix C
Loading of BG Using MySQL's InnoDB

With MySQL, we use its InnoDB as it provides ACID properties using roveléocking and im-
poses foreign key constrains, see http://dev.mysqgl.com/doc/refman/5. l/agéstorgines.html for
details. We use MySQL Server 5.0 for our experiments.

BG specifies the primary key and foreign key constraints while creatingdtaddse schema,
prior to loading the data. To load the data effectively, we changed desadtings. First, we in-
creased its communication packet (melowedpacket, see https://dev.mysql.com/doc/refman
/4.1/en/packet-too-large.html), and its connection and result buffer b(ifegr length, see
http://dev.mysqgl.com/doc/refman/5.0/en/server-system-variables.html#syswetrbuffer_ length).
Second, we disabled InnoDB’s ACID and constraint check featwéss.re-enable these features
once the benchmark database is created and prior to rating MySQL. itioad®G creates the
index structures after the loading of the database is completed using statsimglatstocr eat e
i ndex friendship.nviteel D on Friendship(inviteelD).

With the above modifications, loading of data is improved dramatically. For exatheléme
required to load a 10,000 member BG database with 100 friends and 1@@aes@er member is
improved from 913 minutes to 15 minutes.

To disable InnoDB’s ACID transactional properties and constraintking capabilities, we
issued the following commands:

SET FORElI GN_KEY_ CHECKS = 0;
SET UNI QUE_CHECKS = 0;
SET SESSI ON t x_isol ati on=" READ- UNCOW TTED ;

To re-enable them, we issued the following commands:

SET UNI QUE_CHECKS = 1;
SET FOREI GN_KEY_CHECKS = 1;
SET SESSI ON t x_i sol ati on=" REPEATABLE- READ ;

Moreover, we modified BGClient’s init() function for MySQL to set autocommifatse. Its
cleanup method commits pending transactions by invoking conn.commit() andigstsramit to
true.
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