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Abstract

In-lining runtime monitors into untrusted binary programs via aspect-
weaving is an increasingly popular technique for efficiently and flexibly
securing untrusted mobile code. However, the complexity of the monitor
implementation and in-lining process in these frameworks can lead to vul-
nerabilities and low assurance for code-consumers. This paper presents a
machine-verification technique for aspect-oriented in-lined reference mon-
itors based on abstract interpretation and model-checking. Rather than
relying upon trusted advice, the system verifies semantic properties ex-
pressed in a purely declarative policy specification language. Experiments
on a variety of real-world policies and Java applications demonstrate that
the approach is practical and effective.

1 Introduction

Software security systems that employ purely static analyses to detect and reject
malicious code are limited to enforcing decidable security properties. Unfortu-
nately, most useful program properties, such as safety and liveness properties,
are not generally decidable and can therefore only be approximated by a static
analysis. For example, signature-based antivirus products accept or reject pro-
grams based on their syntax rather than their runtime behavior, and therefore
suffer from dangerous false negatives, inconvenient false positives, or both (cf.,
[16]). This has shifted software security research increasingly toward more pow-
erful dynamic analyses, but these dynamic systems are often far more difficult
to formally verify than provably sound static analyses.

An increasingly important family of such dynamic analyses are those that
modify untrusted code prior to its execution. In-lined reference monitors (IRMs)



instrument untrusted code with new operations that perform runtime security
checks before potentially dangerous operations [30]. The approach is motivated
by improved efficiency (since IRMs require fewer context switches than external
monitors), deployment flexibility (since in-lining avoids modifying the VM or
0OS), and precision (since IRMs can monitor internal program operations not
readily visible to an external monitor).

Recent work has observed that the resulting self-monitoring code can po-
tentially be machine-verified by a purely static analysis prior to execution (e.g.,
[17, 1, 33]). This hybrid static-dynamic approach to software security effec-
tively imbues a provably sound, static enforcement system with the power of
a dynamic monitor. The resulting protection system can precisely enforce and
verify policies that are not decidable by static code-inspection alone because
in-lining obviates the proof of safety by adding dynamic security checks that
ease the verification task.

Most modern IRM systems are implemented using some form of aspect-
oriented programming (AOP) [36, 31, 9, 10, 15]; therefore, verification of AOP-
based IRM systems is of particular importance. IRMs are implemented in AOP
using pointcut-advice pairs. The pointcuts identify security-relevant program
operations, while the advice prescribes a local code transformation sufficient to
guard each such operation. This suffices to enforce safety policies [30, 18] and
some liveness policies [25].

Independent certification of these AOP-based IRM systems has become in-
creasingly critical due to rapid expansion of their trusted computing bases
(TCBs) [34]. Expressing security policies as trusted aspects often has the disad-
vantage of placing a large portion of the IRM implementation within the TCB
by expressing it as the advice of a trusted aspect. When the policy applies to
a large class of untrusted binaries rather than just one particular application,
these aspects are extremely difficult to write correctly, inviting specification er-
rors [20]. Moreover, in many domains, such as web ad security IRM systems,
policy specifications change rapidly as new attacks appear and new vulnerabil-
ities are discovered (cf., [22, 32, 33]). Thus, the considerable effort that might
be devoted to formally verifying one particular aspect implementation quickly
becomes obsolete when the aspect is revised in response to a new threat.

Therefore, rather than proving that one particular IRM framework cor-
rectly modifies all untrusted code instances, we instead consider the challenge of
machine-certifying a broad class of instrumented code instances with respect to
purely declarative (i.e., advice-free) policy specifications. In contrast to proof-
carrying code (PCC) [27], in which a compiler performs instrumentation using
source code, instrumentation in an IRM framework typically occurs at a purely
binary level where source code is unavailable. Verification therefore demands a
binary-level code analysis that does not rely upon an explicit safety proof de-
rived from source-level information. We therefore take the approach of abstract
interpreting binary IRMs without appealing to such a proof.

The result of our efforts is Chekov”, a light-weight Java bytecode abstract
interpreter and model-checker capable of certifying a large class of realistic IRMs
fully automatically, but without introducing the significant overheads typically



required for model-checking arbitrary code. Chekov” is the first IRM certifica-
tion system that can verify AOP-style IRMs and IRM-policies without appealing
to trusted advice. It extends our prior work on model-checking IRMs [33, 32, 11]
to a full-scale Java IRM framework (the SPoX IRM system [15, 19]) with sup-
port for stateful (history-based) policies, event detection by pointcut-matching,
and IRM implementations that combine (untrusted) before- and after-advice
insertions. Formal proofs of soundness and convergence using Cousot’s abstract
interpretation framework [7] provide strong formal guarantees that the system
successfully prohibits runtime security violations.

The rest of the paper is organized as follows. Section 2 begins with an
overview of our framework, including the policy language, its enforcement by
Java binary rewriting, and a high-level description of the verification algorithm.
Section 3 presents Chekov”’s formal mathematical model. A detailed treat-
ment of Chekov”’s soundness and associated proofs is provided in §4. Section 5
presents in-depth case-studies of eight classes of security policies that we en-
forced on numerous real-world applications, along with a discussion of challenges
faced in implementing and verifying these policies. Finally, §6 and §7 discuss
related work and recommendations for future work respectively.

2 System Overview

2.1 SPoX Background

SPoX (Security Policy XML) is a purely declarative, aspect-oriented policy spec-
ification language [15]. A SPoX specification denotes a security automaton [2]—
a finite- or infinite-state machine that accepts all and only those event sequences
that satisfy the security policy.

Security-relevant program events are specified in SPoX by pointcut expres-
sions similar to those found in other aspect-oriented languages. In source-level
AOP languages, pointcuts identify code join points at which advice code is to
be inserted. SPoX derives its pointcut language from AspectJ, allowing policy
writers to develop policies that regard static and dynamic method calls and
their arguments, object pointers, and lexical contexts, among other properties.

In order to remain fully declarative, SPoX omits explicit, imperative advice.
Instead, policies declaratively specify how security-relevant events change the
current security automaton state. Rewriters then synthesize their own advice in
order to enforce the prescribed policy. The use of declarative state-transitions
instead of imperative advice facilitates formal, automated reasoning about poli-
cies without the need to reason about arbitrary code [20]. State-transitions can
be specified in terms of information gleaned from the current join point, such
as method argument values, the call stack, and the current lexical scope. This
allows advice typically encoded imperatively in most other aspect-oriented se-
curity languages to be declaratively encoded in SPoX policies. Typically this
results in a natural translation from these other languages to SPoX, making
SPoX an ideal target for our analysis.



nez
ceC
sve SV
welV
en € EN
pn € PCN
pol ::= np*sd*e*

np ::= (pointcut name="pn" pcd)

sd ::= (state name="sv")
e =
(edge name="en" [after] pcd ep™)
| (forall "iw" from a; to as e*)
ep =
| (nodes "sv" aj,as)
| (nodes "sv" ap,#)
a=ay+ay | aj-az | b
bu=mn | iv | byxby | bi/bs | (@)

integers
class names
state variables
iteration vars
edge names
pointcut names
policies
named pointcuts
state declarations
edges
edgesets
iteration
edge endpoints
state transitions
policy violations
arithmetic

Figure 1: SPoX policy syntax

The remainder of this section outlines SPoX syntax as background for the
case studies in §5. A formal denotational semantics can be found in §3. We
here use a simplified Lisp-style syntax for readability; the implementation uses

an XML-based syntax for easy parsing, portability, and extensibility.

A SPoX policy specification (pol in Fig. 1) is a list of security automaton

edge declarations. Each edge declaration consists of three parts:

e Pointcut expressions (Fig. 2) identify sets of related security-relevant ev-
ents that programs might exhibit at runtime. These label the edges of the

security automaton.

o Security-state variable declarations (sd in Fig. 1) abstract the security
state of an arbitrary program. The security state is defined by the set
of all program state variables and their integer! values. These label the

automaton nodes.

e Security-state transitions (e in Fig. 1) describe how events cause the secu-
rity automaton’s state to change at runtime. These define the transition

relation for the automaton.

IBinary operator / in Fig. 1 denotes integer division.



re € RE
md € MD
fd € FD
ped =
(call mo™ rt c.md)
| (execution mo™* rt c.md)
| (get mo™ c.fd)
| (set mo™ c.fd)
| (argval n vp)
| (argtyp n ©)
| (target c¢)
| (withincode mo™ 1t c.md)
| (pointcutid "pn")
| (cflow pcd)
| (and pcd™)
| Cor ped™)
| (not ped)
mo ::= public | private
rt=c | void | ---
vp := (true)
| (isnull)
| (inteq n) | (intne n)
| (intle n) | (intge n)
| (intlt n) | (intgt n)
| (streq re)

regular expressions
method names
field names
pointcuts
method calls
callee executions
field get
field set
stack args (values)
stack args (types)
object refs
lexical contexts
named pc refs
control flows
conjunction
disjunction
negation
modifiers
return types
value predicates
object predicates

integer predicates

string predicates

Figure 2: SPoX pointcut syntax



(state name="s")

(forall "i" from O to 9
(edge name="count"
(call "Mail.send")
(nodes "s" i,i+1)))

(edge name="10emails"
(call "Mail.send")
(nodes "s" 10,#))

Figure 3: A policy permitting at most 10 email-send events

An example policy is given in Fig. 3. Edges are specified by edge struc-
tures, each of which defines a set of edges in the security automaton. Each
edge structure consists of a pointcut expression (Lines 5 and 9) and at least
one nodes declaration (Lines 6 and 10). The pointcut expression defines a
common label for the edges in the set, while each nodes declaration imposes a
transition pre-condition and post-condition for a particular state variable. The
pre-condition constrains the set of source states to which the edge applies, and
the post-condition describes how the state changes when an event satisfying the
pointcut expression and all pre-conditions is exhibited. Events that satisfy none
of the outgoing edge labels of the current security state leave the security state
unchanged. Policy-violations are identified with the reserved post-condition “#”.

Multiple, similar edges can be introduced with a single edge structure by
enclosing them within forall structures, such as the one in Line 3. These
introduce iteration variables (e.g., 1) that range over the integer lattice points
of closed intervals. Thus, Fig. 3 allows state variable s to range from 0 to 10,
while an 11th send event triggers a policy violation. Such a policy could be
useful for preventing spam.

A syntax for a subset of the SPoX pointcut language is given in Fig. 2.
SPoX pointcut expressions consist of all pointcuts available in AspectJ [35]
except for those that are specific to AspectJ’s advice language.? This includes
all regular expression operators available in AspectJ for specifying class and
member names. Since SPoX policies are applied to Java bytecode binaries rather
than to source code, the meaning of each pointcut expression is reflected down
to the bytecode level. For example, the target pointcut matches any Java
bytecode instruction whose this argument references an object of class c.

Instead of AspectJ’s if pointcut (which evaluates an arbitrary, possibly
effectful, Java boolean expression), SPoX provides a collection of effect-free
value predicates that permit dynamic tests of argument values at join points.
These are accessed via the argval predicate and include object nullity tests,
integer equality and inequality tests, and string regular expression matching.
Regular expression tests of non-string objects are evaluated by obtaining the

2For example, AspectJ’s advicexecution() pointcut is omitted because SPoX lacks advice.



toString representation of the object at runtime. (The call to the toString
method itself is a potentially effectful operation and is treated as a matchable
join point by the SPoX enforcement implementation. However, subsequent use
of the returned string within injected security guard code is non-effectful.)

2.2 Rewriter

The SPoX rewriter takes as input a Java binary archive (JAR) and a SPoX
policy, and outputs a new application in-lined with an IRM that enforces the
policy. The high-level in-lining approach is essentially the same as the other
IRM systems discussed in §6. Each method body is unpacked, parsed, and
scanned for potentially security-relevant instructions—i.e., those that match the
statically decidable portions of one or more pointcut expressions in the policy
specification. Sequences of guard instructions are then in-lined around these
potentially dangerous instructions to detect and preclude policy-violations at
runtime. The runtime guards evaluate the statically undecidable portions of
the pointcut expressions in order to decide whether the impending event is
actually security-relevant. For example, to evaluate the pointcut (argval 1
(intgt 2)), the rewriter might guard method calls of the form m(z) with the
test x > 2.

In-lined guard code must also track event histories if the policy is stateful.
To do so, the rewriter reifies abstract security state variables (e.g., s in Fig. 3)
into the untrusted code as program variables. The guard code then tracks the
abstract security state by consulting and updating the corresponding reified
state. To protect reified state from tampering, the variables are typically added
as private fields of new classes with safe accessor methods. This prevents the
surrounding original bytecode from corrupting the reified state and thereby
effecting a policy violation.

The left column of Fig. 4 gives pseudocode for an IRM that enforces the
policy in Fig. 3. For each call to method Mail.send, the IRM tests two possible
preconditions: one where 0 < s < 9 and another where s = 10. In the first case,
it increments s; in the second, it aborts the process.

Observe that in this example security state s has been reified as two separate
fields of class Policy—s and temp_s. This reflects a reality that any given policy
has a variety of IRM implementations, many of which contain unexpected quirks
that address non-obvious, low-level enforcement details. In this case the double
reification is part of a mechanism for resolving potential join point conflicts in
the source policy [20]. A certifier must tolerate such variations in order to be
generally applicable to many IRMs and not just one rewriting strategy.

2.3 Verifier Overview

Our verifier takes the approach of [33], using abstract interpretation to non-
deterministically explore all control-flow paths of untrusted code, and inferring
an abstract program state at each code point. A model-checker then proves that
each abstract state is policy-adherent, thereby verifying that no execution of
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if (Policy.s >= 0 && Policy.s <= 9)

Policy.temp_s := Policy.s+1;

if (Policy.s == 10)

call System.exit(1);

Policy.s := Policy.temp.s;

call Mail.send();
(A'=S"NA'=T"AS'>0

(A=S AN A=T)
(A=S NA=T NS>0 A 5<9)

(A=S ANA=T'ANS>0AS<YIAT=5+1)
(A=S NA=T A (S<0V 5>9))

(A=S AN A=T'" NS>0 AN S<9AT=S+1 A S=10)
(A=S A A=T A (S<0V §>9) A 5=10)

(A=S AN A=T' NS>0 A S<IAT=S+1 A S#10)
(A=5 A A=T A (S<0V S>9) A 5#10)

(A=S"NA=T'AS'">0NS'<KOANT=8"+1 A S8'#10 A S=T)
(A=S"ANA=T A (8'<0V 8'>9) A S"#10 A S=T)

NS KOANT=S"+1AS'AI0NS=T NA'=I NI>0NI<IA A=T+1

(A=S"NA'=T'ANS'>0NS'SOANT=S"+1AS'A10ANS=T AN A'=10 A A=+#
(A=S"NA=T'"NS'>0NS'<ONT=S"+1AS'#1I0ANS=T A (A'<0V A’ >9) A A'#A10 A A=A’

(A'=S" A A'=T A

(A'=S"NA'=T A (S'<0V S8'>9) AS'A10 A S=T AN A'=10 A A=+#
(S'<0V S'>9) AS'AI0ANS=T A (A'<O0V A’ >9) AN A'#A10N A=A’

)
)
)
(A'=S"NA'=TA(S'<OV 'S ASAIOANS=T ANA'=T ANT>0NI<SIA A=T+1)
)
)

0.1

1.1

2.1
2.2

3.1
3.2

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

Figure 4: An abstract interpretation of instrumented pseudocode



the code enters a policy-violating program state. Policy-violations are modeled
as stuck states in the operational semantics of the verifier—that is, abstract
interpretation cannot continue when the current abstract state fails the model-
checking step. This results in conservative rejection of the untrusted code.
The verifier is expressed as a bisimulation of the program and the security
automaton. Abstract states in the analysis conservatively approximate not only
the possible contents of memory (e.g., stack and heap contents) but also the
possible security states of the system at each code point.

The heart of the verification algorithm involves inferring and verifying rela-
tionships between the abstract program state and the abstract security state.
When policies are stateful, this involves verifying relationships between the ab-
stract security state and the corresponding reified security state(s). These rela-
tionships are complicated by the fact that although the reified state often pre-
cisely encodes the actual security state, there are also extended periods during
which the reified and abstract security states are not synchronized at runtime.
For example, guard code may preemptively update the reified state to reflect a
future security state that will only be reached after subsequent security-relevant
events, or it may retroactively update the reified state only after numerous op-
erations that change the security state have occurred. These two scenarios
correspond to the insertion of before- and after-advice in AOP IRM implemen-
tations. The verification algorithm must be powerful enough to automatically
track these relationships and verify that guard code implemented by the IRM
suffices to prevent policy violations.

To aid the verifier in this task, we modified the SPoX rewriter to export two
forms of untrusted hints along with the rewritten code: (1) a relation ~ that
associates policy-specified security state variables s with their reifications r, and
(2) marks that identify code regions where related abstract and reified states
might not be synchronized according to the following definition:

Definition 1 (Synchronization Point). A synchronization point (SYNC') is an
abstract program state with constraints ¢ such that proposition C/\( Va7 # a))
s unsatisfiable.

Chekov” uses these hints (without trusting them) to guide the verification
process and to avoid state-space explosions that might lead to conservative
rejection of safe code. In particular, it verifies that all non-marked instructions
are SYNC-preserving, and each outgoing control-flow from a marked region is
SYNC-restoring. This modularizes the verification task by allowing separate
verification of marked regions, and controls state-space explosions by reducing
the abstract state to SYNC throughout the majority of binary code which is
not security-relevant.

Providing incorrect hints causes Chekov” to reject (e.g., when it discovers
that an unmarked code point is potentially security-relevant) or converge more
slowly (e.g., when security-irrelevant regions are marked and therefore undergo
unnecessary extra analysis), but it never leads to unsound certification of unsafe
code.



2.4 A Verification Example

Figure 4 demonstrates a verification example step-by-step. The pseudocode
constitutes a marked region in the target program, and the verifier requires that
the abstract interpreter is in the SYNC state immediately before and after.

At each code point, the verifier infers an abstract program state that includes
one or more conjunctions of constraints on the abstract and reified security state
variables. These constraints track the relationships between the reified and
abstract security state. Here, variable A represents the abstract state variable s
from the policy in Fig. 3. Reifications Policy.s and Policy.temp_s are written
as S and T, respectively, with S ~ A and T' ~ A. Thus, state SYNC' is given
by constraint expression (A =S A A =T) in this example.

The analysis begins in the SYNC state, as shown in constraint list 0.1. Line 1
is a conditional, and thus spawns two new constraint lists, one for each branch.
The positive branch (1.1) incorporates the conditional expression (S >0 A S <
9) in Line 2, whereas the negative branch (2.2) incorporates the negation of the
same conditional. The assignment in Line 2 is modeled by alpha-converting T'
to T” and conjoining constraint S = T + 1; this yields constraint list 2.1.

Unsatisfiable constraint lists are opportunistically pruned to reduce the state
space. For example, list 3.1 shows the result of applying the conditional of Line 3
to 2.1. Conditionals 1 and 3 are mutually exclusive, resulting in contradictory
expressions S < 9 and S = 10; therefore, 3.1 is dropped. Similarly, 3.2 is
dropped because no control-flows exit Line 4.

To interpret a security-relevant event such as the one in Line 6, the verifier
simulates the traversal of all edges in the security automaton. In typical policies,
any given instruction fails to match a majority of the pointcut labels in the
policy, so most are immediately dropped. The remaining edges are simulated by
conjoining each edge’s pre-conditions to the current constraint list and modeling
the edge’s post-condition as a direct assignment to A. For example, edge count
in Fig. 3 imposes pre-condition (0 < I < 9) A (A = I), and its post-condition
can be modeled as assignment A := I 4+ 1. Applying these to list 5.1 yields list
6.1. Likewise, 6.2 is the result of applying edge 10emails to 5.1, and 6.4 and
6.5 are the results of applying the two edges (respectively) to 5.2.

Constraints 6.3 and 6.6 model the possibility that no explicit edge matches,
and therefore the security state remains unchanged. They are obtained by
conjoining the negations of all of the edge pre-conditions to states 5.1 and 5.2,
respectively. Thus, security-relevant events have a multiplicative effect on the
state space, expanding n abstract states into at worst n(m + 1) states, where m
is the number of potential pointcut matches.

If any constraint list is satisfiable and contains the expression A = #, the
verifier cannot disprove the possibility of a policy violation and therefore con-
servatively rejects. Constraints 6.2 and 6.5 both contain this expression, but
they are unsatisfiable, proving that a violation cannot occur. Observe that the
IRM guard at Line 3 is critical for proving the safety of this code because it
introduces constraint S’ # 10 that makes these two lists unsatisfiable.

At all control-flows from marked to unmarked regions, the verifier requires

10



(A=SANA=T) 0.1
1 X = 1;
(A=SNA=TArX=1) 1.1
2 if (Policy.s == 0 && x > 2)
(A=SANA=TANX=1ANS5=0ANX>2) 2.1
3 System.exit();
(A=SANA=TANX=1A(S#0V X<2)) 3.1
4+ call secure_method(x);
(A=SANA=TANX=1A(SAOVX<2) NA'=0NX>2NA=#) 4.1
(AA=SANA=TAX=1A(SA0V X<2) A(AA0V X<2)ANA'=A) 4.2

Figure 5: An example verification with dynamically decidable pointcuts

a constraint list that implies SYNC'. In this example, constraints 6.1 and 6.6
are the only remaining lists that are satisfiable, and conjoining them with the
negation of SYNC expression (A = S) A (A = T') yields an unsatisfiable list.
Thus, this code is accepted as policy-adherent.

Verification of events corresponding to statically undecidable pointcuts (such
as argval) requires analysis of dynamic checks inserted by the rewriter, which
consider the contents of the stack and local variables at runtime. An exam-
ple is shown in Fig. 5, which enforces a policy that prohibits calls to method
secure_method with arguments greater than 2. Verifying this IRM requires the
inclusion of abstract state variable X in constraint lists to model the value of
local program variable x. The abstract interpreter therefore tracks all numeri-
cally typed stack and local variables, and incorporates Java bytecode conditional
expressions that test them into constraint lists.

Non-numeric dynamic pointcuts are modeled by reducing them to equiva-
lent integer encodings. For example, to support dynamic string regexp-matching
(streq pointcut expressions), Chekov” introduces a boolean-valued variable X,
for each string-typed program variable x and policy regexp re. Program oper-
ations that test x against re introduce constraint X,. = 1 in their positive
branches and X, = 0 in their negative branches.

2.5 Limitations

Our system supports IRM’s that maintain a global invariant whose preserva-
tion across the majority of the rewritten code suffices to prove safety for small
sections of security-relevant code, followed by restoration of the invariant. Our
experience with existing IRM systems indicates that most IRMs do maintain
such an invariant (SYNC') as a way to avoid reasoning about large portions of
security-irrelevant code in the original binary. However, IRMs that maintain
no such invariant, or that maintain an invariant inexpressible in our constraint
language, cannot be verified by our system. For example, an IRM that stores
object security states in a hash table cannot be certified because our constraint

11



language is not sufficiently powerful to express collision properties of hash func-
tions and prove that a correct mapping from security-relevant objects to their
security states is maintained by the IRM.

To keep the rewriter’s annotation burden small, our certifier also uses this
same invariant as a loop-invariant for all cycles in the control-flow graph. This
includes recursive cycles in the call graph as well as control-flow cycles within
method bodies. Most IRM frameworks do not introduce such loops to non-
synchronized regions. However, this limitation could become problematic for
frameworks wishing to implement code-motion optimizations that separate sec-
urity-relevant operations from their guards by an intervening loop boundary.
Allowing the rewriter to suggest different invariants for different loops would
lift the limitation, but taking advantage of this capability would require the
development of rewriters that infer and express suitable loop invariants for the
IRMs they produce. To our knowledge, no existing IRM systems yet do this.

While our certifier is provably convergent (since Chekov” arrives at a fixpoint
for every loop through enforcing SYNC' at the loop back-edge), it can experi-
ence state-space explosions that are exponential in the size of each contiguous
unsynchronized code region. Typical IRMs limit such regions to relatively small,
separate code blocks scattered throughout the rewritten code; therefore, we have
not observed this to be a significant limitation in practice. However, such state-
space explosions could be controlled without conservative rejection by applying
the same solution above. That is, rewriters could suggest state abstractions for
arbitrary code points, allowing the certifier to forget information that is unnec-
essary for proving safety and that leads to a state-space explosion. Again, the
challenge here is developing rewriters that can actually generate such abstrac-
tions.

Another limitation of our current framework is that our implementation
and theoretical analysis do not provide support for concurrency, which we plan
to add in future work. Adding concurrency support requires a standard race
detection analysis such as the one implemented by Racer [5].

3 System Formal Model

The certifier in our certifying IRM framework forms the centerpiece of the
trusted computing base of the system, allowing the monitor and monitor-prod-
ucing tools to remain untrusted. An unsound certifier (i.e., one that fails to
reject some policy-violating programs) can lead to system compromise and po-
tential damage. It is therefore important to establish exceptionally high assur-
ance for the certification algorithm and its implementation.

In this section we address the former requirement by formalizing the cer-
tification algorithm as the operational semantics of an abstract machine. For
brevity, we here limit our attention to a core subset of Java bytecode that
is representative of important features of the full language.? We additionally
formalize the JVM as the operational semantics of a corresponding concrete

3The implementation supports the full Java bytecode language (see §5).
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ifle L conditional jump

getlocal / read field given in static operand

setlocal /¢ write field given in static operand
jmp L unconditional jump
event, n security-relevant operation

Figure 6: Core subset of Java bytecode

*

pol ::= edg
edg ::= (forall v=e;..es edg) | (edge ped ep™)
ped = (or pec™)

pee = (and pct™)

pct = pea | (not pca)

peca = (event, n) | (arg ni (intleq no))
ep ::= (nodes a ey e3)
ex=n|l|r|al|d]|ete | e1—es | erxes | e1/ea | (e)

Figure 7: Core subset of SPoX

machine over the same core subset. These two semantics together facilitate a
proof of soundness in §4. The proof establishes that executing any program
accepted by the certifier never results in a policy violation at runtime.

3.1 Java Bytecode Core Subset

Figure 6 lists the subset of Java bytecode that we consider. Instructions ifle L
and jmp n implement conditional and unconditional jumps, respectively, and
instructions getlocal n and setlocal n read and set local variable values, respec-
tively. Instruction event, n models a security-relevant operation that exhibits
event n and pops y arguments off the operand stack. While the real Java byte-
code instruction set does not include event,, in practice it is implemented as
a fixed instruction sequence that performs a security-relevant operation (e.g., a
system call).

Figure 7 defines a core subset of SPoX for the Java bytecode language in
Figure 6. Without loss of generality, it assumes all pointcuts are expressed in
disjunctive normal form.

13



x =(L:i,p,0) (configurations)
L (code labels)
i (Java bytecode instructions)
Y:(rdawd) ~Z (concrete store mappings)
oceX (concrete stores)
pu=-|zup (concrete stack)
€L (concrete program values)
X0 (initial configurations)
P:=(L,p,s) (programs)
p:L—1 (instruction labels)
s:L— L (label successors)

Figure 8: Concrete machine configurations and programs

3.2 Concrete Machine

We start out by formalizing the JVM as the operational semantics of a con-
crete machine over our core Java bytecode subset. Following the framework
established in [33], Fig. 8 defines the concrete machine as a tuple (C, xq,+),
where C is the set of concrete configurations, yg is the initial configuration, and
— is the transition relation in the concrete domain. A concrete configuration
x == (L:i,p,0) is a triple consisting of a labeled bytecode instruction L:i, a
concrete operand stack p, and a concrete store 0. The store o maps heap and
the local variables ¢, abstract security state variables a, and reified security state
variables r to their integer values. A security automaton state is o restricted to
the abstract state variables, denoted o|,.

Figure 9 provides the small-step operational semantics of the concrete ma-
chine. Policy-violating events fail to satisfy the premise of Rule (CEVENT);
therefore the concrete semantics model policy-violations as stuck states. The
concrete semantics have no explicit operation for normal program termination;
we model termination as an infinite stutter state. The soundness proof in §4
shows that any program that is accepted by the abstract machine will never en-
ter a stuck state during any concrete run; thus, verified programs do not exhibit
policy violations when executed.

3.3 SPoX Concrete Denotational Semantics

A SPoX security policy denotes a security automaton whose alphabet is the
universe JP of all join points. We refer to such an automaton as an aspect-
oriented security automaton. A join point, defined in Fig. 10, is a recursive
structure that abstracts the control stack [37]. Join point (k,v*,jp) consists
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xo < a1
(Ly :ifle Lo, 1 it @ p,0) — (Lo : p(La), p,0)
To > X1
n CIFLENEG
(Ly :ifle Lo,y it xo 2 pyo) — (s(L1) :p(s(Ll)),p,o>( )
(CGETLOCAL)

(CIFLEPOS)

(L : getlocal ¢, p,c) — (s(L) : p(s(L)),o(¥) :: p,o)
(CSETLOCAL)

(L : setlocal £, x :: p,o) — (s(L) : p(s(L)), p,o[l := z])
(CJImp)

(L1 :jmp Ly, p,0) = (Ly : p(L2), p,0)
o' €0(0la, (eventy n,xy i g -y e, ()
(L:eventy n,x1 @ -+ &y 1 pr,0) = (s(L) : p(s(L)), pr, ola = o'(a)]) (CEVENT)

Figure 9: Concrete small-step operational semantics

o € Obj objects
va=o | null values
gp =) | (k,z",jp) join points
k= call c.md | get c.fd | set c.fd join kinds

Figure 10: Join points
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of static information k found at the site of the current program instruction,
dynamic information v* including any arguments consumed by the instruction,
and recursive join point jp modeling the rest of the control stack. The empty
control stack is modeled by the empty join point ().

The denotational semantics in Fig. 11 transform a SPoX policy into an
aspect-oriented security automaton, which accepts or rejects (possibly infinite)
sequences of join points. We use W for disjoint union, Y for the class of all
countable sets, 24 for the power set of A, T and U for the partial order relation
and join operation (respectively) over the lattice of partial functions, and L for
the partial function whose domain is empty. For partial functions f and g we
write flg] = {(z, f(z)) | * € Dom(f)\Dom(g)} U g to denote the replacement
of assignments in f with those in g.

Security automata are modeled in the literature [30] as tuples (@, Qo, E, J)
consisting of a set ) of states, a set Q9 C @ of start states, an alphabet F
of events, and a transition function ¢ : (Q x E) — 2%. Security automata
are non-deterministic; the automaton accepts an event sequence if and only if
there exists an accepting path for the sequence. In the case of aspect-oriented
security automata, @ is the set of partial functions from security-state variables
to values, Qo = {qo} is the initial state that assigns 0 to all security-state
variables, ' = JP is the universe of join points, and ¢ is defined by the set of
edge declarations in the policy (discussed below).

Each edge declaration in a SPoX policy defines a set of source states and
the destination state to which each of these source states is mapped when a join
point occurs that matches the edge’s pointcut designator. The denotational
semantics in Fig. 11 defines this matching process in terms of the match-pcd
function from the operational semantics of AspectJ [37]. We adapt a subset of
pointcut matching rules from this definition to SPoX syntax in Fig. 12.

3.4 Abstract Machine

In order to statically detect and prevent policy violations, we model the verifier
as an abstract machine. The abstract machine is defined as a triple (A, xo, ~),
where A is the set of configurations of the abstract machine, xg € A is an initial
configuration, and ~ is the transition relation in the abstract domain. Figure 13
defines abstract configurations X to be either L (denoting an unreachable state)
or a tuple (L:i,(, p, 6), where L:i is a labeled instruction, ¢ is a constraint list,
and p and 6 model the abstract operand stack and abstract store, respectively.
The domains of p and & consist of symbolic expressions instead of integer values.

The small-step operational semantics of the abstract machine are given in
Fig. 14. Rules (AIrLEPOS), (AIFLENEG), and (AEVENT) are non-deterministic—
the abstract machine non-deterministically explores both branches of condi-
tional jumps and all possible security automaton transitions for security-relevant
events.

Rule (AEVENT) is the model-checking step. Its premise appeals to an abstract
denotational semantics P for SPoX, defined in Fig. 15, to infer possible security
automaton transitions for policy-satisfying events. Policy-violating events (for

16



gEQ=a—7 security states

SeSM=5V—-~7Z state-variable maps
Yev=0—-~7% meta-variable maps
uwewxy abstract-concrete map pairs
P : pol — (T x 29 x T x policy denotations

((Q % JP) —29))
ES : edg — U — 2P {Suceed Fail)x SMxSM o qgoget denotations

PC : ped — JP — {Succ, Fail} pointcut denotations
EP:s—= U — (SM x SM) endpoint constraints
Eie— (IXxXE)—17Z expression denotations

P[[edgl s edgn]] = (Q7 {q0}7 JP,5)
where go = SV x {0}

and 6(q,1p) = {alS'] | (7,5, ") € UrzicnéSledg,]L, S C 4, f(ip) = Suce)
ES[(forall 9 from a; to ag edg)] =
UA[al]WSjSA[[az]]w 58[[6dg]] ("/)[.7/'0])
ES[(edge pcd epy...ep, )] =
{(PClped], Ui<j<nS), Ui<j<nS))}
where Vj € N. (1 < j <n) = ((5;,5}) = EP[ep,]v)
PC[pcd]jp = match-ped(ped)jp
EP[(nodes "sv" aj,ax)] =

({(sv, E[ar] (@, L)} {(sv, Eaz] (v, 1)})

EnJu=n

Elz](,0) = o(z) (xervawl)
16106, 0) = (0)

&

80)

er — e2]pu = Efer]p — Ele2]p
Eler - ex]p = Eer] - E[e2]

[

[

[

[er + ex]p = Elea]p + Ee2]
[

[

Eler/ea]p = Elea]p/E[e2]p

Figure 11: Denotational semantics for SPoX
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match-pcd((call c.md))(call c.md,v", jp) = Succ
(get c.fd)){get c.fd,v",jp) = Succ
(set c.fd))(set c.fd,v* jp) = Succ

match-ped((argval nvp)){k,vg vy, Jp)
= Succ if vp= (true) or (vp= (isnull) and v,=null)

match-pcd|
match-pcd|

—_~ =

match-ped((and ped,pedy) )ip =
match-ped(pedy)jp A match-ped(pedsy)jp

match-ped( (or pedypedy) )jp =
match-ped(pedy )jp V match-ped(peds) jp
match-ped((not ped))jp = —-match-ped(ped)

match-ped((ctlow ped))(k, v, jp) =
match-ped(ped) (k' jp) V match-ped((cflow ped))ip

match-ped(ped)jp = Fail otherwise

Suce V Suce = Suce Suce A Suce = Suce =Sucec = Fail
Fail V Fail = Fail Fail A\ Fail = Fail - Fail = Succ
Succ V Fail = Suce Suce A Fail = Fail
Fail vV Succ = Succ Fail A Succ = Fail

Figure 12: Matching pointcuts to join points

X =L | (Li,¢,p,6) (abstract configs)
¢ = /\ t; (n>1) (constraints)
i=1...n
tu=T | F|e <eg (predicates)
pu=-|eup (abstract stack)
Si(rwl) —e (abstract store mappings)
sey (abstract stores)
X0 (initial abstract config)

Figure 13: Abstract machine configurations
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T = —— (AIFLEPOS
(Ly :ifle Ly, (,eq ez i p,6) ~ (La i p(L2),( A (e2 < 61)7P70'>( )

(Ly :ifle Lo, C,e1 i e i p,6) ~ (s(L1) : p(s(L1)),C A (e2 > e1), p, 6) (AIFLENEG)

(L : getlocal £,C, p,6) ~ (s(L) : p(s(L)), C,6(0) == p,6) (AGETLOCAL)

0 is fresh
(L : setlocal £,(,e :: p, &) ~ (s(L) : p(s(L)),C[0/4], p[o /L], 5(0/4)[€ := e[0/€]]))
(AJmp)

(ASETLOCAL)

(L1 :jmp L, ¢, p,6) ~ (L2 : p(L2),C, p, 6)
(2 € PlO(pol)](event, n,es it eg -+ ey i, ()
(L :eventy n,(1,e1 meg - ey it pr,G) ~

(s(L) : p(s(L)), C1[0(a)/a] A C2[6(a)/ac], pr, &)

(AEVENT)

Figure 14: Abstract small-step operational semantics

P : pol — JP — 2¢
gg:edg%jﬁ%%
@:pcd%jﬁ%%
@:pcc—)ﬁéc

EP:ep—C

Pledg, ... edg,Jjp = | ] ESledgljp

i=1
ES[forall d=e;..e edglip = {(0 > e1) A (0 < e2) AC | ¢ € ES[edg]ip}
ESledge ped ep, ... ep,Lip = {C A (N1 EPLepy]) | ¢ € PCD[ped]jp)
7§(Z\D[[or pec, . .. pee,]jp = {73/C\C[[pcci]]ﬁ) | 1<i<n}
7§C\C[[and pet, ... pet,Jjp = /\ 7§C\C[[pcti]]jp

i=1

PCClnot pealjp = ~(PCC[pcaljp)
75(3\C[[eventy n]{event, m,e*,jp) = (n=m)
756'\C[[arg n (intleq m)](k,e1:: - - enze®, jp) = (e, < m)

57\3[[nodes a e e = (ag=e1)A(a=e3)
Figure 15: Abstract Denotational Semantics
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T:e— 2Y%%

TII] =V xS
TIF] =0
Tler < ex] ={ne ¥ xX | Eler]p < Efea]p}
C:(—2¥%%

cl A\ tl= () Tl

1=1...n 1=1...n

Elea](ClG]) € Ele2](Clé2])
(C1re1) =e (Core2)
Cla] cCle]

(C1y7) =p (C2y)
(C1,e1) =e (G2, €2) (C1,p1) =, (G2, P2)
(Ch@l p1) 2p (Cose2 i p2)
61 =03  Vxzeo'. 5ﬂ5 (2)](C[¢1]) € E[G2(x)](C[¢2])
(€1,01) =0 (C27U2)
C[¢G1] € Cl¢a] (C1501) 25 (G2 ) (C1,01) =0 (C2,62)
X1 =(L:4,C,pr1,01) B Xo = (L 14,02, p2,02)

Figure 16: State-ordering relation <y

which there is no transition in the automaton) therefore correspond to stuck
states in the abstract semantics.

In Fig. 15, ﬁo € JP denotes an abstract join point—a join point (see Fig. 10)
whose stack consists of symbolic expressions instead of values. Valuation func-
tion P accepts as input a policy and an abstract join point that models the
current abstract program state. It returns a set of constraint lists, one list for
each possible new abstract program state. If (7 is the original constraint list,
then the new set of constraint lists is

{¢116(a)/a] A G2[0(a)/ac] | Gz € PLO(pol)]jp}

Here, 0 : (a W 0) — ¥ is an alpha-converter that assigns meta-variables fresh
names. We lift 6 to policies so that §(pol) renames all iteration variables in the
policy to fresh names. Meta-variable aq is a reserved name used by P to denote
the old value of a. Substitution [#(a)/ag] replaces it with a fresh name, and
substitution [#(a)/a] re-points all old references to a to the same name.

3.5 Abstract Interpretation

Abstract interpretation is implemented by applying the abstract machine to
the untrusted, instrumented bytecode until a fixed point is reached. When
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ppEP_ pip lzj??(
s (ks p,gp) = (K, p, )
m(EMPJP-SOUND)

(EMPSTK-SOUND)
2N |: )

Ele]p=n u,/ﬂ:p(

JP-SOUND)

p STK-SOUND)
yep = nip
o =6 Ve e ot L[6(x)]p = o(z) (STR-SOUND)
1o o

peCldl  mpEp  wélEo
(L:i,p.0) ~(L:0,C.p,6)

(SounD)

Figure 17: Soundness relation ~

multiple different abstract states are inferred for the same code point, the state
space is pruned by computing the join of the abstract states. State lattice
(A, =x) is defined in Fig. 16. This reduces the number of control-flows that an
implementation of the abstract machine must explore.

4 Soundness

The abstract machine (defined in §3.4) is sound with respect to the concrete
machine (defined in §3.2) in the sense that each inferred abstract state x conser-
vatively approximates all concrete states y that can arise at the same program
point during an execution of the concrete machine on the same program. The
soundness of state abstractions is formally captured in terms of a soundness
relation [8] written ~ C € x A, defined in Fig. 17.

Our proof of soundness relies upon a soundness relationship between the
concrete and abstract denotational semantics of SPoX policies. This soundness
relation is described by the following theorem.

Theorem 1 (SPoX Soundness). If Ppol] = (...,d) and (’L/J,/(\J’),j(]\) E jp holds,
then o' € 6(cla,ip) if and only if there exist ¢’ € P[O(pol)]jp and (¢",0") €
C[¢'] such that ¥"(ag) = o(a) and 0" (a) = o'(a).

Proof. The proof can be decomposed into the following series of lemmas that
correspond to each of the SPoX policy syntax forms. Without loss of generality,
we assume for simplicity that alpha-conversion 6 is the identity function. O

Lemma 1. If EP[ep]y = (0,0") then there exists ()", 0') € C[[ﬁ)[[ep]]]] such
that " C ¢lag = o(a)] and V" (ap) = o(a).
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Lemma 2. If (1/},0),]?9 E jp then PClor...]jp = Succ if and only if there
exists ¢ € PCD[or .. Jjp such that (", L) € C[¢] and " T 1.

Lemma 3. If (w,o),j}\) E jp then PClpcc]ip = Succ if and only if (", L) =
C[PCCpcc]jp] where " C 4.

Lemma 4. If (,0),jp = jp and f(jp) = Succ then (f,0la,0’) € ES[edg]y if
and only if there exists ¢’ € ES[edg]jp such that (v, c") € C[¢'], 0" (a) = o' (a),
and ¥"(a) = o(a).

Proof. Proofs of Lemmas 14 follow from a straightforward expansion of the
definitions in Figs. 11 and 7. O

Soundness of the abstract machine with respect to the concrete machine is
proved via preservation and progress lemmas for a bisimulation of the abstract
and concrete machines. The preservation lemma proves that the bisimulation
preserves the soundness relation, while the progress lemma proves that as long as
the soundness relation is preserved, the abstract machine anticipates all policy
violations of the concrete machine. Together, these two lemmas dovetail to form
an induction over arbitrary length execution sequences, proving that programs
accepted by the verifier will not violate the policy.

Lemma 5 (Progress). For every x € C and x € A such that x ~ X, if there
exists X' = (Ly = iy, (', p',6") € A such that x ~ X' and C[¢'] # 0, then there
exists X' € C such that x — x'.

Proof. Let x = (L :i,p,0) € €, x = (L :4,(,p,6) € A, and ¥’ € A be given,
and assume Y ~ ¥ and ¥ ~ X’ both hold. Proof is by case distinction on the
derivation of ¥ ~ ¢'.

Case (AIrLEPOs): The rule’s premises prove that x = (L : ifle L', (, e::ea::p,,
&y and X' = (L' : p(L'),{ A (ea < e1), pr, 6), Relation y ~ x implies that
p is of the form x;::wo::p,.. Choose configuration x' = (L' : p(L'), p,, o).
If x5 < x1, then x — ¥’ is derivable by Rule (CIrLEPOS). If 25 > 21, then
X — X’ is derivable by Rule (CIFLENEG).

Case (AIFLENEG): Similar to (AIFLEPOS), omitted.

Case (AGerLocar): The rule’s premises prove that x = (L : getlocal ¢, ¢, p, )
and X' = (s(L) : p(s(L)), ¢, 6(¢)::p, 5). Relation xy ~ x implies that
¢ € 0% . Choosing configuration x' = (s(L) : p(s(L)), o(£)::p, o) allows
X — X’ to be derived by Rule (CGETLOCAL).

Case (ASETLocaL): The rule’s premises prove that y = (L : setlocal ¢, ¢, e::p,
o) and X' = (s(L) : p(s(L)), C[0/4], p[o/t], 6[o/€][¢ := e[o/€]])), where ©
is fresh. Relation x ~ x implies that p has the form z::p,. Choosing
configuration x' = (s(L) : p(s(L)), pr, o[f := z]) allows x — X' to be
derived by Rule (CSETLOCAL).
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Case (AJwmp): Trivial, omitted.

Case (AEvVENT): The rule’s premises prove that abstract configuration x = (L :

event, n, (i, eyuegi---eyipy, 6) and Y = <3(AL) : p(s(/[\/)),C/,ﬁQ&%
where ¢! = ([0(a)/a] A (2]0(a)/ap] with (o € P[0(pol)]jp, and jp =
(event, n, ereg::--- ey, ().

To derive x — x’ using Rule (CEVENT), one must prove that there exists
o' € 6(0lq,jp) where jp = (event, n, xi:wa::---ixyi, (). Once this is
established, we may choose configuration x' = (s(L) : p(s(L)), pr,ca :=
o'(a)]) to derive x — X’ by Rule (CEVENT).

We will prove o’ € §(0|,,jp) using Theorem 1. The premises of the deriva-
tion of x ~ x suffice to derive ,u,ﬁ) E jp by Rule (Jp-Sounn). Denotation
C[¢'] is non-empty by assumption; therefore we may choose (¥g,00) €
C[¢'] and define ¥ = plag := o(a)] and 0" = gg. Observe that the defi-
nition of ¢’ in terms of {5 proves that (0", ¢”) € C[(2]. Furthermore, since
o' is heretofore unconstrained, we may define ¢’(a) = ¢”(a). Theorem 1
therefore proves that o’ € 6(olq, ip)- O

The following substitution lemma aids in the proof of the Preservation
Lemma that follows it.

Lemma 6. For any expression ey, mappings (¢,0), variables ¢ € o and
0 & o, and value x, E[eo] (¥, o) = E[eo[d/](W[0 := a(0)], o[l := x]).

Proof. Proof is by a straightforward induction over the structure of ey, and is
therefore omitted. O

Lemma 7 (Preservation). For every x € C and x € A such that x ~ X, for
every X' € € such that x — X' there exists X' € A such that X ~ X' and X' ~ X'.

Proof. Let x = (L :4,p,0) € C, x € A, and X’ € € be given such that x — x'.
Proof is by case distinction over the derivation of y — x’.

Case (CIFLEPOs): Rule (CIFLEPOS) implies that ¢ = ifle L', stack p has the
form xi::wep,y, and X' = (s(L) : p(s(L)), pr,o). Relation x ~ X proves
that x has the form (L : ifle L', {, e1::ea::py, 6). Choose X' = (s(L) :
p(s(L)),C A (e2 < e1), pr,d) and observe that x ~» X’ is derivable by Rule
(AIFLEPOS).

Relation x ~ x implies (1) p € C[(], (2) w,p = p, and (3) u,6 = o.
Proving X’ ~ x’ requires deriving the three premises of Rule (SounD):

(A) To derive pu € C[¢ A (e2 < e1)], observe that C[¢A(e2 < e1)] = C[¢{]N
Tlez < e1]. It follows from (1) above that u € C[{]. By definition,
Tlez <er] ={p € U x X | EJe2]p’ < E[er]p’}. Rule (STR-SOUND)
proves that E[6(n)]u = o(n) ¥Yn € {1,2}. Thus, Efe1]p = 21 and
Ele2] = xz2. Since x2 < 1 (from Rule (CIFLEPOS)), this implies
Ele2]p < Efer]p. From the definition of T, it follows that p €
Tlez2 < eq].
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(B) u, pr E pr follows directly from (2) above and Rule (STk-SouND).
(C) p,6 = o follows directly from (3) above.

Case (CIFLENEG): Similar to (CIFLEPOS), omitted.

Case (CGerLocaL): Rule (GeTLocAL) proves that ¢« = getlocal ¢, and y' =
(s(L) : p(s(L)),0(£)::p,0). Relation x ~ X proves that x has the form
(L : getlocal ¢,¢,6(0)::p,0). Choose X' = (s(L) : p(s(L)),¢,p,0), and
observe that ¥ ~» X’ is derivable by Rule (AGETLOCAL).

Relation x ~ x implies (1) p € C[¢], (2) u,p = p, and (3) p,0 = o.
Proving X’ ~ X’ requires deriving the three premises of Rule (SOuND):

(A) u e C[(] follows directly from (1) above.

(B) u,6(n)::p = o(f)::p can be derived with Rule (STK-Sounp) by com-
bining E[6(¢)]u = o(£) (from Rule (STr-SounDp)) and (2) above.

(C) p,6 = o follows directly from (3) above.

Case (CSETLocaAL): Rule (SETLoCAL) proves that ¢ = setlocal ¢, that p has
the form x::p,, and that x' = (s(L) : p(s(L)), pr,o[¢ := z]). Relation
X ~ X implies that ¥ has the form (L : setlocal ¢, (, e::p,., 7).
Choose X' = (s(L) : p(s(L)),C[0/4], pr[0/€],5[0/€)[¢ := e[0/]])) where b
is a fresh meta-variable, and observe that ¥ ~» X’ is derivable by Rule
(ASETLOCAL).

Relation x ~ x implies (1) u € C[(], (2) p, e::pr = z::py, and (3) p, 6 = 0.
Proving X’ ~ %’ requires deriving the three premises of Rule (SounD),
where p/ = (Y[0 := o (0)], 0l := x]):

(A) By a trivial induction over the structure of ¢, if 4 = (¢, 0) € C[¢] and
¥ does not appear in ¢, then ' = (Y[0 := o(¢)], o[l := z]) € C[C[D/4]].
(B) By Rule (STk-Sounp), the derivation of (2) contains a sub-derivation
of p,pr E pr. A trivial induction over p, therefore proves that
W, pu16/8] = pr-
(C) Deriving u/,5[0/0][¢ := e[0/4]] = o[ := x] requires deriving the two
premises of Rule (STR-SounD):
(C1) To prove o[l := z|* = &[0/0[¢ = e[0/€]], observe that
o[l == x]* = o= U {{} and 5[0/4)[¢ = e[0/L]]" = 65 U{L}.
From (3) above and Rule (STR-SoUND), it follows that ¢~ = 6¢;
therefore o~ U {¢} = 65 U {¢}.
(C2) To prove Yy € o[t := x| .E[5[0/L][¢ := e[v/€]])(y)]’ = o[l :=
z)(y), let y € o U {¢} be given:
o If y = ¢ then E[6[0/0][¢ := e[0/L]](¢)] = E]e[v/¢]]. Applying
Lemma 6 with ey = e yields E[e[o/{]|p' = Ee]p. By (2)
above, and Rule (STk-SounD), Efeju =z = o[l := z](¢).
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o If y # £ then E[6[0/4)[¢ = e[0/]](y)] = E[o[o/€)(y)]. Ap-
plying Lemma 6 with eq = &(y) yields E[a[0/€)(y)]y’ =
E[6(y)]u. By Rule (STr-Sounp) and (3) above, E[6(y)]p =
o(y) = ol :=z)(y).

Case (CJmp): Trivial, omitted.

Case (CEVENT): Rule (CEVENT) proves that ¢ = event, n, that p has the form

x1uxo -y py, and that X' = (s(L) : p(s(L)), pr,ola := 0'(a)]), where
o' € 0(0la, (eventy n, xi:wai- -z, ().

Relation x ~ x implies that x = (L : event, n, (1, e1::eg::-- - ey ::p,, G)
and that for some p = (¢,0): (1) p € C[G], (2) p,erzea:- -y, =
Tiumoie - nxytipe, and (3) p,6 = 0. Theorem 1 therefore implies that

there exists ¢/ € P[0(pol)]jp and (¢, 0") € C[¢'] such that (4) o”(a) =

o'(a) and (5) ¥"(a,) = o(a).

Choose ¥’ = (s(L) : p(s(L)), C1[0(a)/a] A C'[8(a) ac), pr, &) and observe

that ¥ ~» %’ is derivable by Rule (AEvENT). Deriving x' ~ X' re-

quires deriving the three premises of Rule (Sounp), where p/ = (¢ W

¥"[0(a)/ao], ola := o' (a)]):

(A) u €C[¢i[0(a)/a] A¢'[0(a)/ag]] is provable in two steps:

e 1/ €C[¢1[0(a)/a]] follows from (1) and (5) above.
e 1/ €C[¢'[0(a)/ao]] follows from (4) above.

(B) i/, pr = pr is derivable by an induction on the height of stack p,
(which is equal to the height of stack p,. by (2) above). The base
case of the induction follows trivially from Rule (EMPSTK-SOUND).
The inductive case is derivable from Rule (STk-SounD) provided that
Ele]( w ¥"[0(a)/aol,ola := o'(a)]) = E[e](¥,0). To prove this,
observe that e mentions neither ag (because by the definition of P,
ay is a reserved meta-variable name that is not available to programs)
nor a (because the abstract state is not directly readable by programs,

and therefore cannot leak to the stack). A formal proof of both
follows from an inspection of the rules in Fig. 14.

(C) 1,6 | ola := o'(a)] is derivable by Rule (STR-SoUND) by deriving
its two premises:
e ola:=0'(a)] = 0% follows trivially from a € o*.
e Vz € ola := d'(a)]* .&[o(x)]p = ola := o'(a)](x) follows from
(3) above, whose derivation includes a derivation of premise Yz €
ot Elo(x)]p = o(x). O

Theorem 2 (Soundness). Every program accepted by the abstract machine does
not commit a policy violation when executed.

Proof. By definition of abstract machine acceptance, starting from initial state
Xo the abstract machine continually makes progress. By a trivial induction over
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ToTAL
Fie Sizes (KB) | No. Crasses | REWRITE VERIF, MODEL-CHECK
PROGRAM PoLicy OLD/NEW /LIBS OLD/LIBS TIME (s) | # Evrs | TIME (s) | TIME (s)

EJE 134/ 439/ 0 | 147/ 0 6.1 1 202.8 16.3
RText NoExecSaves 1337/1266/ 835 448/ 680 52.1 7 2797.5 54.5
JSesh 2054/1924/20878 863/ 1849 57.8 1 5488.1 196.0

vrenamer NoExecRename 1048/ 927/ 0 583/ 0 50.1 9 1956.8 41.0
jconsole NoUnsafeDel 34/ 36/ 0 33/ 0 0.6 2 115.7 15.1
jWeatherWatch 390/ 294 0 186 0 12.3 46 308.2 156.7
YouTubeDountonder | NOSendsAfterReads 402? 281; 0 148? 0 17.8 20 219.0 53.6
jfilecrypt NoGui 343/ 303/ 0 164/ 0 9.7 1 642.2 2.8
jknightcommander OnlySSH 158/ 166/ 4753 146/ 2675 4.5 1 650.1 3.0
Multivalent EncrpytPDF 1108/1116/ 0 559/ 0 129.9 7 3567.0 26.9
tn5250j PortRestrict 623/ 646/ 0 416/ 0 85.4 2 2598.2 23.6
jrdesktop SafePort 382/ 343/ 0 163/ 0 8.3 5 483.0 17.8
JVMail TenMails 29/ 25/ 0 21/ 0 1.6 2 35.1 8.0
JackMail 214/ 166/ 369 | 30/ 269 2.5 1 626.7 8.9
Jeti CapLoginAttempts 545/ 484/ 0 422/ 0 15.3 1 524.3 8.8
ChangeDB CapMembers 89/ 83/ 404 63/ 286 4.3 2 995.3 12.0
projtimer CapFileCreations 36/ 34/ 0 25/ 0 15.3 1 56.2 6.1
Xnap NoFreeRide 1321/1251/ 0 878/ 0 24.8 4 1496.2 56.4
Phex 4861/4586/ 3799 | 1353/ 830 69.4 2 5947.0 172.7
Webgoat NoSqlXss 500/ 431/ 6338 159/ 3579 16.7 2 10876.0 120.0
OpenMRS NoSQLInject 2075/1783/24279 932/ 17185 78.7 6 2897.0 37.3
SQuirreL SafeSQL 1962/1789/ 1003 | 1328/ 626 140.2 1 3352.1 37.3
JVMail LogEncrypt 29/ 26/ 0 22/ 0 1.8 6 71.3 43.2
jvs-vfs CheckDeletion 310/ 277/ 0 127/ 0 4.4 2 193.9 6.3
sshwebproxy EncryptPayload 43/ 37/ 389 19/ 16 1.1 5 66.7 7.0

Table 1: Experimental Results

the set of finite prefixes of this abstract transition chain, the progress and preser-
vation lemmas prove that the concrete machine also continually makes progress
from initial state yo. Every security-relevant event in this concrete transition
chain therefore satisfies Rule (CEVENT) of Fig. 9, whose premise guarantees that
the event does not violate the policy. O

5 Implementation

Our prototype verifier implementation consists of 5200 lines of Prolog code and
9100 lines of Java code. The Prolog code runs under 32-bit SWI-Prolog 5.10.4,
which communicates with our Java libraries using the JPL interface. The Java
side handles the parsing of SPoX policies and input Java binaries, and compares
Java bytecode instructions to the policy to recognize security-relevant events.
The Prolog code forms the core of the verifier, and handles control-flow analysis,
model-checking, and linear constraint analysis using CLP.

Model-checking is only applied to code that the rewriter has marked as
security-relevant. Unmarked code is subjected to a linear scan that ensures that
it contains no potential pointcut matches or possible writes to reified security
state.
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(edge name="saveToExe"
(nodes "s" 0,#)
(and (call "java.io.FileWriter.new")
(argval 1 (streq ".*\.(exelbat|...)"))
(withincode "FileSystem.saveFile")))

Figure 18: NoExecSaves policy

We have used our prototype implementation to rewrite and subsequently
verify numerous Java applications. These case-studies are discussed throughout
the remainder of the section, and statistics are summarized in Table 1. All tests
were performed on a Dell Studio XPS notebook computer running Windows
7 64-bit with an Intel i7-Q720M quad core processor, a Samsung PM800 solid
state drive, and 4 GB of memory.

In Table 1, each cell in the FILE S1ZES column has three parts: the original
size of the main program before rewriting, the size after rewriting, and the size
of included system libraries that needed to be verified (but not rewritten) as part
of verifying the rewritten code. Verification of system library code is required
to verify the safety of various control-flows that pass through them. Likewise,
each cell in the NO. CLASSES column has two parts: the number of classes in
the main program and the number of classes in the libraries.

Rewriting actually reduced the size of many programs, even though code was
added and no code was removed. This is because SPoX removes unnecessary
metadata from Java class files during parsing and code-generation.

This section partitions our case-studies into eight policy classes. SPoX code
is provided for each class in a general form representative of the various in-
stantiations of the policy that we used for specific applications. The instantia-
tions replace the simple pointcut expressions in each figure with more complex,
application-specific pointcuts that are here omitted for space reasons.

Filename guards. Figure 18 shows a generalized SPoX policy that prevents
file-creation operations from specifying a file name with an executable extension.
This could be used to prevent malware propagation.

The regular expression in the streq predicate on Line 4 matches any string
that ends in “.exe”, “.bat”, or a number of other disallowed file extensions.
There is a very large number of file extensions that are considered to be ex-
ecutable on Windows. For our implementation, we included every extension
listed at [14].

This policy was enforced on three applications: EJE, a Java code editor;
RText, a text editor; and JSesh, a heiroglyphics editor for use by archaeolo-
gists. After rewriting, each program halted when we tried to save a file with a
prohibited extension.

Another policy that prevents deletion of policy-specified file directories (not
shown) was enforced on jconsole. The policy monitors directory-removal sys-
tem API calls for arguments that match a regular expression specifying names
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(state name="s")
(edge name="FileRead"

(nodes "s" 0,1)

(and (call "java.io.File.x")

(argval 1 (streq "[A-Za-z]*:\\windows\\.*"))))

(edge name="NetworkSend"

(nodes "s" 1,#)

(call "java.net.Socket.getOutputStream"))

Figure 19: NoSendsAfterReads policy

of protected directories.

We enforced a similar policy on vrenamer, a mass file-renaming application,
prohibiting renaming of files to names with executable extensions. Our initial
attempt to verify vrenamer failed. Analysis of the failure revealed that the
original application implements a global exception handler that can potentially
hijack control-flows within certain kinds of SPoX-generated IRM guard code if
the guard code throws an exception. This could allow the abstract and reified
security state to become desynchronized, leading to policy violations.

The verification failure is therefore attributable to a security flaw in the
SPoX rewriter. The flaw could be fixed by in-lining inner exception handlers
for guard code to protect them from interception by a pre-existing outer han-
dler. In order to verify the application for this instance, we manually edited
the rewritten bytecode to exclude the guard code from the scope of the outer
exception handler. This resulted in successful verification.

Event ordering. Figure 19 encodes a canonical information flow policy in
the IRM literature that prohibits all network-send operations after a sensitive
file has been read. Specifically, this policy prevents calls to Socket.getOutput-
Stream after any java.io.File method call whose first parameter accesses the
windows directory.

We enforced this policy on jWeatherWatch, a weather widget application,
and YouTube Downloader, which downloads videos from YouTube. Neither pro-
gram violated the policy, so no change in behavior occurred. However, both
programs access many files and sockets, so SPoX instrumented both programs
with a large number of security checks.

For multivalent, a document browsing utility, we enforced a policy that
disallows saving a PDF document until a call has first been made to its built-in
encryption method. The two-state security automaton for this policy is similar
to the one in the figure.

Pop-up protection. The NoGui policy in Fig. 20 prevents applications from
opening windows on the user’s desktop. We enforced the NoGui policy on
jfilecrypt, a file encrypt/decrypt application. Similar policies can be used
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(state name="s")
(edge name="no_gui"
(nodes s 0,#)
(and (call "jfilecrypt.GuiMainController.new")
(withincode "jfilecrypt.Application.main")))

Figure 20: NoGui policy

(state name="s")
(edge name="badPort"
(nodes "s" 0,#)
(and (set "Config.port")
(or (argval 1 (intgt 29))
(argval 1 (intlt 20)))))

Figure 21: SafePort policy

to prohibit access to other system API methods and place constraints upon
their arguments.

Port restriction. Policies such as the one in Fig. 21 limit which remote net-
work ports an application may access. This particular policy, which we enforced
on the Telnet client tn5250j, restricts the port to the range from 20 to 29, in-
clusive. Attempting to open a connection on any port outside that range causes
a policy violation.

We also enforced a similar policy on jrdesktop, a remote desktop client,
prohibiting the use of ports less than 1000. For jknightcommander, an FTP-
capable file manager currently in the pre-alpha release stage, we enforced a
policy that prohibits access to any port other than 22, restricting its network
access to SFTP ports.

Resource bounds. In §2.1, we described a policy which prohibits an email
client from sending more than 10 emails in a given execution, as seen in Fig. 3.
We enforced this policy on the email clients JVMail and JackMail.

We enforced similar resource bound policies on various other programs. For
Jeti, a Jabber instant messaging client, we limited the number of login attempts
to 5 in order to deter brute-force attempts to guess a password for another user’s
account. For ChangeDB, a simple database system, we limited the number of
member additions to 10. For projtimer, a time management system, we limited
the number of automatic file save operations to 5, preventing the application
from exhausting the user’s file quota.

No freeriding. Figure 22 specifies a more complex counting policy that pro-
hibits freeriding in the file-sharing clients xnap and Phex. State variable s tracks
the difference between the number of downloads and the number of uploads that
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(state name="s")
(forall "i" from -10000 to 1
(edge name="download"
(nodes "s" i,i+1)
(call "Download.download")))
(forall "i" from -9999 to 2
(edge name="upload"
(nodes "s" i,i-1)
(call "Upload.upload")))
(edge name="too_many _downloads"
(nodes "s" 2,#)
(call "Download.download"))

Figure 22: NoFreeRide policy

(state name="s")
(edge name="SQL_Injection_occurred"
(nodes "s" 0,#)
(and (call "Login.login")
(not (argval 1 (streq "[a-zA-Z0-9]*")))))
(edge name="XSS_injection_occurred"
(nodes "s" 0,#)
(and (call "Employee.new")
(not (and (argval 2 (streq "[A-Za-z_0-9,.\-\s]lx*"))
(argval 3 (streq "[A-Za-z_0-9,.\-\s]x*"))

(argval 16 (streq "[A-Za-z_0-9,.\-\sl1*"))))))
Figure 23: NoSqlXss policy

the application has completed. That is, downloads increment s, while uploads
decrement it. If the number of downloads exceeds 2 greater than the number of
uploads, a policy violation occurs. This forces the software to share as much as
it receives.

Malicious SQL and XSS protection. SPoX’s use of string regular expres-
sions facilitates natural specifications of policies that protect against SQL injec-
tion and cross-site scripting attacks. One such policy is given in Fig. 23. This
figure is a simplified form of a policy that we enforced on Webgoat, an educa-
tional web application that is designed to be vulnerable to such attacks. The
policy uses whitelisting to exclude all input characters except for those listed
by the regular expressions (alphabetical, numeric, etc.).

The XSS_injection_occurred edge starting on Line 6 includes a large num-
ber of dynamic argval pointcuts—I12 in the actual policy. Nevertheless, verifi-
cation time remained roughly linear in the size of the rewritten code because the
verifier was able to significantly prune the search space by combining redundant
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constraints and control-flows during model-checking and abstract interpretation.

A similar policy was used to prevent SQL injection in OpenMRS, a web-
based medical database system. Injection was prevented for the patient search
feature. The library portion of this application is extremely large but contains no
security-relevant events. Thus, the separate, non-stateful verification approach
for unmarked code regions was critical for avoiding state-space explosions in
this case.

We also enforced a blacklisting policy (not shown) on the database access
client SQuirrel, preventing SQL commands which drop, alter, or rename tables
or databases. Specifically, the policy identified all SQL commands matching the
regular expression

.*(droplalter|rename) .*(table|database) . *

as policy violations.

Ensuring advice execution. Most other aspectual policy languages, such
as Java-MOP [6], allow explicit prescription of advice code that implements
IRM guards and interventions. Such advice is typically intended to enforce
some higher-level security property, though it can be difficult to prove that it
enforces the actual policy that was intended. SPoX excludes trusted advice for
this reason; however, untrusted advice that is not part of the policy specification
may nevertheless be in-lined by rewriters to enforce SPoX policies. Chekov”
can then be applied to verify that this advice actually executes under policy-
prescribed circumstances to enforce the policy. This promotes separation of
concerns, reducing the TCB so that it does not include the advice.

We simulated the use of advice by manually inserting calls to specific encrypt
and log methods prior to email-send events in JVMail. Our intent was for each
email to be encrypted, then logged, then sent, and in that order. A simplified
SPoX specification for the policy is given in Fig. 24. After inserting the advice,
we applied the ordering policy using the rewriter, and then used the verifier to
prove that the rewritten JVMail application satisfies the policy.

A similar policy was applied to the Java Virtual File System (jvs-vfs),
which prohibits deletion of files without first executing advice code that consults
the user.

Finally, we enforced a mandatory encryption policy for the sshwebproxy
application, which allows users to use a web browser to access SSH sessions and
perform secure file transfers. To prevent the application from sending plaintext
message payloads to the remote host, our EncryptPayload policy requires the
proxy to encrypt each message payload before sending.

6 Related Work

IRMs were first formalized in the PoET/PSLang/SASI systems [13, 30, 12],
which implement IRMs for Java bytecode and GNU assembly code. Subse-
quently, there has been a growing history of effective IRM systems for many
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(state name="logged")
(state name="encrypted")
(forall "i" from O to 1
(edge name="encrypt"
(nodes "encrypted" 0,1)
(nodes "logged" 0,0)
(call "Logger.encrypt"))
(edge name="badOrderEncryptSecond"
(nodes "encrypted" 0,#)
(nodes "logged" 1,#)
(call "Logger.encrypt"))
(edge name="transaction"
(nodes "encrypted" 1,0)
(call "SMTPConnection.sendMail"))
(edge name="badEncrypt"
(nodes "encrypted" 1,#)
(nodes "logged" i,i)
(call "Logger.encrypt"))
(edge name="bad transactionl"
(nodes "encrypted" 0,#)
(call "SMTPConnection.sendMail"))
(edge name="log"
(nodes "logged" 0,1)
(nodes "encrypted" 1,1)
(call "Logger.log"))
(edge name="badOrderLogFirst"
(nodes "logged" 0,#)
(nodes "encrypted" 0,#)
(call "Logger.log"))
(edge name="bad-log"
(nodes "logged" 1,#)
(nodes "encrypted" i,i)
(call "Logger.log"))
(edge name="bad_transaction2"
(nodes "logged" 0,#)
(call "SMTPConnection.sendMail")))

Figure 24: LogEncrypt policy
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architectures (cf., [23, 6]). Almost all of these express security policies in an
AOP or AOP-like language with pointcut expressions for identifying security-
relevant binary program operations and code fragments (advice) that specify
actions for detecting and prohibiting impending policy violations. A hallmark
of these systems is their ability to enforce history-based, stateful policies that
permit or prohibit each event based on the history of past events exhibited by
the program. This is typically achieved by expressing the security policy as
an automaton [30, 24] whose state is reified into the untrusted program as a
protected global variable. The IRM tracks the current security state at runtime
by consulting and updating the variable as events occur.

Separate certification of IRMs was first implemented by the Mobile sys-
tem [17], which transforms Microsoft .NET bytecode binaries into safe binaries
with typing annotations in an effect-based type system. The annotations consti-
tute a proof of safety that a type-checker can separately verify to prove that the
transformed code is safe to execute. The type-based IRM certification approach
is efficient and elegant but does not yet support AOP-style IRMs, whose point-
cuts typically specify security properties that are not expressible in Mobile’s
type system.

ConSpec [1] adopts a security-by-contract approach to AOP IRM certifica-
tion. Its certifier performs a static analysis that verifies that contract-specified
guard code appears at each security-relevant code point; however, the guard
code itself remains a trusted part of the policy specification.

Our prior work [33] is the first to adopt a model-checking approach to verify
such IRMs without trusted guard code. It presents a prototype IRM certifier
for ActionScript bytecode that supports reified security state but not dynamic
pointcuts or after-advice. These are non-trivial additions, as discussed in §2.

This paper extends that prior work to support SPoX [15], a purely declar-
ative AOP IRM system for Java bytecode. SPoX policies are advice-free; any
advice implemented as part of the IRM remains untrusted and must therefore
undergo verification. Policy specifications consist of pointcuts and declarative
specifications of how events that match the pointcuts affect the security state.
Thus, SPoX policies specify program properties, not rewriting recipes. Past
work has used SPoX to specify and enforce a variety of real-world security poli-
cies [19, 20].

Related research on general model-checking is vast, but mostly focuses on de-
tecting deadlock and assertion violation properties of source code. For example,
Java PathFinder (JPF) [21] and Moonwalker [29] verify properties of Java and
.NET source programs, respectively. Other model-checking research [28, 4] has
targeted abstract languages, such as the m-calculus [26] or Calculus of Commu-
nicating Systems (CCS). Model-checking of binary code is useful in situations
where the code consumer may not have access to source code. For example,
CodeSurfer/x86 and WPDS++ have been used to extract and check models for
x86 binary programs [3].
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7 Conclusion and Future Work

IRMs provide a more powerful alternative to purely static analysis, allowing
precise enforcement of a much larger and sophisticated class of security policies.
Combining this power with a purely static analysis that independently checks
the instrumented, self-monitoring code results in an effective, provably sound,
and flexible hybrid enforcement framework. Additionally, an independent cer-
tifier allows for the removal of the larger and less general rewriter from the
TCB.

We developed Chekov™—the first automated, model-checking-based certifier
for an aspect-oriented, real-world IRM system [15]. Chekov” uses a flexible and
semantic static code analysis, and supports difficult features such as reified se-
curity state, event detection by pointcut-matching, combinations of untrusted
before- and after-advice, and support for pointcuts that are not statically de-
cidable. Strong formal guarantees are provided through proofs of soundness
and convergence based on Cousot’s abstract interpretation framework. Since
Chekov” performs independent certification of instrumented binaries, it is flexi-
ble enough to accommodate a variety of IRM instrumentation systems, as long
as they provide (untrusted) hints about reified state variables and locations of
security-relevant events. Such hints are easy for typical rewriter implementa-
tions to provide, since they typically correspond to in-lined state variables and
guard code, respectively.

Our focus was on presenting main design features of the verification algo-
rithm, and an extensive practical study using a prototype implementation of
the tool. Experiments revealed at least one security vulnerability in the SPoX
IRM system, indicating that automated verification is important and necessary
for high assurance in these frameworks.

In future work we intend to turn our development toward improving effi-
ciency and memory management of the tool. Much of the overhead we observed
in experiments was traceable to engineering details, such as expensive context-
switches between the separate parser, abstract interpreter, and model-checking
modules. These tended to eclipse more interesting overheads related to the
abstract interpretation and model-checking algorithms.

We also intend to explore methods of leveraging more powerful rewriter-
supplied hints that express richer invariants relating abstract and reified secu-
rity state. Such advances will provide greater flexibility for alternative IRM
implementations of stateful policies.
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