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ABSTRACT

This paper presents a new technique for partitioning polarimetric
synthetic aperture radar (POL-SAR) imagery into regions of
homogeneous polarimetric backscattering properties. The
method consists of two cascaded steps: an initial texture
segmentation of one image derived from the POL-SAR data, and
a polarimetric statistical region merging process that refines and
modifies the initial segmentation. In the first stage, a
morphological region-based image partitioning technique, the
watershed algorithm, plays the key role. While in the second
stage, the region adjacency graph and the segment dissimilarity
measures derived from the Wishart model and the K distribution
are applied. The overall segmentation algorithm has been tested
using real 4-look POL-SAR imagery and sample results are
provided in the paper. The main innovation of this work is the
utilization of the K distribution in the segmentation process.

1. INTRODUCTION

Polarimetric SAR imagery facilitate the measurement of earth
surface properties such as soil moisture, surface roughness,
vegetation biomass, efc. The polarimetric approach improves
upon such measurements taken by single polarization SAR
imagery. For satellite-based polarimetric SAR remote sensing
applications, there exists considerable interest in developing
automatic data information extraction, content understanding
and interpretation systems.

In an automated polarimetric SAR imagery content
extraction and interpretation system, data segmentation is an
important and essential first step. Simply stated, the goal of
image segmentation is to partition the scene into disjoint,
spatially connected, and homogeneous regions representing
meaningful objects and background, with each region having
uniform and similar polarimetric backscatter characteristics.

For fully polarimetric image segmentation, the maximum
likelihood (ML) [1] and maximum a posteriori (MAP) [2]
polarimetric classifiers have been proposed. Both techniques are
based on the understanding of the statistics of the polarimetric
data and upon muitiple hypotheses testing. Single point statistics
and spatial statistics are needed in the design of the ML and
MAP classifiers, respectively. The multivariate complex
Gaussian model [1] and the complex Wishart model [4] are two
commonly used single point models; while the Markov random
field (MRF) [2] model is a spatial model that makes use of both
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the point polarimetric statistical model and contextual
information of scene. The ML and MAP segmentation
techniques in [1] and [2] are based on such models.

However, most of the ML techniques are performed on a
pixel-by-pixel basis. Hence, such techniques are more akin to
classification than segmentation. On the other hand, polarimetric
K models [3] are generally believed to be more accurate than the
Gaussian and Wishart in modeling of many varieties of textured
natural objects [5]. Due to the lack of easily computable forms
of distribution functions, however, the K model has not been
used to implement ML or MAP segmentation of fully
polarimetric SAR data.

In this paper, we attempt a new technique for fully
polarimetric SAR image segmentation on a region-by-region
basis. The method consists of two cascaded stages. The first
stage is texture segmentation of the intensity image derived from
the POL-SAR data, yielding an over-segmented initial
segmentation. The second stage is a polarimetric statistics-based
region merging. In the first stage, a watershed algorithm [6], [7]
is used, while in the second stage an iterative merging technique
is applied. The region adjacency graph representation is adopted
to describe the relationship of initial and intermediate segments
in the merging process. Segment dissimilarity measures are
constructed from the Wishart model and the K models.
Experimental results are provided.

2. DESCRIPTION OF THE ALGORITHM

The polarimetric data segmentation method consists of two
distinct phases to be described below. The first phase produces
an initial segmentation. And the second one proceeds the
polarimetric statistics-based region merging.

2.1. Texture segmentation

First, a base image derived from the POL-SAR data is
partitioned into its constituent regions in terms of texture
features by applying the watershed transform [7] of the
coefficient of variation map of the base image.

2.1.1. Base image formation.

To facilitate the extraction of the underlying texture features for
texture segmentation, a base image with sufficient speckle
removal and sharpness is desirable. The span image is a non-
coherent summation of HH, HV and VV polarized intensity
images, namely,
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In the span image, the speckle level is lower than in individual
HH, HV or VV intensity images. As no spatial averaging is
involved in its formation, the span image has the same high
resolution as with the original data. The remaining speckle noise
in the span image may still prohibit satisfactory texture
segmentation; therefore, the sharpness-preserving morphological
open-close filter with a fixed structuring element is applied to
the span image to further reduce speckle level.

2.1.2. The Watershed algorithm

For optical images, the watershed algorithm is often performed
on the gradient magnitude computed from the original image.
The image is first mapped into a 3-D surface with gradient
magnitude values being considered as altitudes. Segmentation is
achieved by first locating and labeling the local minima within
the surface. These local minima represent the catchment basins
of the image. Each element of the surface is assigned to its
corresponding catchment basin via a steepest descent path-
following algorithm [8].

When applied to the gradient magnitude of an optical
image, the boundaries in the resulting watershed segmentation
correspond to the edges of regions in the original image.
However, the gradient edge detectors based on the differences
between pixel values usually fail in detecting edges in SAR
images due to the presence of speckle noise. For SAR image
segmentation, the coefficient of variation has been known to be
a constant false alarm rate (CFAR) edge detector [9].

2.1.3. Edge detection
The coefficient of variation (CV) (i.e., the ratio of standard
deviation to mean), is computed as the measure of the texture
strength in the base image. Large CV values indicate the
existence of edges. Hence, we can apply the watershed to an
image of CV values.

2.2. Polarimetric statistic-based region merging

In the second stage, the initial texture segmentation is refined
gradually toward the desired final polarimetric data
segmentation by performing a hierarchical iterative polarimetric
statistic-based region merging.

2.2.1 Statistic-based region merging process
The region merging process consists of five steps:
(1) Perform connected component labeling of the initial
segmentation. .

(2) Create a region adjacency graph (RAG) [10] for

segments.

(3) For each segment, consider the adjacent segments
and identify the similar neighbors (unilateral
similarity).

For segment pairs that are similar to each other
(bilateral similarity), merge the segments and
update the label map and the RAG.

Repeat steps (3) to (4) until desired segmentation is
achieved.
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In the RAG representation of segments, a node or vertex
represents a segment and an edge (or arc) represents adjacency
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between two nodes connected by an edge. Each node has
associated relevant properties of the region it represents.

2.2.2. Multi-look polarimetric SAR image model
For a reciprocal medium (£ w = E vh) , the 1-look polarimetric
data set can be represented by the transposed vector:

E=[Ehh Ehv Evv] @

The multi-look polarimetric data can be represented either
by the Mueller matrix, the Stokes operator, or the covariance
matrix.

Assume that the multi-look processed polarimetric SAR

data are represented in the form of the covariance matrix, Z ,

Le.,
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where n is the number of looks, and g(k) is the kth 1-look

sample.
We assume that the observed polarimetric SAR image

Z(x,y) is composed of distinct segments { S, }, where each
segment is viewed as a statistical population and is defined by its
probability density function (PDF) f(Z,X,) where X, is
the ‘ideal’ unspeckled data.

For a homogeneous and texture-free region, the PDF of
Z is given by the Wishart distribution [4]:
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in which R(n,3)=7°T(n)[(n —1)[(n—2): nis
the number of looks; "é " is the determinant of Z ;
Tr(Z~'Z) denotes the trace of ™' Z 5 ¥ = E(Z); and
T'(x) is the gamma function.

It is well established that complex Wishart model does not
provide a good description for textured land clutter because the
basic assumptions associated with Wishart model generally do
not hold in textured regions [3], [5]. A widely accepted
statistical model for textured polarimetric SAR data is the so-
called polarimetric K-model [5]. The K distribution arises as the
result of underlying Gamma-distributed surface modulating the
pure polarimetric speckle.

Let Y represent the textured POL-SAR image. The K

model for multi-look processed polarimetric SAR data is given
by [3]:
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where K (x) is the modified Bessel function of type two and

of order o, and v is the order parameter.

As the order parameter tends to infinity, the K distribution
will approach Wishart model; as the order parameter tends to
zero, the tail of the distribution lengthens so that the probability
of very high intensity values becomes significant. This latter
case provides a model for ‘spiky’ clutter scene such as
encountered with imaging woodlands.

Based on the Wishart model and the K model, two
polarimetric distance measures [4], [11] can be applied for
classification of polarimetric SAR image on a pixel by pixel
basis, i.e.,

d,(2,%) = In(Z) +1r(z"Z).
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Note that metric dl (Z, Z) is independent of the number
of looks of the data; but d2 (Z,n,;) depends on the number

of looks.

2.2.3. Region dissimilarity measures

Let S= {S],Sz,"', SM }be an M-partition of the image
Z(x, y). According to the Wishart image model, the k™
homogeneous region is fully characterized by 2 - The mean

covariance matrices averaged over the region give the ML

estimate of % « » hamely
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where N, denotes the cardinality of region S, .

The objective cost function may be chosen as the error
function:

N . 9
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Accordingly, it is inferred that the dissimilarity measure
between the region S ; (under test) and its adjacent region S j
within Wishart distributed image is given by

C,, = 10)

ij
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It is obvious to see that this criterion is not symmetric with
respect to index i and j.

The dissimilarity measure between the region S,. (under

test) and its adjacent region S j in K-distributed images is given
by
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Due to the size weighting, the algorithm tends to merge
regions of dissimilar size within the early iteration steps. If the
dissimilarity metric is low, it means that the two regions share a
common homogeneous region. The region merging process is
iterated until a prefixed number of regions is obtained.

2.2.4. Distribution parameter estimation
In order to apply (11), the order parameter v needs to be
selected. In our algorithm, this parameter is estimated using the
single polarization sample data.

The order parameter may be estimated by [3]

A+1/m)+1/v)=(r), (12)

where <t > is the average of the normalized intensity square

over a uniform region, ¢ = | 2/<1>2 ,1 is any intensity. The
estimator is appropriate when the value of v is large.

It has been established that the order parameter can be
estimated more accurately for low order values by [12]

varlln(] =y/'(v) +y'(n), a3)

where l//'(x) is the derivative of the digamma function l/l(x) .

In comparison with (12), this method is more time-consuming,
especially for large values of v.

As a compromise, (12) is first used to find an initial
estimate of v. If this initial value is high (>5), the estimate is
accepted; otherwise (13) is used to refine the estimate.

Table 1 shows some estimated values of the order
parameter in 4 selected areas, which are shown as numbered
boxes in Fig. 1.

Table 1. Typical order parameter estimates

Order Area 1 Area 2 Area 3 Area 4

4 1.61 1.74 2.25 12.5

3. EXPERIMENTS AND RESULTS

The proposed algorithm has been tested to partition SIR-C L-
band 4-look SAR images of Kowloon area, Hong Kong, as
shown in Fig.1. The size of the image shown is 500 by 500
pixels. The initial segmentation from the watershed (shown in
Fig.2) contains more than 800 segments. Before performing the
fully polarimetric statistic-based region merging process, an
intermediate region merging process is obtained in order to
reduce the time of computation. The input data to this
intermediate process are the logarithms of three diagonal



elements in Y (X, y). After the logarithmic transform, the

speckle noise is transformed into additive noise
homomorphically. The merging criterion is simply an Euclidean
metric, i.e., the square root of the summation of squared mean
differences (in the logarithmic domain) between segments
weighted by the same size factor as in Eq.(10) or (11). This
distance measure is motivated by previous work on the
estimation of single point statistics, which states that it is
preferable to attempt the estimation process in the logarithm of
the intensity for small sample [12]. Figure. 3 shows the results of
this intermediate merging process.

Fig. 4 and Fig. 5 illustrate the further refinement of the
watershed segmentation by way of the polarimetric statistic-
based region merging process. In both figures, agreement is
observed between the refined segments and different actual
surface objects that can be identified visually in the span image.
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