Gradual Typing Embedded Securely in JavaScript

Nikhil Swamy! Cédric Fournet!

Juan Chen!

Microsoft Research!

Aseem Rastogi’

Pierre-Yves Strub*

University of Maryland?

Karthikeyan Bhargavan’

Gavin Bierman!

INRIA3 IMDEA Software Institute*

{nswamy, fournet, juanchen, gmb}@microsoft.com, aseem@cs.umd.edu, karthikeyan.bhargavan@inria.fr, pierre-yves@strub.nu

Abstract

JavaScript’s flexible semantics makes writing correct code hard and
writing secure code extremely difficult. To address the former prob-
lem, various forms of gradual typing have been proposed, such
as Closure and TypeScript. However, supporting all common pro-
gramming idioms is not easy; for example, TypeScript deliberately
gives up type soundness for programming convenience. In this pa-
per, we propose a gradual type system and implementation tech-
niques that provide important safety and security guarantees.

We present TS*, a gradual type system and source-to-source
compiler for JavaScript. In contrast to prior gradual type systems,
TS* features full runtime reflection over three kinds of types: (1)
simple types for higher-order functions, recursive datatypes and
dictionary-based extensible records; (2) the type any, for dynami-
cally type-safe TS* expressions; and (3) the type un, for untrusted,
potentially malicious JavaScript contexts in which TS* is embed-
ded. After type-checking, the compiler instruments the program
with various checks to ensure the type safety of TS* despite its
interactions with arbitrary JavaScript contexts, which are free to
use eval, stack walks, prototype customizations, and other offen-
sive features. The proof of our main theorem employs a form of
type-preserving compilation, wherein we prove all the runtime in-
variants of the translation of TS* to JavaScript by showing that
translated programs are well-typed in JS*, a previously proposed
dependently typed language for proving functional correctness of
JavaScript programs.

We describe a prototype compiler, a secure runtime, and sample
applications for TS*. Our examples illustrate how web security pat-
terns that developers currently program in JavaScript (with much
difficulty and still with dubious results) can instead be programmed
naturally in TS*, retaining a flavor of idiomatic JavaScript, while
providing strong safety guarantees by virtue of typing.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.4.6 [Op-
erating Systems]: Security and Protection—Verification.

Keywords type systems; language-based security; compilers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

POPL ’14, January 22-24, 2014, San Diego, CA, USA.

Copyright © 2014 ACM 978-1-4503-2544-8/14/01. .. $15.00.
http://dx.doi.org/10.1145/2535838.2535889

1. Introduction

Writing secure JavaScript is notoriously difficult. Even simple
functions, which appear safe on the surface, can be easily broken.
As an illustration, consider the script below, simplified from ac-
tual scripts in the OWASP CSRFGuard (2010) and Facebook API
(2013), security-critical JavaScript libraries that aim to impose ac-
cess controls on the networking APIs provided by web browsers.

function send(u,m) {/*Stand-in for XMLHttpRequest*/}
function protect(send) {

var whitelist={"https://microsoft.com/mail":true,

"https://microsoft.com/owa":true};
return function (url, msg) {
if (whitelist[url]) send(url, msg);
};

} send = protect(send);

The function call protect(send) on the last line returns a function
that interposes an access control check on send. If this script were
to run in isolation, it would achieve its intended functionality. How-
ever, JavaScript programs rarely run in isolation—programmers ex-
plicitly link their code with third-party frameworks, and, worse, un-
expected code fragments can be injected into the web sandbox by
cross-site scripting attacks. For example, the following script run-
ning in the same sandbox as protect could succeed in sending a
message to an unintended recipient.

Object.prototype["http://evil.com"]=true;
send ("http://evil.com", "bypass!");

This is just one attack on protect; similar attacks are often the
consequence of unintended callbacks to untrusted code (caused, for
example, by implicit coercions, getters or setters, prototype hack-
ing, and global object overwriting). Experimentally, we found and
reported several such security flaws in the OWASP CSRFGuard
and Facebook API scripts, suggesting that untrusted callbacks re-
main difficult both to prevent and to contain.

1.1 Attacks ~ Type Errors Arguably, each of these attacks can
be blamed on JavaScript’s lax notion of dynamic type-safety. Many
runtime behaviors that are traditionally viewed as dynamic type er-
rors (e.g., accessing non-existent properties from an object) are not
errors in JavaScript. However, almost any such error while running
a sensitive script can be exploited by a malicious context, as fol-
lows. Anticipating that the script will dereference an otherwise un-
defined property x, which in JavaScript would just return the value
undefined, a hostile context can define

Object.defineProperty(0Object.prototype,"x",
{get:function O {/*exploit*/}});

then run the script and, as x is dereferenced and triggers the call-
back, access any argument on the caller stack. Thus, for protecting
good scripts from bad ones, silent type errors in JavaScript are just

as dangerous as buffer overruns in C. Despite the numerous dy-
namic checks performed by the JavaScript runtime, some stronger
notion of type safety is called for.

Other researchers have made similar observations. For exam-
ple, Fournet et al. (2013) show several attacks on a similar piece
of code and argue that carefully mediating the interaction be-
tween a script and its context is essential for security. They show
how to compile f*, a statically typed, ML-like source language to
JavaScript in a fully abstract way, allowing programmers to write
and reason about functions like protect in ML, and to let their com-
piler generate secure JavaScript automatically. This is an attractive
design, but the sad truth is that millions of JavaScript program-
mers are unlikely to switch to ML. Meanwhile, Bhargavan et al.
(2013) have developed DJS, a minimal, statically typed, secure core
of JavaScript, primarily for writing first-order, string-processing
functions using arrays of fixed size. DJS is suitable for writing
security-critical code, like cryptographic libraries, and Bharga-
van et al. prove that the behavior of programs accepted by the
DJS type checker is independent of the JavaScript environment
in which they may run. Many others propose analyses for sub-
sets of JavaScript (Chugh et al. 2012; Guarnieri and Livshits 2009;
Guha et al. 2011; Hedin and Sabelfeld 2012; Swamy et al. 2013;
Taly et al. 2011), although the guarantees provided only hold if
the entire environment in which the program runs is also in the
subset in question. Efforts like AdSafe (nttp://www.adsafe.org) and
Caja (nttp://code.google.com/p/google-caja) address the problem
of safely loading untrusted JavaScript into a program’s environ-
ment after analyzing and rewriting it. However, in order to do this
reliably, various JavaScript features are forbidden, e.g., Politz et al.
(2011) show that by ruling out many commonly used JavaScript
features (e.g., eval or explicit prototype manipulation), AdSafe
can safely sandbox untrusted code. Although we find the work on
JavaScript subsets a promising line to pursue (indeed, even the EC-
MAScript standard is evolving towards the definition of subsets,
such as the strict mode), assumptions about subsetting the environ-
ment are hard to validate in the presence of cross-site scripts.

1.2 TS*: a gradually type-safe language within JavaScript
This paper presents TS*, a source programming language that re-
tains many of the dynamic programming idioms of JavaScript,
while ensuring type-safety even in an untrusted JavaScript environ-
ment. TS* supports writing functions like protect exactly as shown,
while a compiler from TS* to JavaScript ensures that the access
control check in protect cannot be subverted.

Although significantly more flexible than f* or DJS, Ts* still
rules out many inherently unsafe features of JavaScript for the
code we protect, thereby enforcing a stricter programming disci-
pline and facilitating security code reviews. We intend TS* to be
used to protect security-critical scripts—guarding, for instance,
sensitive resources and capabilities—executed on web pages that
also include dynamically loaded, untrusted, potentially malicious
scripts. By necessity, most of the code running on these pages is
provided by third parties; we leave such code unchanged (and un-
protected). Nonetheless, by lightly rewriting the security-critical
scripts, and gradually typing them (Siek and Taha 2006), we en-
force a strong notion of dynamic type-safety. In addition, we
protect our scripts using type-directed wrappers to shield them
from adversarial JavaScript environments. This places them on
a robust type-safe foundation, from which we can reason about
their security. In comparison, other gradually typed extensions
to JavaScript, like TypeScript (http://www.typescriptlang.org) and
Closure (https://developers.google.com/closure/compiler), aim pri-
marily to increase programmer productivity by using types for doc-
umentation and code completion, but provide no safety guarantee.

The concrete syntax of TS* extends JavaScript with a type-
annotation language based on TypeScript. Our implementation

works by first using TypeScript to infer types for every sub-term. It
then uses the inferred types to type-check the program once again,
this time using a more restrictive type system. If this step is suc-
cessful, the program is compiled to plain JavaScript (instrumented
with various runtime checks to enforce type-safety) for execution.
The TS* type system itself has the following prominent features:

A statically typed core of functions, datatypes and records The
base type system of TS* includes primitive types like bool, number
and string; higher-order function types; recursive datatypes; and
extensible records of fields with optional immutability annotations.
Records are equipped with a structural subtyping relation. For
example, the type point defined below is a subtype of a record
that omits some of its fields, and function subtyping is, as usual,
contravariant on the arguments and covariant on the results.

{x:number; y:number; setX:const (number->unit)}
Dynamically typed fragment The type any is for dynamically
typed TS* expressions. All the types from the statically typed
core are subtypes of any, and all TS* terms whose subterms all
have type any can always be given the type any. In the spirit of
JavaScript, in the any-fragment, we view records as extensible dic-
tionaries with string-valued keys. TS* supports the use of computed
properties, e.g., in any-typed code, expressions like p["set"+"X"] or
whitelist[url] are legal ways to safely project the appropriate field
from the underlying object, if it exists. Dynamically typed code and
its interactions with statically typed code are instrumented by our
compiler for safety. As far as we are aware, ours is the first gradual
type system to soundly support dictionary-based mutable records
and computed properties.

Runtime reflection over types Case analysis on the runtime type
of a value is a common idiom in JavaScript and other dynamically
typed languages—Gubha et al. (2011) present several typical uses of
JavaScript’s typeof operator. TS* embraces this idiom and compiles
programs with runtime type information (RTTI) to support intro-
spection on all source types at runtime, e.g., isTag<point>p checks
whether the RTTI of p is a structural subtype of point. In addition
to providing an expressive source programming construct, RTTI
also forms the basis of an efficient and simple enforcement mecha-
nism for gradual typing, an alternative to prior proposals based on
higher-order contracts (Findler and Felleisen 2002).

un, the type of the adversary, mediated by wrappers Finally,
and most distinctively, TS* provides a second dynamic type, un.
Any JavaScript term which cannot be typed either statically or dy-
namically can be given the type un and simply passes through our
compiler without further analysis or modification. As such, un is
the type of arbitrary, potentially adversarial JavaScript expressions.
Our un type is reminiscent of types for adversaries, as proposed
by Gordon and Jeffrey (2001). However, unlike prior uses of un in
the context of secure compilers (e.g. Fournet et al. 2013), un is a
first-class type in TS*: un values may be stored in records, used as
arguments and results of functions, etc. The type un is incompara-
ble to any in the subtyping relation and, in contrast with any, all
operations on un values are mediated by wrappers that safely build
coercions to and from un (as well as other types). The wrappers
enforce a strict heap separation between the un-context and typed
TS*, ensuring that adversarial code cannot break type invariants.

1.3 Evaluating TS*: theory and practice We specify our com-
piler as a type-directed translation relation (§3). To formalize
properties of the translated program, we give TS* a translation
semantics to JS*, a dependently typed model of JavaScript de-
veloped by Swamy et al. (2013), which is in turn based on AJS
by Guha et al. (2010). Precise monadic refinement types in JS*
allow us to conveniently phrase our metatheory (§4) in terms of
type-correctness of Js*, yielding three main properties:

http://www.adsafe.org
http://code.google.com/p/google-caja
http://www.typescriptlang.org
https://developers.google.com/closure/compiler

Memory isolation: un-typed code (i.e., the adversary) cannot di-
rectly call, read, write, or tamper with typed values.

Static safety: statically typed code is safely compiled without any
runtime checks, even in the presence of type-changing updates.

Dynamic safety: runtime type information is sound and at least as
precise as the static type.

Experimentally, we evaluate TS* by programming and adapting
several security-sensitive JavaScript web libraries (§6). Our exam-
ples include a OWASP reference library to protect against cross-site
request forgeries (CSRF) (Barth et al. 2008); and an adaptation of
secure login and JSON-validation scripts within the Facebook API.
In summary, our main contributions include:

(1) a type system and runtime support for safely composing stati-
cally typed, dynamically typed, and arbitrary JavaScript; (§3)

(2) atype safety theorem and its proof by translation to JS*; (§4)

(3) a prototype implementation, including a protocol to ensure that
our runtime support runs first on pages hosting compiled TS*,
and securely initializes our type invariant; (§5)

(4) security applications, illustrating a series of authorization and
access control patterns taken from popular security-sensitive
web applications and libraries, motivated by new attacks. (§6)

As such, TS* is the first system to provide a notion of type safety
useful for secure programming, while handling al/ of JavaScript.

The latest version of our compiler, programming examples, at-
tacks, sample web-application deployments, and a technical re-
port with the full formalization and proofs are all available from

http://research.microsoft.com/fstar.

2. An overview of TS*

We begin by presenting the design of TS* informally, using sev-
eral small examples for illustration. We use the concrete syntax of
TypeScript with minor simplifications; for instance we write func-
tion types as t -> t rather than TypeScript’s (x:t) => t>. We also
extend the syntax of TypeScript with datatype declarations and im-
mutability qualifiers.

2.1 Gradually securing programs by moving from un to any
While we envisage TS* as the basis of a full-fledged gradually typed
web-programming language, we initially consider JavaScript pro-
grammers willing to harden safety- and security-critical fragments
of their code. They can start by giving their existing JavaScript code
the type un in TS*, and then gradually migrating selected fragments
to (dynamically) type-safe code in TS* using the type any.

This exercise is valuable since any code in TS* enjoys a memory
isolation property, a robust foundation upon which to build secure
sub-systems of a larger program. Memory isolation alone prevents
many common attacks. For example, the prototype poisoning attack
of §1 occurs because of a failure of memory isolation: the com-
mand whitelist[url] causes a prototype-chain traversal that ends
with reading a field of object.prototype which, unfortunately, is a
reference to an object controlled by the adversary. Passing protect
(unchanged) through the TS* compiler while giving whitelist the
type any produces an instrumented version of protect with checks
to prevent any property dereferences from whitelist from accessing
Object.prototype (Or any other un object), thereby foiling the attack.
Specifically, from memory isolation, we can prove that every deref-
erence of a field of any object in TS* will only read the immediate
fields of that object, and will never access a prototype controlled by
the adversary. This ensures that whitelist[url] returns true only if
url is immediately defined in whitelist.

Undecorated TS* programs can generally be given the type any
(as long as they are well-scoped). Every function parameter in an

unannotated TS* program defaults to the type any; every var-bound
variable is given the type of its initializer. Under this convention, in
the program from §1, the type of protect i any -> (any,any)-> any,
which is a subtype of any. When deploying a TS* program, we
assume that the JavaScript global object (the window object in most
browsers) and all objects reachable from it are under control of
the attacker. Thus, it is not safe to simply store protect(send) into
window.send, since that would break memory isolation and leak a
value of type any to un-safe code—our type system prevents the
programmer from doing this by mistake.

Instead, TS* provides wrappers to safely export values to the
context. The TS* expression wrap<un>(protect(send)) wraps the
protect(send) closure and yields a value of type un, indicating that
it is safe to hand to any JavaScript context while preserving mem-
ory isolation. Dually, for e:un, the expression wrap<any>(e) safely
imports e from the context and gives it the type any.

Providing a JavaScript implementation of wrap is non-trivial.
We base our implementation on wrappers defined by Fournet et al.
(2013). Their wrappers are designed to safely export statically
typed values from the translation of an f* program (roughly, a sim-
ply typed subset of ML) to its JavaScript context; and to import
untyped values from the context into f* at specific types. For ex-
ample, Fournet et al.’s down,, exports a pair of translated f* val-
ues (vi,vy) of type (¢ *u) to the context, by building a new object
with two fields initialized to down, (v) and down, (v,). A correspond-
ing wrapper up.,, does the converse, safely copying a pair from the
context and building a value that is the translation of an f* pair of
type (¢ *u). Fournet et al. provide up, and down, wrappers for types ¢
including unit, bool, string, number, pairs, recursive datatypes,
and functions. We extend their constructions to additionally build
wrappers to and from the type any, and to handle cyclic data struc-
tures that can be constructed using records with mutable fields.

To illustrate wrappers in action, we elaborate on our first ex-
ample. Suppose we wished to protect window.send (a fictitious but
simpler stand-in for JavaScript’s XMLHttpRequest object) with an ac-
cess control check. To support this, the standard library of TS* pro-
vides a facility to read fields from, and write fields to, the global
object by including the following safe interface to the window Ob-
ject implemented in JavaScript. The win object, whose interface
is shown partially below, shadows the fields of the window object,
safely reading and writing it within a wrapper to ensure that the
attacker-controlled window does not break type safety. Using win
within a TS* program, we can safely import window.send, protect
it, and export it back to the context using the following snippet of
code, typed in a context where the win object has mutable un-typed
fields. Of course, the attacker may a priori obtain a copy, and even
redefine window.send before our code has the chance to protect and
update it, but this is an orthogonal problem, solved once for all
TS*programs—g§2.3 and §5 present our mechanisms to ensure that
our scripts run first on a web page.

interface win {send: un; ... }
win.send = wrap<un>(protect(wrap<any>(win.send)));

Wrappers are expensive, since they deeply copy the contents of
objects back and forth, and—by design—they are not necessarily
semantics-preserving. (For instance, they sanitize values, filter out
some properties, and prevent some aliasing.) Thus, in an attempt
to minimize the amount of copying, we may rewrite protect, by
adding a few types, as shown below.

function protect(send:(string,un) -> un) {
var whitelist={"http://microsoft.com/mail":true,
"http://microsoft.com/owa":truel;
return function (url:string, msg:un) {
if (whitelist[url]) send(url, msg); I};
}s
win.send =
wrap<un>(protect (wrap<(string ,un)->un>(win.send)));

http://research.microsoft.com/fstar

Intuitively, the nsg argument in the closure returned by protect
is treated abstractly, that is, our script does not directly access it.
Thus, there is no need to import that argument from the context
(potentially performing a deep copy). On the other hand, the ur1
argument is not abstract—it is used to project a field from the
whitelist, and, as such, it had better be a string. The type system
of TS* gives us the flexibility to express exactly what should be
imported from the context, helping us find a good balance between
security and performance. The explicit use of un and wrap are
advances of TS* relative to prior languages such as f* or, for that
matter, any prior gradually typed programming language.

2.2 Expressing invariants with assertions over runtime types
As can be expected of gradual typing, a TS* program migrated
from un to any can then, with some effort, be made increasingly
statically typed. Static types can improve runtime safety, robustness
of code, modularity, as well as provide better IDE support. Static
types in TS* also improve performance relative to any-typed code
and, relying on RTTI, can enforce data invariants. This is enabled
by static safety and dynamic safety, two properties (in addition to
memory isolation) provided by TS*.

Static safety TS* ensures that, at runtime, no failures happen
during the execution of statically typed parts of the source program.
Since there are no runtime checks in the compiled JavaScript for
such parts, as a bonus, the performance of statically typed TS* code
will approach that of native JavaScript (and potentially exceed it, if
the type information can be communicated to the VM).

Dynamic safety Every TS* value v : ¢ (where ¢ # un) is compiled
to JavaScript with runtime type information (RTTI) that initially
reflects v’s static type ¢. TS* ensures that, while v’s RTTI may
evolve during execution (e.g., as fields are added to an extensible
record), it is always (a) a subtype of v’s static type ¢, and (b) a
sound approximation (supertype) of v’s most-precise current type,
i.e., the RTTI of v may evolve only monotonically with respect to
the subtyping relation. We call this property dynamic safety.

As an illustration, consider the example below, which codes up
a lightweight form of objects with extensible records and closures
in TS*, where point is the type defined in §1.

function Point(x, y) {
var self = {};
self.x=x;
self.y=y;
self.setX=function(d:number) { self.x = d; };
return setTag<point>(self);

}

The function Point creates a new point. It allocates a new empty
record and stores it in the local variable self, then it adds three
fields x, y, and setx. The static type of seif is just the empty
record. However, TS* allows us to add more fields to se1s than those
documented in its static type. As such, the static type of a record
only describes a subset of the fields in the term, as is usual with
width-subtyping. Deleting fields from records is also possible—we
discuss this in more detail in §3.

In the last line of Point, setTag<point>(self) checks at runtime if
the content of self is compatible with the point type, and fails oth-
erwise. The term setTag<point>(self) has static type point, although
the static type of self remains unchanged.

Assertions like setTag allow source programmers to safely up-
date RTTI while maintaining the runtime type invariant. Once a
value has been tagged as a point, then it is guaranteed to always
remain a point. A programmer may choose to add fields to a point,
or to further update its type information (e.g., turning it into a
coloredPoint), but it will always contain at least the fields of a point.
Any attempt to delete, say, the x field, or to change it in a type-
incompatible way (using for instance a dynamically typed alias to
the point) will cause a runtime error.

In contrast, statically typed code raises no such errors. TS* infers
that function Point has type (any,any)-> point, so the code below is
statically type safe and does not require any runtime checks.

var o = Point (0,0); o.setX(17);

As another example,! consider that popular web frameworks,
like Dojo, provide implementations of the JSON Schema standard.?
This allows programmers to validate JSON data, writing verbose
schemas for them also as JSON objects. In TS*, data invariants
can be expressed and enforced directly using types, rather than
via schemas. For example, to check that a JSON string can be
parsed into an array of user identities, we can write the TS* code
below, assuming that JSON. parse has type string -> any. (See online
materials for a TS* implementation of a JSON parser.)

type users = {id:number; user:stringl}[]

function check(j:string) users {
var o = JSON.parse(j);
if (canTag<users>(o0)) return setTag<users>(o);
else return [];

}

The schema is captured by the type users. We parse a string j as
JSON using JsoN.parse, then use the TS* operator canTag<t>(o) to
check that o’s contents are consistent with . If the check succeeds,
we stamp o as a valid users object and return it.

2.3 Reliable primitive operations Since the global window ob-
ject is shared with the adversary, all objects reachable from window
may be compromised. This includes all built-in objects provided by
the VM, e.g., Object.prototype, Array.prototype, the default string
object, and others. In order to ensure memory isolation, translated
TS* programs should never read from any of those objects. This is
remarkably difficult to arrange in JavaScript, since several primitive
operations, e.g., reading and writing fields, depend on base proto-
types, as illustrated in §1. Thus, in the face of attacker-controlled
prototypes, even simple manipulations of objects are unreliable.

Thankfully, there is a relatively simple way out. JavaScript
(since ECMAScript 5) provides a function object.create, such that
Object.create(arg) creates a new object with its prototype field
initialized to arg. As a special case, Object.create(null) creates an
object with a null prototype, meaning that the created object does
not inherit the attacker-controlled object.prototype. Our compiler
uses Object.create(null) to create new objects in the translation of
a TS* program, allowing manipulations of object fields simply as
o.f=v Or o["£"]1=v, without worrying that a traversal of o’s prototype
chain will reach an attacker-controlled object.

There is one exception, however. Function objects cannot be
allocated using object . create—they must inherit from the attacker-
controlled Function.prototype. However, by an invariant of the
translation, we can ensure that the only field ever accessed of a
non-un-typed function £ is “rtti”. So, as long as Function.prototype
contains a safe, immutable rtti field, accessing £.rtti will never
trigger adversarial code.

The correctness of our translation then requires a reliable way to
call object.create(null) and to initialize Function.prototype.rtti.
To achieve this, compiled TS* programs are linked with a library
called boot.js. This library is intended to be the first piece of
JavaScript that runs on a page—=§5 discusses how to make a script
run first, reliably, before any adversarial script. boot . js takes a clean
copy of Object.create and stores it in an immutable field. Later, the
translated TS* code accesses Object.create from this field, rather
than as window.0Object.create, Which is an attacker-controlled path.
We show a fragment of boot.js below, simplified slightly to use

' Based on http://davidwalsh.name/json-validation.
2 http://tools.ietf.org/html/draft-zyp-json-schema-03

http://davidwalsh.name/json-validation
http://tools.ietf.org/html/draft-zyp-json-schema-03

field names such as rtti, instead of the longer names (less likely to
clash with source code) used in our implementation.

function boot () {
var Clean
Clean.create
Clean.isTag ;
Clean.wrap = function (t,s,x) { ... };

1
2 Object.create (null);
3
4
5
6 Object.freeze(Clean);
7
8
9
10

Object.create;
function (t,s,x) { ... }

Object.defineProperty (Function.prototype, "rtti",
{value:null, writable:false, configurable:falsel});
Object.defineProperty(window, "Clean",
{value:Clean, writable:false, configurable:falsel});
11 ¥;
12 boot (); boot=undefined;

The listing above defines a function voot that is run once and
then discarded. Within the scope of the function, we construct
a Clean object in which to maintain pristine copies of functions
like Object.create, on which our translation relies. Lines 4-5 de-
fine functions that implement queries and coercions on runtime
types and values—we discuss their implementation in detail in §3.
Line 6 calls the JavaScript function freeze, to make Clean im-
mutable. Line 7 initializes Function.prototype.rtti and line 9 regis-
ters the Clean object at the path window.Clean—both use JavaScript’s
defineProperty, to define immutable, non-configurable properties.

2.4 Embedding TS* in JavaScript The clean object in boot.js
provides trusted core functionality upon which we can build a se-
cure compiler. In this section, we outline the end-to-end embedding
within JavaScript of the Point example from §2.2. There are a few
broad features of the translation that we focus on:

¢ Adding runtime-type information to every object and function.
e Checking runtime type information in the any fragment.

e Embedding wrappers to safely export/import values.

The listing below shows the translation of the TS* function Point to
JavaScript. The translated code is placed within a single enclosing
function to introduce a fresh local scope. Without this precaution,
TS* definitions would implicitly leak into the global un-typed ob-
ject. The type annotations in TS* are all erased in JavaScript.

1 function () {
2 var Point = function (x,y) {
3 var self = Clean.create(null);
4 self.rtti = ({});
5 write (self, "x", x);
6 write(self, "y", y);
7 var tmp = function(d) A{write(self, "x", d);}
8 tmp.rtti = (number — unit);
write(self ,"setX", tmp);
return Clean.setTag(({}),(point),self);

—_
[e>)Na)

11 3

12 Point.rtti = ((any,any) — point);
13 var o = Point (0,0);

14 o.setX(17);

15 30

Line 3: the source empty record {} is compiled to a new null-
prototype object. Line 4: we set the rtti field of seif to the transla-
tion of a source empty record type. Lines 5 and 6: we use the macro
write to add two properties to the self object. This macro (defined
in §3) checks that the RTTI of the assigned field (if any) is compat-
ible with the RTTI of the assignee. In this case, since the rtti field
of self is just the empty record, it does not constrain the contents
of any of its fields, so these assignments succeed and the fields are
added to se1f. Line 7: we translate setx and, line 8: we tag it with
an rtti field recording its source type. We then add it to self using
write. Line 10: the call to Clean.setTag checks whether se1f, whose
static type is represented by ({}]), contains a valid representation of
a source point. For this, it examines the representation of the type
(point); notice that the type requires three fields, x, y, and setx;

Value
Expr.

<
Il

X | true | false | Axit.e | Dv

= vi{f=geleflef=¢lelc]|ele]=¢"
| letx = einé |ee |De

| ifethene elsee’ | g(t)e | c(t)e

Q

Query q isTag | canlag | canWrap

Coercion ¢ = setTag | wrap

Type t,u = bool|T|any|un|t—ul|{f:F}
Access a riw

Sig. S |Di—>T|S,s

Env. r x| T,

Figure 1. Formal syntax of TS*

then it checks that the se1f object contains values in those three
fields whose RTTIs are compatible with the requested types number,
number, and number -> unit, respectively. Once this check succeeds,
setTag updates the rtti field of self to (point]). An invariant of our
translation is that the rtti field of every object evolves monotoni-
cally with respect to the subtyping relation. That is, self.rtti was
initially ({}) and evolves to (point), where point <: {+. The RTTI
of self may evolve further, but it is guaranteed to always remain a
subtype of point. Line 12: we add an rtti field to the Point. Finally,
lines 13 and 14: we see the translation of a statically typed fragment
of Ts*. Pleasantly, the translation there is just the identity.

As shown, the translated program does not interact with its con-
text at all. However, the programmer can choose to export certain
values to the context by writing export function Point(x,y){...} in-
stead. This instructs the compiler to wrap and export Point to the
context by inserting the following code after Line 14.

win.Point = Clean.wrap (((any,any)— point)), (un),Point);

3. Formalizing TS*

This section formalizes TS* by presenting its type system and type-
directed translation to JavaScript. We describe in particular our
runtime representation of types and the JavaScript implementations
of Q.wrap, Q.setTag and related functions that manipulate translated
terms and their types. We conclude this section with a detailed
comparison of TS* with prior gradual type systems.

3.1 Syntax Figure 1 presents our source syntax. To aid in the
readability of the formalization, we employ compact, A-calculus
style notation, writing for example Ax:t.e instead of function(x:t)
{return e;}. We also write e for a sequence of expressions ey, ..., ey,
f(e) for the application f(ey,...,e,), and so on. Our formal syntax
does not cover the un-typed fragment, since its typing and com-
pilation are both trivial, although, of course, our theorems specifi-
cally address the composition of compiled TS* code with arbitrary
JavaScript.

Values v include variables x, Booleans, typed A-abstractions,
and data constructors D applied to a sequence of values. For con-
ciseness, we exclude primitives like numbers and strings, since they
can in principle be encoded using data constructors. In practice, our
implementation supports JavaScript primitives, and so we use them
in our examples. This requires some care, however, since some op-
erations on primitive types can be overwritten by the adversary. In
such cases, we cache reliable versions of those primitive operations
in the Clean object built by boot. js

In addition to values, expressions e include record literals, pro-
jections of static fields, and assignments to static fields. We also in-
clude projections of computed fields e[e’] and assignment to com-
puted fields e[e’] = €”. Tt is important to note that records, even
records of values, are not values, as in JavaScript evaluating a
record returns the heap location where the record value is stored.
We have 1et-bindings (corresponding to immutable var bindings in
our concrete syntax); function application; data constructor appli-

I'te:u~s Sku<:t Tké:f~5 {fft=tWu Sk unFree(r)
(T-SuB) —_— (T-X) —— — (T-REC)
T'ke:t~s FEx:T(x) ~x T'H{f=¢e}:u~ record(f:3s,u)
S(D)=t—=T Tlre:i~5s Coxthe:t ~s The:uw{fVtt~s Thkeitwy
— — " (T-D) ; — (T-LAM) ; ; (T-WR)
I'tDe :T ~ data(D,5,T) 'k Axite:t =t ~ fun(x,e,s,t — 1) Iltef=é:t~sf=s
T'teuw{f:“t}~s I'be:t) —>tp)~s THe it~ I'ke:u~s Toxube it~s
——F——————— (T-RD) 7 7 (T-App) — 7~ (T-LET)
F'kef:t~sf I'tee:np~ss I'kletx = eine it~ (x=s,5")
I'Fe:any~s Vil ej:it~s I'ke:t' ~s t ~t T'ke:t' ~s t~t
- - (T-IF) 7 (T-Q) 7 (A-0)
't ifethene else ey it~ if (s) {51} else {52} I'F g(t)e: bool ~~ Clean.q(('), (t)),s) 't c(t)e:t ~ Clean.c((t'), (t),s)
Vil'le;:any ~s; Vil'l-e;:any ~ s; Vil'l-e; :any ~ s;
(A-APP) (A-RD) i (A-WR)
't e ey : any ~~ apply(si,s2) 'k ejez] : any ~ read(sy,s2) 'k ejlez] = e3 : any ~ write(sy,s2,53)
Ske<:it” Skt <t Sk <t Stu<td Ske<:t St unFree(r) St unFree(t)
Str<:t Skr<:t Skt—u<:t' —u SH{f:"tywu<:{f:"}wu S+t <:any Sttyu<:u

VD:f — T € S[T].S - unFree(7)

Vi.St unFree(t;) Sk unFree(7)

S+ unFree(r) S+ unFree(bool) S+ unFree(any)

any ~t un ~t

where
let x = s in §
record(f : 5,t)
data(D,5,T)
fun(x,e,s,t —1')
apply(si,s2)
read(sy,s)
write(s1, 2,

function(x){return s';}(s)
x=Clean.create(null) in (x.f=5, x.rtti=(t))

f=5; in let x=s, in typeof (x)==="function" ?

x=s; in let f=s, in typeof (x)==="

in let v=s3 in let t

x=s51 in let f=s,
Clean.mutable(t, f)

$3)

(t—=7)

{r1})

Clean.Any
Clean.data("T")

(any) Clean.arrow((r), (')
(

T)

St unFree(T)

t~t
7 7
t—t~t —u

object" && Clean.hasField(x,f) ? x[f]
typeof (x)
? x[f]=Clean.setTag((any), Clean.hasField(t,f) 7 t[f]

St unFree(r; = 1) S+ unFree({f:77})

! /

. ot
U~ V].aj—aj Ntjrt;

fields(up) Nfields(u;) = 0
{f:‘it_}tduow{f:d/t_/}&,lul

x=Clean.create(null) in (x[il=§, x.c=(D), x.rtti=(T), x)
f=function(x){var locals(e); return s;} in (f.rtti=(r—1'), £)

: Clean.die()
: Clean.die()

: Clean.die() in
: Clean.Any(v)

f(Clean.setTag((any), f.rtti.arg,x))

==="object" ? x.rtti
: Clean.die()

(un)

Clean.Un

let o = Clean.rec()in Clean.addField(o, f, (), a==="w")

Figure 2. A type-directed translation of TS* to JavaScript

cation; and conditionals. Finally, we have RTTI-based query oper-
ations ¢(t)e, and coercions c(t)e.

Types t,u include a number of primitive types (bool for boolean
values, and any and un for dynamic values), abstract data types
ranged over by 7', and records. Record types are written using the
shorthand {f :% 7} to denote the type {f :%' t1,...,fn % t,} where
the f; are distinct and the a; are accessibility annotations: r for read-
only, and w for mutable. We also write ¢t Wu for the record type
{fi: R, @R}, wheret ={fi " fi}andu={f :®h}.

The type system is given with respect to a signature S which
maps data constructors D to their type signature, written f — T.
In places we need to refer to all the data constructors for a given
abstract data type 7 in the signature S. We use the shorthand S[T’]
which is defined as {D:7 — T | S(D) =7 — T}. We also have a
standard type environment I" binding variables to their types.

Although we have data constructors, pattern matching in TS*
is not primitive. Instead, it can be encoded in terms of the other
constructs, as defined below. Note that we freely use && and other
Boolean operators, as well as ===, physical equality on TS* values.

match e with D7 _,7X — e] else ey =

lety = einif (isTag<T>y & y.c === "D") thenletX = y[i] in €] else ey

3.2 Type system and translation Figure 2 defines the judgment
I'e:t~- s, which states that in an environment I" (along with
an implicit signature §), the expression e can be given the type ¢
and be translated to the JavaScript program s. We present the type
system declaratively. In practice, our type checker analyzes a fully

decorated AST produced by the type inference algorithm of Type-
Script, so implementing the system in Figure 2 is straightforward.
(A precise description of this type inference algorithm is beyond
the scope of this paper.)

At a high level, the type system is designed to enforce the
following three properties mentioned in §2:

Static safety TS* programs have no failing dynamic checks during
the execution of statically typed sub-terms. We achieve this via two
mechanisms: (a) the rules prefixed by (T-) enforce the static typing
discipline and they never insert any runtime checks when compil-
ing the program; (b) when a value v:any is passed to a context that
expects a precise type, e.g. point, the compiler inserts instrumen-
tation to ensure that v is indeed at least a point. Instrumentation
inserted elsewhere in dynamic code also ensures that v henceforth
remains at least a point. This protects statically typed code from
future modifications to v. In the other direction, the type system
allows for v :point to be passed to any-typed context via subtyping.
Dynamic safety The RTTI of vt is always a subtype of ¢ and
a sound approximation of v’s most precise type—by two mecha-
nisms: (a) v’s RTTI initially reflects ¢ and the ser7ag operation en-
sures that RTTI always evolves towards the more precise types per
subtyping, and (b) the rules prefixed by (A-) instrument the transla-
tion of the any-typed parts of the source to enforce that modifica-
tions to v respect its RTTL. (We envision that an IDE can highlight
uses of (A-) rules to the programmer as potential failure points.)

Memory isolation un-typed code cannot directly access an object
reference that TS* code may dereference; this is enforced by ensur-

ing that the un type is treated abstractly. The only way to manipu-
late un values is via defensive wrappers, which means that typed
code never dereferences an un-typed memory location, and that
any-typed references are never be handed directly to the adversary.
The subtyping rules are designed to prevent masking the presence
of un-values in records using width-subtyping or subtyping to any.

We now turn to describing each of the rules in detail. The first
rule in the judgment, (T-Sus), is a subsumption form which shows
that a use of subtyping in TS* does not change the translation of
a term. The subtyping relation S ¢ <: ¢ (also in Figure 2) is
mostly standard. Depth subtyping on records is permitted only for
immutable fields. The penultimate rule allows all types that do not
contain the un type to be a subtype of any. (The auxiliary predicate
unFree detects occurrences of un in a type.) Allowing un <: any
would clearly break our invariants. Allowing {f:un} <: any is also
problematic, since if a value v:{f:un} could be promoted to v:any,
then v["£"] would also have type any, even though it produces an
untrusted value. The last subtyping rule provides width-subtyping
on records, forgetting the fields to weaken # W u to u, only so long
as ¢ contains no occurrences of un.

The rule (T-X) for typing variables is standard. (T-Rec) introduces
a record at type u, such that u includes all the un-fields (necessary
for compatibility with subtyping). Its compilation allocates a new
object, safely sets the fields f to §, and finally adds an rtti field
containing (u). The rule (T-D) for typing data constructors is simi-
lar. The typing of functions with (T-Lawm) is standard; however, the
translation to JavaScript is a bit subtle: it defines a JavaScript func-
tion tagged with an rtti field, whose body s is preceded by decla-
rations of all the 1et-bound variables in e, the source function body.
These (and other) rules use the JavaScript form (), which evaluates
every e; in e and returns the last one.

The rules (T-Wr), (T-Rp), and (T-App) are standard. One slight
wrinkle in (T-1F) is that we rely on JavaScript implicitly converting u
to a boolean—this implicit conversion is a safe primitive operation.
One could imagine a stricter variant of (T-Ir) with a runtime check
to ensure that u is a boolean, without applying implicit conversions.
However, (T-1r) as shown is more idiomatic of JavaScript. On the
other hand, our treatment of local variables in (T-LeT) deviates from
JavaScript’s var-statements—Ilocal variables are always immutable
in TS*. We make this choice since mutability, if desired, can be
encoded by boxing the let-bound value in a mutable record field.
In contrast, encoding immutable local variables given only mutable
ones is impossible (even with immutable record fields).

The rules (T-q) and (A-c) cover queries g(t)e and coercions c(f)e.
In each case, we have an expression e:t’ compiled to s, and we apply
g orcattypet,solong as ¢ and ¢’ are compatible. Type compatibil-
ity is a simple reflexive, symmetric, and non-transitive relation, in
the spirit of Siek and Taha (2006). We discuss the implementation
of these operations in the next subsection.

The remaining (A-) rules instrument the translated programs to
ensure safety. In (A-App), we first check that s is a function. Then,
before calling the function, we tag the argument with the type of the
function’s parameter. (A-Rp) simply checks that s; is an object and
that s has field s,. (A-Wr) checks that s; is an object. It then checks
that s1’s RTTI allows for field s, to be written. If s;’s RTTI does
not contain sy, it is treated as a new property addition—deleting
a property if it is not present in the RTTI is also straightforward,
although we do not cover it here. Otherwise, it should contain a
mutable s, field, and before writing, s3 is tagged with the type
expected by s1’s RTTL

3.3 Implementing RTTI-based coercions and wrappers As
described in §2.3, runtime support for compiled TS* programs is
provided by the immutable clean object installed in the global
namespace by the first-starter script boot. js. This section discusses
in detail the setTag and wrap operations provided by the runtime.

Updating RTTI with setTag The form serTag(t)(e:t’) is compiled
to Clean.setTag(('),(r),s), where e compiles to s. In this case, the
first argument (#) is redundant, since it can be recovered from
the RTTI of s (which, by dynamic safety, must be a refinement
of t')—we keep the first argument for uniformity with wrappers,
as discussed below. The call clean.setTag((s'),(r),s) boils down to
setTaghux (s, (¢) ,false), whose implementation is shown in Figure 3
(on the left). This code tries to update the RTTI of s to be some sub-
type of (¢)) and fails otherwise. There are two main concerns that
the code addresses: (1) the code should not diverge if s is a cyclic
data structure (unless die is called); (2) if the tag of s is updated,
then s must represent a value of type ¢ and the new tag must be
a subtype of both the old tag and . These two concerns are com-
plementary, since certain types (e.g., non-recursive types or types
without mutable fields) specifically require all their values to be
acyclic. The main idea of setTagAux(x,t,b) is to traverse the objects
reachable from x in a depth-first manner, at each point checking
that each field required by ¢ is present in the object at the expected
type (lines 11 and 21). Each object encountered in the traversal is
temporarily marked (line 7) as visited by assigning meet (curTag,t)
to x.tmp. The assigned value is the greatest subtype of both curTag
and t (which may not exist, in which case the operation fails by
calling die). Cycles are only permissible when traversing mutable
object references and cycles are detected by looking for a marker in
x.tmp. If the traversal succeeds, the temporary marker is made per-
manent by updating x.rtti (line 4); if it fails, a fatal error is raised
by calling die, which exhausts the JavaScript stack. This is drastic
but effective; friendlier failure modes are feasible too.

Coercions based on setTag can be overly conservative, particu-
larly on higher-order values. For example, trying to coerce the iden-
tity function id : any -> any to the type bool -> bool using setTag
will fail, since any £: bool. As such, RTTI-based coercions are most
effective when working with mutable first-order objects. One way
to broaden the scope of RTTI-based coercions is, of course, to en-
rich the type language, e.g., to include polymorphism, or even re-
finement types—we plan to explore this in the future. Additionally,
we provide operations to query RTTL, is7ug(t)e and canTug(t)e, that
(respectively) allow programmers to query the current tag of e and
to test whether or not a setTag operation on e would succeed. When
RTTI-based coercions are inapplicable (e.g., on un-typed values) or
overly conservative (e.g., on functions), the wrap form is handy—
we describe it next.

Wrappers When e:t' compiles to s, wrap(t)(e:t’) compiles to
Clean.wrap({¢),(¢'),s)—Figure 3 shows part of its implementation
(on the right). Line 2 is the case where both (t) and (¢') are
function types. As expected, we apply a higher-order cast to s,
wrapping the argument, applying s, and then wrapping the result.
Thus, wrap((any — any), (bool — bool), id) succeeds where the cor-
responding setTag fails.

Securely importing from un The more interesting case of wrap is
when the source type is un and the target type is any (line 7), which
occurs when importing an un-typed value from the adversary into
the typed fragment of TS*. At line 8, we use JavaScript’s typeof
operator to examine the simple type of x, the un-typed value being
coerced. If x has a primitive type, then the coercion is just the iden-
tity. If x is an object, we aim to enumerate all its fields, then wrap
and copy each of those fields into a newly allocated any-typed ob-
ject. This requires some care, however, since directly enumerating
or accessing the fields of an un-typed objects causes callbacks to the
un-typed adversary, potentially breaking memory isolation by leak-
ing any-typed objects on the stack to the context. As a defense, we
build on an idea from Fournet et al. (2013), as follows. At line 14,
we allocate a new object r into which we will wrap and copy the
fields of x. Next, we build a closure (stub at line 15) which captures

function setTagAux(x, t,
var curTag tag0f (x);
if (tmp in x) { cycleok

cycleok) {

? curTag X.tmp die();
function ok(){ x.rtti=x.tmp;delete x.tmp;return x;
if (subtype(curTag, t)) return x;

if (typeof x object"||x.tmp) die();

1
2
3
4
5
6
7
8

x.tmp = meet(curTag, t);
switch (t.t) {
9 case "record":
10 if (curTag.t!=="record"||curTag.t!=="Any") die()
11 foreach(t, function(fld, ft) {
12 if (!'hasField(x,fld)) die();
13 if (hasField(curTag,fld) &&
14 ft.mut!==curTag[fld].mut)) die();
15 setTaghAux (x[f1d], ft.typ, ft.mut);
16 }); return ok();
17 case "data"
18 if (curTag.t !== "Any") die();
19 if (thasField(x,"c")) die();
20 var ct = constructors(t)[x.c];
21 foreach (ct, function (ix, arg) {
22 if ('hasField(x,ix)) die();
23 setTaghux (x[ix],arg,false);
24 }); return ok();
25 default die();
26 }}

}
}

H

1

25
26

function wrap (src, tgt, x) {
if (src. arrow" && tgt.t
var f = function (y) { return

wrap (src.ret,tgt.ret,x(wrap(tgt.arg,src.arg,y)));
f.rtti tgt; return f;

arrow") {

};
F oo
else if (src.

switch (typeof x)

case "undefined":
case "string":
case "number":
case "boolean":
case "object":
var r Clean.create (null);
var stub function () {
foreach(x, function (p, v) {
r[pl wrap ((un), (any),v);
B3}
callUn(stub); return r;
case "function":
var un2any=function (x){return wrap((un),
var any2un=function (x){return wrap ((any)
var f upfun (any2un,un2any) (x);
f.rtti (any — any); return f;
default: die();
31}

"un" && tgt.t
{

any") {

return x;

(any),x) ;¥
,(un),x) ;3

Figure 3. Implementations of Clean.setTag(u,t,x) = setTaghux(x,t,false) and Clean.wrap (selected fragments)

r and x, but otherwise takes no arguments and returns nothing. As
such, the stub can be viewed as a function from un to un. In the body
of stub, we enumerate the fields of x, then wrap and copy each of
them into r. All that remains is to call stub and return r. The call
itself is done using cal1un, which provides a safe way to call an un-
typed function without breaking memory isolation. The function
callUn(f) is defined as upfun(id,id) (f) (undefined), wWhere id is the
identity function, and upfun is the wrapper for importing un-typed
functions from Fournet et al. (2013) (see Figure 4 in that paper).
When x is a function (line 20), we again use upfun, this time export-
ing the argument and then importing the result back—the returned
value has type any -> any.

Securely exporting toun The implementation of wrap ({¢), (un)) (s)
for t # un, exports s to the context. This case is somewhat simpler,
since s is a typed value with RTTI which can be safely probed. If s
is a primitive, it can be exported as is. If s is an object, wrap creates
an empty object x, enumerates all the fields £ of s, exports them
recursively and adds them to x. For functions, it uses Fournet et.
al.’s downfun to export it at type un -> un.

3.4 Discussion and related work on gradual typing Lan-
guages that mix static and dynamic types date back at least
to Abadi et al. (1991) and Bracha and Griswold (1993). Gradual
typing is a technique first proposed by Siek and Taha (2006), ini-
tially for a functional language with references, and subsequently
for languages with various other features including objects. Several
others have worked in this space. For example, Flanagan (2006)
introduces hybrid typing, mixing static, dynamic and refinement
types; Wadler and Findler (2009) add blame to a gradual type
system; Herman et al. (2010) present gradual typing with space-
efficient wrappers; Bierman et al. (2010) describe type dynamic in
Cf; and Ina and Igarashi (2011) add gradual typing to generic Java.

Our system is distinct from all others in that it is the first to
consider gradual typing for a language embedded within a larger,
potentially adversarial environment via the type un. We are also, to
the best of our knowledge, the first to consider gradual typing as a
means of achieving security.

To compare more closely with other systems, let us set aside
un for the moment, and focus on the interaction between any and
statically typed TS*. Previous type systems mediate the interactions

between static- and any-typed code by implicitly attaching casts to
values. Higher order casts may fail at a program point far from the
point where it was inserted. To account for such failures, blame
calculi identify the cast (with a label to indicate the term or con-
text) that causes the failure—Siek et al. (2009) survey blame cal-
culi based on the errors they detect, points of failures, and casts
they blame. In contrast, Interactions between static- and any-typed
TS*is based primarily on RTTI. Casts (wrappers in our terminol-
ogy) are never inserted implicitly, although they are made available
to the programmer. This design has the following advantages.

Preservation of object identity Object identity in JavaScript is a
commonly used feature. Since TS* does not implicitly attach casts
to values, it never implicitly breaks object identity in the source
during compilation. Previous gradual type systems with implicit
casts would always break object identity.

Space efficiency Casts can pile up around a value, making the
program inefficient. Herman et al. (2010) introduce a novel cast-
reduction semantics to gain space-efficiency. Our approach is also
space efficient (there is only one RTTI per object) but does not
require cast-reduction machinery.

Static safety and eager failures In contrast to our RTTI-based
mechanism, statically typed code in other gradual type systems
could fail (although blame would help them ascribe it to the any-
typed code). Consider the following TS* example.

let v:any {f:true} in (Ar:{f:%int}. r.f) v

Compiling this term using (A-app) introduces a setTag on the argu-
ment v at type {£:"int}. The setTag operation, at runtime, recur-
sively checks that v is a {£:"int}, and expectedly fails. Thus, the
failure happens prior to the application, a failure strategy called ea-
ger in prior works. Herman et al. (2010) also argue that their system
can provide eager failures, but transposed to their notation (with the
record replaced by a ref any), the failure occurs at the property read
within the statically typed A-term, breaking static safety. When ea-
ger runtime checking seems too strict, TS* wrappers provide an
escape hatch. Arguably, for our security applications, a predictably
uniform eager-failure strategy is a suitable default.

Dynamic safety and blame With no failures inside statically typed
code to explain at runtime, blame seems less useful with RTTI-
based coercions. However, because we enforce dynamic safety

(RTTI evolves monotonically), failures may now arise in any-typed
code, as in the following example.

let v:any={f:true} in (Ar:{f:“bool}.r.f) v; v.f="hi"

This time, the setTag of v to {f£:"int} succeeds, and it modifies v’s
RTTI to be {£:"int}. But now, the update of v.£ to "ni" fails. This
failure in the any-typed fragment should be blamed on the setTag
operation instrumented at the application. We plan to pursue the
details of this seemingly new notion of blame as future work.

Gradual typing for monotonic objects Independently, in an un-
published manuscript, Siek et al. (2013) investigate gradual typing
for a Python-like language (based on an earlier abstract presented at
the STOP workshop in 2012). Like us, they notice that constrain-
ing the type of a mutable object to evolve monotonically at run-
time enables statically typed code to be compiled without runtime
checks, leading to improved performance and safety for that frag-
ment. There are some important differences, however. First, Siek et
al. require monotonicity with respect to an intentionally naive sub-
typing relation. For example, (transposed to our notation) the type
of an object can evolve from ¢ ={f :* any} to #/ ={f :" number},
although ¢’ is not a subtype of ¢. This means that, in their system,
writing o.f = true can fail at runtime, even if o has static type z,
which is prevented by TS*. This difference stems perhaps from dif-
fering perspectives on static safety: Siek et al. are willing to tolerate
runtime errors in code whose typing somewhere employs the type
any; in our system, runtime errors may occur only when any-typed
values are eliminated (i.e., in our (A-) rules only). Syntactically lo-
calizing errors in this manner does not appear as straightforward
with naive subtyping. Additionally, Siek et al. do not aim to model
an adversarial context—there is a single dynamic type, not two (i.e.,
only any, no un). Exploring how to adapt our type un to defend
against adversarial Python contexts would be an interesting line of
future work.

4. Metatheory

This section formally establishes memory isolation, static safety,
and dynamic safety for TS* programs translated to JavaScript.
Clearly, such a proof requires a formal semantics for JavaScript—
we rely on JS*, a translation semantics for JavaScript developed
by Swamy et al. (2013), which is in turn based on AJS (Guha et al.
2010). We provide a brief review of 1s*, define the central in-
variants of our translation, and describe our main theorem. A full
formalism, including all proofs, is available online.

4.1 A review of Js* and our high-level proof strategy 1s* is a
subset of F* (Swamy et al. 2011), a programming language whose
type system allows expressing functional-correctness properties of
higher-order effectful programs. Prior work defines a semantics for
JavaScript via translation to J$*. The semantics is implemented
by a tool, called JS2JS™, that translates JavaScript concrete syntax
to Js*. This semantics for JavaScript has been used previously both
as a means of verifying JavaScript source programs (after trans-
lation to J8*) as well as in Fournet et al.’s proof of full abstrac-
tion from f* to JavaScript. At its core, JS* provides a mechanically
verified library called JSVerify that tries to faithfully model most
security-relevant details of JavaScript, including, for example, its
object model and its calling convention. The metatheory of TS* is
stated in terms of its translation to JS*, i.e., programs that can be
type-checked against the JSVerify APIL. The validity of our theorem
depends on Js* being a faithful model of JavaScript, an assumption
that can be checked separately, e.g., by semantics testing.

To set up the formal machinery, we develop a model of our
compiler by transposing the translation judgment in Figure 2 to
instead generate JS* code. The relationship among these transla-
tions is depicted alongside. The translation from TS* to JS* can be

seen as the composition of the

translation from TS* to JavaScript, Ts* Ft:erlari/it:::anslanon
and then from JavaScript to JS*. AN

Our main theorem is stated as a &2 \\
type-preservation result from TS* [V E— N]‘S*
to Js*, where the types in JS* are J5215* semantics

precise enough to capture our desired invariants, i.e., static safety,
dynamic safety, and memory isolation.

Monadic computation types with heap invariants All computa-
tions in js* are typed in a state monad of predicate transformers,
iDST, which is parametrized by a heap-invariant predicate Heaplnv
and a heap-evolution predicate 8. The type iDST a WP is the type
of a computation, which for any post-condition post, when run in
an initial heap s, may diverge or else produce a result v:a and a fi-
nal heap ' that satisfy the formula post v i’ A Heaplnv i’ A 8 h I, so
long as HeapInv h A WP post h is valid. Additionally, all intermediate
heaps in the computation satisfy Heaplnv, and every intermediate
heap is related to all its successors by 6. That is, in iDST a WP, a
is the result type, and WP is a predicate transformer that computes
a pre-condition for the computation with respect to post, any de-
sired post-condition; HeapInv is an invariant on a heap, and 0 is a
reflexive and transitive relation constraining how the heap evolves.
Our online materials also account for exceptions and fatal errors;
however, we gloss over them here for lack of space.

The main idea behind our proof is that a TS* term e:f is trans-
lated to a IS* term &’ of type iDST dyn WP, where

WPy = Apost.Ah. Ok (loc(e)) h AW I [[t] v B = postv I

This ensures that, if ¢’ is run in an initial heap & satisfying Heaplnv h
and Ok (loc(e)) h (meaning that all free-variables of the source-term
e are correctly promoted to the heap in J$*), then either (1) it will
terminate with a result v and a final heap 4’ satisfying [[¢] v #’; or
(2) it will diverge. The code may also raise an exception or throw a
fatal error, but all the while during the execution of e/, HeapInv will
be true, and the heap will evolve according to 6. This result holds
even when ¢’ is linked with arbitrary JavaScript code—adapting the
universal typability lemma of Fournet et al. (2013), JavaScript code
can always be typed in JS* at a type corresponding to un.

Our main task then is to carefully define Heapinv, & and [t]]
such that they capture our desired invariants, and then to prove that
translated programs are well-typed in JS*.

4.2 Invariants of the translation To prove memory isolation,
JS* provides a partitioned heap model. Every object reference I:loc
carries a tag, l.tag, which records the name of the compartment
into which the reference points, i.e., each compartment is a disjoint
fragment of the domain of the heap. There are six compartments in
the heap model. The Ref compartment holds objects corresponding
to TS* records, datatypes, and RTTI; the Abs compartment holds
function objects; the Clean compartment holds the ciean object
initialized and then frozen by boot. js; and the Un compartment
belongs to the adversary. We focus primarily on properties of these
first four compartments. The remaining two compartments, Inv
and Stub, are inherited unchanged from Fournet et al. (2013)—the
former is for maintaining local variables, and the latter for tracking
function objects used to make safe callbacks to the attacker.

Refined type dynamic All JavaScript values (including the transla-
tion of TS*) are represented as 1$* values of type dyn, defined below.
We show only three representative cases. d=Sir s is an injection of
s:string into type dyn, where the refinement TypeOf d=string recalls
the static type. For object references Obj (I:loc), the refinement is I’s
tag, i.e., {Ref, Abs, Un, Clean}. Finally, for functions, Fun o f builds a
value of type dyn from a function closure fand the JavaScript object
o for that closure. Its refinement is the predicate transformer of f.

typedyn=...

| Str: string — d:dyn{TypeOf d=string}

| Obj: Lloc — d:dyn{TypeOf d=l.tag}

| Fun: VWP. o:dyn — (this:dyn — args:dyn — iDST dyn (WP o args this))
— d:dyn{TypeOf d=WP}

Translation of types To recover the precision of TS* types in JS*,
we translate source types to predicates on dyn-typed values and the
heap: [] d h states that the value d:dyn is the translation of a source
value of type ¢ in the heap A. The translation of a type is with respect
to a heap, since a source value allocated at the type {f :* number},
may evolve to become a value of type {f :* number, g :* number}
in some subsequent heap. This is in contrast to, and a significant
generalization of, the translation of f* to JS*, where a value’s type
does not evolve and is not subject to subtyping.

[string]| dh = TypeOf d=string
[un] d i = IsUnd
[kl dh = Ju<:t.Taggedudh ift & {string, un}
Taggedudh = "rtti"€ dom h[d] A Rep u (h[d]["rtti")h AIsudh
Isany dh = Primd\ Fun_is d\V (TypeOf d=Ref N restAny {} d h)
IsTdh = TypeOf d=Ref A \/p, ,, hld]["c"]=Str "D"

A A [[t] (AL h A restAny {1..n} d h
Is{f:2Ff}dh = TypeOfd=Ref A f C dom h[d]

A 7] AldILF] h A restAny fdh

Is (ti = 1) dh= TypeOfd= Lo args this.Ap.Ah.
(1] hlargsl["O" 1A ANFR . [] rH = pri

restAny fsdh = VYfedom(h[d])\fs. ~Reserved f —> [lany] h[d][f] h

Since strings are immutable [[string]] d i does not depend

on h. Likewise, an un-typed value always remains un-typed—we
define IsUn shortly. For other types, [[t]] d h captures the subtyping
relation, stating that there exists a type u <: ¢ such that the value’s
rtti is tagged with the runtime representation of u (the predicate
Rep u (h[d]["rtti"]) k), and Isud h, i.e., the value d can be typed
at u in h. Is any d h states that d is either a primitive (e.g., a string),
a function, or a location in the Ref heap where all its non-reserved
fields (excluding, e.g., "rtti") are typeable at any (restAny). For
datatypes and records, we require d to be a location in the Ref
heap, with the fields typed as expected, and with all other fields
not mentioned in the type being any. The case for functions is
most interesting. Is (t; —1,) d h states that d’s predicate transformer
builds a pre-condition that requires the first argument to satisfy
[t1]- (Al JavaScript functions are variable arity, receiving their
arguments in an array; however a non-un-typed TS* function will
only read the first one.) In return, the predicate transformer ensures
that the result r (if any) will satisfy [[t,]] (recall that we are ignoring
exceptions here).
Un values The predicate IsUn v defines when the value v could
have been produced by, can be given to, or is accessible by the
context. Un values include primitives; references to objects in the
Un heap; or the immutable Clean object (which is reachable from
the global object). Additionally, Un values can be functions whose
specification indicates that it takes Un arguments to Un results.

IsUn x 2 TypeOf x € {bool, string, float, Un, Clean} V TypeOf x=Un2Un
Un2Un £ Lo args this post h. IsUn o A IsUn this A IsUn args
AN rh. IsUnr = postrh')

Heaplnv, the global heap invariant Our main heap invariant is a
property of every location x in the heap. Its full definition contains
seven clauses; we show the most important ones.
Heaplnv h £ vr.xedomh=

(D (x.tag=Un = Vx € dom h[x]. IsUn h[x])

2) N (x.tage{Ref.Abs} N "rtti"€dom h[x] = 3t. Tagged t d h)
3) N (x.tag=Ref = TypeOf h|x]["@proto"|=Null)
4) N (x.tag=Clean =—> CleanSpec h|x] h)

Clause (1) asserts that all the contents of an Un object are
also Un. Clause (2) asserts that every object in the Ref and Abs
compartment with an "rtti" field is tagged properly. Clause (3)
additionally specifies that every object in the Ref heap has a nu1l
prototype. Clause (4) asserts that the Clean object is specified by
CleanSpec, which gives a type to each of its fields.

Within this invariant are two key properties of TS*. The first
clause guarantees that the only values reachable from a location in
the Un heap are themselves un-values. Therein lies our memory iso-
lation property—the adversary can never meddle with TS* objects
directly, since these reside in the Ref and Abs heap, which are dis-
joint from Un. The invariant, in its second clause, also captures dy-
namic safety, i.e., every object in the Ref and Abs heap, once tagged
with RTTI are properly typed according to it.

0, the heap evolution invariant The full definition of & has
4 clauses; we show the main one below: & ensures that, for all
objects in the Ref and Abs heaps, their "rtti" fields only evolve
monotonically downward, according to the subtyping hierarchy.

8 hO h1 £ VI € dom ho, to, 1.
l.tag € {Ref,Abs} A Rep to hO[[]["rtti"] hO A Rep t; hI[[]["xtti"] hl
=1 <l

A relatively easy lemma derivable from these definitions implies
our static safety property. In particular, Lemma 1 guarantees that
if a value v (potentially a location to a heap-resident record) is
typeable at type ¢ in some initial heap hy then as the program’s
heap evolves according to &, v remains typeable at 7. This ensures
that it is safe for TS* to ascribe a value a static type, since that type
is an invariant of the value at runtime.

Lemma 1 (Static safety: 0 preserves the interpretation of types).
For all values v, heaps hy and hy such that HeapInv hy, Heaplnv hy
and 8 hg hy, if for some t we have [[t]] v hg then [[t] v hy.

Finally, our main theorem, as promised, is a type preservation
result that guarantees memory isolation, dynamic safety and static
safety for TS* programs translated to J$*. In the hypothesis, the
relation ' e :t ~ ¢’ is the formal translation of TS* to JS* (the
index f is the name of the current function object in ¢’; a technical
detail). The judgment in the conclusion of the theorem asserts that,
in a translated environment, ¢’ has a type that is described by
the predicate transformer corresponding to the source type 7. As
explained in §4.1, this ensures that the translated program respects
the heap invariants and, if it terminates normally, produces a ¢-typed
result.

Theorem 1 (Type preservation).

Given a TS* context I, an expression e and a type t,

fThre:t ~ e for some 18* expression €' and function object f,
then [[F]],f:dyn,l"ZOL.(e) F ¢ :iDST dyn WP[[,]].

We conclude our formal development with a few remarks on the
scope of our theorem and the style of its proof. First, our result is
applicable to the translation of TS* to JavaScript only inasmuch as
JS* is an accurate model of all of JavaScript—Fournet et al. (2013)
argue for how JS* is adequate for all security-relevant features of
JavaScript. Regardless, the availability of these semantics together
with its program logic is what made our proof feasible. Given
an operational semantics, but lacking a program logic, our proof
would have been mired in tedious inductions over the operational
semantics. With JS*, we were able to carry out our proof as an
induction over the compilation relation, and use the type system
of JS* to structure and prove our invariants.

Second, our result includes within its trusted computing base
the correspondence of boot. js to the CleanSpec predicate in the
last clause of HeapInv. While it is perhaps standard for compiler and
verification projects to rely on a small amount of trusted code, we

would like to do better. In particular, we aim to use the JavaScript
verification toolchain developed by Swamy et al. (2013) to verify
boot. js for compliance with CleanSpec—at the time of writing,
this was still incomplete. More substantially, we would also like to
build a translation validation pipeline for our compiler implemen-
tation, reflecting the generated JavaScript back into 18* for verifi-
cation, i.e., we would like our compiler implementation to be also
formally type-preserving.

5. Securely deploying TS* programs

The guarantees of TS* depend on boot. js being the first script to
run on a web page. Many prior works have implicitly assumed that
scripts are always executed in the order in which they appear on the
page (Jim et al. 2007; Magazinius et al. 2010; Taly et al. 2011), but,
as we explain, this is a naive view. Instead, we develop a standards-
based mechanism that ensures that our scripts run first.

5.1 Securely bootstrapping the TS* runtime Suppose a script s
is lexically the first element in the header of a page located at a URL
U = http://W.com/page.html; one may expect that it will be guaran-
teed to run first on any window loaded from u. However, this intu-
ition is correct only if the page has not been loaded programmat-
ically from JavaScript by another web page, e.g., within another
frame. On a page loaded initially from v, the script s will indeed
run first. Still, a malicious script running later on the page, or on a
different page with the same origin http://W.com, may open a win-
dow or frame at u, and modify all the essential primitives before s
begins to run inside the new window frame. This execution order
is consistent with the HTML standard (Berjon et al. 2013) and we
have confirmed it experimentally on all mainstream browsers.

Hence, any simple first-starter implementation that relies on
lexical ordering of script elements will fail if other scripts on the
same origin are allowed to open windows or frames. Indeed, the
web browser only provides security guarantees at the granularity of
an origin (Barth 2011); finer-grained privilege separation between
good and bad scripts within the same origin require application-
level mechanisms, such as restricting all untrusted scripts to a sub-
language like SES;;,;, (Taly etal. 2011); loading them in sand-
boxed iframes with few privileges (Akhawe et al. 2012); or mod-
ifying the browser to allow the first-starter script to certify all other
scripts running on the page (Jim et al. 2007).

Rather than restrict the functionality of untrusted scripts, we
propose a mechanism that ensures that our scripts run first. For a
given website, we use two distinct origins:

® nttp://W.com, used primarily as the service origin; it does not
serve any resource.

® nttp://start.W.com, that serves HTML pages, including scripts
compiled from TS*, but where the first two <script> elements
on every page are as follows:

<script src="http://start.W.com/boot.js"></script>
<script>document.domain = "W. com“</script>

The crucial step here is that, after boot. js has loaded, the page
sets document . domain to the parent domain w. com. This is a standards-
based mechanism (Berjon et al. 2013, 5.3.1) by which the page
voluntarily gives up its rights to the nttp://start.W.com/ origin for
client-side same-origin access across frames and windows. Instead,
it adopts an effective script origin of http://W.com.

All subsequent scripts on the page are unrestricted except that
they can only read or write into frames or windows that have an
effective script origin of nttp://w.com, and hence they cannot tam-
per with pages on http://start.W.com, even if such pages are loaded
programmatically into other frames or windows. In all other ways,
their functionality is unimpeded, without the need for expensive
translations or messaging protocols, as in previous approaches.

More generally, by placing other trusted scripts after voot. js
and before the assignment to document.domain, W€ can run scripts
that grab reliable copies of builtin libraries, such as JSON and
XMLHttpRequest, for use by subsequent code.

5.2 Loading scripts with embedded secrets Our first-starter
protocol reliably allows boot. js to build a trustworthy environment
for our compiled scripts. Conversely, we sometimes need a way for
scripts to be able to verify that their environment is trustworthy.
This is particularly important when compiled scripts contain se-
cret tokens embedded within them, e.g., to authenticate themselves
to other servers. Embedding secrets as constants within program
text may seem like an elementary mistake, but this is the predomi-
nant way of distributing these tokens in a JavaScript setting. Secrets
within scripts must first be protected from malicious websites that
may try to load our scripts, and second from malicious scripts on
our own website W.com. In this threat model, many simple counter-
measures one may think of are inadequate.

Even if we require a login cookie for authentication before serv-
ing the script, a malicious website that an innocent user visits when
logged into w.com can make a cross-site script request and obtain
the script (an attack sometimes called JavaScript hijacking). If we
inline the scripts into our page, malicious scripts can read their
source code and obtain the token. Even if they are not inlined but
served from http://start.W.com, malicious scripts can perform an
XMLHttpRequest to obtain their source code and then read them. In-
deed, these are all methods commonly used by cross-site scripting
attacks (e.g., the Samy worm) to break token-based security pro-
tections on the web.

To protect our scripts from same-origin attackers, we use a third
distinct origin to serve our scripts:

® https://src.W.com, the secure source server, only serves GET re-
quests for scripts that may embed secret tokens to be shared be-
tween the server and the script. The server refuses cross-origin
requests and returns Scripts as text/javascript, SO attackers on
https://start.W.com can execute these scripts but not read its
source, due to the same-origin policy. We recommend the use
of HTTPS for any pages that contain secrets, but HTTP is ade-
quate if we exclude network adversaries from our threat model.

To protect our scripts against other websites, we need an ad-
ditional check. Every script served from src.w.com is prefixed
by a condition on the current webpage location, that is, be-
fore making any use of its secret token, the script checks that
window.location.href actually begins with http://start.W.com/. This
ensures that the script has a reliable ciean object on that page, in-
troduced by boot. js.

Experimentally, we found that checking the current location of a
script is quite error-prone. Some scripts try to read document .domain
(see e.g., OWASP CSRFGuard in §6.1) or document.location; Oth-
ers rely on window.location.href but then use regular expression
or string matching to check it against a target origin. All these
techniques lead to attacks because a malicious website could have
tampered with its document Object or with the regular expression li-
braries. We found and reported such attacks to vendors.

Notably, many browsers allow properties like document.domain
and window.location.origin to be overwritten. Our origin check re-
lies on the window.location.href object which is specified as un-
forgeable in the HTML specification (Berjon et al. 2013, 5.2). In
practice, however, we found that some browsers incorrectly al-
low even supposedly unforgeable objects like window.document and
window.location to be shadowed. We have reported these bugs to
various browsers and are in discussions about fixes. If the unforge-
ability of window.location.href turns out to be too strong an as-
sumption, we advocate the use of the origin authentication protocol
of Bhargavan et al. (2013).

6. Secure web programming with TS*

We have evaluated our compiler by gradually migrating JavaScript
sources to TS*, while ensuring that the migrated code (after compi-
lation) exports the same API as the original. We have also written
from scratch various utilities like a JSON parser and a reference
monitor for HTMLS localStorage. All the code is available online.

We have yet to conduct a thorough performance analysis of our
compiler, and to implement further optimizations. But, as men-
tioned previously, statically typed TS* should incur little, if any,
runtime overhead, while un-typed code is unchanged. Understand-
ing and optimizing the performance profile of any-typed code is
left as future work.

In this section, we describe how TS* can be used to gradually
secure existing access control patterns, as deployed in popular
JavaScript APIs. We focus on client-sided, language-based security,
relegating most other details to the online materials (notably a
description of same-origin policies, protocol- and browser specific
security assumptions, and current attacks against them; see also
e.g., Bhargavan et al. 2013).

6.1 OWASP CSRFGuard We first consider the task of securing
client code that performs an XMLHttpRequest to the page’s server.

Cross-Site Request Forgeries (CSRF) Suppose a website w has
an API available from JavaScript. Authenticating and authorizing
access using cookies ensures that only requests from a logged-in
user’s browser are accepted. Conversely, if the user has any another
websites open in her browser, their scripts also get access to the
API, and can thus steal or tamper with the user’s data on w. Such
request forgery attacks are persistently listed in OWASP Top 10
vulnerabilities, and have a serious impact on a variety of websites.

CSRF Tokens As a countermeasure to CSRF, a website w can
inject a fresh, session-specific, random token into every page it
serves, and only accept requests that include this token. Other
websites cannot see w’s pages (thanks to the same origin pol-
icy) hence cannot forge requests. Additionally, cookies and to-
kens can be protected while in transit by using the HTTPS proto-
col. OWASP CSRFGuard 3 is the most widely-referenced CSRF
protection library. As an advanced feature, it provides a token-
injection script that transparently protects AJAX calls by intercept-
ing any XMLHttpRequest. (Similar protections exist for frameworks
like Django and Ruby-On-Rails.) Crucially, the token must be kept
secret from other websites, and also from other scripts loaded on
the page; otherwise those scripts may use it to perform arbitrary
requests directly, or leak it to some other website.

Attacks The original, unwrapped version of their code relies
ON window.location, String.startsWith, and XMLHttpRequest, which
can be tampered with by a malicious script. We found several
such attacks where a malicious website could load the OWASP
CSRFGuard script, forge the location, and trick it into releasing the
token; we are in discussion with the author towards more robust
designs, such as the one proposed here for TS*.

CSRFGuard in TS* Following the approach of §2, we migrate to
TS* the OWASP proxy that uses the token to provide authentication
RPCs to the rest of the library. This small script is typed in TS*,
guaranteeing that no malicious script that runs alongside (including
the rest of the library) can tamper with its execution.

The TS*proxy, listed below, takes three string arguments: the
target URL, the API function name, and the JSON-formatted argu-
ments. It checks that the URL is well-formed and belongs to the
current site (to avoid leaking the token to any other site), then it se-
rializes the request as a query string, attaches the token, and makes
an AJAX call. Once wrapped, it exports the same interface as be-
fore to any (untrusted) scripts loaded on the page. Additionally, it
could be directly used by further TS* code.

var csrfToken: string = "J,GENERATED_TOKEN"
var targetOrigin: string = "%TARGET_ORIGIN%"
function Rpc(url:string,apifun:string,args:string): any {
if (String.startsWith(url,String.concat(targetOrigin,"/")) &&
String.noQueryHash(url)) {
var m = {method:apifun, args:args, token: csrfToken};
var request = String.concat("?",QueryString.encode(m));
var response = xhrGet(String.concat(url,request));}
return QueryString.decode(response);
}
else return "unauthorized URL";

}

The first two lines define string literals, inlined by the server as
it generates the script—the TS* compilation process ensures, via
lexical scoping, that these two strings are private to this script. The
Rpc function is our secure replacement for xhrGet, which performs
the actual xMLHttpRequest. Compared with the original JavaScript,
it includes a few type annotations, and uses either safe copies of
builtin libraries, such as xhrGet and String, or typed TS* libraries,
such as Querystring (outlined below). Relying on memory isolation
and secure loading from TS*, a simple (informal) security review
of this script lets us conclude that it does not leak csrfToken.
Experimentally, we modified the OWASP library, to isolate and
protect the few scripts that directly use the token (such as the
proxy above) from the rest of the code, which deals with complex
formatting and browser-specific extensions, and is kept unchanged
and untrusted. The modified library retains its original interface
and functionality, with stronger security guarantees, based on strict,
type-based isolation of the token. Its code and sample client- and
server-side code are available online. To our knowledge, it is the
first CSREF library that provides protection from untrusted scripts.

6.2 Facebook API Taking advantage of Cross-Origin Resource
Sharing (CORS), Facebook provides a client-side JavaScript API,
so that trusted websites may access their personal data—once the
user has opted in. Interestingly, Facebook also provides a “debug-
mode” library, with systematic dynamic typechecks somewhat sim-
ilar to those automated by TS*, to help programmers catch client-
side errors. We focus on two aspects of their large API: the encod-
ing of strings, and cross-domain messaging.
QueryString encoding We give a TS* implementation of the
QueryString module (mentioned above) for the REST message for-
mat used in the Facebook APL
function decode (s:string) : any {
var res = {};
if (s === "") return res;
else {
var params = String.split(s,"&");
for (var k in params) {
var kv = String.split(params[k],"=");
res[kv["0"]] = kv["1"];

return res;}

}

(The encode function is dual.) Our function illustrates support for
arrays provided by our compiler,.Importantly, this code may be
used to parse untrusted messages; our wrapper for un to string is
straightforward—if the argument is already a string, it is just the
identity. Hence, one can write efficient TS* that calls decode to parse
messages received from the adversary; this coding style is idiomatic
in JavaScript, while the checks performed by our type system and
runtime prevent many pitfalls.

Another TS*sample illustrates the usage of rpc and our typed
JSON library (generalizing QueryString) to program a higher-level,
statically typed API. It shows, for instance, how to program a
client-side proxy for the “/me” method of the Facebook API, which
retrieves the user profile; this TS* function has the return type:
type profile =

{id: string; email: string; age_range: {min:number}; ... }

Cross-Domain Messaging The Facebook API is meant to run
on any website and protects itself from a malicious host by using
iframes. For example, if the website calls FB.1login, the API loads
an iframe from facebook. com that retrieves the current user’s access
token and then only sends it to the host website (via postMessage) if
the host is in a list of authorized origins.

Bhargavan et al. (2013) report attacks on a prior version of this
authorization code that were due to typing errors (and have now
been patched). We re-implement this code in TS* and show how
programmers can rely on typing to avoid such attacks.

The checkorigins function below is given the current host ori-
gin and verifies it against an array of authorized origins. The
proxyMessage function uses this check to guard the release of the
token to the parent (host) website, using a safe copy of the primi-
tive postMessage function.

function checkOrigins (given:string,expected:array string):bool{
for (var k in expected) {
if (given === expected[k]) return true;}
return false;}
function proxyMessage(h:string,tok,origins:array string) {
if (checkOrigins(h,origins)) postMessage(’parent’,tok,h);}

In a previous version of the Facebook API, proxyMessage was
accidentally called with an origins parameter of type string, rather
than array string. This innocuous type error leads to an attack, be-
cause the untyped version of the code succeeds with both strings
and arrays, but with different results. To see the core problem,
consider a call to checkOrigins where given = "h" and expected
= "nttp://W.com". The for loop iterates over each character of
expected, and hence succeeds, when it should not. In TS*, iteration
is well-typed only for arrays and, unlike JavaScript, this enumer-
ates only the “own” properties of the array. Thus, in our code, this
error is caught statically (if the incorrect call to proxyMessage is lo-
cal) or dynamically (if the call is from another iframe); the check
fails in both cases and the token is not leaked.

7. Conclusions and prospects

This paper aims to broaden the scope of gradual typing: not only it
is useful for migrating dynamically type-safe code to more struc-
tured statically typed code, it is also useful for moving from unsafe
code, vulnerable to security attacks, to a robust mixture of dynam-
ically and statically type-safe code.

Within the context of JavaScript, we have presented TS*, a lan-
guage with a gradual type system, a compiler, and runtime support
that provides several useful safety and confinement properties. Our
preliminary experience suggests that TS* is effective in protecting
security-critical scripts from attacks—without safety and confine-
ment, such properties are difficult to obtain for JavaScript, and in-
deed security for such scripts has previously been thought unob-
tainable in the presence of cross-site scripts.

Even excluding the adversary, TS* develops a new point in the
design space of gradual typing, using an approach based on runtime
type information. This has several useful characteristics, including
a simple and uniform failure semantics, and its applicability to a
language with extensible objects and object identity.

In the future, we plan to develop TS* along several dimensions.
On the practical side, we expect to integrate our ideas in an exper-
imental branch of the open source TypeScript compiler, targeting
the construction of larger secure libraries. On the theoretical side,
we plan to explore the formal certification of our compiler and run-
time. We also hope to develop our preliminary ideas on new notions
of blame to explain runtime failures in TS*.

Acknowledgments Many thanks to Martin Abadi, Antoine Deli-
gnat-Lavaud, Jeremy Siek, Phil Wadler, and all the anonymous
reviewers.

References

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a
statically typed language. ACM ToPLAS, 13(2):237-268, 1991.

D. Akhawe, P. Saxena, and D. Song. Privilege separation in HTMLS5
applications. In Proceedings of USENIX Security, 2012.

A. Barth. The web origin concept, 2011. IETF RFC6454.

A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of CCS, 2008.

R. Berjon, T. Leithead, E. Navara, E.D.and O’Conner, and S. Pfeiffer.
HTMLS. http://www.w3.org/TR/html5/, 2013. W3C Cand. Reco.

K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-based de-
fenses against untrusted browser origins. In Proceedings of USENIX
Security, 2013.

G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to Cf. In
Proceedings of ECOOP, 2010.

G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a
production environment. In Proceedings of OOPSLA, 1993.

R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript. In
OOPSLA, 2012.

Facebook API. FB.API, 2013.
http://developers.facebook.com/docs/reference/javascript/.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
Proceedings of ICFP, 2002.

C. Flanagan. Hybrid type checking. In Proceedings of POPL, 2006.

C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and B. Livshits.
Fully abstract compilation to JavaScript. In Proceedings of POPL, 2013.

A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.
In Proceedings of CSFW, 2001.

S. Guarnieri and B. Livshits. Gatekeeper: mostly static enforcement of
security and reliability policies for javascript code. In USENIX security
symposium, SSYM’09. USENIX Association, 2009.

A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In
Proceedings of ECOOP, 2010.

A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state
using flow analysis. In Proceedings of ESOP, 2011.

D. Hedin and A. Sabelfeld. Information-flow security for a core of
JavaScript. In Proceedings of CSF, 2012.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
Higher Order Symbol. Comput., 2010.

L. Ina and A. Igarashi. Gradual typing for generics. In Proceedings of
OOPSLA, 2011.

T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with
browser-enforced embedded policies. In Proceedings of WWW, 2007.

J. Magazinius, P. H. Phung, and D. Sands. Safe wrappers and sane policies
for self protecting JavaScript. In Proceedings of NordSec, 2010.

OWASP CSRFGuard. CSRFGuard 3 user manual, 2010.
https://www.owasp.org/index.php/CSRFGuard_3_User_Manual.

J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. Adsafety:
type-based verification of javascript sandboxing. In USENIX Security,
2011.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, 2006.

J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-
order casts. In Proceedings of ESOP, 2009.

J. G. Siek, M. M. Vitousek, and S. Bharadwaj. Gradual typing for mutable
objects. http://ecee.colorado.edu/~siek/gtmo.pdf, 2013.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In Pro-
ceedings of ICFP, 2011.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verify-
ing higher-order programs with the Dijkstra monad. In PLDI, 2013.

A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated
analysis of security-critical JavaScript APIs. In Proceedings of S&P,
2011.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
Proceedings of ESOP, 2009.

http://www.w3.org/TR/html5/
http://developers.facebook.com/docs/reference/javascript/
https://www.owasp.org/index.php/CSRFGuard_3_User_Manual
http://ecee.colorado.edu/~siek/gtmo.pdf

	Introduction
	Attacks Type Errors
	ts: a gradually type-safe language within JavaScript
	Evaluating ts: theory and practice

	An overview of ts
	Gradually securing programs by moving from un to any
	Expressing invariants with assertions over runtime types
	Reliable primitive operations
	Embedding ts in JavaScript

	Formalizing ts
	Syntax
	Type system and translation
	Implementing RTTI-based coercions and wrappers
	Discussion and related work on gradual typing

	Metatheory
	A review of js and our high-level proof strategy
	Invariants of the translation

	Securely deploying ts programs
	Securely bootstrapping the ts runtime
	Loading scripts with embedded secrets

	Secure web programming with ts
	OWASP CSRFGuard
	Facebook API

	Conclusions and prospects

