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We study constraint satisfaction problems on the domain {—1, 1}, where the given constraints are homoge-
neous linear threshold predicates. That is, predicates of the form sgn(wiz1 + - - - + wnxy) for some positive
integer weights w1, ..., wy. Despite their simplicity, current techniques fall short of providing a classifica-
tion of these predicates in terms of approximability. In fact, it is not easy to guess whether there exists a
homogeneous linear threshold predicate that is approximation resistant or not.

The focus of this paper is to identify and study the approximation curve of a class of threshold predicates
that allow for non-trivial approximation. Arguably the simplest such predicate is the majority predicate
sgn(z1 + - - - + xn ), for which we obtain an almost complete understanding of the asymptotic approximation
curve, assuming the Unique Games Conjecture. Our techniques extend to a more general class of “majority-
like” predicates and we obtain parallel results for them. In order to classify these predicates, we introduce
the notion of Chow-robustness that might be of independent interest.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexityl: Nonnu-
merical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, constraint satisfactory problems, linear
threshold predicates

ACM Reference Format:

Cheraghchi, M., Hastad, J., Isaksson, M., and Svensson, O. 2011. Approximating Linear Threshold Predi-
cates. ACM Trans. Comput. Theory 1, 1, Article 1 (January 1), 31 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Constraint satisfaction problems or more succinctly CSPs are at the heart of theoret-
ical computer science. In a CSP we are given a set of constraints, each putting some
restriction on a constant size set of variables. The variables can take values in many
different domains but in this paper we focus on the case of variables taking Boolean
values. This is the most fundamental case and it has also attracted the most attention
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1:2 M. Cheraghchi et al.

over the years. We also focus on the case where each condition is given by the same
predicate, P, applied to a sequence of literals. The role of this predicate P is key in this
paper and as it is more important for us than the number of variables, we reserve the
letter n for the arity of this predicate while using N to be the number of variables in
the instance. We also reserve m to denote the number of constraints.

Traditionally we ask for an assignment that satisfies all constraints and in this
case it turns out that all Boolean CSPs are either NP-complete or belong to P and
this classification was completed already in 1978 by Schaefer [1978]. In this paper we
study Max-CSPs which are optimization problems where we want to satisfy as many
constraints as possible. Almost all Max-CSPs of interest turn out to be NP-hard and
the main focus is that of efficient approximability.

The standard measure of approximability is given by a single number C and an
algorithm is a C-approximation algorithm if it, on each input, finds an assignment
with an objective value that is at least C times the optimal value. Here we might allow
randomization and be content if the assignment found satisfies these many constraints
on average. A more refined question is to study the approximation curve where for each
constant ¢, assuming that the optimal assignment satisfies ¢ constraints, we want to
determine the maximal number of constraints that we can satisfy efficiently.

To get a starting point to discuss the quality of approximation algorithms it is useful
to first consider the most simple algorithm that chooses the values of the variables
randomly and uniformly from all values in {0, 1}”. If the predicate P is satisfied by ¢
inputs in {0,1}" it is easy to see that this algorithm, on the average, satisfies m¢2~"
constraints. By using the method of conditional expectations it is also easy to deter-
ministically find an assignment that satisfies this number of constraints.

A very strong type of hardness result possible for a Max-CSP is to prove that, even
for instances where the optimal assignment satisfies all constraints, it is NP-hard to
find an assignment that does significantly better (by a constant factor independent of
N) than the above trivial algorithm. We call such a predicate “approximation resis-
tant on satisfiable instances”. A somewhat weaker, but still strong, negative result is
to establish that the approximation ratio given by the trivial algorithm, namely 27",
is the best approximation ratio that can be obtained by an efficient algorithm. This is
equivalent to saying that we cannot satisfy significantly more than mt2~" constraints
when given an almost satisfiable instance. We call such a predicate “approximation re-
sistant”. It is well known that, unless P=NP, Max-3-Sat (i.e. when P is the disjunction
of the three literals) is approximation resistant on satisfiable instances and Max-3-Lin
(i.e. when P is the exclusive-or of three literals) is approximation resistant [Hastad
2001].

When it comes to positive results on approximability the most powerful technique
is semi-definite programming introduced in this context in the classical paper by Goe-
mans and Williamson [1995] studying the approximability of Max-Cut. They estab-
lished the approximability constant agy ~ .878 implying that Max-Cut is not approxi-
mation resistant. Somewhat surprisingly as proved by Khot et al. [2007], this constant
has turned out, assuming the Unique Games Conjecture, to be best possible. We note
that these results have been extended in great generality by O’Donnell and Wu [2008]
who determined the complete approximation curve of Max-Cut.

In a breakthrough paper, Raghavendra [2008] showed that a canonical semi-definite
program gives the best approximation ratio for all CSPs with a constant domain and
arity assuming the Unique Games Conjecture. The achieved approximation ratio for a
specific CSP equals the integrality gap of the semi-definite program but, as the latter
is often difficult to analyze, the achieved approximation ratio is unresolved for many
CSPs. In particular, the general problem of determining which predicates are approx-
imation resistant is still not resolved but as this is not the main theme of this paper
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let us cut this discussion short by mentioning a general result by Austrin and Mossel
[2009]. This paper relies on the Unique Games Conjecture by Khot [2002] and proves
that, under this conjecture, any predicate such that the set P~!(1) supports a pairwise
independent measure is approximation resistant.

On the algorithmic side there is a general result by Hast [2005] that is somewhat
complementary to the result of Austrin and Mossel. Hast considers the real valued
function P=? which is the sum of the linear and quadratic parts of the Fourier expan-
sion of P. Oversimplifying slightly, the result by Hast says that if P<2 is positive on
all inputs accepted by P then we can derive a non-trivial approximation algorithm and
hence P is not approximation resistant.

To see the relationship between the results of Austrin and Mossel, and Hast, note
that the condition of Austrin and Mossel is equivalent to saying that there is a prob-
ability distribution on inputs accepted by P such that the average of any unbiased
quadratic function! is 0. In contrast, Hast needs a particular unbiased quadratic func-
tion to be positive on all inputs accepted by P. It is not difficult to come up with predi-
cates that satisfy neither of these two conditions and hence we do not have a complete
classification, even if we are willing to assume the Unique Games Conjecture. The
combination of the two results, however, points to the class of predicates that can be
written on the form

P(z) = sgn(Q(z))

for a quadratic function @ as an interesting class of predicates to study. Indeed, Aus-
trin et al. [2010] recently investigated these predicates and showed that symmetric
quadratic threshold predicates are not approximation resistant. We note that the con-
dition that the predicates are symmetric is necessary since there are known examples
of quadratic threshold predicates that are approximation resistant. In contrast, Aus-
trin et al. [2010] conjecture that the natural special class of linear threshold predicates
allow for non trivial approximation, i.e., are not approximation resistant and this fi-
nally brings us to the topic of this paper. We study this scenario where @ is a linear
function, L : {-1,1}" — {—1, 1}, without a constant term. In other words we have

P(z) = sgn(L()) = sgn (Z wx> ,

for some, without loss of generality, positive integral weights (w;)?_,. Note that if we
allow a constant term in L the situation is drastically different as for instance 3-SAT
is the sign of a linear form if we allow a non-zero constant term. In fact, the proof
of Theorem 5.3 implies that for any n > 3 the predicate sgn (}_;" ; ; + 2) is approxi-
mation resistant, assuming the unique games conjecture. One key difference is that
a probability distribution supported on the set “L(z) > 0” cannot have even unbiased
variables in the case when L is without constant term and thus hardness results such
as the result by Austrin and Mossel do not apply.

To make life even simpler we make sure that L never takes the value 0 and as
L(—z) = —L(x), P accepts precisely half of the inputs and thus the number of con-
straints satisfied by a random assignment is, on the average, m/2.

The simplest such predicate is majority of an odd number of inputs. For this predi-
cate it is easy to see that Hast’s condition is fulfilled and hence, for any odd value of
n, his results imply that majority is not approximation resistant. This result general-
izes to “majority-like” functions as follows. For a linear threshold function, the Chow

parameters, P = (P(i))’,, [Chow 1961] are for, i > 0, defined to be the correlations

IThroughout this work, we find it more convenient to represent Boolean values by {-1,+1} rather than {0,1}.
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between the output of the function and inputs z;. We have that P(0) is the bias of the
function and thus in our case this parameter is always equal to 0 and hence ignored.

Now if we order the weights (w;)”_, in nondecreasing order then also the P(i)’s are
nondecreasing but in general quite different from the weights. It is well known that
the Chow parameters determine the threshold function uniquely [Chow 1961] but the

computational problem of given P, how to recover the weights, or even to compute P
efficiently is an interesting problem and several heuristics have been proposed [Der-
touzos 1965; Kaplan and Winder 1965; Kaszerman 1963; Winder 1963] together with
an empirical study that compares various methods [Winder 1969]. More recently, the
problem of finding an approximation of P given the Chow parameters has received in-
creased attention, see e.g. [O’Donnell and Servedio 2008] and [Diakonikolas and Serve-
dio 2009]. The most naive method is to use P as weights. This does not work very well
in general but this is a case of special interest to us as it is precisely when this method
gives us back the original function that we can apply Hast’s results directly. We call
such a threshold function “Chow-robust” and we have not been able to find the charac-
terization of this class of functions in the literature. If we ignore some error terms and
technical conditions a sufficient condition to be Chow-robust is roughly that

n

Z(wf’ —w;) < Siw? (1)
i=1

=1

and thus it applies to functions with rather modest weights. We believe that this con-
dition is not very far from necessary but we have not investigated this in detail.

Having established non-approximation resistance for such predicates we turn to
study the full curve of approximability and, in asymptotic sense as a function of n,
we get almost tight answers establishing both approximability results and hardness
results. Our results do apply with degrading constants to more general threshold func-
tions as our predicate P but let us here state them for majority. We have the following
theorem.

THEOREM 1.1. (Informal) Given an instance consisting of m majority con-
straints of arity n, assume that the optimal assignment satisfies (1 — n%_l)m,
for 6 < 1. Then it is possible to efficiently find an assignment that satisfies

—6)3/ .
(% +Q (unf/)j 2) -0 (lz%jf)) m constraints.

Thus for large n we need almost satisfiable instances to get above the threshold 3
obtained by a a random assignment. This might seem weak but we prove that this is
probably the correct threshold.

THEOREM 1.2. (Informal) Assume the Unique Games Congjecture and let ¢ > 0 be
arbitrary. Then it is NP-hard to distinguish instances of the majority predicate of arity

n where the optimal value is (1 — —= — ¢)m, from those where the optimal value is

n+1
(3 +e)m.

This proves that the range of instances to which Theorem 1.1 applies is essentially
the correct one. A drawback of this theorem is that the error term in Theorem 1.1
dominates the systematic contribution of (1 — §)3/2n=1/2 for § very close to 1 and hence
the threshold is not sharp. We are, however, able to sharply locate the threshold where
something nontrivial can be done by combining our result with the general results by
Hast. For details, see Section 3.
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To see that the advantage obtained by the algorithm (compared to the trivial algo-
rithm that chooses an assignment uniformly at random) is also the correct order of
magnitude we have the following theorem.

THEOREM 1.3. (Informal) Assume the Unique Games Conjecture and let ¢ > 0 be
arbitrary. Then there is an absolute constant c such that it is NP-hard to distinguish
instances of the majority predicate of arity n where the optimal value is (1 — €)m, from
those where the optimal value is (§ + ﬁ +e)m.

In summary, we get an almost complete understanding of the approximability curve
of majority, at least in an asymptotic sense as a function of n. This complements the
results for majority on three variables, for which there is a 2/3-approximation algo-
rithm [Zwick 1998] and it is NP-hard to do substantially better [Hastad 2001].

The idea of the algorithm behind Theorem 1.1 is quite straightforward while its
analysis gets rather involved. We set up a natural linear program which we solve and
then use the obtained solution as biases in a randomized rounding. The key problem
that arises is to carefully analyze the probability that a sum of biased Boolean vari-
ables is positive. We handle this by writing the probability in question as a complex
integral and then estimating this integral by the saddle-point method. Another advan-
tage of this analysis is that it nicely generalizes to the case of majority-like variables
for which we have the additional complication of the different weights.

The hardness results given in Theorem 1.2 and Theorem 1.3 resort to the techniques
of Austrin and Mossel [2009]. The key to these results is to find suitable pairwise inde-
pendent distributions relating to our predicate. In the case of majority it is easy to find
such distributions explicitly, while in the case of more general weights the construction
gets more involved.

In particular, we need to answer the following question: What is the minimal value
of Pr[L(z) < 0] when z is chosen according to a pairwise independent distribution. This
is a nice combinatorial question of independent interest.

An outline of the paper is as follows. In Section 2, we present notations and conven-
tions used throughout the paper, and also prove a result on weighted sums of balanced
Bernoulli random variables that is used in the following sections. This is followed by
the adaptation of Hast’s algorithm for odd Chow-robust predicates and the proof that
(essentially) the condition )°7 , w? —w; <337, w7 on the weights is sufficient for a
predicate to be Chow-robust. In Section 4, we present and analyze our main algorithm
for Chow-robust predicates (Theorem 1.1 for the special case of majority). These posi-
tive results are then complemented in Section 5 where we show essentially tight hard-
ness results assuming the increasingly prevalent Unique Games Conjecture. Finally,
we discuss the obtained results together with interesting future directions (Section 6).

2. PRELIMINARIES AND BASIC TECHNICAL TOOLS
In this section we introduce some notation and recall some results in complex analysis.

2.1. Notation

We consider the optimization problem Max-CSP(P) for homogeneous linear threshold
predicates P : {—1,1}" — {—1,1} of the form P(z) = sgn(wizy + -+ + w,x,), Where
we assume that the weights are non-decreasing positive integers 1 < w; < ... < w,
such that Z;;l w; is odd and wpax := max; w; = w,. The special case of equal weights,
which requires n to be odd, is denoted by Maj,,, and we also write Max-Maj-n for Max-

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1, Publication date: January 1.



1:6 M. Cheraghchi et al.

CSP(Maj,,). Using Fourier expansion, any such function can be written uniquely as

P(z)= Y P(S) ] -

SC[n) jes
The Fourier coefficients are given by

P(s) =E[P(X) [T X1,
JjeSs
where X is uniform on {—1,1}". Since all homogeneous linear threshold predicates

are odd we have P(S) = 0 when |S| is even. We also write P(j) = P({;}) for the first
level Fourier coefficients (i.e. the Chow parameters) and let P~!(1) denote the set of
assignments that satisfy P,i.e. P~1(1) = {z : P(x) = 1}.

For an instance Z = (m, N, [, s) of Max-CSP(P) consisting of m constraints, N vari-
ables and matrices | € N™*" s € {—1,1}"*", the objective is to maximize the number
of satisfied constraints or, equivalently, the average advantage

1 m
Adv(zx) := p- Z P(si1xy, -y 8in1,,)
i=1

subject to z € {—1,1}V.

2.2. Complex analysis background

We frequently use complex analysis to compute coefficients in series represented by
generating functions. Recall that any complex function f which is analytic in a neigh-
borhood, 0 < |z| < rg, of 2 = 0 can be represented as a Laurent series:

n=oo
f(z)= Z a2, 0<|z| <ro.
The residue of f at z =0,
Res f(2) = a1,

z=0

can then be computed using Cauchy’s Residue Theorem, which we state in a simplified
form here:

THEOREM 2.1 (CAUCHY). Let C be a positively oriented simple closed contour con-
taining the origin. If f is analytic inside and on C except at z = 0, then

Res /() = 5 S0z

Thus, in order to compute the n’th coefficient b,, in a generating function
Z bz =g(z) , |z|<ro
n=0

we may apply Cauchy’s theorem to g(z)z~("t!) with a suitably selected contour.

2.3. Common Lemmas

We now present a technical lemma that is used in our calculations to bound integrands
of the form []7_, (¢;+p;e*i*#) on the unit circle when we are not close to the point z = 1.

The conditions on the number of weights equal to one should be seen as a technical
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Approximating Linear Threshold Predicates 1:7

condition that helps us to bound the integrand when we are not close to the point
z = 1. This could be done in many ways and is further discussed after Theorem 3.4.

LEMMA 2.2. Suppose we are given real numbers p;, 1 < p; < 2,1 < j < nand
positive integers (w;)}_; such that Z?=1 w? < 100n. Furthermore suppose that for at
least t different values of j we have w; = 1. Let g; = 1 — pj, then for any ¢, 0 < ¢ < 7 we
have

n
H qj + pje Wity ‘<€70 .01 min(¢,p> n)

PrOOF. By multiplylng the conjugate we see that

lg; +p;e“" > = pi + ¢ + 2p;jq; cos(wjp) = 1+ 2p;q;(cos(wjp) — 1). (2)

Observe that for any ¢, 7/8 < ¢ < 7/2 we have
3
L+ 2p;g;(cos(p) — 1) < 142 =(cos(n/8) - 1),

which can be seen to be at most e "2, As we have w; = 1 for ¢ different values of j, the
product of the lemma is bounded by e~*/1%° for this range of ¢ and we turn to values
0<p<nw/8.

We claim that for any z, 0 < z < 7/2 we have cos(z) < 1 — 2%-. To see this note

that for g(z) = 1 — cos(x) — 47% we have ¢(0) = g(7/2) = 0, g’(O) =0, ¢”(0) > 0 and
¢"”'(x) < 0 in the entire interval. It follows that each of ¢”(z) and ¢'(z) has a unique 0
in the interval 0 < z < 7/2 and ¢ is unimodal.

As p; + ¢; = 1 and each of these numbers is at least 1/4 it follows that (2), for w; <4
and the set of ¢ we are considering, is bounded by

2, .2
13, 4“’%‘” < e~ ¥7/20,

™

By the condition on the sum of cubes we have at least n/5 different j with w; < 4 and
thus the lemma follows also in this case. O

To evaluate an 1ntegral with integrand o*e ‘W’? we use the following well known
results where I'(z fo t*~le~tdt denotes the gamma function whose asymptotics are

known to be F(z — 1) ~V27mz(?)".

LEMMA 2.3 (STANDARD INTEGRAL). Fork > —1land a >0,

o kE+1
/ e dcp—I‘( + )a_k;l.
O 2

LEMMA 2.4 (TAIL BOUND). For k > —1, and sequences a(n) > 0 and ¢o(n) > 0 such
that a(n) = Q(1) and po(n) = O(1),

/ (pkefa(n)gf ng — @(efa(n)soﬁ(n))
®o(n)
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1:8 M. Cheraghchi et al.

PROOF. To ease notation we drop the explicit dependence on n. By a change of vari-
ables, and using (z + y)* < (22)* + (2y)*%,

/ pre= " dp = / (¢ + o)rea@te0)” g < / [(2¢)F + O(1)]e=%" %0 dy

$o

_ e—w%/ (2% + O(1))e%" dp = e~ 0(1)
0

where the last inequality follows from Lemma 2.3. O

2.3.1. Balanced Bernoulli Random Variables. We say that a random variable X is a bal-
anced Bernoulli random variable if Pr[X = 1] = Pr[X = 0] = 1/2. Here, we present two
lemmas that are useful in Sections 3 and 5, where we analyze weighted sums of bal-
anced Bernoulli random variables. The first lemma (Lemma 2.5) allows us to calculate
the probability, by solving an integral whose integrand is the product of cosine func-
tions, that the weighted sum of balanced Bernoulli random variables equals a specific
value. This basically follows from formulating the probability as a complex integral
which then can be simplified. In the second lemma (Lemma 2.6) we show how this
type of integrals can be evaluated. The idea is to use Taylor expansion so as to reduce
the evaluation to that of a standard integral (Lemma 2.3). Selecting the number of
terms in the Taylor expansion appropriately allows us to control the error term.

LEMMA 2.5. Suppose we are given n balanced Bernoulli random variables
Y1,Ys,...,Y, and positive integers (wj)?:1 such that Z;-L=1 wf < 100n. Furthermore,
suppose that for at least v - logn different values of j we have w; = 1. Then for any
©o0 > 15 1‘2/%" and any integer t such that 3 w; +t =0 mod 2,

n 27.121 w; +t 1 [P0 n 1
Pr ijYj = Jf = ;/ cos(pt/2) Hcos(wjgp/Q) +0 <W) .
j=1 0 j=1
PROOF. LetY = 2?21 w;Y;. The probability generating function of Y is

n

9(z) = H ! Jr;wj.

j=1
Letting W = 3", w; and
9(2)
1) = Jwvenr
Cauchy’s Residue Theorem gives

where we take C to be the unit circle,

C:z=¢" 0<p< 27
As f(z) = f(2),
1 1 [7 ) )
2)dz = — Rele'? f(e'¥)]de.
f(2) | releseniag

21 Jo© m
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Approximating Linear Threshold Predicates 1:9

Expanding f(e’#) give us that
ein(eiW) — g(eiW)e*W(Wﬁ)/?

n

H 1+ ei® o—ie(W+t)/2

J 2
Jj=1
By Lemma 2.2, [[}_, 1" | = O(e~ 00118 7) = O(n~017) whenever ¢ > . Hence
T L) e e 1
/ H 9 e dp =0 17001y
®o j=1

and we have thus that 5= ¢, f(z)dz = L [7° Re[e™ f(e"?)dyp] + O (7507 ) - Multiplying
each factor 17 of g(e¥)) by e~"¥"i/2 gives that
) ) "1 fwj _
e f(e¥) = H e Z et (W+)/2

Jj=1
no—dwip/2 iwip/2

H e et e—i%t/2
o 2

]:

The real part of this can thus be written as

H cos(w;p/2) | cos (pt/2),

j=1
which completes the proof of the lemma. O
LEMMA 2.6. Suppose we are given positive integers (w;)7_, such that Z;’:l wf =

O(n). Then for any ¢y : 101?%1 > g > %10\%; andany k: —1 <k <10

k+1
vo 0 max\\ 1 (k+1\ /(WEN\ =
/0 (pk]l;[lcos(gpwjﬂ)d(p = (1 +0 (wT)) §I‘ (;) ( 3 ) )

= W (2) =y 2
where wax = max; w; and W' =37, w3.

PROOF. Let h(yp) = H?Zl cos(pw,;/2). We may use Taylor expansion to write

2 2
wy Y5 20t 4
cos(wjp/2) =1 - 2L +wjO(p") = e F ¥ O

and hence

() = e E2A V0 _ 2 (14 o),

where W =37 w2 and WW =37 wi As W®? . 2 = w(logn), Lemma 2.4 gives
that J=1"7 J=1"7 0
a

/oo (pke_@t‘,? (1 + W(4)O((P4)) dp = e—w(logn)
Po
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1:10 M. Cheraghchi et al.

and thus

wo 2) o 2
/ @ke w2 > (1 + W(4)O(L,04)) d(p — / (pke_WTwz (1 + W(4)0(4P4)) d(p_i_e—w(logn).
0 0

Further, by Lemma 2.3

k41

o0 2) o 2\ "z kg5

/ e T (L WWO(eh) do = r(’“;”) <W8 ) row®) (we)
0

As W < oy Y7 wh = O(wmaxn) and W& = Q(n), we have that O(W®
(W2)=2) = O (“max) and the lemma follows. O

3. ADAPTATION OF THE ALGORITHM BY HAST

Using Fourier expansion we may write the advantage of an assignment to a
Max-CSP(P) instance as

Adv(z ngn ijsl T, | = Z cg H Tk 3)

SC[N]:|S|<n kes

Hast [2005] gives a general approximation algorithm for Max-CSP(P) that achieves
a non-trivial approximation ratio whenever the linear part of the instance’s objective
function is large enough. We use his algorithm, but as our basic predicates are odd we
have that cg = 0 for any S of even size and we get slightly better bounds.

THEOREM 3.1. For any 6 > 0, there is a polynomial time algorithm which given an
instance of Max-CSP(P) with objective function

Adv(zi,...,oN) = Z CsHﬂUk

SCIN]|S|<n  keS

satisfying 25:1 lcqryl > 0 and cs = 0 for any set S of even cardinality, achieves
§3/2
E[Adv(z)] > g7

PROOF. Let ¢ > 0 be a parameter to be determined. We set each x; randomly
and independently to one with probability (1 + sgn(c;y)e)/2. Clearly this implies that

Elcgiyzi] = €ley| and that [E[[ [, cq zx)| = elsl,
By Cauchy {Schwarz inequality and Parseval’s identity we have that

1/2

S IP(9) < (Z)m S| < (Z)m

|S|=k |S|=k
and hence
o\ 172
Z les| < (k) . (€]
|S|=k

We conclude that the advantage of the given algorithm is, given that ¢g = 0 for even
cardinality S, at least

n n 1/2
e;m-\ - Z *leg| > 65;36’“<Z) . (5)

[S]=3
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Approximating Linear Threshold Predicates 1:11

The sum in (5) is, provided ¢ < (2y/n)~!, and using Cauchy-Schwarz bounded by

n 1 k n 1/2 n 1/2 1 n/2
B 0) () o) s
k=3 k=3

where we used Y, (4 )k (1) = (1+23)" and 3} _,(*n)* < n3 330 5 for the first

n

inequality. Setting ¢ = §'/2(2n3/%)~1, which is at most (2y/7)~! by (4), we see that the

advantage of the algorithm is e§ — 3¢3n3/2 = % and the proof is complete. O
Let us see how to apply Theorem 3.1 in the case when P is majority of n variables.
Suppose we are given an instance that is 1 — n%rl satisfiable and let us consider
N
Y e (6)
=1

where z; = «; is the optimal solution and prove that this is large. Any lower bound for
this is clearly a lower bound for ZZV: 1 legay |-

Let P, be the value of any Fourier coefficient of a unit size set. Then any satisfied
constraint contributes at least P; to (6) while any other constraint contributes at least
—nP;. We conclude that (6) is at least

) - 0 . .

Using Theorem 3.1 and the fact that P, = ©(n~'/2) we get the following corollary.

THEOREM 3.2. Suppose we are given an instance of Max-Maj-n which is (1 — n%rl)
satisfiable. Then it is possible, in probabilistic polynomial time, to find an assignment

that satisfies a fraction 3 + Q((1 — §)3/2n=3/2) of the constraints.

Let us sketch how to generalize this theorem to predicates other than majority.
Clearly the key property is to establish that the sum (6) is large when most constraints
can be simultaneously satisfied. In order to have any possibility for this to be true it
must be that whenever a constraint is satisfied, then the contribution to (6) is positive
and this is exactly being “Chow-robust” as discussed in the introduction. Furthermore,
to get a quantitative result we must also make sure that it is positive by some fixed
amount. Let us turn to a formal definition.

Recall that the Chow parameters of a predicate P is its degree-0 and degree-1

Fourier coefficients, i.e., ]5(0)7P(1), .. .,P(n) for : = 1,2,...,n. As we are here deal-
ing with an odd predicate, P(0) = 0. If it holds for all z € {—1,1}" that P(zx) =
sgn(P(1)zy + P(2)za + --- + P(n)z,), we say that the predicate is Chow-robust and
it is v-Chow-robust iff

0<vy< min Pz,
Y :Pla)=1 ; (J)z;

Let us state our extension of Theorem 3.2 in the present context.

THEOREM 3.3. Let P(z) = sgn(wizy + wexs + - - - + wyx,, ) be a v-Chow-robust pred-

icate and suppose that Tisa 1 — ﬁ satisfiable instance of Max-CSP(P) where
j=1

0 < 1. Then there is a polynomial time algorithm that achieves E[Adv(x)] = (A 'y

8n3/4
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1:12 M. Cheraghchi et al.

PROOF. The linear part of the advantage of an assignment can be written as
N

ZC{k}xk = %ZZP(J)SZ]{'CI'LJ

k=1 i=1 j=1

For any assignment = we have thus

N m n
o lep 2 = 303 Pl)sigan,,
k=1

i=1j=1

Now since Zis 1— ﬁ satisfiable there is an assignment x such that for at least
j=11L

_ oy ; ;

al . S e fraction of the constraints

P(Si,lméi,l 3 78i,nxei,n

) =1and thus »_ P(j)s;jze,, >
Jj=1

using that P is «-Chow-robust. As the linear part of the remaining constraints is
greater than — 2?21 P(j), we have that

N m n
> eyl = %ZZPUM%
k=1

i=1j=1

ey L Ny
- (1 v+Z§-’_1P<j)>7 v+2?:1P(j);P(J)
= (1-=9)y.

Theorem 3.1 now gives the result. O

Given Theorem 3.3 it is interesting to discuss sufficient conditions for P to be Chow-
robust and we have the following theorem.

THEOREM 3.4. Suppose we are given positive integers (w;)}_, such that
Z?:1(w§) —wj)
320 wh
Further, suppose that for at least 400logn different values of j, say 1,2,...,n,, we have
w; = 1. Then the predicate P(x) = sgn(z1 + -+ + Tp, + Wny+1Tny+1 + -+ + WpTy) IS
~-Chow-robust with v = (B(w) -0 (%)) P(1), provided that n is large enough so

that this is positive.

Blw) i=1— > 0. (7)

Before presenting the proof of the above theorem, let us comment on the condition
on the Q(logn) weights that we require to be one. This should be viewed as a technical
condition and we could have chosen other similar conditions. In particular, we have
made no effort to optimize the constant 400. In our calculations this condition is used
to bound the integrand of a complex integral on the unit circle when we are not close
to the point z = 1 and this could be done in many ways. We would like to point out
that although there are choices for the technical condition, some condition is needed.
The condition should imply some mathematical form of “when z on the unit circle is
far from 1 then many numbers of the form 2%i are not close to 1”. Sets of weights
violating such conditions are cases when almost all weights have a common factor. An
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Approximating Linear Threshold Predicates 1:13

interesting example is the function which, for odd n, has n — 4 weights equal to 3 and
4 weights equal to 1. This function is not Chow-robust for any value of n. The above
example shows that there are functions with weights of at most 3 that are not Chow-
robust. This is a tight bound as the techniques used in the proof of Theorem 3.4 can be
used to show that a function with all weights equal to 1 or 2 is Chow-robust.

Proof of Theorem 3.4
Let us start with a lemma that can be used to bound higher moments of the weights
when S(w) > 0.

LEMMA 3.5. Let w = (wy,...,w,) be positive integers such that S(w) > 0. Then
Z?:1 wg’ < 64n and Wpax < 4nt/3.

PROOF. Since S(w) > 0 we have -7, (w} —w;) < 33", w?. Hence, by Holder’s
inequality,
2/3 1/3

n n n n n n
L)L ES SCTEFD BT LY Dore) B Dol
j=1 j=1 j=1 j=1 j=1 j=1

and the bounds Z?zl wg’ < 64n and womax < 4n'/3 follow. O

We proceed by analyzing the linear thresholdApredicatg where the ljnear Fourier
coefficients are used as weights. Let Po(2) = sgn(P(1)z1 + P(2)z2+- - -+ P(n)x,). Since
P(1)=P(2)=---= P(ny),

P(ny+1 P(n
Po(z) = sgn <x1 + ot + (pl(l)):cmﬂ 4+ 4 P((lixn> .

A sufficient condition for P to be v-Chow-robust is then

P(j)

~ wji| <
P(1)

To see this, consider an z such that P(z) = 1 and hence Z?Zl w;xz; > 1. The above
condition implies that 37, %l‘j =i (% — wj) Tj Y0 wiry > % and we
have as required that 7, P(j)z; > 7.

n

2.

j=ni+1

1— . 8)

P(1)

We continue by analyzing the quotient % for a fixed jo : n1 +1 < jo < n. From the

condition of the weights, we have that wy.. < 5n'/3, w; < 5 for at least n/5 different
values of j, and w; = 1 for at least 400logn different values of j. Therefore since it
is assumed that 3 7, w;z; # 0 for all z € {~1,1}" we have that W = }_7_, w; is an
odd integer. Furthermore, as P is a monotone function, a degree-1 Fourier coefficient
equals that coordinates influence, i.e.,

P(jo) = Infj,(P) = Pr[P(z1,.... %), ..., 2k) # P(@1, ..., ~Tjy, ., 20)
1 . 1
= Pr[W;— —wj, < XU < Wl 1],
where XUo) = 3% | . w;X; is a weighted sum of n — 1 balanced independent

Bernoulli random variables. We note that for the last equality we used the facts that W
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1:14 M. Cheraghchi et al.

is an odd integer and that the sum X (0) always evaluates to an integer. By Lemma 2.5
and the assumption that |[{j : w; = 1}| > 400logn, we have

n

. W4+1-2t wo i, +1-—2t 1
P;r {X(JO) = +2] = /0 cos ((pw”z) H cos(wjp/2)dp + O (n4> ,

J=1,3#jo
where ¢y = 1<\;an We can thus write P(j;) as
/‘PO %cos ( W) ﬁ cos(w;p/2)dp + O <1) .
2 ! n4

Jj=1,3#3jo0
Similarly, we can write P(1) as
po W1 1— 92k
/ Zcos( w1—|— )Hcosij/Z)dso-i-O( )7
0 i
which equals (since w; = 1)
wo T
/ Hcos wjgo/2)dcp+(’)( >7
0 jlp

Letting h(p) = [1}_y 2, cos(w;v/2),

Pjo) B 7O 220 cos(p/2) cos (¢w> h(p) dp + O (1) 9)
Py J7° cos(wj,0/2)h(p) dp + O (k)

Using Taylor expansion we may write

w2
cos(pws,/2) = 1=~ + wl,0(p")

and
& L+ 1—2k & 1 o+ 1—2k)2
2005(90/2) cos (@%) = Z (1 _ 1w, _g ) P+ wﬁoo(<ﬂ4)>
k=1 —
2w, + ws
= wj, — J024 Jo (‘02 +wj500((p4),

where the last equality follows from the identities >, k = wj,(wj, + 1)/2 and
S0 k2 = wj (wy, + 1)(2wj, + 1)/6. By the above calculatlons, the numerator of (9)

equals
wo 2 + w3, 1
ij/ 1- o © 2 er L O(p Y] e )d<p+0<n4>
0

and its denominator equals

/OW <1 w8250 +wt O(p )) ()dwo(;).
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Approximating Linear Threshold Predicates 1:15

Simplifications then give us that

. wio 0 (i 4l 0N ) ) o+ 0 ()
PGo) " (10)

P(l) ’ fosao (1 _ w.go 02 +w;-*0(9(ap4)) h(p)dp + O (#)

To estimate this expression we will use Lemma 2.6. Letting S, = 2?227 %o
numerator of (10) then equals

(ro(=) (B5=F (3) roun(3) ),

which can be simplified, by using that Sy = Q(n) and 2 < wj, < Wyax < 4n'/3, to

w? wd —wj, /T[Sy 2
1 max Jo Jo vt [ P2
(ro () =25 (3)

Similarly, by Lemma 2.6, (10)’s denominator can be written as

Cro(==) (F(3) rown(2)”)

and simplified to

w3, the

1

w? VT[S 2
1 max vy —_“
(1ro(*2=)) 7 (%)
Substituting in these evaluations, we obtain that
P(jo) wh —wj, S\ w?
_ _ R 0 e 1 O Fmax
Py 24 \'8 L
o w—w, <1+O< i)
3 ZJ 2,5#j0 Wi n
w3 — Wy, w2
]
3 Zg 1 ( n
where we used that > imoitio W (1 +0 ( )) Z?zl wj2 for the last equality.

We now conclude the proof of the theorem by observing that the sufficient condi-
tion (8) for P to be v-Chow-robust is satisfied if

(1+0 (55)) B« () o £

Jj=1

Indeed, then

n

>

j=ni+1

2 o3
< <1+O (wmax>> ZJ:l:LU] ;UJ S 1— A’Y )
n 32 1 w; P(1)

The statement now follows from observing that we can select ~ to be
w? Zﬁfl w} — Wi\ w? S
1 - 1 max J= J P 1 — max P 1
(1 (vo () ) = (s 0 () o
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1:16 M. Cheraghchi et al.

where we used that >~7_, w? = Q(n) and >_7_, w} = O(n).

4. OUR MAIN ALGORITHM

We now give an improved algorithm for Max-CSP(P) for homogeneous linear thresh-
old predicates. In particular, when applicable, the algorithm presented in this section
will achieve an advantage of the order of Q(1/y/n) for Max-Maj-n compared to the ad-
vantage (1/n%/?) achieved by the adaptation of Hast’s algorithm in Section 3.

Recall that we write the i’th constraint as P(s; 171, ;.. ., Sin21,,, ) = sgn(L;(v)),where
Li(z) = 375_, wjsi ja, ;, and let W := 377 | w;. The algorithm which is parametrized
by a noise parameter 0 < € < 1 is described as follows:

Algorithm Ajp .
(1) Let 2*, A* be the optimal solution to the following linear program
maximize =37 A;
subject to L;(z) > A;,Vi € [m)]
re[-1L, 1N, Ae[-W, 1™
(2) Pick X4,...,Xn € {—1,1} independently with bias E[X;] = ex} and return this

assignment.
As in Theorem 3.4, we now define 5(w) for a set of weights w = (w1, ..., w,) as
" (wd —w;
B(w):lfzj_l(nj 2]).
3 ijl w3

Note that 8 < 1 for any set of weights, while for majority 8 = 1. Further, if 3(w) > 0,
then Theorem 3.4 showed that P is v-Chow-robust provided that n is large enough.

In Section 4.1 we show that on 1 — HLW satisfiable instances, where ¢ < 3, the above
algorithm achieves an advantage of Q(ﬁ) for large enough n. In particular, we will

prove the following theorem:

THEOREM 4.1. Fix any homogeneous threshold predicate P(x) = sgn(wyzq + - +
wnTy) having w; = 1 for at least 400logn different values of j and satisfying 8 :=
B(w) > 0. Then, for any 1 — HLW satisfiable instance I of Max-CSP(P), where § < (3, we
have

E[Adv(Azp. (T))] = (5 — 6)%20 (\}ﬁ) e <1ng/”) | (11)

where ¢ = (B — 6)Y/%¢g and €y > 0 is an absolute constant.

Thus, for 6 bounded away from 3, and large enough n, this algorithm is an improve-
ment over the algorithm of Theorem 3.3. Note however, that the algorithm of The-
orem 3.3 works for all Chow-robust predicates whereas we are only able to analyze
algorithm A;p . under the same conditions that we proved sufficient for a predicate to
be Chow-robust. We may also note that both the algorithm A;p . and the algorithm of
Theorem 3.3 can be de-randomized using the method of conditional expectation.

4.1. Analysis of the Algorithm (Proof of Theorem 4.1)
The crucial point for Theorem 4.1 is that on 1 — HLW satisfiable instances, A* :=
LN A >1-6 > 1— . Too see this, take any assignment = € {—1,1}* which

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1, Publication date: January 1.



Approximating Linear Threshold Predicates 1:17

satisfies a 1 — + fraction of all constraints. Let A; = 1 on all satisfied constraints

and A; = —W on the constraints which are not satisfied. This is a feasible solution to
the linear program since clearly L;(z) > A,, Vi. Hence,
1 & 1 & ) )
- — AF > A=(1- -W)=1-4. 12
w8tz = (1 ) e a

We first, in the next lemma, show that for large enough n we can use this advan-
tage whenever no |A;(z*)| is too large, provided that we pick ¢ small enough. We then
in Lemma 4.6 analyze the case of large |A;(z*)|’s and the final result is obtained by
combining these bounds.

LEMMA 4.2. Fix0<e<1/2andlet X = w1 X1 + -+ + w, X,, be a sum of n inde-
pendent Bernoulli random variables where w1, . . . ,w, are positive integer weights such
that w; = 1 for at least 400 log n different j’s and B B(w) > 0 given by (7). Further, let

Pr(X; =1) = HTE‘TJ where —1 < z; <1, and let 0> = Var X and A =Y, w;x;. Then,
if |A] < nl/?,

W41 1 e(A—1+B) 1 log™ n
pe(ov2 M) 2 g O P o () vo ().

PROOF. As before we let ¢; = ex;, p; = 5% and ¢; = 1 — p;. Further, we let W) =
Z?Zl w§ and wmax = max; w; while noting that by Lemma 3.5 the assumption 8 > 0
implies W®) < 64n and wyay < 4n'/%. Hence we also have W*) = O(n*/?) and W) =
O(n/3).

Now, X has the probability generating function

g(z) =Y Pr(X Hqﬁpj
=0 j=1

Hence, the series (Pr(X <)), has the generating function %. Letting

fle) = 20

(1= 2)z(WHD/27

Cauchy’s Residue Theorem gives

w—1 1
Pr<X§ 5 >2m;}; 2m/f dZ+— f(2)dz

Ca

where the contour C is the concatenation of the following two arcs, enclosing the pole
z = 0 but not z = 1 (see Figure 1),

Ci: z = e,  2a<9<2m—2a
Cy: z-l—l—re"’“’, m/24+a<¢o<3r/2—a

where a(r) = arcsin(5) and r > 0 is a small parameter that we will later let go to 0.
The second integral is

1 1 3n/2—a } )
| f@dz = o re” (14 re”%)dip =
27 7/24a
1 37/2—a H?Zl[Qj-ij(l-FT@_w)wj]

1
2T Jx/24a (1 + re—ie)(W+1)/2 2 5 asr —

2mri
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1:18 M. Cheraghchi et al.
since the integrand converges uniformly to 1. Let us now concentrate on the first inte-
gral. As /() = /(2),

1 L[ i i
I . f(z)dz = - g Rele'? f(e'?)]dep. (13)

Expanding f(e'#) gives us that

_ e llmlas Tpie?] T lay + pye™oPle”

ip ) — — —
e’ f(e?) (1 — eiv)eirW/2 —2isin(p/2)
[T}_lgje™"7Pi% + pjetiti¥] ipeA /2
= “2isin(p/2) ©

where the last equality follows from W/2 + eA/2 = Z?Zl w;p;.
To analyze the integral as r — 0 (and thus a — 0), we first use Lemma 2.2 to argue

that the integral between ¢y := 1‘:%‘ and 7 is small. Indeed, since we have at least

400log n weights which are 1, Lemma 2.2 together with the bound sin(z) > 2z for
0 <z < 7 implies that

1 1 e s vn 1 1
- i ip < . LptW;i¥ < — | = — .
‘77/ Rele'? f (e )}Chp‘ = 2msin(ypg/2) /% j:1|% +pjeti?| dp < 210gn0 <n4) o <n>

¥o

We now consider the integral between 0 and ¢y. We start with the following identity
of the integrand.

CLAIM 4.3. For 0 < ¢ < g, we have

i i _g2e [ €A ©? log* n
Rele'?f(e'?)] = e™7 2 (—2 - 53@ +0(ne?) + O(“5/3904)> (1 +0 ( n2/3 ’

where S5 = Z?Zl U)?ijj (P? - qu)~

Proof of Claim. Using Taylor expansion we may write

it

6
where we have separated the real and complex errors. Letting Log z = log |z| 4+ i Arg z
denote the principal logarithm (—7 < Argz < 7) which is analytic except on the non-
positive part of the real axis, we can use another Taylor expansion to write (note that

2
. o o .
qje " IIPIP L eiti? = ] w?quj7 + zw;’quj(p? — qjg) + w;-l(’)(go‘l) + zw?(’)(<p5),

Fig. 1. The contour
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Approximating Linear Threshold Predicates 1:19

Re(gje"iPi® + p;ei%%¥) > 0 for ¢ < o when n is large enough, since w; < 4n'/?)
qje—iwjpjtp _'_pjeiqujz,a _ eLog(qjef'i'ijjVJ_,'_pjeiqujLP)
— e—w?quj%2+iqu?quj(p?—q?)%3+11)?(’)(<p4)+iu)?(9(<p5).
Using 02 = Z;;l wjz-quj and the expression for S; stated in the claim we have
L 4iSs 2 W O(ph)+iw B O(47)
—2isin(p/2)
Since W® = O(n*/?) and W®) = O(n®/3), we may write the real part of this as

e
70%026@
2

e f(e) =

i i) et SAR) /2 o
Re[ei® f(74)] = —e o sin(p/2)° ’

where
A 3
h(p) = eS¢+ Sae + O/ 6P). (14)
Taylor expansions of e”, sin(x) and @ = m =1+ O(2?) gives

o222 h(p) + O([h(9))

Rele™ f(e™)] = e

The product of the last two factorsis 14+ O (lfl%jg” ) since ¢ < log(n)/+/n. For the second

factor, first note that since |S3| = O(n) we have h(p) = €5 ¢ + O(ny®) and thus, since
|Al < n'/? and ¢ <log(n)//n,

3A3
(h(p)]® = < SA ¢* + A?n0(°) + AnO0(¢7) + n*O(¢%) = €n0(¢?) + n°20(¢%). (15)

Combining (14) and (15), the second factor becomes

h(@) +(?D([h(gp)] ) — 6% —|—S3% +€30(n¢2) —|—O(Tl5/3304),

proving the claim. O

We now compute the part of the integral (13) from ¢ = 0 to pq:
CLAIM 4.4. We have that
1 [0 o ((A—1+8) 4 1 log* n
I :=— Re[e? f(e')]dp < ——————— Ol — ol—).
2 T Jo e[e f(e )} Y > U\/g te \/ﬁ + nb/6
Proof of Claim. By the previous claim,

1 [# a2 A 2 log*n
oL (o sn) (o (55

s

Using Lemma 2.3 and 2.4 and noting that e % e = e~ log®(n) — —sey since o2 =
©(n), this is

3 5/3 4
L-(- eA S +e(’)(n)+(’)(n ) 140 log™n n 1. .
20V/2m 60327 o3 a® n2/3 nS(logn)
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1:20 M. Cheraghchi et al.

Now,

n L "wde; Ca wied
1531 = > _wiami ] —a)| = |D_w) 4 tej| = ZLJ -2 j4] -

Jj=1 j=1 j=1 j=1

" wle; 6+6A P w? — w; A )

:Z 34j +0(n Z / esO(n)Se‘ j4 J+€T+e‘30
j=1 j=1 J=1
n 3 —€2

Recall that 1 — 3 = % Together with the bound 0% = 377, wf% >
1< S_i_, w} this gives

n 'LU3 y 3 n 2

e; JTJ =e(1-8)5 2 w? < 3¢(1 - By = 31— B)o? + €0(n).

Thus [S3] < 3¢(1 — B)o? + | 2| + €2O(n), which together with o = ©(n) implies that

e S 00 (55) 0 ) 0 i)

The claim now follows from |A| < n'/3, which gives
e(A—1+45) o log* n _ 0 n'/3log* n _0 log*n
ov/an 273 ) = 223 ) = 576

Letting ¢ — 0 and summing all integrals we get

n—1 1 1\ eA-1+8) 1 log* n
< < = J
Pr(X_ 5 ) _2+O<n> gy + €0 771 + O 576

2230 () o((52)

In order to extend this bound to larger (negative) A’s we use the central limit theo-
rem with explicit error bounds:
THEOREM 4.5 (BERRY-ESSEEN). Let Y = Y; + --- + Y, be a sum of independent

random variables satisfying E[Y;] = 0 for all i, \/>_ E[Y?] = o, and Y E[|Y;|?] = ps.
Then

O

sup | Pr[Y < z] — @(z/0)| < Cps/a®,

where ® is the cdf of a standard Gaussian random variable, and C is an absolute
constant. It has been shown that one can take C = 0.7915 [Shiganov 1986].

LEMMA 4.6. FixO<e< 1l Let X = w1 X1 + -+ +wp,X,, be a sum of n independent
Bernoulli random variables with positive integer weights of total sum W = 377, wj,
and suppose Pr(X; = 1) = H% where —1 < x; < 1. Further, let 0> = Var X and
A= Z?:l W;T . Then, lfA S 0,

n

W+ 1) 1 EA C Zj:l w;

=9 + oS (1—€2)3/2 p3/2

Pr (X>
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PROOF. As before welete; = ex;,p; = 14;67' and ¢; = 1—p;. Now, let Y; = w;(X; — p;)
andY =Y +--- +Y,. Then E[Y;] =0,

ZIEY2 =0 *Zw Var X Zw 2 1262

and

3
—
|
m
(SN

n n L8
SEIIPI = Y wdmsal + o) = D wi— L <
j=1

j=1 j=1 j=1

Further, we have
w WO eA

Pr(XSQ) =Pr Y§7—;wjpj =Pr (Y<—2).

Applying Berry-Esseen and using ®(z) <

*(5) e Zigd

2% 1—e2)3/2  p3/2

+ for z > 0 this is at most

=
i
3

| —en coX
2 oBr  (1—e2)32 p3f

IN
+

a

We are now ready to prove Theorem 4.1 by combining the bounds for small and large
A.

PROOF OF THEOREM 4.1. Let z* be the optimal solution to the linear program in
App. for some ¢ > 0 that we will specify later. By Lemma 4.2 and 4.6 we have the
following lower bounds on the probability that the i’th constraint sgn(L;(X)) with bias
E(L;(X)) = eL;(z*) > eA} is satisfied:

J 48 4 0 (L ) O (M5), if |a7] < nt/?
S

1 eA . «
2 R’ (1 E2)3/2 n3/2 lfAL SO

Here we have used the fact that having a larger expected value of the linear form
L;(z*) than its lower bound A} can only increase the probability of a constraint being
satisfied. Since by (12), A* > 1 — ¢ > 0, and further Ay < 1 for all i, we must have

Ar > —nl/3 for at least a fraction 1 — —5 of the constraints. Thus, the expected fraction
of satisfied constraints is

Adv(ALp(T)) +1 1 e(A* —1+ ﬂ) 1 log*n
9 > _ P
2 -2 * oS €0 \f +0 "no/6
1 C Xjaw)
T opl/3 (1—e2)3/2 nd/2 "’

E

where we used that 8 < 1. Now, by Lemma 3.5, we have Z?zl wj)’ < 64n and also
o = O(y/n). This together with A* > 1 — § implies that

A (A D) 2 (5 - 00 () + o (1) vo (1)
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Now, letting ¢ = (8 —§)'/?¢, for some absolute constant ¢, > 0 small enough so that the
first term dominates the second by a constant factor for any n, we have

BlAdu(Arr (D)) 2 (3070 (=) + O (lng/”) .

O

4.2. Application to Majority
As 8 =1 for Maj,, the following result follows directly from Theorem 3.3:

COROLLARY 4.7. (Formal statement of Theorem 1.1) For all 1 — %H satisfiable
instances T of Max-Maj-n, where § < 1, we have

E[Adv(ALp . (T))] = (1 — §)%/Q <\1f> -0 (l(;%jﬁn> ’

n

where ¢ = (1 — 6)'/2¢5 and €y > 0 is an absolute constant.

5. UNIQUE GAMES HARDNESS

In this section, we show hardness of approximation results for majority-like predi-
cates under the Unique Games Conjecture. This complements our algorithmic results
obtained in Sections 3 and 4.

5.1. The Basic Tool

The hardness results in this section are under the increasingly prevalent assumption
that the Unique Games Conjecture (UGC) holds (see Appendix A.1 for a definition).
The basic tool that we use is the result by Austrin and Mossel [2009], which states that
the UGC implies that a predicate is approximation resistant if it supports a uniform
pairwise independent distribution, and hard to approximate if it “almost” supports a
uniform pairwise independent distribution. We now state their result in a simplified
form tailored for the application at hand:

THEOREM 5.1 ([AUSTRIN AND MOSSEL 2009]). Let P: {—1,1}" — {-1,1} be a n-
ary predicate and let 1 be a balanced pairwise independent distribution over {—1,1}".
Then, for any ¢ > 0, the UGC implies that it is NP-hard to distinguish between those
instances of Max-CSP(P)

—that have an assignment satisfying at least a fraction Pryc(—113n ,)[P(x) = 1] — € of
the constraints;

—and those for which any assignment satisfies at most a fraction |P~1(1)|/2" + € of the
constraints.

5.2. Application to the Majority Predicate

We now give a fairly easy application of Theorem 5.1 to the predicate Maj,,. Later, we
generalize this approach to more general homogeneous linear threshold predicates.

THEOREM 5.2. (Formal statement of Theorem 1.2) For any € > 0 the UGC implies
that it is NP-hard to distinguish between those instances of Max-Maj-n

—that have an assignment satisfying at least a fraction 1 — n%rl — € of the constraints;
—and those for which any assignment satisfies at most a fraction 1/2 + € of the con-

straints.

PROOF. Consider the following distribution ;1 over {—1,+1}": with probability
all the bits in p are fixed to -1, and with probability

1
nJ'rl ’
-4, i samples a vector with

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1, Publication date: January 1.



Approximating Linear Threshold Predicates 1:23

(n 4+ 1)/2 ones, chosen uniformly at random among all possibilities. To see that this

gives a pairwise independent distribution let X = (X3,..., X,,) be drawn from x. Then

E[X", Xi] = 245 (-n)+ ;% -1 =0and E {Z?’-@;l Xin] - E [(2;“;1 Xﬂ —n=
i#j

5 - (n®) + 725 - 1 — n = 0. Because of the symmetry of the coordinates, it follows that

for all ¢, E[X;] = 0 and for every i # j, E[X;X,] = 0. Therefore, the distribution p is
balanced pairwise independent. Theorem 5.1 now gives the result. O

For predicate Maj,,, we can also obtain a hardness result for almost satisfiable in-
stances:

THEOREM 5.3. (Formal statement of Theorem 1.3) For any ¢ > 0 the UGC implies
that it is NP-hard to distinguish between those instances of Max-Maj-n

—that have an assignment satisfying at least a fraction 1 — € of the constraints;
—and those for which any assignment satisfies at most a fraction % + cnﬁ + € of the

constraints, where

o/ (n=2\ /2
PR O R

PROOF. Let k = n — 2 and consider the predicate P: {—1,1}* — {—1,1} defined as
P(z) = sgn(xy + -+ + z + 2). Our interest in P stems from the fact that Max-Maj-n
is at least as hard to approximate as Max-CSP(P). Indeed, given an instance of
Max-CSP(P), we can construct an instance of Max-Maj-n by letting each constraint
P(ly,...1l;) equal Maj,, (y1,y2,01,...,1;) for two new variables y; and y», that are the
same in all constraints and always appear in the positive form. As any good solution
to the instance of Max-Maj-n sets both y; and y, to one, we can conclude that any
optimal assignments to the two instances satisfy the same fraction of constraints.

Now consider the following distribution x over {—1, 1}*: with probability 15, all the
bits in p are fixed to ones, and with probability kiﬂ, w1 samples a vector with (k +1)/2
minus ones, chosen uniformly at random among all possibilities. The same argument
as in the proof of Theorem 5.2 shows that the distribution y is uniform and pairwise
independent. Theorem 5.1 now gives that for any ¢ > 0 the UGC implies that it is
NP-hard to distinguish between those instances of Max-CSP(P) that have an assign-
ment satisfying a fraction 1 — ¢ of the constraints; and those for which any assignment
satisfies at most a fraction

s
IP=1(1)] 1 & [k 1 () 1 2
o +€:27j§ j)temat o femgty g toll/bte

The result now follows from the observation above that we can construct an instance
of Max-Maj-n from an instance of Max-CSP(P) such that optimal assignments to the
two instances satisfy the same fraction of the constraints. O

Taking the convex combination of the results in Theorems 5.2 and 5.3 yields:

COROLLARY 5.4. Forany 6 : 0 < 6 < 1 and any ¢ > 0, the UGC implies that it is

NP-hard to find an assignment x to a given 1 — % —e satisfiable instance of Max-Maj-n

e +1
achieving

1
Adv(z) > (1 — 5)%% +e,

where c,, is the constant defined in Theorem 5.3.
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5.3. Hardness for More General Predicates

We will now prove hardness of approximation for more general predicates than major-
ity. Let us first recall the main idea for proving hardness of Maj,,. Since all weights are
one, we have w,,, = 1. One can now observe that the constructed balanced pairwise
1ndependent distribution wu over {—1,1}" in Theorem 5.2 can be defined as follows.

With probabihty ~ +1 sample a Vector where the jth bit is set to 1 with probability

0=— wm‘“‘ independent of the other bits, and with probability 1 — — +1 sample a vector
X such that Z;L: X; = 1, or equivalently > j=1W;Xj = Wmax, chosen uniformly at

random among all possibilities.

We will prove (in Theorem 5.6) that a distribution y essentially defined as above is an
almost balanced pairwise distribution for homogeneous linear threshold predicates of
the form sgn(wix1 +waxs + - - - +wyx,) with 400 log n unit weights and Z N w < 100n.
We then, using a general result show that such a distribution can be shghtly adjusted
to obtain a perfect balanced pairwise distribution. These two results are then com-
bined, in Theorem 5.5 below (proved in Section 5.3.3), to obtain the desired hardness
results.

THEOREM 5.5. Suppose we are given positive integers (w;)}_, such that Zj 1 w <
100n and Z _, w; is odd. Further, suppose that for at least 400 log n different values of j

we have w; = 1. Let P(x) = sgn(wix1 + - - - +wpxy,), then, for any ¢ > 0, the UGC implies
that it is NP-hard to distinguish between those instances of Max-CSP(P)

4
—that have an assignment satisfying at least a fraction 1 — O (%) — € of the con-

straints;
—and those for which any assignment satisfies at most a fraction 1/2 + € of the con-
straints.

5.3.1. Almost Balanced Pairwise Distribution. In this section we prove the following:

THEOREM 5.6. Suppose we are given positive integers (w;)}_, such that Z?:l wj3 <
100n and w; = 1 for at least 400 log n different values of j. Then there is a distribution
over {—1,1}" satisfying

Pri3 i wX; >0 = 1-0 (w'z;l)

E[X; =0 fori=1,....n
[

n?2

E[X;X;] = O(@> fori,j:1<i<j<n.
The technical part of proving this theorem is captured by the following lemma.

LEMMA 5.7. Suppose we are given positive integers (w;)7_, satisfying the condi-
tions of Theorem 5.6. Let Wmax be the smallest integer such that Wmax > max; w; and

Z;’:l W; + Wmax = 0 mod 2, then there is a distribution v over {—1,1}"™ with support

{z: Z?Zl W; % = Wmax | Satisfying

ElX;] = UV’[}“&T—&-O( ’“a") forji=1,...,n
E[X;X;] = —3 —i—(’)(w;‘;*) for1<i<j<n,

where W2 = 37" w?.
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Before giving the proof, let us see how this lemma implies Theorem 5.6. The Distri-
bution v is such that E[X;] = wj E" T + ; where 3; = O( mx) forj=1,...,n. Let

Bmax = max; |3;] and let T = +(1 + Bmax)W ). Now define the distribution . over
{-1,1}" as follows:

m'IX

— with probablhty zex: sample a vector where the j:th bit is set to 1 with probability

9
Wi

— sk 1ndependent of the other bits;

— with probability W— sample a vector from v; and

— with probablhty Wiﬁmdx'

Bj

bility - —Pmax

sample a vector where the j:th bit is set to 1 with proba-

To verify that ; satisfies E[X,] = 0 and E[X; X,]| = (’)(“’5%) is now an easy task and left
to the reader. Furthermore, i satisfies (as required)

i W(Q) W(Q) Bmax + (s
P X >0 > = =1— max _
' 7:21 wJ ! h T wr2nax (]‘ + ﬁmaX)W(Z) w?nax (1 + Bmax)W( )

2 2
1_(9(1‘0max>:1_(/)(7“ny1'1‘61x>7
n n

where we used that Wyax < Wmax + 1. Let us remark that the O(-) terms of Lemma 5.7
arise when we estimate probabilities using complex integrals. If we omit those terms
then the distribution p, defined as above with §,,.. = 0, Would be balanced pairwise

independent and satisfy Pr[}.)_, w;X;] > w2 - %, i.e., essentially

W F20 7y W)
matching the bound of Theorem 5.10.
We proceed with the proof of Lemma 5.7.

PROOF. That the set {X : >3, w;X; = Wnax} is non-empty follows from that
> =1 Wj + Wmax = 0 mod 2 and that the assumptions on the weights (w;)7_, imply

that wmax < 5n1/3, w; < 5 for at least n/5 different values of j, and w; = 1 for at least
400 log n different values of j. Now let v be the distribution over {—1, 1}" that samples
uniformly at random among all possibilities a vector in {X : 3°7_, w; X; = Wiax}-

By definition, we have that the support of v is {z : Z;L L W;Tj = Wmax }. We proceed
by analyzing the expectatlon of X, with respect to v for a fixed jo : 1 < jo <n.Let W =
dijwjandletY =377, wJY be the weighted sum of n — 1 balanced Bernoulli

random variables. Further, let A and B be the events that Y = % and

Y = %, respectively. With this notation, the expectation E[X | can be written as

Pr[A] — Pr[B]
Pr[A] + Pr[B]

logn

Jn

$o e _ .
Pr[A] = / cos (@W) h(p)de + O <nl4>
0

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1, Publication date: January 1.

Applying Lemma 2.5 with ¢y =
400log n, gives

and using the assumption |{j : w; = 1}| >



1:26 M. Cheraghchi et al.

¥o Do . 1
Pr[B] = / cos (@W) h(p)de + O <n4> ,
0

where h(p) = [[}_, j.;, cos(w;p/2). Using Taylor expansion, we may write

cos (wwrn;%) + cos (wwm;wa> 24 O, ?)

and

and
cos (i T ) — cos (g K00 ) — G 24 Ol )

Substituting in these expansions give us that

| = 0 hip) (Lmin 52 - O(@E, sy 0"))dip + O ()

- o h(9)(2+ O(p20,,))dp + O (x)
We now use Lemma 2.6 to evaluate this expression. Letting S5 = Z;;l, %o wjz, we can
thus write E[X ;] as

E[on

22 N\ —5/2 _
{wmaijo (?) mdijo) (%) (1 + O(wmax ))
N\ —1/ .\ —3/2 ’
VE () O(U)?nax) (%) K
As Sy = Q(n) and Wimax = O(n'/?), this can be simplified to
~1
1+ O( —max ) ﬁlbmwxw jo S Wimax WinaxW; u~}rznax
s ot () (1 1 o(ms) _ Doty o T
(1 O( ) /7 " : "
which in turn (since ) 7_, w? = (1 + (9( 2)) 301 s, w7) equals
~2 @t
wmaijo Whax wmaijg Wnax
= —z(1+0( ) === +O( )
23:1 U’? n Zy 1 wJ n?

We complete the proof by analyzing the expectation of X, X;, with respect to v for
fixed ig, jo : 1 <'ip < jo < n. The arguments are similar to the ones used above for E[X}]
and sketched in the following. Let now Y = "7, .., ., w;Y; be the weighted sum of

n — 2 balanced Bernoulli random variables. Further, let A, B, C, and D be the events

that v = W+1Umax_2u)zo—2'u)70 Y W +Wmax y = W+wm1x—2wi0 and V = W+1I)mzx—2wj0 ’

respectively. With this notatlon the e?cpectatlon E[X;, X o can be written as
Pr[A] + Pr[B] — Pr[C] — Pr[D]
Pr[A] 4+ Pr[B] + Pr[C] + Pr[D]

Applying Lemma 2.5, we obtain for E € {A, B,C, D}

o= /0% o <@W> h(g)di + O (;4)

where h(p) now is [[i_; joq, oy c0S(w;p/2) and g(A) = —(wi, + wj,), 9(B) = wi, +
Wjy, 9(C) = —(w;, —wj,), and g(D) = w;, — wj,. Similar to before, we use Taylor expan-
sions to obtain

]E[Xz X ] = - OLPO h((p)(wz(’wm@ + O( rnaxwmw]o(/7 ))dap—i— o (7%4)
o 7 h(p) (A + O(p2i2,0))dp + O (%)
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and then evaluate the expression using Lemma 2.6 to get that this equals

_ ?wiowjﬂ (%)73/2 + O(wrzlaxwiowjo) (%
2w (52) 2y oz, (52) 7

where S, = Z;‘;L i¢io.jo} wJZ_ Similar simplifications as before now yields the desired
result. O

/lI}maX

In the next section we discuss how to find a distribution with a prescribed set of
correlations. We later use this to make our almost pairwise independent distribution
perfectly pairwise independent.

5.3.2. Existance of Correlated Random Bits. Given a matrix @ € R"*"  a necessary and
sufficient condition for the existance of a random real vector with covariance matrix «
is that « is symmetric and positive semidefinite. For sufficiency it is enough to consider
a (possibly degenerate) normal distribution. However, for a random vector of bits X €
{—1,1}" this is not sufficient even if we require «;; = 1 for all i. An example is n = 3

and o; ; = —% for i # j. Although « is positive semidefinite no such distribution on bits
exist since for bits | X; + X2 + X3| > 1, but such an « we imply

6
E[(X1+X2+X3)2] :Zam- =3 - 5 =0
i,

We will give a sufficient condition for random bits, but first we start with a classical
lemma:

LEMMA 5.8. Let Z1,Z> ~ Norm(0,1) be standard normals with covariance
E[Z1Zs] = p. Then Pr(sgn(Z,) # sgn(Z,)) = 2recese),

s

PROOF. Let Y ~ Norm(0,1) be a standard normal variable independent of Z; and
Zs5, and let

Zh = pZ1 + /1 — p2Y = cos(p)Z; +sin(p)Y

where ¢ = arccos(p). Then (71, Z5) and (Z1, Z}) are identically distributed. Further 7}
is the first coordinate of the random vector (Z;,Y) rotated by an angle . But since the
distribution of (Z1,Y") is rotationally symmetric, the probability that the sign of the
first coordinate changes under such a rotation is £, i.e.

Pr(san(Z1) # sen(7)) = Prisen(Z1) # sgn(23)) = £ = 2]

a

Using this lemma we now show that for the existance of random bits it is sufficient
to have pairwise covariance bounded by f—n

LEMMA 5.9. Let o € R"*" be a symmetric matrix with «;; = 1 and |a; ;| < T?—n for
all i # j. Then there exist a distribution on random bits X1, ..., X, taking values in
{-1,1} such that E[X;] = 0 and E[X,;X;] = «; ;, for all i,j € [n].

PROOF. Let S € R™"*™ be defined by

S;.; =sin (gai,j) = cos (g(l — am))
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and note that S;; = 1 while |S; ;| < Z|a; ;| < 1 for all i # j. Furthermore, S is positive
semidefinite since for any z € R™ \ {0} we have

2T Sz > ;%2 - Z i 2 ;ﬁ _Zﬁ|$i|;ﬁ|wj| >0,

i,j € [n]:i#] 2 i=1

where the last inequality follows from Cauchy-Schwarz. Since S is positive semidefi-
nite we can let Z ~ Norm(0, S) be a (possibly degenerate) n-dimensional normal with
mean 0 and covariance matrix S. We will take X, = sgn(Z;), for i = 1...n. Clearly
E[X;] = 0, and further for any i, ; we have

HQ&XA:1_2Pd%ng¢S@u@»:1_2§§§@ﬁlzam,
™

where we have used Lemma 5.8. O

5.3.3. Proof of Theorem 5.5. By Theorem 5.6, there is a distribution y over {—1,1}"
2

satisfying Pr[P(X) = 1] = 1+ O (“i), E[X,] = 0 and E[X,X,] = f;;, where ;; =

n

- Bmax TN
denote the distribution over {—1,1}" satisfying E[X;] = 0 and E[X;X;] = «; ;. Such
a distribution is guaranteed to exist by the sufficient condition shown in Lemma 5.9
(since |oy ;| < 2 for all i # j). Let p = m and consider the distribution D: with

probability p sample from ;. and with probability 1 — p sample from v. It is easy to see
that this distribution is balanced pairwise independent. Furthermore,

[P(X) = 1]

] (%) Let fBmax = max,, |53;,| and let a;; = —-24-2 for all i # j. Let now v

P Pr
Xe({-1,1}",D) Xe({—-1,1},p)
Bmaxﬂ-n w2
= (1—-——— 1+0 max
< Bmaxm™n + 2 + n
4 2
(o[22 o)
n n
A
IOC%“>
n

Pr [P(X)=1] >

Theorem 5.1 now gives the result.

5.4. A Limitation of Our Technique

Finally, we give a limitation on the technique of proving hardness by constructing
balanced pairwise distributions.

THEOREM 5.10. Let P(x) = sgn(wyz1+- - - +wyzy,) be a homogeneous linear thresh-
old predicate. For any balanced pairwise independent distribution p over {—1,1}",

2
1 Wiax

[P(m):1]§1—1m7

Pr
z€({=1,1}",p)
where Wmax = Max; wj.
PROOF. Let X = }°" | w;X; and let u be a pairwise independent distribution over
{-=1,1}". Throughout the proof all expectations and probabilities are taken with re-
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spect to the distribution u. Since p is balanced and pairwise independent
Var[X] = E[X?] = w}.
j=1

Now let p = Pr[X < 0|X,, = —1]. By pairwise independence E[X|X,, = —1]
—wWmax. Hence,

—w,, =

E[X|X <0,X, =—1] < — 222 and E[X2[X <0, X, = —1] > —max
P

To summarize, we have that
2

Zw _ X2 22 m _ wmax
-2 p2 2p

and since Pr[X < 0] > p/2 the statement follows. O

By the above theorem, a homogeneous linear threshold precidate can only partially
support any balanced pairwise independent distribution, and the gap shown by the
theorem directly affects the degree of satisfiability that one can expect from the almost
satisfiable instances in Theorem 5.5.

6. CONCLUSIONS

We have studied, and obtained rather tight bounds for the approximability curve of
“majority-like” predicates. The presented techniques can also easily be extended to
approximate a mixture of Chow-robust predicates, i.e., every predicate is Chow-robust
but not necessarily the same. However, there are still many questions to be addressed
and let us mention a few.

This work has been in the context of predicates given by Chow-robust threshold
functions. Within this class we already knew, by the results of Hast [2005], that no
such predicate can be approximation resistant and our contribution is to obtain sharp
bounds on the nature of how approximable these predicates are. It is a very nice open
question whether there are any approximation resistant predicates given as thresholds
of balanced linear functions. It is not easy to guess the answer to this question.

Looking at our results from a different angle one has to agree that the approxima-
tion algorithm we obtain is rather weak. For large values of n we only manage to do
something useful on almost satisfiable instances and in this case we beat the random
assignment by a rather slim margin. On the other hand we also prove that this is the
best we can do. One could ask the question whether there is any other predicate that
genuinely depends on n variables, accepts about half the inputs and which is easier to
approximate than majority. It is not easy to guess what such a predicate would be but
there is also very little information to support the guess that majority is the easiest
predicate to approximate.

Using the results of Austrin and Mossel [2009], Austrin and Hastad [2011] proved
that almost all predicates are approximation resistant. One way to interpret the re-
sults of this paper is that it indicates that the following statement might be true. For
the few predicates of large arity where we can get some nontrivial approximation, we
should not hope for too strong positive results.

APPENDIX
A.1. The Unique Games Conjecture

Although we do not directly use the Unique Games Conjecture (UGC), we de-
fine it here for the sake of completeness. An instance of Unique Games L =
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(G(V,W,E), L], {Tv,w}(w)) consists of a regular bipartite graph G(V,W, E) and a set
[L] of labels. For each edge (v,w) € E there is a constraint specified by a permu-
tation 7, : [L] — [L]. The goal is to find a labeling ¢ : (V UW) — [L] so as to
maximize val(¢) := Pr.cg[l satisfies e], where a labeling ¢ is said to satisfy an edge
e = (v,w) if {(v) = 7y w(¢l(w)). For a Unique Game instance £, we let OPT(L) =
maxy.yuw (] val(£). The now famous UGC that has been extensively used to prove
strong hardness of approximation results can be stated as follows.

CONJECTURE A.1 ([KHOT 2002]). For any constants (,v > 0, there is a sufficiently
large constant L = L((, ) such that, for Unique Game instances L with label set [L], it
is NP-hard to distinguish between OPT(L) > 1 — ¢ and OPT(L) < #.
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