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Abstract

Many problems of recent interest in statistics and machine learning can be posed
in the framework of convex optimization. Due to the explosion in size and complexity
of modern datasets, it is increasingly important to be able to solve problems with
a very large number of features, training examples, or both. As a result, both the
decentralized collection or storage of these datasets as well as accompanying distributed
solution methods are either necessary or at least highly desirable.

In this paper, we argue that the alternating direction method of multipliers is well
suited to distributed convex optimization, and in particular to large-scale problems
arising in statistics, machine learning, and related areas. The method was developed
in the 1970s, with roots in the 1950s, and is equivalent or closely related to many
other algorithms, such as dual decomposition, the method of multipliers, Douglas-
Rachford splitting, Spingarn’s method of partial inverses, Dykstra’s alternating pro-
jections, Bregman iterative algorithms for ¢; problems, proximal methods, and others.

After briefly surveying the theory and history of the algorithm, we discuss appli-
cations to a wide variety of statistical and machine learning problems of recent inter-
est, including the lasso, sparse logistic regression, basis pursuit, covariance selection,
support vector machines, and many others. We also discuss general distributed opti-
mization, extensions to the nonconvex setting, and efficient implementation, including
some details on distributed MPI and Hadoop MapReduce implementations.
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1 Introduction

In all applied fields, it is now commonplace to attack problems through data analysis, partic-
ularly through the use of statistical and machine learning algorithms on what are often large
datasets. In industry, this trend has been referred to as ‘Big Data’, and it has had a signifi-
cant impact in areas as varied as artificial intelligence, internet applications, computational
biology, medicine, finance, marketing, journalism, network analysis, and logistics.

Though these problems arise in diverse application domains, they share some key char-
acteristics. First, the datasets are often extremely large, consisting of tens or hundreds of
millions of training examples; second, the data is often very high-dimensional, because it is
now possible to measure and store very detailed information about each example; and third,
because of the large scale of many applications, the data is often stored or even collected in a
distributed manner. As a result, it has become of central importance to develop algorithms
that are both rich enough to capture the complexity of modern data, and scalable enough
to process huge datasets in a parallelized or fully decentralized fashion. Indeed, some re-
searchers [HNP09] have suggested that even highly complex and structured problems may
succumb most easily to relatively simple models trained on vast datasets.

Many such problems can be posed in the framework of convex optimization. Given the
significant work on decomposition methods and decentralized algorithms in the optimization
community, it is natural to look to parallel optimization algorithms as a mechanism for
solving large-scale statistical tasks. This approach also has the benefit that one algorithm
could be flexible enough to solve many problems.

This paper discusses the alternating direction method of multipliers (ADMM), a simple
but powerful algorithm that is well suited to distributed convex optimization, and in par-
ticular to problems arising in applied statistics and machine learning. It takes the form of
a decomposition-coordination procedure, in which the solutions to small local subproblems
are coordinated to find a solution to a large global problem. ADMM can be viewed as an
attempt to blend the benefits of dual decomposition and augmented Lagrangian methods
for constrained optimization, two earlier approaches that we review in §2. It turns out to
be equivalent or closely related to many other algorithms as well, such as Douglas-Rachford
splitting from numerical analysis, Spingarn’s method of partial inverses, Dykstra’s alternat-
ing projections method, Bregman iterative algorithms for ¢; problems in signal processing,
proximal methods, and many others. That it has been re-invented in different fields over the
decades underscores the intuitive appeal of the approach.

It is worth emphasizing that the algorithm itself is not new, and that this paper does
not present any new theoretical results. It was first introduced in the mid-1970s by Gabay,
Mercier, Glowinski, and Marrocco, though similar ideas emerged as early as the mid-1950s.
The algorithm was studied throughout the 1980s, and by the mid-1990s, almost all of the
theoretical results mentioned here had been established. The fact that ADMM was developed
so far in advance of the ready availability of large-scale distributed computing systems and
massive optimization problems may account for why it is not as widely known today as we
believe it should be.

The main contributions of this paper can be summarized as follows:



1. We provide a simple, cohesive discussion of the extensive literature in a way that
emphasizes and unifies the aspects of primary importance in applications.

2. We show, through a number of examples, that the algorithm is well suited for a wide
variety of truly large-scale distributed modern problems. For instance, we discuss ways
of decomposing statistical problems both by training examples and by features, which
is not easily accomplished in general.

3. We place a greater emphasis on practical, large-scale implementation than most previ-
ous references. In particular, we discuss the implementation of the algorithm in cloud
computing environments using a variety of standard frameworks. We also provide
easily readable implementations of all the examples in this paper.

Throughout, the focus is on applications rather than theory, and a main goal is to provide
the reader with a kind of ‘toolbox’ that can be applied in many situations to derive and
implement a distributed algorithm of practical use. Though the focus here is on parallelism,
the algorithm can also be used serially, and it is interesting to note that with no tuning,
ADMM can be competitive with the best known methods for some problems.

While we have emphasized applications that can be concisely explained, the algorithm
would also be a natural fit for more complicated problems in areas like graphical models. In
addition, though our focus is on statistical learning problems, the algorithm is readily appli-
cable in many other cases, such as in engineering design, multi-period portfolio optimization,
time series analysis, network flow, or scheduling.

Outline. We begin in §2 with a brief review of dual decomposition and the method of mul-
tipliers, two important precursors to ADMM. This section is intended mainly for background
and can be skimmed. In §3, we present ADMM, including a basic convergence theorem, some
variations on the basic version that are useful in practice, and a survey of some of the key
literature. A complete convergence proof is given in Appendix A.

In §4, we describe some general patterns that arise in applications of the algorithm, such
as cases when one of the steps in ADMM can be carried out efficiently, or via an analytical
solution, or in parallel. These general patterns will recur throughout our examples. In
85, we consider the use of ADMM for some generic convex optimization problems, such as
constrained minimization, linear and quadratic programming, and consensus problems, a
general approach for distributed optimization.

In §6, we focus on problems involving the ¢; norm, including basis pursuit, the lasso,
sparse inverse covariance selection, and general ¢; regularized loss minimization. It turns
out that ADMM yields methods for these problems that are related to many state-of-the-
art algorithms. In §7, we consider distributed methods for generic model fitting problems,
including regularized regression models like the lasso and classification models like support
vector machines). In §8, we consider the use of ADMM as a heuristic for solving some non-
convex problems. In §9 we briefly discuss some practical implementation details, including
how to implement the algorithm in frameworks suitable for cloud computing applications.
Finally, in §10, we present the details of some numerical experiments.



2 Precursors

In this section we briefly review two optimization methods that are precursors to the alter-
nating direction method of multipliers. While we will not use this material in the sequel, it
gives some useful background and motivation.

2.1 Dual ascent

Consider the equality-constrained convex optimization problem

minimize  f(z) (1)
subject to Az =0,

with variable € R", where A € R™" and f : R" — R is convex.
The Lagrangian for problem (1) is L(x,y) = f(z) + y* (Ax — b) and the dual function is

gy) =inf L(z,y) = —f*(=ATy) - b'y,

where y is the dual variable or Lagrange multiplier, and f* is the convex conjugate of f; see
[BV04, §3.3] or [Roc70, §12] for background. The dual problem is

maximize ¢(y),

with variable y € R™. Assuming that strong duality holds, the optimal values of the primal
and dual problems are the same. We can recover a primal optimal point x* from a dual
optimal point y* by solving

x* = argmin L(z, y*),
provided there is only one minimizer of L(z,y*). (This is the case if, for example, f is strictly
convex.) In the sequel, we will use the notation argmin, F'(x) to denote any minimizer of
F', even when F' does not have a unique minimizer.

In the dual ascent method, we solve the dual problem using a gradient method. As-
suming that ¢ is differentiable, the gradient Vg(y) can be evaluated as follows. If xt =
argmin, L(z,y), then Vg(y) = Az™ — b, which is the residual for the equality constraint.
The dual ascent method is the algorithm

2*T1 = argmin L(x, y¥) (2)

x

ykJrl = yk + Oék<ACEk+1 . b), (3)

where o > 0 is a step size, and the superscript is the iteration counter. The first step (2) is
an r-minimization step, and the second step (3) is a dual variable update. The dual variable
y can be interpreted as a vector of prices, and the y-update step is called a price update or
price adjustment step. It is called dual ascent since, with appropriate choice of o, the dual
function increases in each step, i.e., g(y**1) > g(y*).

6



The dual ascent method makes sense even in some cases when ¢ is not differentiable. In
this case, the residual Az**! — b is not the gradient of g, but a subgradient of —g. This case
requires a different choice of the step sizes a* than when ¢ is differentiable, and convergence
is not monotone; it is often the case that g(y**') # g(y*). In this case the algorithm is
usually called the dual subgradient method [Sho85].

If o is chosen appropriately and several other assumptions hold, then x* converges to
an optimal point and y* converges to an optimal dual point. However, these assumptions
do not hold in many important applications, so dual ascent often cannot be used. As an
example, if f is a nonzero affine function of any component of z, then the z-minimization (2)
fails, since L(z,y) is unbounded below in x for most y.

k

2.2 Dual decomposition

The major benefit of the dual ascent method is that it can lead to a decentralized algorithm
in some cases. Suppose, for example, that the objective f is separable (with respect to a
partition or splitting of the variable into subvectors), meaning that

f(r) = Zfz(fz),

where © = (z1,...,zy) and the variables z; € R™ are subvectors of x. Partitioning the
matrix A conformably as

so Ar = Zfil A;x;, the Lagrangian can be written as

N

L(z,y) = ZLz’(%,y) = Z (filzi) +y" A, — (1/N)y"b)

=1

which is also separable in x. This means that the z-minimization step (2) splits into N
separate problems that can be solved in parallel. Explicitly, the algorithm is

M= argmin Ly (4, y") (4)
yk—H — ykz + ak(A$k+1 . b) (5)
The x-minimization step (4) is carried out independently, in parallel, for each i = 1,..., N.

In this case, we refer to the dual ascent method as dual decomposition.

In the general case, each iteration of the dual decomposition method requires a broad-
cast and a gather operation. In the dual update step (5), the equality constraint residual
contributions A;z% are collected (gathered) in order to compute the residual Az*+! —b.
Once the (global) dual variable y**! is computed, it must be distributed (broadcast) to the
processors that carry out the N individual z; minimization steps (4).



Dual decomposition is an old idea in optimization, and traces back at least to the early
1960s. Related ideas appear in well known work by Dantzig and Wolfe [DW60] and Benders
[Ben62] on large-scale linear programming, as well as in Dantzig’s seminal book [Dan63|. The
general idea of dual decomposition appears to be originally due to Everett [Eve63], and is
explored in many early references [Las70, Geo72, Lue73, BLT76]. The use of nondifferentiable
optimization, such as the subgradient method, to solve the dual problem is discussed by Shor
[Sho85]. Good references on dual methods and decomposition include the book by Bertsekas
[Ber99, chapter 6] and the survey by Nedi¢ and Ozdaglar [NO10] on distributed optimization,
which discusses dual decomposition methods and consensus problems.

More generally, decentralized optimization has been an active topic of research since the
1980s. For instance, Tsitsiklis and his co-authors worked on a number of decentralized de-
tection and consensus problems involving the minimization of a smooth function f known
to multiple agents [Tsi84, TBA86, BT89]. There has also been some recent work on prob-
lems where each agent has its own convex, potentially non-differentiable, objective function
[INOO09]. Some good reference books on parallel optimization include those by Bertsekas and
Tsitsiklis [BT89] and Censor and Zenios [CZ97].

2.3 Augmented Lagrangians and the method of multipliers

Augmented Lagrangian methods were developed in part to bring robustness to the dual
ascent method, and in particular, to yield convergence without assumptions like strict con-
vexity or finiteness of f. The augmented Lagrangian for (1) is

Ly(z,y) = f(x) +y" (Az = b) + (p/2)]| Ax — b]}3, (6)

where p > 0 is called the penalty parameter. (Note that Ly is the standard Lagrangian for
the problem.) The augmented Lagrangian can be viewed as the (unaugmented) Lagrangian
associated with the problem

minimize  f(z) + (p/2)|| Az — b||3
subject to Az = 0.

This problem is clearly equivalent to the original problem (1), since for any feasible = the
term added to the objective is zero. The associated dual function is ¢,(y) = inf, L,(z,y).

It can be shown that g, is differentiable under rather mild conditions on the original
problem. The gradient of the augmented dual function is found the same way as with the
ordinary Lagrangian, i.e., by minimizing over x, and then evaluating the resulting residual.
Applying dual ascent to the modified problem yields the algorithm

"= argmin L,(x, y") (7)
g =y o p(AdtT - b), (8)

which is known as the method of multipliers for solving (1). This is the same as standard
dual ascent, except that the z-minimization step uses the augmented Lagrangian, and the
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penalty parameter p is used as the step size o*. The method of multipliers converges under
far more general conditions than dual ascent, including cases when f takes on the value +o00
or is not strictly convex.

It is easy to motivate the choice of the particular step size p in the dual update (8).
For simplicity, we assume here that f is differentiable, though this is not required for the
algorithm to work. The optimality conditions for (1) are primal and dual feasibility, i.e.,

Az*—b=0, Vf(z*)+ ATy* =0,

k+1

respectively. By definition, 28! minimizes L,(x,y"), so

0 = VLp({Ek+1,yk)
V) + AT (4 + p(APH )
_ Vf(ﬂfk+1)+ATyk+l,

where the gradients are with respect to x. In other words, using p as the step size in the dual
update makes (zF*1 y*+1) dual feasible. As the method of multipliers proceeds, the primal
residual Az*t! — b converges to zero, yielding optimality.

The greatly improved convergence properties of the method of multipliers over dual ascent
comes at a cost. When f is separable, the augmented Lagrangian L, is not separable, so the
x-minimization step (7) cannot be carried out separately in parallel for each x;. This means
that the basic method of multipliers cannot be used for decomposition.

Augmented Lagrangians and the method of multipliers for constrained optimization were
first proposed in the late 1960s by Hestenes [Hes69a, Hes69b] and Powell [Pow69]. Many
of the early numerical experiments on the method of multipliers are due to Miele et al.
[IMCIL71, MCL71, MMLC72]. Much of the early work is consolidated in a monograph by
Bertsekas [Ber82|, who also discusses similarities to older approaches using Lagrangians and
penalty functions [AS58, AHU58, FM90], as well as a number of generalizations.



3 Alternating direction method of multipliers

3.1 Algorithm

ADMM is an algorithm that is intended to blend the decomposability of dual ascent with the
superior convergence properties of the method of multipliers. The algorithm solves problems

in the form
minimize  f(z) + g(2) (9)
subject to Ax + Bz =c¢

with variables x € R" and z € R, where A € RP*", B € R?*™, and ¢ € R?. We will
assume that f and g are convex; more specific assumptions will be discussed in §3.2. The
only difference with the general linear equality constrained problem (1) is that the variable,
called x there, has been split into two parts, called  and z here, with the objective function
separable across this splitting. The optimal value of the problem (9) will be denoted by

p* =inf{f(z) + g(2) | Ax + Bz = c}.
As in the method of multipliers, we form the augmented Lagrangian
Ly(z,2,y) = f(z) + 9(2) +y" (Az + Bz — ¢) + (p/2)| Az + Bz — clf3.

ADMM consists of the iterations

2" = argmin L,(x, 2, y¥) (10)
A= argmin L, (2 2, y) (11)
YL = gk g p(AgE T B o), (12)

where p > 0. The algorithm is very similar to dual ascent and the method of multipliers:
it consists of an z-minimization step (10), a z-minimization step (11), and a dual variable
update (12). As in the method of multipliers, the dual variable update uses a step size equal
to the augmented Lagrangian parameter p.

The method of multipliers for solving the problem (9) has the form

Y

(karl Zk:+1> —

= argmin L,(z, z, y")

T,z

yk—H — yk:_'_p(Axk—&—l +sz+1 —C).

Here the augmented Lagrangian is minimized jointly with respect to the two primal variables.
In ADMM, on the other hand, x and z are updated in an alternating or sequential fashion,
which accounts for the term alternating direction. ADMM can be viewed as a version of the
method of multipliers where a single Gauss-Seidel pass [GvL96, §10.1] over x and z is used
instead of the usual joint minimization. Separating the minimization over x and z into two
steps is precisely what allows for decomposition when f or g are separable.
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The algorithm state in ADMM consists of z¥ and y*. In other words, (2**1, y*1) is a
function of (2% y*). The variable 2 is not part of the state; it is an intermediate result
computed from the previous state (2*~1 y*~1).

If we switch (relabel) z and z, f and g, and A and B in the problem (9), we obtain
a variation on ADMM with the order of the xz-update step (10) and z-update step (11)
reversed. The roles of x and z are almost symmetric, but not quite, since the dual update is
done after the z-update and before the xz-update.

Scaled form. ADMM can be written in a slightly different form, which is sometimes more
convenient, by combining the linear and quadratic terms in the augmented Lagrangian and
scaling the dual variable. Defining the residual r = Ax + Bz — ¢, we have

y'r+(p/2lrlls = (/2 + (1/p)yllz — (1/20) 1yll3-

Scaling the dual variable to u = (1/p)y, we can express ADMM as

P argmin (F(2) + (/DA + B — e+ o) (13)
= argmin (g(2) + (p/2)[| A2 + Bz — ¢+ u"|]3) (14)
WP = uf (AR 4 BMT o). (15)

Defining the residual at iteration k as r* = Az* + B2* — ¢, we see that

k

b =u® + g r’,

J=1

the running sum of the residuals.

We call the first form of ADMM above, given by (10-12), the unscaled form, and the
second form (13-15) the scaled form, since it is expressed in terms of a scaled version of the
dual variable. The two are clearly equivalent, but one or the other may be more aesthetically
appealing for a particular application.

3.2 Convergence

There are many convergence results for ADMM discussed in the literature; here, we limit
ourselves to a basic but still quite general result that applies to all of the examples we will
consider. We will make one assumption about the functions f and g, and one assumption
about problem (9).

Assumption 1. The (extended-real-valued) functions f : R" — R U {+oc0} and g : R™ —
R U {400} are closed, proper, and convex.

11



This assumption can be expressed compactly using the epigraphs of the functions: The
function f satisfies assumption 1 if and only if its epigraph

epi f = {(z,1) e R" xR [ f(z) < 1}

is a closed nonempty convex set.

Assumption 1 implies that the subproblems arising in the z-update (10) and z-update
(11) are solvable, i.e., there exist x and z, not necessarily unique (without further assump-
tions on A and B), that minimize the augmented Lagrangian. It is important to note that
assumption 1 allows f and ¢ to be nondifferentiable and to assume the value +oo. For
example, we can take f to be the indicator function of a closed nonempty convex set C, i.e.,
f(z) =0 for x € C and f(x) = +oo otherwise. In this case, the z-minimization step (10)
will involve solving a constrained quadratic program over C, the effective domain of f.

Assumption 2. The unaugmented Lagrangian Lo has a saddle point.

Explicitly, there exist (z*, z*, y*), not necessarily unique, for which
Lo(l’*, 2*7 y) < L()(ZL’*, Z*a y*> < L()(JZ, <, y*)

for all x, z, y. This is the same as assuming that strong duality holds, and in particular that
(z*,2z*) are primal optimal and y* is dual optimal. (Strong duality holds for most convex
problems; see [BV04, §5.2.3, §5.4.1-85.4.2] for background.) By assumption 1, it follows
that Lo(z*, z*,y*) is finite for any saddle point (z*,2z*,y*). This implies that (z*,z*) is a
solution to (9), so Az* + Bz* = c and f(a*) < 00, g(2*) < co. It also implies that y* is dual
optimal. Note that we make no assumptions about A, B, or ¢, except implicitly through
assumption 2; in particular, neither A nor B is required to be full rank.

Convergence. Under assumptions 1 and 2, the ADMM iterates satisfy the following:
o Residual convergence. v — 0 as k — o0, i.e., the iterates approach feasibility.

e Objective convergence. f(z*) + g(z¥) — p* as k — oo, i.e., the objective function of
the iterates approaches the optimal value.

e Dual variable convergence. y* — y* as k — oo, where y* is a dual optimal point.

A proof of this result is given in appendix A. Note that z* and z* need not converge to
optimal values, although such results can be shown under additional assumptions.

Convergence in practice. Simple examples show that ADMM can be very slow to con-
verge to high accuracy. However, it is often the case that ADMM converges to a modest
accuracy—sufficient for many applications—within a few tens of iterations. This behavior
makes ADMM similar to algorithms like the conjugate gradient method, for example, in that
a few tens of iterations will often produce acceptable results of practical use. However, the

12



slow convergence of ADMM also distinguishes it from algorithms such as Newton’s method,
where high accuracy can be attained in a reasonable amount of time. While in some cases it
is possible to combine ADMM with a method for producing a high accuracy solution from a
low accuracy solution [EF98], in the general case ADMM will be practically useful mostly in
cases when modest accuracy is sufficient. Fortunately, this is usually the case for the kinds
of large scale problems we consider.

3.3 Optimality conditions and stopping criterion

The necessary and sufficient optimality conditions for the ADMM problem (9) are primal
feasibility,

Az*+ Bz* —c =0, (16)

and dual feasibility,
0 € Of(z*) + ATy (17)
0 € 9g(2*)+ BTy (18)

Here, 0 denotes the subdifferential operator. (When f and ¢ are differentiable, df and dg
can be replaced by the gradients V f and Vg, and € can be replaced by =.)
Since zF*! minimizes L,(z**!, 2, y*) by definition, we have that

0 € 9g(zF™) + BTy" + pBT (Az"! + B2M —¢)
_ ag(zk+1) +BTyk+pBTTk+l
8g(zk+1) —f—BTyk—H.

k+1 k+1

This means that z"t! and y"*! always satisfy (18), so attaining optimality comes down to
satisfying (16) and (17). This phenomenon is analogous to the iterates of the method of
multipliers always being dual feasible; see page 9.

Since 2" minimizes L,(z, z*, y*) by definition, we have that

0 € Of(a") + ATy" 4+ pAT (A2 + B2¥ —¢)
_ 8f(x’“+1) —|—AT(yk+p7“k+1 —i—pB(zk _Zk-i-l))
_ 3f(xk+1) +ATyk+1 —f—pATB(Zk —Z]H_l),

or equivalently,
pATB<zk+l _Zk) c af(a:k“) +ATyk+1.

This means that the quantity

st = pATB(A+1 — k)

can be viewed as a residual for the dual feasibility condition (17). In the sequel, we will refer
to s*! as the dual residual at iteration k + 1. (We refer to r*t1 = Ax**1 + B2F1 — ¢ as the
primal residual at iteration k + 1.)

13



In summary, the optimality conditions for the ADMM problem consist of three conditions,
(16)—(18). The last condition (18) always holds for (z**1, 2**1 y*+1); the residuals for the
other two, (16) and (17), are the primal and dual residuals 7*™! and s**! respectively.
These two residuals converge to zero as ADMM proceeds. (In fact, the convergence proof in
appendix A shows B(zF+t! — 2*) converges to zero, which implies s* converges to zero.)

Stopping criteria. The discussion above suggests that a reasonable termination criterion
is that the primal and dual residuals be small, i.e.,

[r¥]]2 < e and  ||s¥]]o < et (19)

where P > 0 and e > ( are feasibility tolerances for the primal and dual feasibility
conditions (16) and (17), respectively. These tolerances can be chosen using an absolute and
relative criterion, such as

e = yp e+ e max{[|Aztla, | B2 |2, [lc]l2},
6dual — \/ﬁ 6abs + 6re1||ATyk||2.
where €2 > 0 is an absolute tolerance and " > 0 is a relative tolerance. (The factors \/p

and /n account for the fact that the £, norms are in R” and R", respectively.) A reasonable
value for the relative stopping criterion might be € = 10~ or 107, depending on the
application. The choice of absolute stopping criterion depends on the scale of the typical
variable values.

The stopping criterion (19) is in terms of the residuals of the optimality conditions. We
can relate these residuals to a bound on the objective suboptimality of the current point,
i.e., f(z%) + g(2*) — p*. As shown in the convergence proof in appendix A, we have

F@®) +g(Z") —p < =)+ (2" —a)Ts" (20)

This shows that when the residuals ¥ and s* are small, the objective suboptimality also
must be small. We cannot use this inequality directly in a stopping criterion, however, since
we do not know z*. But if we guess or estimate that ||z% — 2*||s < d, we have that

F@®) +9(") = p* < =" + dlls™ 2 < Ny ll2llr™l2 + dll 5"

The middle or righthand terms can be used as an approximate bound on the objective
suboptimality (which depends on our guess of d).

3.4 Extensions and variations

Many variations on the classic ADMM algorithm have been explored in the literature. Here
we briefly survey a few variants organized into groups of related ideas. Some of these methods
can give superior convergence in practice compared to the standard ADMM presented above.
Most of the extensions have been rigorously analyzed, so the convergence results described
above are still valid (in some cases, under some additional conditions).

14



Varying penalty parameter. A standard extension is to use possibly different penalty
parameters p* for each iteration, with the goal of improving the convergence in practice, as
well as making performance less dependent on the initial choice of the penalty parameter.
In the context of the method of multipliers, this approach is analyzed in [Roc76b], where
it is shown that superlinear convergence may be achieved if p¥ — oco. Though it can be
difficult to prove the convergence of ADMM when p varies by iteration, the fixed-p theory
still applies if one just assumes that p becomes fixed after a finite number of iterations.
A simple scheme that usually works well is the following (see, e.g., [HYWO00, WLO01]):

T T P P
AR W | U Py (21)
o otherwise,

where p > 1, 7% > 1, and 79" > 1 are parameters. Typical choices might be u = 10 and
riner — pdeer — 9 The idea behind this penalty parameter update is to try to keep the primal
and dual residual norms within a factor of y of one another as they both converge to zero.

The ADMM update equations suggest that large values of p place a large penalty on
violations of primal feasibility and so tend to produce small primal residuals. Conversely,
the definition of s**! suggests that small values of p tend to reduce the dual residual, but
at the expense of reducing the penalty on primal feasibility, which may result in a larger
primal residual. The adjustment scheme (21) inflates p by 7% when the primal residual
appears large compared to the dual residual, and deflates p by 79" when the primal residual
seems too small relative to the dual residual. This scheme may also be refined by taking into
account the relative magnitudes of e and edua!,

When a varying penalty parameter is used in the scaled form of ADMM, the scaled dual
variable u* = (1/p)y* must also be rescaled after updating p; for example, if p is halved, u*
should be doubled before proceeding.

More general augmenting terms. Another idea is to allow for a different penalty pa-
rameter for each constraint, or more generally, replacing the quadratic term (p/2)||r||3 with
(1/2)rT Pr, where P is a symmetric positive definite matrix. When P is constant, we can
interpret this generalized version of ADMM as standard ADMM applied to a modified initial
problem with the equality constraints r = 0 replaced with Fr = 0, where FTF = P.

Over-relaxation. In the z- and y-updates, the quantity Az**' can be replaced with

o Azt — (1 — o®)(BZF — o),
where of € (0,2) is a relaxation parameter; when of > 1, this technique is called over-
relaxation, and when o < 1 it is called under-relaxation. This scheme is analyzed in [EB92],
and numerical experiments in [Eck94a, EF98] suggest that over-relaxation with o € [1.5,1.8]
can improve convergence.
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Inexact minimization. ADMM will converge even when the z- and z-minimization steps
are not, carried out exactly, provided certain suboptimality measures in the minimizations
satisfy an appropriate condition, such as being summable. This result is due to Eckstein
and Bertsekas [EB92], building on earlier results by Gol’shtein and Tret’yakov [GT79]. This
technique is important in situations where the x- or z-minimizations are carried out using
an iterative method; it allows us to solve the minimizations only approximately at first, and
then more accurately as the iterations progress.

Update ordering. Several variations on ADMM involve performing the z-, z-, and y-
updates in varying orders or multiple times. For example, we can divide the variables into
k blocks, and update each of them in turn, possibly multiple times, before performing each
dual variable update; see, e.g., [Rus89]. Carrying out multiple z- and z-updates before the
y-update can be interpreted as executing multiple Gauss-Seidel passes instead of just one; if
many sweeps are carried out before each dual update, the resulting algorithm is very close
to the standard method of multipliers [BT89, §3.4.4]. Another variation is to perform an
additional y-update between the z- and z-update, with half the step length [BT89].

Related algorithms. There are also a number of other algorithms distinct from but in-
spired by ADMM. For instance, Fukushima [Fuk92] applies ADMM to a dual problem formu-
lation, yielding a ‘dual ADMM’ algorithm, which is shown in [EF93] to be equivalent to the
‘primal Douglas-Rachford’ method discussed in [Eck89, §3.5.6]. There are also algorithms re-
sembling a combination of ADMM and the prozimal method of multipliers [Roc76a], rather
than the standard method of multipliers; see, e.g., [CT94, Eck94b]|. Other representative
publications include [EB90, RW91, Eck94a, Rus95, Tse97, Tse00, CWO06].

3.5 Notes and references

ADMM was originally proposed in the mid-1970s by Glowinski and Marrocco [GM75] and
Gabay and Mercier [GM76]. There are a number of other important papers analyzing the
properties of the algorithm, including [FG83b, Gab83, FG83a, GT87, Tse91, Fuk92, EF93,
CT94]. In particular, the convergence of ADMM has been explored by many authors, in-
cluding Gabay [Gab83], and Eckstein and Bertsekas [EB92].

ADMM has also been applied to a number of statistical problems, such as constrained
sparse regression [BDF10], sparse signal recovery [FS09], image restoration and denoising
[FBD10, ST10, NWYO09], trace norm-regularized least squares minimization [YY10], and
support vector machines [FCG10], among others. For examples in signal processing, see
[CW06, CP07, CP09] and the references therein.

Many papers analyzing ADMM do so from the perspective of mazimal monotone oper-
ators [Bre73, Roc76a, Roc76b, EB92, RW98|. Briefly, a wide variety of problems can be
posed as finding a zero of a maximal monotone operator; for example, if f is closed, proper,
and convex, then the subdifferential operator df is maximal monotone, and finding a zero
of df is simply minimization of f; such a minimization may implicitly contain constraints
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if f is allowed to take the value +o0o. Rockafellar’s prozimal point algorithm [Roc76b] is a
general method for finding a zero of a maximal monotone operator, and a wide variety of
algorithms have been shown to be special cases, including proximal minimization (see §4.1),
the method of multipliers, and ADMM. For a more detailed review of the older literature,
see [Eck89, §2].

The method of multipliers was shown to be a special case of the proximal point algorithm
by Rockafellar [Roc76a]. Gabay [Gab83] showed that ADMM is a special case of a method
called Douglas-Rachford splitting for monotone operators [DR56, LM79], and Eckstein and
Bertsekas [EB92] showed in turn that Douglas-Rachford splitting is a special case of the
proximal point algorithm. (The variant of ADMM that performs an extra y-update between
the - and z-updates is equivalent to Peaceman-Rachford splitting [PR55, LM79] instead,
as shown by Glowinski and Le Tallec [GT87].) Using the same framework, Eckstein and
Bertsekas [EB92] also showed the relationships between a number of other algorithms, such
as Spingarn’s method of partial inverses [Spi85]. Lawrence and Spingarn [LS87] develop an
alternative framework showing that Douglas-Rachford splitting, hence ADMM, is a special
case of the proximal point algorithm; Eckstein and Ferris [EF98] offer a more recent discussion
explaining this conceptual framework.

The major importance of these results is that they allow the powerful convergence theory
for the proximal point algorithm to apply directly to ADMM and other methods, and show
that many of these algorithms are essentially identical. (But note that our proof of conver-
gence of the basic ADMM algorithm, given in appendix A, is self-contained and does not
rely on this abstract machinery.) Research on operator splitting methods and their relation
to decomposition algorithms continues to this day [ES08, ES09].

A considerable body of recent research considers replacing quadratic penalty term in
the standard method of multipliers with a more general deviation penalty, such as one
derived from a Bregman divergence [CZ92, Eck93]; see [Bre67] for background material.
Unfortunately, these generalizations do not appear to carry over in a straightforward manner
from non-decomposition augmented Lagrangian methods to ADMM: there is currently no
proof of convergence known for ADMM with nonquadratic penalty terms.
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4 General patterns

Depending on the form of f and g, it is sometimes possible to express the x- and z-updates
in a simplified form that can be exploited to carry out these iterations more efficiently; in
some cases, the z- or z-updates can each split into a set of smaller operations that can be
carried out in parallel. We will now discuss some general patterns that recur throughout the
applications. The examples will be written for the z-update but apply to the z-update by
symmetry. We express the x-update step as

zt = arginin (f(x)+ (p/2)|| Az —v])3) ,

where v = Bz — ¢+ u is a known constant vector for the purposes of the z-update.

4.1 Proximity operator

First, consider the simple case where A = I, which appears frequently in the examples. Then
the z-update is

v = argmin (f(z) + (p/2)llz —vllz) .

Viewed as a function of v, the righthand side is denoted prox, ,(v) and is called the prozimity
operator of f with penalty p [Mor62]. In variational analysis,

f(v) = min (f(2) + (p/2) |z = vl}3)

is known as the Moreau envelope or Moreau- Yosida reqularization of f, and is connected to
the theory of the proximal point algorithm [RW98|. The z-minimization in the proximity
operator is generally referred to as prozimal minimization. While these observations do not
by themselves allow us to improve the efficiency of ADMM, it does tie the z-minimization
step to other well known ideas.

When the function f is simple enough, the z-update (i.e., the proximity operator) can
be evaluated analytically; see [CP09] for many examples. For instance, if f is the indicator
function of a closed nonempty convex set C, then the z-update is

r* = argmin (f(z) + (p/2lx — vl}}) = He(v),

where Il denotes projection (with the Euclidean norm) onto C. This holds independently of
the choice of p. As an example, if f is the indicator function of the nonnegative orthant R,
we have zT = (v), the vector obtained by taking the nonnegative part of each component
of v.

4.2 Quadratic function

Suppose f is given by the (convex) quadratic function

flx) = (1/2)2" Pr + ¢"x +r,
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where P € S, the set of positive semidefinite n x n matrices. This includes the cases when
f is linear or constant, by setting P, or both P and ¢, to zero. Then assuming P + pAT A is
invertible, ™ is an affine function of v given by

= (P+ pATA)*l(pATU —q). (22)

In other words, computing the z-update amounts to solving a linear system with positive
semidefinite coefficient matrix P+ pAT A and righthand side pATv—¢q. As we show below, an
appropriate use of numerical linear algebra can exploit this fact and substantially improve
performance. For general background on numerical linear algebra, see [Dem97] or [GvLI6];
see [BV04, appendix C] for a short overview of direct methods.

Direct methods. A direct method for solving a linear system Fx = g is one based on first
factoring F' = F\F; - - - F}, into a product of simpler matrices, and then computing z = F~b
by solving a sequence of problems of the form Fjz; = z,_;, where z; = F; 'g and = = z,.
The solve step is sometimes also called a back-solve. The cost of factorization and back-solve
operations depend on the sparsity pattern of F. If the cost of factoring F'is f flops, and the
cost of the back-solve is s, then the total cost is f 4+ s to solve the linear system Fz = g. In
our case, the coefficient matrix is ' = P + pAT A and the righthand side is ¢ = pATv — ¢,
where P € S and A € RP*". If we exploit no structure in F, we can carry out a Cholesky
factorization of F. In this case, f is O(pn* 4+ n?) flops (pn? to form ATA and n® for the
subsequent factorization) and s is O(pn + n?) flops (pn to form ATv and n? for the solve).

However, when the coefficient matrix F' has special structure, much more efficient fac-
torization and back-solve routines can be employed. As an extreme case, if P and A are
diagonal n x n matrices, then both f and s are O(n). If P+ pA” A is banded with bandwidth
k, then f is O(pn® + nk?) and s is O(pn + nk). The same approach works when P + pAT A
is sparse and a direct method is used, with permutations chosen to reduce fill-in.

Caching factorizations. Now suppose we need to solve multiple linear systems, say,
Fz® = ¢@W ¢ =1,... N, with the same coefficient matrix but different righthand sides.
This occurs in ADMM when the parameter p is not changed. In this case we factor F' once
and then carry out back-solves for each righthand side. The total cost is f + Ns instead
of N(f + s), which we would pay if we were to repeatedly factor F'. So as long as p does
not change, we can factor P + pAT A once, then use this cached factorization in subsequent
solve steps. For example, if we do not exploit any structure and use the standard Cholesky
factorization, the x-update steps can be carried out a factor n more efficiently than a naive
implementation, in which we solve the equations from scratch in each iteration.

When structure is exploited, the ratio between f and s is typically less than n but often
still significant, so here too there are performance gains. However, in this case, there is less
benefit to p not changing, so we can weigh the benefit of varying p against the benefit of not
recomputing the factorization of P+ pAT A. In general, an implementation should cache the
factorization of P 4+ pAT A and then only recompute it if and when p changes.
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Matrix inversion lemma. We can also exploit structure using the matriz inversion
lemma, which states that the identity

(P+pATA) =Pt — pP T AT(I + pAPT AT 1 AP!

holds when all the inverses exist. This means that if linear systems with coefficient matrix P
can be solved efficiently, and p is small, or at least no larger than n in order, then the xz-update
can be computed efficiently as well. The same trick as above can also be used to obtain an
efficient method for computing multiple updates: The factorization of I + pAP~*A” can be
cached and cheaper back-solves can be used in computing the updates.

As an example, suppose that P is diagonal and that p < n. A naive method for computing
the update costs O(n?) flops in the first iteration and O(n?) flops in subsequent iterations,
if we store the factors of P + pATA. Using the matrix inversion lemma (i.e., using the
righthand side above) to compute the z-update costs O(np?) flops (the dominant cost is
forming AP~'AT), an improvement by a factor of (n/p)? over the naive method. The factors
of I + pAP~*AT can be saved after the first update, so subsequent iterations can be carried
out at cost O(np) flops, a savings of a factor of p over the first update.

Using the matrix inversion lemma to compute z* also makes it less costly to vary p in
each iteration. When P is diagonal, for example, we can compute AP~'AT once, and then
form and factor I + p* AP~*AT in iteration k at a cost of O(p?®) flops. In other words, the
update costs an additional O(np) flops, so if p* is less than or equal to n in order, there is
no additional cost (in order) to carrying out updates with a p varying in each iteration.

Iterative methods. Instead of direct methods, iterative methods such as the conjugate
gradient method can be used to carry out the xz-update. These methods typically only
require a method for multiplying a vector by P, A, and AT. Again, there are several ways
to improve efficiency.

First, the algorithm can be initialized at the solution obtained in the previous iteration,
called a warm start. The previous solution often gives an acceptable approximation to the
update in fewer iterations than if the iterative algorithm is started at zero, the default
initialization. This is especially the case when ADMM has almost converged, in which case
the updates will not change significantly from their previous values. The algorithm can also
be terminated early, called early stopping, a technique that is justified by the convergence
results for ADMM with inexact minimization in the x- and z-update steps. In this case, the
required accuracy should be low in the initial iterations of ADMM and repeatedly increase
in each iteration.

These comments also hold when f is not quadratic, but an iterative algorithm such as
the conjugate gradient method is used to approximately compute the x-minimization step.

Quadratic function restricted to an affine set. The same comments hold for the
slightly more complex case of a convex quadratic function restricted to an affine set:

f(z)=1/2)2" Pz + ¢"x +r, dom f = {z | Fz = g}.

20



Here, 2 is still an affine function of v, and the update involves solving the KKT system

P+pl FT k! N —q+ p(2F —uP) _0
F 0 v ’

All of the comments above hold here as well: Factorizations can be cached to carry out
additional updates more efficiently, and structure in the matrices can be exploited to improve
the efficiency of the factorization and back-solve steps.

4.3 Decomposition

Suppose that x = (x1,...,xy) is a partition of the variable z into subvectors and that
f is separable with respect to this partition, i.e., f(z) = fi(zy) + - -+ fn(xy). If the
quadratic term ||Ax||3 is also separable with respect to the partition, i.e., ATA is block
diagonal conformably with the partition, then L, is separable in z. This means that the -
minimization step can be carried out in parallel, with each subvector x; updated by a separate
minimization. It is even possible that both the xz-minimization step and z-minimization step
decompose even though all the variables are coupled in the full problem.

In some cases, the decomposition extends all the way to individual components of z, i.e.,

f(@) = filan) + -+ fulzn),

where f; : R — R, and AT A is diagonal. The z-minimization step can then be carried out
via n scalar minimizations, which can in some cases be expressed analytically. We will refer
to this as the fully separable case. For brevity, we will sometimes abuse notation by using
x; to refer either to the ith coordinate of x; or the ith block of the partition (z1,...,zxN)
depending on whether f is fully separable or just separable, but the distinction will always
be clear from context and the structure of f.

As an example, consider f(x) = A|z|]; (with A > 0) and A = I. In this case the (scalar)
r;-update is

zf = argmin (A|z;| + (p/2)(z; — v;)?) .

Even though the first term is not differentiable, we can easily compute a simple closed-form
solution to this problem by using subdifferential calculus; see [Roc70, §23| for background.
Explicitly, the solution is

i = Syp(vi),
where the soft thresholding operator S is defined as

a—K a>K
Sk(a) =120 la| < K
at+rK a<—K,

or equivalently,

Se(a) =(a—K)y — (—a—K)4.
We refer to updates that reduce to this form as elementwise soft thresholding. In the language
of §4.1, soft thresholding is the proximity operator of the /; norm.
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5 Constrained convex optimization

The generic constrained convex optimization problem is

minimize  f(z)
subject to = € C, (23)
where f and C are convex. This problem can be rewritten in ADMM form (9) as

minimize  f(x) + g(2)
subject to =z — 2z =0,

where ¢ is the indicator function of C.
The augmented Lagrangian (using the scaled dual variable) is

Ly(w,z,u) = f(2) + g(2) + (p/2)llx — 2 + ul3,
so the scaled form of ADMM for this problem is

2 = argmin (f(z) + (p/2) ]|z — (=" — u)]3)
A= (2R + o)
WL = g (g R

The z-update involves minimizing f plus a convex quadratic function, and the z-update
is projection onto C. The objective f need not be smooth here; indeed, we can include
constraints by defining f to be +o0o where they are violated. In this case, the z-update
becomes a constrained optimization problem over dom f = {z | f(z) < oo}.

As with all problems where the constraint is x — z = 0, the primal and dual residuals
take the simple form

k k k k

r’ =a" — 2", sh = —p(2F — 2.

In the following sections we give a few more specific examples.

5.1 Convex feasibility

Alternating projections. A classic problem is to find a point in the intersection of two
closed nonempty convex sets C and D. The classical method, which dates back to the 1930s,
is von Neumann'’s alternating projections algorithm [vN50, CG59, Bre65]:

"= Te(2F)

A= (),

where Il and IIp are projection onto C and D, respectively.
In ADMM form, the problem can be written as

minimize  f(x) + g(2)
subject to x — z =0,
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where [ is the indicator function of C and g the indicator function of D. The scaled form of
ADMM is then

xk—l—l — Hc(zk o uk)
A= p (2T uF)
)

so both the x and z steps involve projection onto a convex set, as in the classical method.
This is exactly Dykstra’s alternating projections method [Dyk83, BB94], which is far more
efficient than the classical method that does not use the dual variable u.

For this problem, the norm of the primal residual ||2* — 2*||, has a nice interpretation.
Since x;, € C and 2* € D, ||a* — 2*||5 is an upper bound on dist(C, D). If we terminate with
|7*|]2 < €’ then we have found a pair of points, one in C and one in D, with distance no
more than eP™ from each other. Alternatively, the point (1/2)(2* + 2*) is no more than a
distance €P"/2 from both C and D.

Projection on multiple sets. We can generalize this to the problem of finding a point

in the intersection of N closed convex sets Aj,..., Ay in R" by running the algorithm in
R™ with
C=A; x-- x Ay, D={(z1,...,25) ER™ |z =2y = --- = 2y}

If 2 = (z1,...,25) € R™, then projecting  onto C yields (ITg, (1), ..., Hay(zN)), and
projecting x onto D yields (7,7, ...,T), where T = (1/N) Z _, ;. Thus, each step of ADMM
can be carried out by projecting pomts onto each of the sets A; in parallel and then averaging
the results:

= ()
N
L Z k+1
z : N 2 —I—u
uf—l—l — f: ( +1 k‘—i—l)

Here the first and third steps are carried out in parallel, for ¢ = 1,..., N. (The description
above involves a small abuse of notation in dropping the index i from z;, since they are all
the same.) This can be viewed as a special case of constrained optimization, as described
in §4.3, where the indicator function of A; N --- N Ay splits into the sum of the indicator
functions of each A,;.

There is a large literature on successive projection algorithms and their many applica-
tions; see the survey by Bauschke and Borwein [BB96] for a general overview, Combettes
[Com96] for applications to image processing, and Censor and Zenios [CZ97, §5] for a dis-
cussion in the context of parallel optimization.

23



5.2 Linear and quadratic programming
The standard form quadratic program

minimize  (1/2)a? Pz + ¢"'z

subject to Ar =0, x>0, (24)

which is a linear program when P = 0, can be rewritten in ADMM form as

minimize  f(z) + g(2)
subject to =z — 2z =0,

where

f(z) = (1/2)2" Pz + ¢" =, dom f = {z | Az = b},

is the quadratic objective, with domain that includes the linear equality constraints, and g
is the indicator function of the nonnegative orthant R’ .
The scaled form of ADMM consists of the iterations

P = angmin (£(2) + (o/2) o — (=F — o) )
x

Zk+1 - (Z’k+1+uk)+

uk+1 — uk+(1‘k+1—zk+1).

The z-update is an equality-constrained least squares problem with optimality conditions

{PZM f(l)T} {le}Jr{q_p(i_Uk)}:O-

All of the comments on efficient computation from §4.2, such as storing factorizations so
that subsequent iterations can be carried out cheaply, also apply here. For example, if P
is diagonal, possibly zero, the first z-update can be carried out at a cost of O(np?) flops,
where p is the number of equality constraints in the original quadratic program. Subsequent
updates only cost O(np) flops.

More generally, any conic constraint 2 € IC can be used in place of the constraint > 0,
in which case (24) is a quadratic conic program. The only change to ADMM is in the z-
update, which then involves projection onto . For example, we can solve a semidefinite
program with z € S’ by projecting o 4+ u* onto S’} using an eigenvalue decomposition.

5.3 Global variable consensus optimization

Consensus optimization is a general form for posing and solving distributed optimization
problems, and is the framework we will use for achieving parallelism in the rest of the paper.
We first consider the case with a single global variable, with the objective and constraint
terms split into N parts:

minimize f(x) = Zfil fi(x),
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where z € R", and f; : R" — R U {+00} are convex. We refer to f; as the ith term in the
objective. Each term can also encode constraints by assigning f;(x) = +o0o when a constraint
is violated. The goal is to solve the problem above in such a way that each term can be
handled by its own processing element, such as a thread or processor.

This problem arises in many contexts. In model fitting, for example, = represents the
parameters in a model and f; represents the loss function associated with the th block of data
or measurements. In this case, we could say that the parameter = is found by collaborative
filtering, since the data sources are ‘collaborating’ to develop a global model.

This problem can be rewritten with local variables x; € R" and a global variable z:

minimize S~ fi(z;) (25)
subject to x; —z=0, 1=1,..., N.

This is called the global consensus problem, since the constraint is that all the local variables
should agree, i.e., be equal. Consensus can be viewed as a simple technique for turning
additive objectives, which show up frequently but do not split due to the variable being
shared across terms, into separable objectives, which parallelize easily. For a useful recent
discussion of consensus algorithms, see [NO10] and the references therein.

ADMM for the problem (25) can be derived either from the augmented Lagrangian

N
Lp<£lj'1,...,$N,Z y Z fl 'r’L +yz T )+(p/2)”l’l—2”§),
=1

or simply as a special case of the constrained optimization problem (23) with variable
(z1,...,7x) € R™ and constraint set

C={(z1,...,2n) |21 =22 = --- = 2N}

The resulting ADMM algorithm is the following:

aptt = argmin (filws) +u" (2 = 2°) + (p/2) |2 — 2"]3)
1 N
Zk+1 — Z k+1 1/0)%)
i=1
yfﬂ — yZ +p( k+1 Zk+1)_

Here, we write y*7 instead of (y*)? to avoid an abundance of parentheses. The first and last
steps are carried out independently for each ¢ = 1,..., N. In the literature, the processing
element that handles the global variable z is sometimes called the central collector or the
fusion center. Note that the z-update is simply the projection of z**! + (1/p)y* onto the
constraint set C of ‘block-constant’ vectors.

This algorithm can be simplified further. Let the average over ¢ = 1,..., N be denoted
with an overline, i.e., T = (1/N) vazl x;. Then the z-update can be written

ZkJrl — karl + (1/,0)yk
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Similarly, averaging the y-update over ¢ gives
g =g 4 p(Ett - M),

Substituting the first equation into the second shows that y* ™ =0, i.e., the dual variables
have average value zero after the first iteration. Using 2% = 7%, ADMM can be written as

7t = argmmiﬂ(fi(xi)erfT(%— ) + (p/2)|zi — 7"J2) (26)

Y= g (bt T, (27)

This is an extremely intuitive algorithm. The dual variables are separately updated to drive
the variables into consensus, and quadratic regularization helps pull the variables toward
their average value while still attempting to minimize each local f;.

For consensus ADMM, the primal and dual residuals are

k41

rk = (ah — 7% a2k — T, sf=—p@t -z T -,
so their (squared) norms are
N
P 13 =D llaf =215, 115515 = NoPIE -7 5.

When the original consensus problem is a parameter fitting problem, the x-update step
has a natural statistical interpretation. Suppose f; is the negative log-likelihood function for
the parameter x, given the measurements or data available to the ith processing element.
Then x5! is precisely the maximum a posteriori (MAP) estimate of the parameter, given the
Gaussian prior distribution A (Z* + (1/p)y¥, pI). The expression for the prior mean is also
intuitive: It is the average value Z* of the local parameter estimates in the previous iteration,
translated slightly by y¥, the ‘price’ of the ith processor disagreeing with the consensus in
the previous iteration. Note also that the use of different forms of penalty in the augmented
term, as discussed in §3.4, will lead to corresponding changes in this prior distribution; for
example, using a matrix penalty P rather than a scalar p will mean that the Gaussian prior
distribution has covariance P rather than pl.

Global variable consensus with regularization. In a simple variation on the global
variable consensus problem, an objective term, often representing a simple constraint or a
regularizer, is handled by the central collector:

minimize Zf\il filz:) +g(2)
=1,.

subject to z; —2z =0, 1 , N.
The resulting ADMM algorithm is
zi ™t = argmin (fi(w:) + " (25— 2) + (p/2) @ — 2F3) (28)

T

M= argmin( +Z 2t (p/2) )l — 23 )) (29)
gt =yl 4 p(at! z’““)- (30)
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By collecting the linear and quadratic terms, we can express the z-update as an averaging
step, as in consensus ADMM, followed by a proximal step involving g:

N
1
kel k+1 k
3 =y ; (mZ + (UP)%)
2= argmin (g(z) + (Np/2)[z — 25713) .

z

In the case with nonzero g, we do not in general have Zf\il y¥ = 0, so we cannot drop the y;
terms from z-update as in consensus ADMM.
As an example, for g(z) = A||z||1, with A > 0, the second step of the z-update is a soft

threshold operation:
Zk+1 — S)\/Np(gk+1)-

As another simple example, suppose g is the indicator function of R/, which means that the
g term enforces nonnegativity of the variable. In this case,

k+1 — <~k+1)+'

z z

5.4 General form consensus optimization

We now consider a more general form of the consensus minimization problem, in which we
have local variables z; € R" i =1,..., N, with the objective fi(z1)+--+ fx(xxy) separable
in the x;. Each of these local variables consists of a selection of the components of the global
variable z € R"; that is, each component of each local variable corresponds to some global
variable component z,. The mapping from local variable indices into global variable index
can be written as g = G(4, j), which means that local variable component (x;); corresponds
to global variable component z,.
Achieving consensus between the local variables and the global variable means that

($Z)]:Zg(17]), Z:1,,N, ]:1,,7'LZ

If G(i,j) = j for all 4, then each local variable is just a copy of the global variable, and
consensus reduces to global variable consensus, z; = z. General consensus is of interest in
cases where n; < n, so each local vector only contains a small number of the global variables.

In the context of model fitting, the following is one way that general form consensus
naturally arises. The global variable z is the full feature vector (i.e., vector of model param-
eters or independent variables in the data), and different subsets of the data are spread out
among N processors. Then z; can be viewed as the subvector of z corresponding to (nonzero)
features that appear in the ith block of data. In other words, each processor handles only
its block of data and only the subset of model coefficients that are relevant for that block of
data. If in each block of data all regressors appear with nonzero values, then this reduces to
global consensus.

For example, if each training example is a document, then the features may include words
or combinations of words in the document; it will often be the case that some words are only
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Figure 1: General form consensus optimization. Local objective terms are on the
left; global variable components are on the right. Each edge in the bipartite graph
is a consistency constraint, linking a local variable and a global variable component.

used in a small subset of the documents, in which case each processor can just deal with
the words that appear in its local corpus. In general, datasets that are high-dimensional but
sparse will benefit from this approach.

For ease of notation, let Z; € R™ be defined by (%;); = 2g(;,;)- Intuitively, 2 is the global
variable’s idea of what the local variable x; should be; the consensus constraint can then be
written very simply as x; — 2, =0,2=1,..., N.

The general form consensus problem is

minimize SN fi(z;) (31)
subject to x; — 2z, =0, i=1,..., N,
with variables 1, ..., 2y and z (Z; are linear functions of z).

A simple example is shown in Figure 1. In this example, we have N = 3 subsystems,
global variable dimension n = 4, and local variable dimensions n; = 4, ny = 2, and ng = 3.
The objective terms and global variables form a bipartite graph, with each edge representing
a consensus constraint between a local variable component and a global variable.

The augmented Lagrangian for the general form consensus problem (31) is

N

L,(x, z,y) = Z (fz(«rz> +yi (m — %) + (p/2)||x; — 22”%) ’

i=1
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with dual variable y; € R". Then ADMM consists of the iterations

oi™t = argmin (fi(zi) +y @i+ (p/2) s - Z13)

Ty

2= argmin (Z (=vi"z + (p/2) ||t — ZH%)>

# i=1

T gk gl - 2

Y

where the x;- and y;-updates can be carried out independently in parallel for each 7.
The z-update step decouples across the components of z, since L, is fully separable in

its components:
Zg = 1 )
Zg(i,j):g
S0 z, is found by averaging all entries of %! + (1/p)y¥ that correspond to the global index
g. Applying the same type of argument as in the global variable consensus case, we can show
that after the first iteration,
> wh; =0,

g(Z,]):g
i.e., the sum of the dual variable entries that correspond to any given global index g is zero.
The z-update step can thus be written in the simpler form

o= (k) Y (@)

g(i’j):g

where k, is the number of local variable entries that correspond to global variable entry z,.
In other words, the z-update is local averaging for each component z, rather than global
averaging; in the language of collaborative filtering, we could say that only the processing
elements that have an opinion on a feature z, will vote on z,.

General form consensus with regularization. As in the global consensus case, the
general form consensus problem can be generalized by allowing the global variable nodes to
handle an objective term. Consider the problem

minimize Zf\il filzi) +g(2) (32)
subject to z; —z; =0, i=1,..., N,

where ¢ is a regularization function. The z-update involves the local averaging step from
the unregularized setting, followed by an application of the proximity operator prox,; , to
the results of this averaging, just as in the global variable consensus case.
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6 /1 norm problems

In previous sections, we have discussed why ADMM, due to its combined use of duality,
penalty functions, and alternating minimization, is in general a more robust approach to
distributed optimization than algorithms like dual decomposition that rely on subgradient
methods. The problems in this section will help illustrate in turn why ADMM is a natural
fit for machine learning and statistical problems in particular. The reason is that, unlike
dual ascent or the method of multipliers, ADMM explicitly targets problems that split into
two distinct parts, f and g, that can then be handled separately. Problems of this form are
pervasive in machine learning, because a significant number of learning problems boil down
to minimizing a loss function together with a regularization term or side constraints. In
other cases, these side constraints are introduced through simple problem transformations
like putting the problem in consensus form.

This section contains a variety of simple but important problems involving ¢; norms.
There is widespread current interest in many of these problems across statistics, machine
learning, and signal processing, and applying ADMM yields interesting algorithms. We will
see that ADMM naturally lets us decouple the nonsmooth ¢; term from the smooth loss term,
which is computationally advantageous. In this section, we focus on the non-distributed
instances of these problems for simplicity; the problem of distributed model fitting will be
treated in the following section.

The idea of ¢; regularization is decades old, and traces back to Huber’s [Hub64] work on
robust statistics and a paper of Claerbout [CM73] in geophysics. There is a vast literature,
but some important modern papers are those on total variation denoising [ROF92], soft
thresholding [Don95], the lasso [Tib96], basis pursuit [CDS01], compressed sensing [Don06,
CRT06, CT06], and structure learning of sparse graphical models [MBO06].

Because of the now widespread use of models incorporating an ¢; penalty, there has
also been considerable research on optimization algorithms for such problems. A recent
survey by Yang et al. [YGZ'10] compares and benchmarks a number of representative
algorithms, including gradient projection [FNW07, KKL*07], homotopy methods [DT06],
iterative shrinkage-thresholding [DDMO04]|, proximal gradient [Nes83, Nes07, BT09, BBC09],
and augmented Lagrangian methods [YZ09]. There are other approaches as well, such as
Bregman iterative algorithms [YOGDO8] and iterative thresholding algorithms [DMMO9]
implementable in a message-passing framework.

6.1 Least absolute deviations

A simple variant on least squares fitting is the least absolute deviations problem,
minimize ||Ax — bl};.

Least absolute deviations provides a more robust fit than least squares when the dataset
contains large outliers, and has been used extensively in statistics and econometrics. See,
for example, [HTF09, §10.6], [Wo009, §9.6], and [BV04, §6.1.2].
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In ADMM form, the problem can be written as

minimize ||z||;
subject to Ax — z =,

so f=0and g = |- ||;. Exploiting the special form of f and g, ADMM can be expressed as
xk—i—l — (ATA)_lAT(b+ Zk . uk:)
Zk—l—l = 81/p(AZEk+1 —b + uk)
uk+1 — uk + (Ax,k+1 o Zk+1 . b)

assuming AT A is invertible. As in §4.2, the matrix AT A can be factored once and then be
used in cheaper back-solves in subsequent z-updates.

6.2 Basis pursuit

Basis pursuit is the equality-constrained ¢; minimization problem

minimize ||z
subject to Az = b,

with variable x € R", data A € R™", b € R™, with m < n. In other words, the goal is
to find a sparse solution to an underdetermined system of linear equations, much like the
pseudo-inverse is a solution with minimum ¢, norm to an underdetermined system. This
problem plays a central role in modern statistical signal processing, particularly the theory
of compressed sensing; see [BDEQ9] for a recent introductory survey.

Basis pursuit can be written in a form suitable for ADMM as

minimize  f(z) + [|z]|:
subject to = — 2z =0,

where f is the indicator function of {x € R™ | Ax = b}. The ADMM algorithm is then

M= TI(ZN — )
M= S (M k)
T e o (MR- LA R )

where II is projection onto {x € R" | Az = b}. We can write the z-update explicitly as
oF = (1 — AT(AAT) LAY (27 — uF) + AT(AAT) b,

and again, the comments on efficient computation from §4.2 apply.

A recent class of algorithms called Bregman iterative methods have attracted considerable
interest for solving ¢; problems like basis pursuit. It is interesting to note that for basis
pursuit and related problems, Bregman iterative regularization [YOGDO0S] is equivalent to
the method of multipliers, and the split Bregman method [GO09] is equivalent to ADMM.
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6.3 General /; regularized loss minimization

Consider the generic problem
minimize (z) + A||z[1, (33)

where [ is any convex loss function.
In ADMM form, this problem can be written as

minimize [(z) + g(z)
subject to = — 2z =10,

where g(z) = A||z||;. The algorithm is

2t .= argmin (l(x) +y* 'z + (p/2)||x — Zk||§)
2= S,\/p(IkJr1 +4"/p)
P =y g (A,

The structure of | will dictate the complexity of the x-minimization. For example, if [ is
differentiable, this can be done by any standard method, such as Newton’s method, a quasi-
Newton method such as BFGS, or the conjugate gradient method. If f is separable, then
the x-minimization will decompose, and in some cases, it may have an analytical solution.

A very wide variety of models can be represented with the loss function [, including
generalized linear models [MN91] and generalized additive models [HT90]. In particular,
generalized linear models subsume linear regression, logistic regression, softmax regression,
and Poisson regression, since they allow for any exponential family distribution. For general
background on models like ¢; regularized logistic regression, see, e.g., [HTF09, §4.4.4].

In order to use a regularizer g(z) other than ||z||;, we simply need to replace the soft
thresholding operator in the z-update with the proximity operator of g, as in §4.1.

6.4 Lasso

An important special case of (33) is ¢; regularized linear regression, also called the lasso
[Tib96]. This involves solving

minimize (1/2)||Az — b3 + |21, (34)

where A > 0 is a scalar regularization parameter that is usually chosen by cross-validation.
In typical applications, there are many more features than training examples, and the goal is
to find a parsimonious model for the data. For general background on the lasso, see [HTF09,
§3.4.2]. The lasso has been widely applied, particularly in the analysis of biological data,
where only a small fraction of a huge number of possible factors are actually predictive of
some outcome of interest; see [HTF09, §18.4] for a representative case study.
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In ADMM form, the lasso problem can be written

minimize  f(x) + g(2)
subject to =z — 2z =0,

where f(x) = (1/2)||Az — |3 and g(2) = A||z||;. By §4.2 and §4.3, ADMM becomes

2" = (ATA 4 pI) 7Y AT + p2F — o)
Zk+1 — S}\/p(xk+1 + yk/p)
YL = R (et R,

Note that AT A + pI is always invertible, assuming p > 0.
The lasso problem can be generalized to

minimize (1/2)||Ax — b||3 + || Fz||1,

(35)

where F' is an arbitrary linear transformation. An important special case is when F' is the

difference matrix and A = I, in which case this reduces to

minimize (1/2)[|x —b||3 + XD, |wiv1 — 2.

(36)

The second term is the total variation of x. This problem is often called total variation

denoising [ROF92], and has significant applications in signal processing.
In ADMM form, the generalized lasso problem (35) can be rewritten as

minimize  (1/2)|| Az — b||3 + |21
subject to Fo — 2z =0,

which yields the ADMM algorithm

o= (ATA+ pFTF) Y (AT + pFT2F — FTyF)
Zk:—i—l — S/\/p(ka+1 + yk/p)
P = yF (Pt A,

For the special case of total variation denoising (36), AT A + pFT F is tridiagonal, so the

x-update can be carried out in O(n) steps [GvL96, §4.3].

6.5 Sparse inverse covariance selection

Given a dataset consisting of samples from a zero mean Gaussian distribution in R",

(IZ'NN(O,Z>, izl,...,N,

consider the task of estimating the covariance matrix 3 under the prior assumption that
¥ 71 is sparse. Since entries of Ei’jl are zero if and only if the ith and jth components of
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the random variable are conditionally independent, given the other variables, this problem
is equivalent to the structure learning problem of estimating the topology of the undirected
graphical model representation of the Gaussian [KF09]. Determining the sparsity pattern of
the inverse covariance matrix X! is also called the covariance selection problem.

For n very small, it is feasible to search over all sparsity patterns in ¥ since for a fixed
sparsity pattern, determining the maximum likelihood estimate of ¥ is a tractable problem.
A good heuristic that scales to much larger values of n is to minimize the negative log-
likelihood (with respect to the parameter X = 37!) with an ¢; regularization term to
promote sparsity of the estimated inverse covariance matrix [BGd08]. If S is the empirical

covariance matrix (1/N) 3>~ a,al, then the estimation problem can be written as

minimize Tr(SX) —logdet X + A||.X ||,

with variable X € S7, where || - [|; is defined elementwise, i.e., as the sum of the absolute
values of the entries, and the domain of logdet is S” . This is is a special case of the general
¢y regularized problem (33) with loss function [(X) = Tr(SX) — logdet X.

The idea of covariance selection is originally due to Dempster [Dem?72] and was first
studied in the sparse, high-dimensional regime by Meinshausen and Biithlmann [MBO06]. The
form of the problem above is due to Banerjee et al. [BGdO08]. Some other recent papers
on this problem include ones on Friedman et al.’s graphical lasso [FHTO08|, Duchi et al.
[DGKO08], Lu [Lu09], and Yuan [Yua09], the last of which shows that ADMM is competitive
with state-of-the-art methods for this problem.

The ADMM algorithm for sparse inverse covariance selection is

X = arg}r{nin (Tr(SX) —logdet X + (p/2)|| X — ARE Uk||f;)
ZM1 = argmin (A Z]1 + (p/2)| XM — Z + U|3)
U UkZ_i_ (XL gy,

where || - || is the Frobenius norm.

This algorithm can be simplified much further. The Z-minimization step is elementwise
soft thresholding,

and the X-minimization also turns out to have an analytical solution. The first-order opti-
mality condition is that the gradient should vanish,

S— X1+ p(X —ZF+ U =0,
together with the implicit constraint X > 0. Rewriting, this is
pX — Xt =p(ZF —U¥) - 8. (37)

We will construct a matrix X that satisfies this condition and thus minimizes the X-
minimization objective. First, take the orthogonal eigenvalue decomposition of the righthand
side,

p(Z = U") =5 = QAQT,
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where A = diag(\,...,\,), and QTQ = QQT = I. Multiplying (37) by QT on the left and
by @ on the right gives o
pX — X' = A,

where X = QTX Q. We can now construct a diagonal solution of this equation, i.e., find
positive numbers X;; that satisfy pX; — 1/X;; = A;. By the quadratic formula,

7 2p )

which are always positive since p > 0. It follows that X = QXQT satisfies the optimality
condition (37), so this is the solution to the X-minimization. The computational effort of
the X-update is that of an eigenvalue decomposition of a symmetric matrix.
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7 Distributed model fitting

A general convex model fitting problem can be written in the form
minimize ((Az —b) + r(z), (38)

with parameters x € R"”, where A € R"™*" is the feature matrix of inputs, b € R™ are the
outputs, [ : R™ — R is a convex loss function, and r is a convex regularization function.
We assume that [ is additive, so

m

Az —b) =) li(a]x — by),

1=1

where [; : R — R is the loss function for the ith training example, a; € R" is the feature
vector for example i, and b; is the output or response for example 7. Usually, all the [; are
the same, but this assumption is not required.

We also assume that the regularization function r is separable. The most common ex-
amples are r(x) = A||z||% (called Tikhonov reqularization, or a ridge penalty in statistical
settings) and r(x) = A||z||; (sometimes generically called a lasso penalty in statistical set-
tings), where \ is a positive regularization parameter. (Many other regularization functions,
like the group lasso [YLO6] and the elastic net [ZHO05], are just combinations of these two.)
In some cases, one or more model parameters are not regularized, such as the offset param-
eter in a classification model. This corresponds to r(x) = A||x1.,-1]|1, where z1.,_1 is the
subvector of x consisting of all but the last component of x; with this choice of r, the last
component of x,, is not regularized.

The next section discusses some examples that have the general form above. We then
consider two ways to solve (38) in a distributed manner, namely, by splitting across training
examples and by splitting across features.

7.1 Examples

Regression. Consider a linear modeling problem with measurements of the form b, =
a;fpx—i-vi, where a; is the 7th feature vector and the measurement noises v; are independent with
log-concave densities p;; see, e.g., [BV04, §7.1.1]. Then the negative log-likelihood function
is [(Az —b) and [;(u;) = —log p;(—u;). If r = 0, then the general fitting problem (38) can be
interpreted as maximum likelihood estimation of x under noise model p;. If r; is taken to be
the negative log prior density of x;, then the problem can be interpreted as MAP estimation.

For example, the lasso follows the form above with quadratic loss I(u) = (1/2)|lu||3 and
¢y regularization r(x) = A||z||;, which is equivalent to MAP estimation of a linear model
with Gaussian noise and a Laplacian prior on the parameters.

Classification. Many classification problems can also be put in the form of the gen-
eral model fitting problem (38). We follow the standard classification setting described
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in [BJMO06]. Let a; € R* denote the feature vector of the ith example and let b; € {—1,1}
denote the binary outcome or class label, for ¢ = 1,..., N. The goal is to find a weight
vector w € R¥ and offset v € R such that

sign(a] w+v) = b;

holds for many examples. In the literature, alw + v is referred to as a discriminant function,
viewed as a function of a;. This condition can also be written as u; > 0, where u; =
bi(al'w + v) is called the margin of the ith training example.

In the context of classification, loss functions are generally written as a function of the
margin, so the loss for the ith example is

A classification error is made if and only if the margin is negative, so [; should be positive
and increasing for negative arguments and zero or small for positive arguments. To find the
parameters w and v, we minimize the average loss plus a regularization term on the weights:

T ST w+ ) + 5 w) (39)

This has the generic model fitting form (38), where (w, v) corresponds to z, the a; above is
(—bsa;, biv) here, the b; above is the constant 1, and the regularizer is r(z) = r"*(w).

In statistical learning theory, the problem (39) is referred to as penalized empirical risk
minimization or structural risk minimization. When the loss function is convex, this is
sometimes termed convex risk minimization. In general, fitting a classifier by minimizing a
surrogate loss function, i.e., a convex upper bound to 0-1 loss, is a well studied and widely
used approach in machine learning. For background, see [Vap00, Zha04, BJMO06|.

Many classification models in machine learning correspond to different choices of I; and
V. Some common loss functions are hinge loss (1 — ;) exponential loss exp(—u;), and
logistic loss log(1 4 exp(—u;)); as before, the most common regularizers are ¢; and ¢5. The
support vector machine [SS02] corresponds to hinge loss with a quadratic penalty on w, while
exponential loss yields boosting [FS95] and logistic loss yields logistic regression.

7.2 Splitting across examples

Here we discuss how to solve the model fitting problem (38) with a modest number of features
but a very large number of training examples. Most classical statistical estimation problems
belong to this regime, with large volumes of relatively low-dimensional data. The goal is to
solve the problem in a distributed way, with each processor handling a subset of the training
data. This is useful either when there are so many training examples that it is inconvenient
or impossible to process them on a single machine, or when the data is naturally collected
or stored in a distributed fashion. This includes, for example, online social network data,
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webserver access logs, wireless sensor networks, and many cloud computing applications
more generally.

The solution follows immediately from the earlier discussion, by partitioning the examples
into N groups, Dy, ..., Dy, and writing the problem in global consensus form as

minimize Zf\il filxi) +7(2)

4
subject to z; —2=0, +=1,...,N, (40)

where
file) = li(ajz —bj)
J€D;

is the objective term associated with the ith block of examples. The problem can now be
solved by applying the generic global variable consensus ADMM algorithm described in §5.3.
(If appropriate, the general form consensus approach could also be used; for example, this
could be useful if many features only appear in a small number of the local datasets.) In
each step, each processor will solve the quadratically penalized model fitting problem

minimize fi(x;) + (p/2)||x; — 2% + |3

with local variable ;. If f; is differentiable, this can be done by any standard method, such
as Newton’s method, BFGS, or the conjugate gradient method. These iterative methods
can be warm started for efficiency, as in §4.2; in fact, rather than making the problem more
difficult, the quadratic regularization term can greatly improve the convergence rate and
robustness of these algorithms compared to the problem of minimizing f; alone.

7.3 Splitting across features

We now consider (38) with a modest number of examples and a large number of features.
Statistical problems of this kind frequently arise in areas like natural language processing
and bioinformatics, where there are often a large number of potential explanatory variables
for any given outcome. For example, the observations may be a corpus of documents, and the
features could include all words and pairs of adjacent words (bigrams) that appear in each
document. In bioinformatics, there are usually relatively few people in a given association
study, but there can be a very large number of potential features relating to observed DNA
mutations in each individual. There are many examples in other areas as well, and the goal
is to solve problems of this kind in a distributed fashion, with each processor handling a
subset of the features.
The solution involves working with a dual of (38). First, the primal problem (38) can be

reformulated as

minimize (v) + r(x)

subject to Az — b=,

with variables x € R" and v € R™, where n > m. The Lagrangian is

L(z,v,v) = 1(v) +r(z) + v (Az — b —v),
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with dual variable » € R™, and the dual function is
—I*(v) —vTb — r*(—ATv),

where [* is the conjugate of [ and r* is the conjugate of r. The dual model fitting problem
is to maximize the dual function over v, or equivalently,

minimize [*(v) 4+ vTb+r*(=ATv), (41)

with variable v € R™. The objective function can take on the value +o00, so this may be
a constrained optimization problem. We will see later how to recover an optimal primal
variable z* from a solution of this dual problem. In the dual model fitting problem (41),
the variable v is of modest size (the number of training examples m), while the term A”v is
large (the number of features n). Since r is separable, so is r*, and indeed, r} = (r;)*.

To split the original problem across features, partition x as x = (xy,...,2zy), with
x; € R™ and conformably partition the data matrix A = [A;--- Ay| and the conjugate
regularization function r*(w) = i (wy1) + - - - + 'y (wn). The dual model fitting problem (41)
can then be expressed as

minimize [*(v )—i—l/Tb—i—Zl (AT W)

subject to w;, =v, i=1,..., N, (42)

with variables v, uy, ..., uy € R™. This is a standard consensus problem, so ADMM has the
form

pf Tt = argmin (rF(— A ) + yf e+ (p/2) | — V)3)
i

v

VM= argmin ( )+ by + Z v+ (p/2)|| ™ — V||§)>

k+1

gt = g+ p( — VFT).

The second step is simple since it is separable at the component level. It can be written as

VA= argmin (I*(v) + b"v + (Np/2)|lv —v]3))

v

where

S+ (). (43)

=1
The first step can be given an interesting interpretation as a model fitting problem on its
own. Comparing the form of the p;-update with the dual problem (41), we see that the
pi-update involves solving the dual of the problem

minimize (1/2p)[|Asz; — (yf — pv®)[[3 + ri(2:).

This is evidently a model fitting problem involving only the features in the ith block, a

quadratic loss function, and modified measurements y* — pv/*.
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Recovering the optimal model parameters. It remains to see how to get the optimal
model parameters z7 from a solution of the dual problem. The solution z] can be recovered
in several ways, from 7, or from 37, or as a side product of the updates in ADMM.

An optimal primal value z} can be obtained as the solution of the problem

minimize  r;(x;)
subject to  A;x; =y,

for i = 1,...,N. For example, with Tikhonov regularization, i.e., r;(x;) = (X\/2)|x;||3, we
have 27 = Aly*, where Al is the pseudo-inverse of A;.

A solution x} can also be recovered from g when r; is strictly convex. In this case,
xr = (0r;) Y (—AT u;), where Or; is the subdifferential point-to-set mapping. The inverse of
this relation is a function when r; is strictly convex.

The conjugate r; of the ¢; penalty r;(z;) = A||x;||1 is the indicator function for —A1 <
x; < A1, the £ -ball of radius A. This constraint can be made explicit in the u;-update, so
1; is obtained by solving the quadratic program

miniize s+ (/)5 — 13 "
subject to —A1 < —A;u; < AL

Let x_ be an optimal Lagrange multiplier associated with the constraint —A1 < —A;u;, and
X+ be an optimal Lagrange multiplier associated with the constraint —A;u; < A1. Then we
have =7 = x4+ — x-.

As an example, consider the lasso problem, so [(v) = |[v[|3 and r(z) = A||z|;. The
pi-updates, which are carried out in parallel, involve solving the quadratic program (44);
the optimal Lagrange multipliers then give the optimal model parameters once ADMM
converges. The v-update has the very simple form

1
bl — Npv —10

where v is given by (43). This step involves a gather operation to form v.
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8 Nonconvex problems

This section explores the use of ADMM for nonconvex problems, in which case ADMM
must be considered just another local optimization method, since global optimality cannot
be guaranteed. The hope is that it will possibly have better convergence properties than
other local optimization methods, where ‘better convergence’ can mean faster convergence
or convergence to a point with better objective value.

8.1 Nonconvex updates

Consider the standard problem (9), but with f or g possibly nonconvex. Carrying out ADMM
requires solving the x- and z-minimizations, which are not convex problems when f or g are
nonconvex. In general, one could simply carry out these updates using local optimization
instead of global optimization, but in a few important special cases, it is possible to perform
these updates by finding the global solution to a nonconvex problem.

Suppose that f is convex and that g is the indicator function of a nonconvex set S, which
gives the generic constrained minimization problem (23), only with a nonconvex constraint
set. For this problem, ADMM has the form

A = argmin (£(2) + (p/2) 2 — (% — b))
A= g (aM + )
uk+1 — uk + (xk—i-l _ Zl€+1)7

where Ils is projection onto S. The z-minimization step is convex since f is convex, but the
z-update is projection onto a nonconvex set. In general, this is NP-Hard, but can be solved
exactly in some important special cases.

e Cardinality. 1f S = {x | card(z) < k}, where card gives the number of nonzero
elements, then I1g(v) keeps the k largest magnitude elements and zeroes out the rest.

e Rank. If S is the set of matrices with rank k., then Ils(v) is determined by carrying
out a singular value decomposition, v = Y. oyu;v], and keeping the top & dyads, i.e.,
form Tg(v) = 325 | oyuo? .

e Boolean constraints. If S = {x | x; € {0,1}"}, then IIs(v) simply rounds each entry
to 0 or 1, whichever is closer. Integer constraints can be handled in the same way.

For example, consider the least-squares regressor selection or feature selection problem

minimize || Az — 0|3
subject to card(z) < k,

which is to find the best fit to b from no more than k columns of A. For this problem,
ADMM takes the form above, where the z-update involves only linear operations and the
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z-update involves keeping the k largest magnitude elements of 57! 4-u*; note that this is just
like ADMM for the lasso, except that soft thresholding is replaced with ‘hard’ thresholding.
However, there is no reason to believe that this converges to a global solution; indeed, it
can converge to different points depending on the choice of p or the starting point 2%, as is
usually the case in nonconvex optimization.

8.2 Bi-affine constraints
This section considers another nonconvex problem that admits exact ADMM updates:

minimize  f(z) + g(2)
subject to  F(z,z) =0,

where [ and g are convex, and F': R" x R™ — RP? is bi-affine, i.e., affine in x for each fixed
z, and affine in z for each fixed . When F' is jointly affine in x and z, this reduces to the
standard ADMM problem form (9). For this problem ADMM has the form

2 = argmin (f(2) + (p/2)[|F(z, 2") +u"[}3)
A i argiin (9(2) + (p/2)IF @, 2) + o [B)
uk+1 — uk +F(:pk+1,zk+1).

Both the z- and z-updates involve convex optimization problems, and so are tractable.
For example, consider the problem of nonnegative matriz factorization [LSO1]:

minimize  (1/2)[|[VW — C|%
subject to V;; >0, W;; >0,

with variables V' € RP*", W € R"*9, and data C € RP*?. In ADMM form with bi-affine
constraints, this can be written as

minimize  (1/2)[|X — C||F + [ (V) + L.(W)
subject to X — VIW =0,

with variables X, V, W where I, is the indicator function for elementwise nonnegative ma-
trices. With (X, V') serving the role of z, and W serving the role of z above, ADMM becomes

(XML V) = argmin (| X — OflF + (p/2)|1X = VIWF +U7)
X, V>0
WH = argmin || X — VUV 4 U1
W=>0
Uk-‘rl — Uk + (Xk-‘rl - Vk+1Wk+1).

The first step splits across the rows of X and V', so can be performed by solving a set of
quadratic programs, in parallel, to find each row of X and V separately. The second step
splits in the columns of W, so can be performed by solving parallel quadratic programs to
find each column.
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9 Implementation

This section addresses the implementation of ADMM in a distributed computing environ-
ment. For simplicity, we focus on the global consensus problem with regularization,

minimize Zfil fixi) +9(2)
subject to xz; — 2z =0,

where f; is the 1th objective function term and g is the global regularizer. Extensions to
the more general consensus case are mostly straightforward. We first describe an abstract
implementation and then how this maps onto a variety of software frameworks.

9.1 Abstract implementation

We refer to x; and y; as local variables stored in subsystem i, and to z as the global variable.
For a distributed implementation, it is more natural to do the local computations (i.e., the
x;- and y-updates) together, so we write ADMM as

yi = yi+plz;—2)
vy = argmin (fi(z;) +yi (2 — 2) + (p/2)[|li — z])3)
z = prox, y, (T+(1/p)7).

Here, the iteration indices are omitted because in an actual implementation, we can simply
overwrite previous values of these variables. Note that the y-update must be done before the
x-update in order to match (28-30). If g = 0, then the z-update simply involves computing
7, and the y; are not part of the aggregation, as discussed in §5.3.

This suggests that the main features required to implement ADMM are the following:

e Mutable state. Each subsystem 7 must store the current values of x; and v;.

e Local computation. Each subsystem must be able to solve a small convex problem,
where ‘small’ means that the problem is solvable using a serial algorithm. In addition,
each local process must have local access to whatever data are required to specify f;.

e Global aggregation. There must be a mechanism for averaging local variables and
broadcasting the result back to each subsystem, either by explicitly using a central
collector or via some other approach like distributed averaging [Tsi84, XB04]. If com-
puting z involves a proximal step (i.e., if g is nonzero), this can either be performed
centrally or at each local node; the latter is easier to implement in some frameworks.

o Synchronization. All the local variables must be updated before performing global
aggregation, and the local updates must all use the latest global variable. One way
to implement this synchronization is via a barrier, a system checkpoint at which all
subsystems must stop and wait until all other subsystems reach it.

43



When actually implementing ADMM, it helps to consider whether to take the ‘local perspec-
tive” of a subsystem performing local processing and communicating with a central collector,
or the ‘global perspective’ of a central collector coordinating the work of a set of subsystems.
Which is more natural depends on the particular software framework used.

From the local perspective, each node ¢ receives z, updates y; and then x;, sends them to
the central collector, waits, and then receives the updated z. From the global perspective, the
central collector broadcasts z to the subsystems, waits for them to finish local processing,
gathers all the z; and y;, and updates z. (Of course, if p varies across iterations, then p
must also be updated and broadcast when z is updated.) The nodes must also evaluate the
stopping criteria and decide when to terminate; see below for examples.

In the general form consensus case, a decentralized implementation is possible that does
not require z to be centrally stored; each set of subsystems that share a variable can commu-
nicate among themselves directly. In this setting, it can be convenient to think of ADMM as
a message-passing algorithm on a graph, where each node corresponds to a subsystem and
the edges correspond to shared variables.

9.2 MPI

Message Passing Interface (MPI) [For09] is a language-independent message-passing specifi-
cation used for parallel algorithms, and is the most widely used model for high-performance
parallel computing today. Implementations of MPI are available in a wide variety of lan-
guages, including C, C++, and Python. There are different ways of implementing consensus
ADMM in MPI, but perhaps the simplest is below; MPI operations are italicized.

Algorithm 1 Global consensus ADMM in MPI.

initialize a central collector process and N local processes, along with x;, y;, 2.

repeat
if this is the central collector process
1. Receive (x;,y;,r;), for i =1,..., N.
2. Let 2P*Y := z and update z := prox, y,(Z + (1/p)y).
3. If pV/N ||z — 2P|y < €™ and (35, [|7:]|2)1/? < €, set CONVERGED.
4. Send (z, CONVERGED) to process i, for i =1,..., N.
else if this is local process ¢
1. Update y; := y; + p(z; — 2).
2. Update z; := argmin,, (fi(z) +y! (z — 2) + (p/2)[|z — 2|13).
3. Compute r; := x; — 2.
4. Send (x;,y;,7;) to central collector.
5. Receive (z, CONVERGED) from central collector.
until CONVERGED.

A few comments on this pseudocode are needed. First, MPI typically uses a single program,
multiple data (SPMD) model, meaning that the same program source code runs on each
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separate machine, and conditional branches are used to execute different code on different
machines (i.e., a process can identify whether it is the central collector or a specific subsystem
i). Second, the send and receive calls are blocking, and they unblock when a corresponding
receive or send is executed, respectively. This provides the necessary synchronization be-
tween the subsystems and the collector. Third, the central collector receives (z;,y;,r;) one
at a time, as soon as they are sent by each given local process, regardless of the order in
which the processes finish. There is also no need to store more than one (x;,y;, ;) at any
given time, since the quantities Z + (1/p)7 and S°1, ||r4]|3 can be computed in a streaming
fashion, and the order in which the messages are received is clearly irrelevant.

In an extremely large scale implementation with many subsystems and potentially very
high-dimensional variables, a more sophisticated message-passing scheme is necessary to
avoid using excessive amounts of network bandwidth for the messages themselves. In this
setting, a standard approach is to use a hierarchical topology, so each subsystem sends
its messages to a ‘regional collector’, and the regional collectors aggregate and pass these
messages on to the central collector. In addition, in-memory compression algorithms can be
used to reduce the sizes of the messages themselves. We omit a further discussion since these
are standard issues for large-scale MPI implementations and not specific to ADMM.

9.3 Graph computing frameworks

Since ADMM can be interpreted as performing message-passing on a graph, it is natural to
implement it in a graph processing framework. Conceptually, the implementation will be
similar to the MPI case discussed above, except that the role of the central collector will
often be handled abstractly by the system, rather than having an explicit central collector
process. In addition, higher-level graph processing frameworks provide a number of built in
services that one would otherwise have to manually implement, such as fault tolerance.

Many modern graph frameworks are based on or inspired by Valiant’s bulk-synchronous
parallel (BSP) model [Val90] for parallel computation. A BSP computer consists of a set
of processors networked together, and a BSP computation consists of a series of global
supersteps. Fach superstep consists of three stages: parallel computation, in which the
processors, in parallel, perform local computations; communication, in which the processors
communicate among themselves; and barrier synchronization, in which the processes wait
until all processes are finished communicating.

The first step in each ADMM superstep consists performing local y;- and x;-updates. The
communication step would broadcast the new x; and y; values to a central collector node, or
globally to each individual processor. Barrier synchronization is then used to ensure that all
the processors have updated their primal variable before the central collector averages and
rebroadcasts the results.

Specific frameworks directly based on or inspired by the BSP model include the Parallel
BGL [GLO05], GraphLab [LGK'10], and Pregel [MAB*10], among others. Since all three
follow the general outline above, we refer the reader to the individual papers for details.
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9.4 MapReduce

MapReduce [DGO8] is a popular programming model for distributed batch processing of very
large datasets. It has been widely used in industry and academia, and its adoption has been
bolstered by the open source project Hadoop, inexpensive cloud computing services available
through Amazon, and enterprise products and services offered by Cloudera. MapReduce li-
braries are available in many languages, including Java, C++, and Python, among many
others, though Java is the primary language for Hadoop. Though it is awkward to express
ADMM in MapReduce, the amount of cloud infrastructure available for MapReduce comput-
ing can make it convenient to use in practice, especially for large problems. We briefly review
some key features of Hadoop below; see [Whil0] for general background and motivation, and
[Mur10] for some comments on best practices in setting up MapReduce tasks.

Hadoop is a software framework that contains a number of components supporting large-
scale, fault-tolerant distributed computing applications, and is used very widely in industry
for very large-scale distributed computing. The three components of primary relevance here
are HDF'S, a distributed file system based on Google’s GFS [GGL03]; HBase, a distributed
database based on Google’s BigTable [CDG™08]; and, of course, the MapReduce engine itself.
Because ADMM, an iterative algorithm, does not naturally fit into the batch-processing
MapReduce paradigm, it is necessary to be aware of certain infrastructure details in addition
to understanding MapReduce in the abstract.

HDFS is a distributed filesystem, meaning that it manages the storage of data across an
entire cluster of machines. It is designed for situations where a typical file may be gigabytes
or terabytes in size and high-speed streaming read access is required. The base units of
storage in HDF'S are blocks, which are 64 MB to 128 MB in size in a typical configuration.
Files stored on HDFS are comprised of blocks; each block is stored on a particular machine
(though for redundancy, there are replicas of each block on multiple machines), but different
blocks in the same file need not be stored on the same machine or even nearby. For this
reason, any task that processes data stored on HDFS should process a single block of data
at a time, since a block is guaranteed to reside wholly on one machine; otherwise, one may
unnecessarily access data across different machines to compute a result. In general, it is best
to store a small number of large files and process them a block at a time.

A MapReduce computation consists of a set of Map tasks, which process subsets of the
input data in parallel, followed by a Reduce task, which combines the results of the Map
tasks. Both the Map and Reduce functions are specified by the user and operate on key-value
pairs. The Map function performs the transformation

(k,v) = [(k,01), - - (B, vpa)]s
that is, it takes a key-value pair and emits a list of intermediate key-value pairs. The frame-

work then collects all the values v, ..., v. that correspond to the same output key k. (across
all Mappers) and passes them to the Reduce functions, which performs the transformation

(K [vy, .. vl]) = (K", R(vy, ... ul),

»Er

where R is a commutative and associative function. For example, R could simply sum v;.
In Hadoop, Reducers can emit lists of key-value pairs rather than just a single pair.
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In general, the input to each Map task is data stored on HDFS, and Mappers cannot
access local disk directly or perform any stateful computation. The scheduler runs each
Mapper as close to its input data as possible, ideally on the same node, in order to min-
imize network transfer of data. To help preserve data locality, each Map task should also
be assigned around a block’s worth of data. Note that this is very different from the imple-
mentation presented for MPI, where each process can be told to pick up the local data on
whatever machine it is running on.

Since each Mapper only handles a single block of data, there will usually be a number of
Mappers running on the same machine. To reduce the amount of data transferred over the
network, Hadoop supports the use of combiners, which essentially Reduce the results of all
the Map tasks on a given node so only one set of intermediate key-value pairs need to be
transferred across machines for the final Reduce task. In other words, the Reduce step should
be viewed as a two-step process: First, the results of all the Mappers on each individual node
are reduced with Combiners, and then the records across each machine are Reduced. This
is a major reason why the Reduce function must be commutative and associative.

Each iteration of ADMM can easily be represented as a MapReduce task: The parallel
local computations are performed by Maps, and the global aggregation is performed by a
Reduce. The major difficulty is that MapReduce tasks are not designed to be iterative and
preserve state in the Mappers across iterations, which is necessary to implement ADMM.

We will describe a simple global consensus implementation to give the general flavor, and
refer the reader to [LS10] for suggestions on how to improve this implementation and how
best to extend to the general consensus case. Here, a local dataset D; should be assumed
to be a chunk of data comprising a single HDFS block, so neither an entire file nor a single
training example. Since the input value to a Mapper is a block of data, we also need a
mechanism for a Mapper to read in local variables, and for the Reducer to store the updated
variables for the next iteration. Below, we use HBase, a distributed database built on top of
HDEFS that provides fast random read-write access.

Algorithm 2 An iteration of global consensus ADMM in Hadoop/MapReduce.

function map(key i, dataset D;)
1. Read (z;,v:, 2) from HBase table.
2. Compute 2 := prox, y,((1/N)2).
3. Update y; := y; + p(a; — 2).
4. Update z; := argmin,, (f;(z) +y! (z — 2) + (p/2)||z — 2|)3).
5. Emit (key CENTRAL, record (z;,v;)).

function reduce(key CENTRAL, records (z1,%1), ..., (N, yN))
1. Update 2 := ZZ]\LI x; + (1/p)yi.
2. Emit (key j, record (z;,y;,%)) to HBase for j =1,..., N.

Here, we have the Reducer compute 2 = SN z; 4+ (1/p)y; rather than z or Z because
summation is associative while averaging is not. We assume N is always known. We have N
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Mappers, one for each subsystem, and each Mapper updates y; and x; using the Z from the
previous iteration. Each Mapper independently executes the proximal step to compute z, but
this is usually a cheap operation like soft thresholding. It emits an intermediate key-value
pair that essentially serves as a message to the central collector. There is a single Reducer,
playing the role of a central collector, and its incoming values are the messages from the
Mappers. The updated records are then written out directly to HBase by the Reducer, and
a wrapper program restarts a new MapReduce iteration if the algorithm has not converged.
The wrapper will check whether pv/N|[z — 2P* ||y < €™ and (320, [|#; — 2[|2)V/2 < € to
determine convergence, as in the MPI case. (The wrapper checks the termination criteria
instead of the Reducer because they are not associative to check.)

It is worth briefly commenting on how to store the variables in HBase. HBase, like
BigTable, is a distributed multi-dimensional sorted map. The map is indexed by a row key,
a column key, and a timestamp. Each cell in an HBase table can contain multiple versions
of the same data indexed by timestamp; in our case, we can use the iteration counts as
the timestamps to store and access data from previous iterations; this is useful for checking
termination criteria, for example. The row keys in a table are strings, and HBase maintains
data in lexicographic order by row key. This means that rows with lexicographically adjacent
keys will be stored on the same machine or nearby. In our case, variables should be stored
with the subsystem identifier at the beginning of row key, so information for the same
subsystem is stored together and is efficient to access. For more details, see [CDG108,
Whil0]. Also, note that we have discussed HBase since it is part of Hadoop, but there are
other distributed key-value stores now available that may be more suitable for particular
applications.

The discussion and pseudocode above omits and glosses over many details for simplicity
of exposition. MapReduce frameworks like Hadoop also support much more sophisticated
implementations, which may be necessary for very large scale problems. For example, if
there are too many values for a single Reducer to handle, we can use an approach similar in
concept to the one suggested for MPI: Mappers emit pairs to ‘regional’ reduce jobs, and then
an additional MapReduce step is carried out that uses an identity mapper and aggregates
regional results into a global result. In this section, our goal is merely to give a general flavor
of some of the issues involved in implementing ADMM in a MapReduce framework, and we
refer to [DGO8, Whil0, LS10] for further details.
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10 Numerical examples

In this section, we report numerical results for a few examples. The examples are chosen to
illustrate a variety of the ideas discussed above, including caching matrix factorizations, using
iterative solvers for the updates, and using consensus form ADMM to solve a distributed
problem. The implementations of ADMM are written to be as simple as possible, with no
optimization, customization, or tuning. All times are reported for a 3 GHz Intel Core 2 Duo
processor.

10.1 Small dense lasso

We consider a small, dense instance of the lasso problem described in §6.4, where the m x n
feature matrix A has m = 1500 examples and n = 5000 features. Each entry of A was
sampled independently from a standard normal distribution, and the columns were then
normalized to have unit norm. To generate the labels, we first generated a ‘true’ value
" € R", with 100 nonzero entries, each sampled independently from a standard normal
distribution. The labels b were then computed as b = Az'™° + v, where v ~ N(0,10731).
This corresponds to a signal-to-noise ratio ||Az""¢||3/||v||3 around 60.

The ADMM algorithm parameters were p = 1, and stopping criterion tolerances ¢’ =
10~* and € = 1072, The variables u° and z° were initialized to be zero.

We first solve a single instance of the problem, with a fixed regularization parameter A\,
and then discuss computing the whole regularization path, in which we solve the problem
for a wide range of regularization parameters.

Single problem. The parameter A was chosen as A = 0.1\ .y, Where Aoy = [|ATD||o is
the critical value of A above which the solution of the lasso problem is z = 0. (Although not
relevant, this choice correctly identifies about 80% of the nonzero entries in z""°.)

Figure 2 shows the primal and dual residual norms versus iteration, as well as the associ-
ated stopping criterion limits e” and ¢4"®! (which vary slightly in each iteration since they de-
pend on z*, z¥, and y* through the relative tolerance terms). The stopping criterion was trig-
gered after 15 iterations, but we ran ADMM for 35 iterations to show the continued progress.
Figure 3 shows the objective suboptimality p* — p*, where p* = (1/2)||Az* — b]|2 + \||2*|;
is the objective value at z¥. (The optimal objective value p* = 17.4547 was independently
verified using 11_1s [KKL*07].)

Since A is fat (i.e., m < n), we apply the matrix inversion lemma to (ATA + pI)~! and
instead compute the factorization of the smaller matrix I + (1/p)AAT, which is then cached
for subsequent z-updates. The factor step itself takes about nm?+(1/3)m? flops, which is the
cost of forming AAT and computing the Cholesky factorization. Subsequent updates require
two matrix-vector multiplications and forward-backward solves, which require approximately
4mn + 2m? flops. (The cost of the soft thresholding step in the z-update is negligible.) For
these problem dimensions, the flop count analysis suggests a factor/solve ratio of around
350, which means that 350 subsequent ADMM iterations can be carried out for the cost of
the initial factorization.
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Figure 2: Norms of primal residual (top) and dual residual (bottom) versus itera-
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Figure 4: Iterations needed versus A for warm start (solid line) and cold start
(dashed line).

In our basic implementation, the factorization step costs about 1 second and the z-update
costs around 30 ms. (This gives a factor/solve ratio of only 35, less than predicted, due to a
particularly efficient matrix-matrix multiplication routine used in Matlab.) Thus the total
cost of solving an entire lasso problem is around 1.5 seconds, only 50% more than the initial
factorization.

Finally, we report the effect of varying the parameter p on convergence time. Varying p
over the 100:1 range from 0.1 to 10 yields a solve time ranging between 1.45 seconds to around
4 seconds. (In an implementation with a larger factor/solve ratio, the effect of varying p
would have been even smaller.) Over-relaxation with @ = 1.5 does not significantly change
the convergence time with p = 1, but it does reduce the worst convergence time over the
range p € [0.1,10] to only 2.8 seconds.

Regularization path. We used 100 values of \ spaced logarithmically from 0.01\., (in
which case x* has around 800 nonzeroes), to 0.95\.x (in which case 2* has two nonzero
entries). We first solve the lasso problem as above for A = 0.01\,.x, and for each subsequent
value of A, we then initialize (warm start) z and u at their optimal values for the previous
A. This requires only one factorization for all the computations and significantly reduces the
number of iterations required to solve each lasso problem after the first one.

Figure 4 shows the number of iterations required to solve each lasso problem using this
warm start initialization, compared to the number of iterations required using a cold start
of 20 = u’ = 0 for each \. For the 100 values of ), the total number of ADMM iterations
required is 428, which takes 13 seconds in all. By contrast, with cold starts, we need 2166
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total ADMM iterations and 100 factorizations to compute the regularization path, or around
160 seconds total. This timing information is summarized in Table 1.

TASK TIME (s)
factorization 1.1
r-update 0.03
single lasso (A = 0.1\ pax) 1.5

cold-start regularization path (100 values of \) 160
warm-start regularization path (100 values of \) 13

Table 1: Summary of timings for dense lasso example.

10.2 Distributed /¢; regularized logistic regression

In this example we use consensus ADMM to fit an ¢; regularized logistic regression model.
Following §7, the problem is

minimize Z log (1 + exp(—b;(aj w4+ v))) + Al|lw|1, (45)

i=1

with optimization variables w € R" and v € R. The training set consists of m pairs (a;, b;),
where a; € R" is a feature vector and b; € {—1,1} is the corresponding label.

We generated a problem instance with m = 10° training examples and n = 10* features.
The m examples are distributed among N = 100 subsystems, so each subsystem has 10%
training examples. Each feature vector a; was generated to have approximately 10 nonzero
features, each sampled independently from a standard normal distribution. We choose a
‘true’ weight vector w™® € R" to have 100 nonzero values, and these entries, along with
the true intercept v"™°, were sampled independently from a standard normal distribution.
The labels b; were then generated using

: T,.t t
b; = sign(a; w™ + 0" + &),

where g; ~ N(0,0.1).

The regularization parameter is set to A = 0.1\ .x, Where A\j,.x is the critical value above
which the solution of the problem is w* = 0. Here A, is more complicated to describe
than in the simple lasso case described above. Let A € R™™ have rows al. If 6" is the
fraction of examples with b; = —1 and 6P is the fraction with b; = 1, then let be R™ be a
vector with entries §"°® where b; = 1 and —6P° where b; = —1. Then Ap. = ||AT]|o (see
[KKBO07, §2.1]). (While not relevant here, the final fitted model with A = 0.1\,ax classified
the training examples with around 90% accuracy.)

Fitting the model involves solving the global consensus problem (40) in §7.2 with local
variables x; = (v;, w;) and consensus variable z = (v, w). As in the lasso example, we used
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€ = 107% and €' = 1072 as tolerances and used the initialization u{ = 0,2° = 0. We also
use a fixed parameter of p = 1 for the iterations.

In this example, carrying out the x;-update requires solving a smooth nonlinear opti-
mization problem. To illustrate the use of an iterative method for performing these updates,
we used the limited memory BFGS (L-BFGS) method [LN89, BLN95]. We used Nocedal’s
original Fortran 77 implementation of L-BFGS, with no tuning: We used default parame-
ters, a memory of 5, and a constant termination tolerance across ADMM iterations (for a
more efficient implementation, these tolerances would start large and decrease with ADMM
iterations). As suggested in §4.2, we warm started the x;-updates using the values of x; from
the previous iteration.

To carry out the simulations for this example, we used a serial implementation that
performs the z;-updates sequentially. (In an actual implementation, of course, the z;-updates
would be performed in parallel.) To report an approximation of the timing that would have
been achieved in a parallel implementation, we report the mazimum time required to update
x; among the K subsystems. This corresponds roughly to the maximum number of L-BFGS
iterations required for the x;-update.

Figure 5 shows the progress of the primal and dual residual norm by iteration. The dashed
line shows when the stopping criterion has been satisfied (after 19 iterations), resulting in
a primal residual norm of about 1. Since the RMS consensus error can be expressed as
(1/+/m)||7*||2 where m = 10°, a primal residual norm of about 1 means that on average, the
elements of x; agree with those of z up to the third digit.
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Figure 6 shows the suboptimality p* — p* for the consensus variable, where

7' = log (1 + exp(=bi(afw" + ")) + Allw'|,

i=1

and the optimal value p* = 0.3302 x 10° was verified using 11 _logreg [KKBO07]. The lefthand
plot shows ADMM progress by iteration, while the righthand plot shows the cumulative time
in a parallel implementation. It took 19 iterations to satisfy the stopping criterion. The first
4 iterations of ADMM take 2 seconds, while the last 4 iterations before the stopping criterion
is satisfied take less than 0.5 seconds. This is because as the iterates approach consensus,
L-BFGS requires fewer iterations due to warm starting.
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11 Conclusions

In this paper, we have discussed ADMM and illustrated its applicability to distributed convex
optimization in general and many problems in statistical machine learning in particular. We
argue that ADMM can serve as a good general-purpose tool for optimization problems arising
in the analysis and processing of modern massive datasets. Much like gradient descent and
the conjugate gradient method are standard tools of great use when optimizing smooth
functions on a single machine, ADMM should be viewed as a useful general purpose tool in
the distributed regime.

ADMM sits at a higher level of abstraction than classical optimization algorithms like
Newton’s method. In such algorithms, the base operations are low-level, consisting of linear
algebra operations and the computation of gradients and Hessians. In the case of ADMM,
the base operations include solving small convex optimization problems (which in some
cases can be done via a simple analytical formula). For example, when applying ADMM
to a very large model fitting problem, each update reduces to a (regularized) model fitting
problem on a smaller dataset. These subproblems can be solved using any standard serial
algorithm suitable for small to medium sized problems. In this sense, ADMM builds on
existing algorithms for single machines, and so can be viewed as a modular coordination
algorithm that ‘incentivizes’ a set of simpler algorithms to collaborate to solve much larger
global problems together than they could on their own. Alternatively, it can be viewed as a
simple way of ‘bootstrapping’ specialized algorithms for small to medium sized problems to
work on much larger problems than would otherwise be possible.

We emphasize that for any particular problem, it is likely that another method will
perform better than ADMM, or that some variation on ADMM will substantially improve
performance. What is surprising is that in some cases, a simple algorithm derived from basic
ADMM will offer performance that is at least comparable to very specialized algorithms (even
in the serial setting), and in most cases, the simple ADMM algorithm will be efficient enough
to be useful. Moreover, ADMM has the benefit of being extremely simple to implement, and
it maps onto several standard programming models reasonably well.

ADMM was developed over a generation ago, with its roots stretching far in advance of
the Internet, distributed and cloud computing systems, massive high-dimensional datasets,
and the associated large-scale applied statistical problems. Despite this, it appears to be
well suited to the modern regime, and has the important benefit of being quite general in
its scope and applicability.
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A Convergence proof

The basic convergence result given in §3.2 can be found in several references, such as [Gab83,
EB92]. Many of these give more sophisticated results, with more general penalties or inexact
minimization. For completeness, we give a proof here.

We will show that if f and g are closed, proper, and convex, and the Lagrangian L, has a
saddle point, then we have primal residual convergence, meaning that * — 0, and objective
convergence, meaning that p* — p*, where p* = f(2%) + g(2*). We will also see that the
dual residual s* = pAT B(2* — zk~1) converges to zero.

Let (z*, z*,y*) be a saddle point for Ly, and define

VE=(1/p)lly" —yllz + Pl B = 23,

We will see that V¥ is a Lyapunov function for the algorithm, i.e., a nonnegative quantity
that decreases in each iteration. (Note that V* is unknown while the algorithm runs, since
it depends on the unknown values z* and y*.)

We first outline the main idea. The proof relies on three key inequalities, which we will
prove below using basic results from convex analysis along with simple algebra. The first
inequality is

VAL < VE 2 - B - 2R (46)

This states that V¥ decreases in each iteration by an amount that depends on the norm of
the residual and on the change in z over one iteration. Because V¥ < V9 it follows that y*
and Bz"* are bounded. Iterating the inequality above gives that

(P15 + 1B = 2))5) < Ve,
k=0

which implies that 7 — 0 and B(zF*' — 2*) — 0 as k — oo. Multiplying the second
expression by pAT shows that the dual residual s* = pATB(z**! — 2F) converges to zero.
(This shows that the stopping criterion (19), which requires the primal and dual residuals
to be small, will eventually hold.)

The second key inequality is

pk-i-l o p* < _(yk—&-l)Trk—f—l - p<B(Zk+1 o Zk))T (_rk—f—l + B(Zk+1 . Z*)) ’ (47)

and the third inequality is
p* _ pk+1 S y*TTk+1. (48)

The righthand side in (47) goes to zero as k — 0o, because B(z**! — 2*) is bounded and
both r* and B(2*"! — z¥) go to zero. The righthand side in (48) goes to zero as k — 0o,
since r* goes to zero. Thus we have limy_,., p* = p*, i.e., objective convergence.

Before giving the proofs of the three key inequalities, we derive the inequality (20) men-
tioned in our discussion of stopping criterion from the inequality (47). We simply observe
that —rF1 4+ B(2F1 — 2F) = — A(2*! — 2%); substituting this into (47) yields (20),

pk+1 _ p* < _(yk—i-l)TTk:-i-l + ($k+1 _ $*)T8k+1.
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Proof of inequality (48). Since (z*, z*,y*) is a saddle point for Ly, we have
LO(I*a 2*7 y*) S LO(xk+1a 2k+17 y*)

Using Az* + Bz* = ¢, the lefthand side is p*. With p*™! = f(2**1) + g(2**1), this can be
written as
pt < Py

which gives (48).

Proof of inequality (47). By definition, "™ minimizes L,(z, 2", y*). Since f is closed,

proper, and convex it is subdifferentiable, and so is L,. The (necessary and sufficient)
optimality condition is

0 € OL, (2" 2% %) = af (2FH) + ATyF + pAT (A2" T + B2F — o).

(Here we use the basic fact that the subdifferential of the sum of a subdifferentiable function
and a differentiable function with domain R™ is the sum of the subdifferential and the
gradient; see, e.g., [Roc70, §23].)

Since y**! = 9% + pr**1, we can plug in y* = y**! — pr¥*1 and rearrange to obtain

0 € af(z"™) + AT (y" — pB(ZFH! — 2F)).
This implies that 2**! minimizes
f@) + (g = pB(M = 29)T Aw.
A similar argument shows that 2! minimizes g(2) + y**V7 Bz. It follows that

MY + (T = pB(EM = )T AR < far) + (Y — pB(M = M) T Aa

and that
g(zk‘+1> + y(k+1)Tsz+1 < g(z*) + y(kJrl)TBZ*.

Adding the two inequalities above, using Az* + Bz* = ¢, and rearranging, we obtain (47).

Proof of inequality (46). Adding (47) and (48), regrouping terms, and multiplying
through by 2 gives

2(yk+1 . y*)TTk+1 . 2p(B(Zk+1 _ zks))TTk—l-l + 2,0(B(Zk+1 _ Zk))T(B(Zk:—i-l _ Z*)) <0. (49)

The result (46) will follow from this inequality after some manipulation and rewriting.
We begin by rewriting the first term. Substituting y**! = y* + pr*+! gives

25" — )T+ R+l
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and substituting 77! = (1/p)(y**1 — y¥) in the first two terms gives

2/p) (" =y (W =)+ @)y = YRl + el T

Since " — % = (y* — y*) — (y* — y*), this can be written as

1/p) (™ =713 = ly* = y*113) + pllr* 13- (50)
We now rewrite the remaining terms, i.e.,
plr™ S = 20(B(" = )T 4 2p(B(M = )BT — 27)),

where p||r*™]|3 is taken from (50). Substituting 2**! — 2* = (251 — 2%) 4 (2F — 2*) in the
last term gives

pllrt ™ = B = 25+ pl B = MR + 20(B(" = 29)T(B(* - 24)),

and substituting 2**! — 2% = (251 — 2*) — (2% — 2*) in the last two terms, we get

plrt = BEM =25+ p (1B = 2953 = I1B(z" = 29)]3) -
Together with the previous step, this implies that (49) can be written as
Vk: . Vk+1 > pH,rk-i-l o B(zk—H o Zk)”% (51)

To show (46), it now suffices to show that the middle term —2pr*F+DT (B (k1 — k)
of the expanded right hand side of (51) is positive. To see this, recall that z*** minimizes
g(2) + y** VT Bz and 2* minimizes g(2) + y** Bz, so we can add

g(ZkJrl) +y(k+1)Tsz+1 < g(zk) +y(k+1)Tsz

and
g(zk) +ykTsz S g(zk-l-l) +ykTBZk+1

to get that
(yk—i-l . yk)T(B(Zk—H . Zk)) < 0.

Substituting y**! — y¥ = pr¥*! gives the result, since p > 0 by assumption.
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