
Tioga�: Providing Data Management Support for Scienti�c

Visualization Applications

Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson

Computer Science Division, EECS Department

University of California

Berkeley, CA 94720

Abstract

We present a user interface paradigm for database management systems motivated by sci-

enti�c visualization applications. Our graphical user interface includes a \boxes and arrows"

notation for database access and a
ight simulator model of movement through information

space. We also provide means to specify a hierarchy of abstracts of data of di�erent types and

resolutions. In addition, multiple portals on data may be related as master and slaves. The un-

derlying DBMS support for this system includes the compilation of query plans into megaplans,

new algorithms for data bu�ering, and provisions for a guaranteed rate of delivery.

1 Introduction

Scienti�c visualization applications often deal with data objects of very large sizes. Examples

include large regular arrays such as those found in global circulation models[Mech91] as well as

in remote sensing applications[Dozi89]. Also prevalent are large data structures modeling roads,

drainage networks, vegetation patterns, etc. that are represented as collections of arcs, polygons,

or points. Popular visualization systems such as AVS, Explorer, or Khoros o�er scienti�c users

a visual programming environment and powerful visualization tools to manipulate and display

scienti�c data. Most existing systems, however, provide only primitive data management support.

In particular, they can only read or write data from �les, and are geared toward manipulating a

�xed set of data types.

We propose that visualization systems be supported by database management systems rather

than �le systems. We introduce DBMS support for the needs of scienti�c users. With these users

in mind, we support the diagrammatic, \boxes and arrows" visual programming paradigm used

by existing scienti�c programming systems. We call such visual programs recipes because they

specify how a collection of inputs are to be \cooked" to produced a desired visualization output.

With DBMS support, we are able to execute such recipes more e�ciently and manage the creation,

storage, and retrieval of recipes better. By exploiting a close coupling with the underlying data

manager, we are also able to provide additional features of automatic abstracts, synchronization

of browsers, guaranteed data delivery, and visual update of data.

�Tioga is an Iroquois word meaning \where it forks." Tioga Pass is the mountainous entrance to Yosemite National

Park from the east and is the highest automobile pass in California. The Tioga system is part of the Sequoia 2000

Global Change Research Project.

1

This paper is organized as follows. In Section 2 we explore the architecture which we are

implementing as part of the Sequoia 2000 project[Ston92]. In this architecture, certain services

are performed within the DBMS and others in a separate front-end rendering engine. Section 2

also describes the protocol by which these two components communicate and indicates how this

protocol is di�erent from previous ones such as cursors and portals[Ston84]. Then, in Section 3

we describe how our framework supports additional functionality in the areas of abstracts of data,

browser synchronization, and visual updating of data. Section 4 discusses the run-time support

provided by the DBMS for recipe execution. This includes extending query plans, optimizing recipe

execution, and providing a guaranteed rate of data delivery. Lastly, in Section 5, we conclude with

an update of our current status and a look at future issues.

2 A New Recipe Management Architecture

2.1 Introduction

Existing scienti�c programming systems allow the user to create visual programs by connecting

modules with an easy-to-use graphical user interface. The modules typically represent functions or

programs written in a conventional programming language. The modules are depicted on screen as

boxes with connections for inputs and outputs. The user connects the boxes with arrows to create

a directed graph that represents the �nal program, which we call a recipe. One or more boxes in the

diagram are input nodes which read data from named �les. Executing a diagram entails running

the read boxes and progressively running each box as its inputs are available. Normally, the �nal

box in the graph is a rendering engine which displays the result of the computation on the screen.

Most visualization systems supply the user with a collection of modules that perform common

visualization and rendering functions. The user can interact dynamically with the diagram by

changing the parameters of the boxes, and the diagram is automatically rerun to produce the new

rendered output. In this way, a user can iteratively produce the desired visualization e�ect.

Consider as an example a recipe for the detection of wild�res using satellite images produced by

an Advanced Very High Resolution Radiometer, or AVHRR. Although the ash produced by wild�res

in dense boreal forests is relatively easy to detect from an image, a �re in the mixed terrain of the

California Sierra is much harder to classify. An earth scientist begins with a composite, cloud-free

satellite image. He then calculates the \greenness" of a given pixel using two image bands. This

calculation would be the �rst box in a recipe to study wild�re detection. Next, actual current

wild�res are identi�ed by locating areas of the image saturated in the thermal infrared band. This

would form the second box of the recipe, with input from the �rst box, which produced \vegetative

index maps". Since wild�res and areas of harvested crop look similar on an image, another box

might superimpose these wild�res over a map which indicates crop areas to eliminate the crop

areas from consideration. Finally, the earth scientist would like to store a series of these results

and play them forward in time to watch wild�res emerge and spread. He would also like to zoom

in on these images for more detail as they are playing, perhaps noting that certain areas are not

wild�res and requesting that the system recalculate the images. Figure 1 illustrates this example.

2.2 Requirements and Related Work

Our architecture is motivated by the fact that many objects visualized by the scienti�c community

are very large and would be best managed by a database. Since such objects are complex and are

2

not well served by conventional relational DBMSs, the DBMS research community has constructed

a collection of next generation DBMSs that support such objects much more e�ectively. Exam-

ple data managers in this class are POSTGRES [Ston90], IRIS[Wilk90], Starburst[Haas90], and

Orion[Kim90]. Our architecture assumes the presence of a next generation DBMS.

Two features of POSTGRES were important in our design of Tioga. First, POSTGRES sup-

ports a facility through which a user can de�ne new data types. Such types can either be additional

base data types which augment the standard collection of integers,
oating point numbers and char-

acter strings, or they can be composite data types. Second, POSTGRES supports a facility through

which a user can register a previously written function. The user must provide the types and num-

ber of the input arguments and the type of the function result as well as the location of the code

for the function. Currently, POSTGRES supports functions written in the query language and

functions written in C. See [Mosh91] for more information.

Although Tioga is oriented towards POSTGRES, our proposal can be readily adapted to any

system that supports an extendible type system, user-de�ned functions, and a multi-dimensional

access method, e.g. [Robi81, Niev84, Gutm84, Rous85, Ston86, Gree89, Kolo91, Ston91]. Note

that our architecture di�ers from other work that sought to support scienti�c users of database

systems. Previous e�orts have tended to concentrate on broad requirements[DeWi82], representing

scienti�c data[Ozso85], and statistical computations on large databases[Baru84]. Little attention

has been addressed to the programming needs of the scienti�c user of a DBMS. Instead, work on

programming language integration with DBMSs has focused on the seamless integration of general

purpose languages, such as C++, with data base systems[Rich87, Agra89].

Although the main motivation for using a DBMS for scienti�c data is storage management for

large data objects, a DBMS provides other useful features as well for the scienti�c community. A

DBMS has the ability to scale up gracefully for these large data sets. Access to data in a DBMS is

semantic; queries, rather than �le names, identify data, and data may be accessed at a �ner grain

than �les. Finally, the customary DBMS features of transactions, security, views, and multi-user

consistency provide to the earth science community features it has long had to do without.

2.3 Recipe Construction

Our recipe architecture preserves and generalizes the boxes and arrows user interface from com-

mercial packages. We assume a diagram editor which supports construction of recipes out of a

menu of building blocks which we term ingredients. Our architecture has as its cornerstone that

each function registered with POSTGRES is automatically an ingredient, and is thereby in the

menu of building blocks. Thus, the menu of building blocks will be constructed by the diagram

editor from reading the appropriate POSTGRES system catalog. Figure 1 gives an example of the

user interface for the recipe editor. The large scrollable area represents the workspace where the

user places building blocks chosen from the palette below. Choosing an ingredient adds a single

box; choosing a recipe adds an entire diagram, which can then be modi�ed. Browsers, which are

used for data visualization, are represented by round-cornered rectangles. The rightmost column

supplies building blocks for constructing specialized queries on recipes themselves. The results of

such queries are additional recipes that can be loaded into the Recipes menu.

In a boxes and arrows diagram, a one-way connection between two boxes indicates that the

result of the �rst registered function is to be passed as input to the second function. In order for

such a connection to be valid, the data type returned by the �rst function must be compatible with

the type of one of the arguments of the second function. Either the output type exactly matches

3

an input type of the subsequent function, or the output type is a set of the input type of the second

function. In this latter case the second function will have to be called multiple times, once per

element of the set. Types in the same inheritance hierarchy are also compatible. For example, if

EMP is a subtype of PERSON, then outputs of type EMP can be passed as input to a function expecting

an input of type PERSON. The details of this coordination and other aspects of recipe execution will

be covered in Section 4.

overlay

extract visible green

& infrared bands

read AVHRR display image

extract infrared

saturated

subtract

crop areas

helpexecuteregistersearchsave workspaceedit

grouping brackets

data flow arrow

function box

plotter

animation

display image

colorizer

tracer

render geometry

average

shrink

Display FunctionsRecipesFunctions

 hurricane tracer

RASQL

ocean temperature

ozone holes
graph viewer

snowfall

wildfire identifier (edited)

wildfire identifier

Figure 1: Recipe Editor

As a recipe is being constructed, the editor can automatically perform appropriate type-checking

since the input and return types of all functions are known. The user is told if a connection is

invalid, so that he or she can correct it. Although not shown in Figure 1, the editor will support

the use of icons to indicate types. We would encourage type creators to design icons which give

visual clues as to the relationship of the type to other types. For example, icons of types within

the same inheritance hierarchy may have similar graphical features. In this way, the user will be

able to note easily the compatibility of types by the appearance of their icons, thereby performing

a kind of visual type checking. In addition, the editor notes which function input parameters are

missing, i.e. not provided by an incident edge from some other function. Such parameters can be

associated with a pop-up window at recipe execution time, at which time the user can supply the

missing parameters.

The diagram editor allows interactive construction of recipes from a menu of ingredients. There

are two semantically di�erent kinds of building blocks. The �rst are conventional POSTGRES

functions as noted above. The second are rendering boxes which take input arguments just like

4

conventional functions; they may optionally produce an output which is the data type set-of

image. This output can be used as the input to subsequent boxes in a recipe, so that processing

on screen images can be supported.

We call such rendering boxes browsers. There can be an arbitrary number of browsers in a

recipe. The diagram editor will disallow type mismatches between browsers and ingredients. So-

phisticated users can de�ne new kinds of browsers to meet speci�c rendering needs. Both browsers

and normal ingredients are extendible in a natural way. There are two aspects of rendering boxes

that distinguish their behavior from normal ingredients. First, they are assumed to output to a

window on a screen and to interact with a human user. Hence, architecturally, they run as a DBMS

application program and do not run as user-de�ned DBMS functions in the DBMS address space.

Second, communication of results from an ingredient to a browser is handled by a generalization

of the cursor protocol used by an application program to communicate with the DBMS.

Using the diagram editor, the user can construct a recipe consisting of ingredients and browsers

attached together into a directed graph. Such a recipe can be saved in two di�erent ways. The

recipe can be stored as a graph-like structure in a cookbook, a collection of recipes in the database.

We provide a query tool to support browsing the cookbook. This tool RASQL is described in a

companion paper[Chen92]. RASQL is integrated with the diagram editor, so a user can retrieve a

recipe from the cookbook, modify it with the diagram editor, and then install his new recipe back

into the cookbook. Alternately, a recipe can be encapsulated or canned into a new ingredient. In

order for a recipe to be transformed into a legal POSTGRES function, it can only have a single

output, and it cannot have a browser. Once the recipe is compiled into a single ingredient, its

original structure is lost and it becomes opaque to the user. No browsers are allowed because

browsers necessitate running a separate process for visualization. The single output restriction is

compatible with the notion of normal building blocks, which have only one output. At encapsulation

time, certain optimizations occur as discussed in Section 4. Encapsulated recipes are added to the

collection of POSTGRES functions and hence, automatically augment the collection of ingredients

for future recipes.

If a user wishes to run a previously constructed recipe, he can do so from the diagram editor.

In this case the appropriate POSTGRES commands are retrieved, any missing input parameters

are prompted for at run-time, and a window for each browser is generated. To run the recipe, the

browsers interface to the DBMS using the protocol described in the next subsection.

2.4 The Browser-DBMS Protocol

As noted in the previous subsection, a recipe consists of a collection of interconnected functions,

and may contain one or more browsers. Each browser is run as a DBMS application program that

interacts with the recipe engine which manages the execution of the ingredients of the recipe as

database commands. In this section we indicate the protocol for communication between a browser

and the DBMS. The interaction between the human user and the browser is unconstrained; however,

we expect that browsers will provide intuitive graphical user interfaces that allow users to browse

the output of the recipe easily.

Although it is possible to support an interface between the browser and the DBMS which allows

browsing of an arbitrary collection of DBMS types, we choose a di�erent approach. Each object

may be of an arbitrary type, but it must have associated with it a geometry. The geometry of an

object describes its location in a global coordinate space. All objects in the system are located in

a common N-dimensional coordinate system where the number and characteristics of dimensions

5

are appropriate to the speci�c application. The geometry of an object may be either a polygon1 or

a point. It is the job of the human recipe designer to ensure that his recipe produce the geometry

representation (polygon or point) expected by some browser so that the browser receives pairs of

the form (object, geometry). Failure to provide this will result in a type mismatch. Our protocol

will operate e�ectively for any browser that accepts one of these two data representations or any

subclass of them as input. Whether other geometry formats are needed for e�ective browsing

remains to be investigated.

To achieve a common polygon representation, we have de�ned a standard N-dimensional poly-

gon, N-D-polygon. This polygon representation has vertices which are N-tuples of integers. If the

data is polygonal in nature, the generic tuple passed to the browser from the recipe will have the

form:

fvalue-of-any-type, type, instance-of-N-D-polygong

The value-of-any-type can be an instance of a base type or a composite type, and its location

is represented by the N-D-polygon as indicated. For example, the value-of-any-type might be a

satellite image. Its type might be AVHRR, and the polygon associated with it might be a rectangle

representing one of the quadrangles of a U.S. Geological Survey map. An N-D-point is a merely

degenerate N-D-polygon; hence, this representation works for point as well as polygon data.

With these preliminaries, the protocol between the browser and the recipe execution engine

consists of the following commands:

MARK (N-D-point) with identi�er

ERASE identi�er

MOVE to identi�er

MOVE to (N-D-point)

MOVE to F(value) <operator> <constant> along (�1, ..., �N)

FETCH (number)

FETCH (�1, ..., �N)

FETCH (�1, ..., �N , angle)

The browser can mark any position in N-dimensional space with an identi�er, so that it can

return to that point at a later time. This is useful in marking points of interest. Such marks can

be permanent if they are de�ned as part of the data type of the object. In this case saving marks

will require an update to the database. Usually marks will be local to a speci�c browsing session.

The browser has three ways to relocate its position in N-space; it can move to a previously

designated identi�er, it can move to a speci�c point that it calculates in some fashion, or it can

move in some direction, denoted by

�1, ..., �N

until some condition

F(value) <operator> <constant>

1In this document, by polygon we mean a general N-dimensional polyhedron, not merely a two-dimensional

polygon.

6

is true. This latter command is useful, for example, if a user is browsing Hurricane Hugo, and

wishes to fast-forward the hurricane, i.e. skip or skim through images sorted by time, until it hits

land. If landfall of the hurricane can be expressed as a predicate, then a MOVE command can

express this desire. The command would look like

MOVE to hits land (Hurricane.hugo) = TRUE along (0,0,...,+1)

The +1 means move along the positive axis of time, assuming time is the last dimension in this

global coordinate system. Note that recipes may be fast-forwarded in this fashion in any dimen-

sion. Moving forward along a non-time axis in the coordinate system implies that values are non-

decreasing. Thus fast-forwarding in a non-time dimension will display records in non-decreasing

order.

There are three ways to fetch data: �rst, the browser can request a �xed number of instances;

second, it can request all the instances within a speci�c N-dimensional rectangle, and lastly, it

can request all the instances within a speci�c frustum, or truncated cone. In the �rst case, the

number of instances requested is returned by running the recipe forward from its current position,

wherever that happens to be. Since the recipe determines the ordering of instances, it implicitly

speci�es what the \forward" direction of instance production is. In the second case, the rectangle is

speci�ed by a collection of o�sets from the current position in the global coordinate system. In the

last case, the frustum is speci�ed with its origin at the current position, a speci�c N-dimensional

o�set as its centerline, and an angle in degrees, which is measured from this centerline. Thus

the frustum de�nes a cone of view onto the data, with the apex of the cone corresponding to the

viewer's eye position.

The browser is expected to locate and display objects in N-dimensional space using whatever

algorithms it wishes. The scienti�c visualization of the data is done by the browser. As the user

moves through N-space with a joystick-like interface, it is the responsibility of the browser module

to run the appropriate move and fetch commands to support the user. It is also the browser's

responsibility to display appropriately the values that are returned from the recipe, using a display

system similar to SDMS[Hero80]. To assist the browser, the DBMS will store functions of the form

display (object, N-D-polygon, screen-requirements)

which returns a screen representation for a given data object, locating it within a speci�c polygon

of the global coordinate system in a way consistent with the screen requirements. The screen

requirements might include, for example, the dimensions in pixels of the area to display into and

the number of bits of color which the screen supports. Display() functions will be type-speci�c

with a generic display() function supplied to take any data type. It can be overloaded using the

standard inheritance mechanism by a class designer who wishes to specialize display() functions.

The display() function can return either a renderable object, a abstract data type encapsulating

su�cient information in order for the browser to do rendering, or a set of sub-objects which

individually need to be passed to display() functions. The latter mechanism allows for a hierarchical

decomposition of a complex object into simpler objects to be displayed. The display() function may

also return additional information to the browser for abstracting purposes; this will be discussed

later.

For example, a browser could display information about employees by calling the display()

function with the appropriate instances and locations. This function would either be the generic

one or one written by the designer of the EMP class. The display() function might return an image

7

of the employee's face, or the display function could return separate data objects which make up

an EMP instance, such as the employee's salary, department, name, and manager. These can then

be separately rendered by calling the display function again.

2.5 Relationship to Other Browsing Paradigms

Cattell and Rogers [Roge87] describe a user interface which uses an entity-relationship data model

constructed for a given data base. With such a model in place, the user is given a browsing

paradigm whereby he can navigate the E-R diagram by following \next" and \previous" links

in an identi�ed set of records as well as by following an E-R link to an associated record. This

navigation paradigm is similar to recipe management: with recipes, the user can browse through

a collection of records in a browser. Moreover, a \boxes and arrows" diagram can be constructed

that is similar to an E-R diagram, by merely decomposing a relationship into two functions and

then implementing both as additional boxes. On the other hand, recipe management is not bound

to an E-R model but can implement many kinds of relationships between records. Also, multiple

kinds of browsers can be included in our architecture.

USD[John92] has a similar \boxes and arrows" diagram notation, and each box can be a function

as in our proposal. However, USD enforces a semantic net data model on the diagram, whereas we

make no such restriction. Also, USD is not closely integrated with a DBMS and has none of the

extensions covered in Section 3. In a sense, recipe management is a generalization of USD.

3 Extensions to Recipe Management

By using a DBMS to support the data needs of recipe management, we are able to provide additional

functionality for recipe management. In the following subsections, we discuss how the recipe

manager can be extended to handle abstracts, synchronization of browsers, computational steering,

and visual update of data.

3.1 Abstracts

A crucial capability of recipe management is user control over the resolution of the visualized

information. For example, the user interface must allow the user to zoom in to recipe output to

obtain more detail or to zoom out to coarser granularity. To satisfy this requirement, the recipe

execution system must be capable of producing recipe output at varying levels of detail.

The zoom in/zoom out capability is reminiscent of SDMS[Hero80], which used it in a browsing

context. In SDMS additional detail appeared automatically and was hard-wired into the system.

For recipe management, we propose the following much more
exible scheme. Let every recipe

optionally have one or more children, which will be termed abstracts for the given recipe, since they

contains less information. Conceptually, they are analogous to textual abstracts for a conventional

document. Note that an abstract need not produce the same kind of information as does its parent.

For example, an abstract for an image of Hurricane Hugo could be a hurricane icon and an abstract

for the icon could be the character string \hurricane".

Our proposal includes organizing recipes into a directed graph so that an edge from one node

to another in this graph indicates \is abstracted by." If there is an edge from P to C, then C is

an abstract of P. P is also the parent of C, and P contains more information than C. Each edge

in this directed graph is labeled with a notation concerning how the abstract loses information.

8

Example notations include \lower resolution", \lower precision", and \lower accuracy". Each recipe

in the directed graph has a layout preference function which returns the minimum and maximum

size screen representation that particular recipe can generate. The browser user interface can then

perform zooming by interacting with the recipe management system as follows. The browser begins

at a speci�c node in the abstract graph and determines the minimum and maximum size screen

representation that recipe can produce. If the user zooms between those limits, then the display()

function for this particular recipe is applicable. If the user zooms in beyond the level of detail

provided by the maximum size screen representation, then one of the parents of the recipe should

be run instead because the parents of the recipe are presumably abstracts with greater detail.

Similarly, if the user zooms out beyond the coarsest level of detail provided by the minimum size

as returned by the layout preference function, one of the children of the node in the abstract graph

should be chosen to provide less detail. In this way, the recipe management system can be directed

to move among the di�erent nodes of the abstract graph by the user interface.

A node in the abstract graph is usually a recipe, as just explained, but it may also be a function.

If it is a function, then the recipe execution engine will run the function on the existing data from

its child node to produce a more detailed representation. If the node is a recipe, then the recipe

execution engine must change to an entirely new recipe. The execution engine will position the new

recipe at the appropriate current location and the browser can then perform a FETCH command,

to refresh the screen with objects from the new recipe.

Using abstracts, the user interface can control the screen resolution for scienti�c visualization.

However, abstracts have many other uses. For example, in a conventional business data processing

application, the coarsest granularity might display an icon for each employee, the next granularity

might indicate his relevant personnel information, and the �nest granularity might indicate all

personnel and biographic information. As such a very general retrieval system can be implemented

by a browser with a \move and zoom" capability.

3.2 Synchronization of Browsers

A traditional user interface has a single cursor through which the result of a query or a view

can be delivered to an application program. However, a user of recipe management might want

to put several browsers in his diagram and visualize the data at several points in the diagram

simultaneously. We propose that an arbitrary number of named browsers be available in a recipe.

The reason that browsers should be named is to support the zoom capability. If the user zooms in

and activates a new recipe in the graph, then his display should seamlessly change to the output

of the correspondingly named browsers in the new recipe.

With the existence multiple browsers, the users may wish to constrain browsers in some manner.

For example, he may wish to specify that two browsers be overlaid. This means that the data that

they display should be superimposed in the same visual window, rather than placed in separate

windows. The user may also wish to specify that two browsers be synchronized so that one browser

is a slave to a second one. In this case, whenever a move or fetch operation is performed by the

master browser, the same operation would be performed by the slave browser.

Synchronizing a slave browser is accomplished by constraining the slave's input controls to those

of the master. In other words, the slave's joysticks and input widgets, which allow the user to direct

viewing, are controlled by the master. Any joystick commands given by the user to the master

are identically dispatched to the slave browser. Thus, any move or fetch operation performed by

the master browser would result in the same move or fetch operation in the slave browser. More

9

generally, we permit a translation function to be de�ned that translates the input controls of

the master browser to the input controls of the slave browser. For example, a slave browser can be

set up so that its controls are at a �xed o�set away from the controls of the master browser. This

may be useful, for example, if one wished to view simultaneously two portions of a map, separated

by a �xed distance. Synchronizing one browser to another produces the desired behavior, namely

that moving the viewing window on one portion would result in a corresponding change in the

viewing window on the other portion.

3.3 Computational Steering

Computational steering is a term used in scienti�c visualization to indicate that the course

of a computation can be \steered" in real time, interactively, by a user. Traditional custom-

designed modeling programs do not allow this
exibility, requiring instead that the scientist edit

and recompile a computer program in order to e�ect a change in parameters of the program. The

recipe system we propose here allows for computational steering by allowing the user to change

parameters to any box of the recipe as the recipe is running. The user gains two advantages in this

way: the e�ect of changes to the model parameters is visible immediately; and the user can begin

to account for errors in visualized data by changing parameters to see their e�ects on the error.

3.4 Visual Update of Data

We support visual updating of data if the creator of a type has de�ned a update() function asso-

ciated with that type. The update() function is, in e�ect, a type-speci�c on-screen editor. These

editors are invoked by the browser when the user selects a object on the screen to edit. Recall that

the browser allocates screen real-estate to various display() functions. Therefore, the browser can

determine, from the user's screen selection, which data object has been chosen. The browser then

invokes the update function for that object. Users may register update functions of the following

form with the DBMS:

update (object, N-D-polygon, screen-area, open-portal)

The update() function will typically use the screen-area allotted to draw a dialog box for input

from the user. The new value from the user is sent to the database via the portal through a normal

database update command. The update function will also return the new value to the browser so

that it may replace the current display of the object with the newly updated representation.

4 Recipe Execution

4.1 Recipes, Views, and Query Plans

At �rst glance, the proposed recipe management architecture may seem to be merely a convenient

user interface for specifying views for a next generation system. Alternatively, one could think of

a recipe management system simply as a convenient query speci�cation tool, since each box of the

recipe corresponds roughly to a query on the DBMS. Compiling a recipe, that is, converting the

graph of boxes and arrows into a series of queries on the DBMS, results in one or more query plans,

which is indeed the same result produced from compiling the output of any other query tool. Here

10

we discuss several crucial ways in which recipes have expanded features relative to views and query

plans.

First, recipes have an N-dimensional browser-DBMS interface, which is a generalization of the

one-dimensional interface available for views and query plans. Traditional DBMS cursors such as

those found in SQL fetch single records along a linear ordering in one dimension. SQL-2 and SQL-3

generalize this interface so that multiple records can be fetched in either a forward or reverse direc-

tion. In this way, they include some of the constructs proposed in portals, which allow an applica-

tion program to retrieve multiple records in a variety of ways along a single dimension[Ston84]. Our

browser-DBMS protocol generalizes portals to operate in an N-dimensional space. Recipes do not

include explicit update commands; rather they rely on the browser to issue separate POSTQUEL

commands for this purpose. Because a unique identi�er (OID) is automatically returned with

each object, the browser can easily perform a separate update, if it desires. In this way, recipe

management follows the lead of portals, which include the same capability.

Second, each box in a recipe can have parameters which are expected to be �lled in when the

recipe is run. These correspond to run-time parameters in a compiled query plan. Such parameters

are not allowed in conventional views. In this aspect, recipes resemble compiled queries but not

views.

Third, the recipe model includes the idea of a hierarchy of abstracts of data, so that data

can be viewed at multiple resolutions. Rather than being hardwired, the hierarchy may be built

by the user. There may be more than one abstract of a recipe, and the type of the abstract is

unconstrained.

Lastly, a recipe is really a directed graph of query plans to which are connected multiple

browsers. A query plan is a tree to which a single cursor is attached. The multiple browsers may

work independently, but they may also be synchronized using a master-slave relationship. Both of

these extensions can be used in the query optimization process as discussed in the next section.

4.2 Extending Query Plans

Recipe generalize query plans in two di�erent ways. First, it is a directed graph of boxes, each of

which is a query plan. Second, multiple browsers can be connected to a recipe, whereas only one

application program can be connected to a query plan through a cursor. It is straightforward to

generalize POSTGRES query plans to support a directed graph of individual plans. All that is

required is to introduce a plan node which is a tee, or fork, that connects the output of one plan

to the input of one or more other plans. We call a directed graph of plans a megaplan. Connecting

multiple browsers to a megaplan is not di�cult, because POSTGRES is designed to be demand

driven. In other words, the browser requests one or more records from the root node of a plan,

which responds by requesting records from its descendent nodes. The process completes when a

node in the plan can deliver records, which then
ow up the plan to satisfy the outstanding request.

Supporting multiple nodes that request records presents a problem. Each node in a recipe

has an internal state, namely a current record. The recipe executor can run the recipe forward if

the data asked for in a FETCH command has not previously been requested. Since POSTGRES

supports portals, data previously requested can also be fetched. However, if a node has a tee at

its output, then records go to two places. If the browser downstream of one output branch makes

a request, then the state of the node will change. In order not to change the state of the other

downstream browser, we must cache the output at the tee. The second browser can then maintain

its original state.

11

This caching problem brings us to the general problem of how to optimize recipe execution.

The execution of a recipe can be made e�cient in two ways. First, we can bu�er the intermediate

results from individual ingredients in the recipe. Second, we can collapse sequential ingredients

into a single function which is potentially more e�cient. We will describe these two methods as

separate approaches, then discuss how we can construct an overall query plan for an entire recipe

by combining the two.

4.2.1 Bu�ering

A recipe may need to be executed again after the browsers display the initial data. This may

happen for two reasons. First, when a user wants to see a di�erent portion of data, the browser

must fetch new records. Second, run-time parameters for functions somewhere in the recipe may

be changed. The user then wants to continue browsing the new result. In both cases, bu�ering the

�nal and intermediate results can save computation.

In the �rst case, if the recipe manager bu�ers all previously observed output, obtaining data

which has already been computed requires little extra e�ort. If a spatial index has been constructed

on the N-dimensional geometries of the recipe output, then previously computed data can be rapidly

looked up with the index. If the requested data in the fetch command is not found in the bu�er,

however, the recipe executor will have to run the recipe by advancing or backing up the cursor.

The second case is where a run-time parameter has changed. If we have bu�ered the input to

the function farthest upstream whose run-time parameters may change, we do not need to reexecute

upstream portions of the recipe. Recomputation is required only for boxes that are downstream

from this function. The bu�ered data downstream is
ushed before the recomputation.

The observations above suggests three possible locations for bu�ering in a recipe diagram.

1. Input to a browser.

If the data for which the browser issues fetch commands is already in the bu�er, there is no

need to reexecute the recipe.

2. Output of a function which goes to more than one function

This corresponds to a fork in a recipe diagram. It is likely that more than one browser is

executing this recipe and each can request new records from this function independently.

Bu�ering the output at forks reduces the need for recomputation that would otherwise be

triggered by downstream browsers requesting di�erent records.

3. Input to a function which has run-time parameters

When a run-time parameter of a function changes, we must execute the recipe ingredients

downstream of this function. If we bu�er the input to this function, however, we can at least

avoid reexecuting functions upstream of it.

Bu�ering in other locations bring little additional bene�t, because the above three cases take into

account all situations where changes could a�ect the value of the output.

The bu�ering of data is done by creating a temporary class for the output of a function. If space

considerations preclude the bu�ering of all the desired data, then the following simple algorithm

can be used to decide which tees, and also which ingredients in a straight sequence of ingredients,

warrant caching. For each recipe, we can maintain the following statistics for each ingredient, I:

12

N(I) = the number of times the run-time parameter of this ingredient has been changed

S(I) = the average size of the output of this ingredient

C(I) = the average cost of running the recipe from the last cached place to this ingredient

For each browser, V, we maintain:

N(V) = the number of times this browser has backed up to previously calculated data

S(V) = the average size of the browser input

C(V) = the average cost of running the recipe from last cached place to this browser

If the recipe manager is allocated a �xed amount of bu�er space, SP, then it can proceed as

follows. Find node L from all ingredients and browsers where C(L)*N(L) is maximal. Allocate

C(L)*N(L) of bu�er space to node L. The overall bu�er space, SP, is reduced by this amount.

Recompute the cost of each browser and each ingredient by eliminating the cost of any nodes prior

to and including the node that will be cached. Find another node L by maximizing C(L)*N(L) and

continue this greedy algorithm until no additional bu�er space remains. Although this algorithm

is not optimal, we expect it will give good real-world performance. A simulation study is planned

to test this hypothesis.

This caching of intermediate results has been advocated in[Sell88, Sell90]; however, this work

is interested in the optimization of multiple queries in a query stream and hopes that a previous

result can be useful as a part of a subsequent query. In our environment, when a recipe input is

changed, we can avoid recreating the whole recipe by using this caching technique.

4.2.2 Compiling Recipes

Compiling recipes entails transforming the diagram of boxes and arrows produced by the user into a

query plan. Initially, each ingredient in a recipe diagram is a separate POSTGRES function written

in either C or POSTQUEL. Often, however, sequential ingredients can be collapsed together into

one box. Sequences of POSTQUEL functions can be coalesced into a single POSTQUEL function

using query modi�cation. The new function has inputs of the �rst function and the output of

the last, and the run-time parameters of all functions in the sequence. The reason for doing

this is that the query plan for the combined POSTQUEL function may be more e�cient than

the query plans of the individual functions executed serially. The algorithm for collapsing two

POSTQUEL functions is basically the query-modi�cation technique for view composition discussed

in [Ston75]. As [Ston75] notes, though, if either POSTQUEL function includes aggregate functions,

this technique fails.

If a recipe ingredient is opaque to POSTGRES, such as a C function, it can still be coalesced

with a preceding POSTQUEL box. One simply brackets the C function around the target list of

the previous POSTQUEL command.

When a function, written in POSTQUEL, has outgoing edges to two or more subsequent

POSTQUEL boxes, then the �rst function can be coalesced into each of the subsequent func-

tions using the above query modi�cation rules. Since the �rst function will be executed as part of

each coalesced function, it will be executed repeatedly.

A function with more than one input can be combined with all its preceding functions by

applying the above technique, one function at a time. In this way it is possible to collapse any

recipe diagram into a diagram with only one node per browser.

13

Coalescing functions has a signi�cant disadvantage. It is no longer possible to cache interme-

diate results because they have disappeared inside a single query plan. Hence, if the user changes

a run-time parameter which was originally in the second ingredient of two, there is no longer any

bu�ering between the ingredients, and the entire combined plan must be reexecuted.

4.2.3 Optimizing recipe execution

When we construct a query plan for a recipe, we must decide which functions will be coalesced and

which outputs should be bu�ered to construct the most e�cient plan.

Consider the sequence �! A �! B �!, where A and B are POSTQUEL functions and the

input to A is bu�ered.

Rule 1 If B has no run-time parameter and A's output goes only to B, always collapse this sequence.

There is no gain in bu�ering between these functions.

Rule 2 If A's output goes to other functions as well as B, always bu�er the output from A.

Rule 3 If A's output goes to only B, and B has one or more run-time parameters, then compute

costs using the following formula to decide whether to bu�er between A and B or coalesce A

and B.

Cost of Bu�ering Method = cost(A) + cost(B)*(1+N(B))

Cost of Coalescing Method = cost(AB) * (1+N(B))

AB is the combined POSTQUEL function, and N(B) is the number of times the run-time

parameters of B are changed and the recipe is reexecuted. The costs depends on how e�cient the

combined POSTQUEL function is and how frequently the parameters in B are changed. In the

bu�ering method, each change to a parameter of B requires only the reexecution of B. This is more

e�cient if B's run-time parameters change often. On the other hand, with the coalescing method

any change to B's parameters requires executing AB. AB may be cheaper than running A and B

sequentially, but it is also probably more expensive than running just B. Note that the cost of A,

B, and AB are known to the DBMS, but N(B) is usually unknown. This presents a problem with

this technique. If bu�er space is limited, we must take it into consideration in the calculation of

cost as well. The estimation of N(B), the impact of limited bu�er space on cost, and the e�ect of

a distributed environment on these costs are all issues which we plan to study further.

When a recipe is compiled, decisions are made about where data will be bu�ered and which

sequential ingredients will be collapsed into single ingredients. Compiling is easiest if the compiles

assumes bu�ering at every node and collapsing of no nodes. Although this does not produce an

optimized solution, it may be preferable for the user, since the actual execution of the recipe will

correspond exactly to the diagram of boxes and arrows the user drew. Even if collapsing does occur

and bu�ering is optimized, it may still be preferable to present the user with the original diagram

layout when executing the recipe. Otherwise a new diagram layout must be generated by Tioga to

indicate which functions have now been collapsed into one. This may be di�cult, especially if the

names of run-time parameters for to-be-collapsed functions con
ict.

A recipe can be recompiled at run-time. At this time more accurate estimation of cost might be

possible, since the system could monitor actual parameter changes to produce more accurate N(B)

values. The disadvantage of recompiling is clear: compiling is a time-consuming process probably

best done as a batch job. In addition, the original recipe layout must still be available, not a new

diagram generated by the previous compile when ingredients were collapsed.

14

Collapsing
Buffering

1

Cost
Total

Buffering is cheapercollapsing is cheaper

cost(AB)

cost(A) <= cost(AB)

cost(B) <= cost(AB)

cost(AB) >= cost(A) + cost(B)

of times B is run

cost(A)+cost(B)

Figure 2: Cost Analysis of Bu�ering vs. Collapsing

4.3 Guaranteed Data Delivery

Many scienti�c visualization applications involve synchronized, interactive presentation of data

that require input data at a predictable rate. For example, oceanographers need to view volume

and surface data from the atmosphere and the sea surface simultaneously. Data from the two

sources must be mapped to a common grid and displayed. Clearly the rate of arrival of data

from both sources must be guaranteed so that it may be synchronized. The problem di�ers from

standard real-time systems in several ways: the guarantee applies to a rate of data delivery, not a

deadline for delivery; the visualization may start at an arbitrary time; the rate is determined by

the scientist, not by the physical system; and the quantity of the data to be guaranteed is typically

very high.

Researchers are already attacking the problem of how to provide guaranteed network perfor-

mance; however, it is clear that overall data delivery guarantees can only be met if all components

of the system, from the I/O subsystem to the database to the network, agree to meet guarantees.

Otherwise, the component that has not agreed to the guarantee can become a performance bot-

tleneck that prevents the overall delivery guarantees from being met. In order better to support

applications such as animation of scienti�c data, we propose to support guaranteed data delivery

from the database so as to work in harmony with other delivery guarantees from other components

of the system.

We assume an architecture as shown in Figure 3. In the diagram, the network boxes indicate

either local or remote network connections. Local connections are assumed to be fast enough to

meet delivery guarantees. The network manager is assumed to support delivery guarantees for

remote connections using approaches such as [Ferr90]. Rates of data delivery will be speci�ced

via contractual protocols that each subsystem will follow. Note that performance constraints must

propagate throughout all components and agreements must be secured from all components before

the contract can be reliably carried out.

Since the ultimate performance demands stem from interaction with the user, the visualization

system must be responsible for initiating any performance contracts. The visualization system

begins by proposing a contract which speci�es data delivery rates of X bytes per second. The

contract is then propagated to all underlying systems. If the network, data manager, and operating

15

Visualization System

 Data Manager

 Network

 Network

Storage Subsystem

Figure 3: Architecture for Guaranteed Data Delivery

system all agree to deliver on the contract then the contract is considered signed. In cases where

the underlying systems cannot deliver, they may respond with counter-o�ers and negotiations for

a modi�ed contract may occur.

Assuming that the network manager has agreed to deliver on the contract, we now consider

how the DBMS can also provide a guarantee. Traditionally, DBMSs create an optimized plan for

an ad-hoc query at run-time[Seli79]. The query optimizer attempts to �nd the lowest cost plan.

Optimizers already estimate costs in terms of I/O and CPU resources. I/O resources are usually

measured in disk pages fetched and CPU resources in estimated number of instructions. Given

the throughput and computing power of the actual hardware platform, these estimates can be

converted to elapsed time. In e�ect, the optimizer can consider the cost function:

CostT ime = TI=O + TCPU

where TI=O and TCPU are the times needed for I/O and CPU operations, respectively. During

actual execution, the data manager may receive a very di�erent allocation of resources, and in

most systems today, the allocation of I/O and CPU resources can vary unpredictably.

In order to optimize correctly, the database needs to obtain guarantees of some fraction of

total I/O and CPU resources available, FI=O and FCPU , from the operating system. Given such

guarantees, the query optimizer can then consider the cost function:

CostT ime = TI=O=FI=O + TCPU=FCPU

Since the database knows the expected number of records returned for a given query, it can estimate

the number of bytes, NB, that will be returned. If the operating system guarantees FI=O fraction

of I/O time and FCPU fraction of CPU time to the database, then the DBMS can attempt to �nd

the query plan that will return NB bytes in the calculated amount of time CostT ime. In other

words, the DBMS can search for query plans which produce

X = NB=(TI=O=FI=O + TCPU=FCPU)

16

where X is the bytes per second required by the original contract. If a plan can be found that

satis�es this equation, then the database will agree to deliver on the contract. If this equation

cannot be satis�ed, then the database cannot deliver on the contract immediately; however, the

database may still be able to meet the contract at a later time by �rst bu�ering the query results.

This implies that contract speci�cations should include not only data delivery rate, e.g. X bytes

per second, but also the required o�set from the current time at which to start delivery, T1. By

intelligently bu�ering the results, the database may be able to retrieve the contents of the bu�er

at a later time o�set T2 at the required rate of X bytes per second. If su�cient bu�ering capacity

is available and BI=O and BCPU are the I/O and CPU costs in time associated with reading from

or writing to the bu�ers, then the database needs only to satisfy the constraint:

X = NB=(BI=O=FI=O + BCPU=FCPU)

in order to deliver data starting at time o�set T2 where

T2 = ((TI=O + BI=O)=FI=O + (TCPU +BCPU)=FCPU)

The database can start delivery at T2 time units from the current time because T2 is the amount

of time necessary to compute and store the entire query result. If the database is not able to meet

the original contract, it will respond to the client with the counter-o�er of delivering the data at

time T2, as this may still be acceptable to the client. If bu�ering capacity is unavailable for some

reason, then the database will respond negatively to the client and not propose a counter-o�er

since the desired data delivery rate can never be satis�ed.

In the above description, we have assumed that the database is able to extract allocation

guarantees from the operating system. This interaction is complicated by the fact that, for ad-

hoc queries, the database must spend time calculating the plan. This planning time causes a

lag between the time resources are requested and the time resources are actually needed from the

operating system. Thus, contracts between the database and the operating system should also have

a \starting at time T" clause. This would result in a more e�cient use of resources during query

planning. The interaction between the DBMS and the operating system is further complicated by

the fact that the database may �nd at the end of the planning time that it is not able to deliver on

the contract under any circumstances. If that occurs, then the database would like to release the

resources it has reserved. Further investigation into how the database and the operating system

can best negotiate these contracts is needed.

Our discussion above has dealt with ad-hoc run time queries. Database queries may also be

compiled at an earlier time. To adapt compiled queries to the demands of guaranteed data delivery,

we propose that compiled query plans be maintained in a table of plans. Each entry in the table

contains a pointer to a plan and an equation for calculating the cost of that plan. The equations

are of the form:

Costplan = I=Oplan=FI=O + CPUplan=FCPU

I=Oplan and CPUplan represent, respectively, the time required by this plan for page fetches

and the time required for CPU instructions. The variables in the equation are the fraction of total

CPU and I/O resources the operating system is willing to allocate to the database at run-time.

Given an allocation, the best compiled plan can be chosen by calculating the cost of each plan in

the table and choosing the least costly.

17

To generate such a table of plans, we use the following algorithm. Generate a plan. If both

I=Oplan and CPUplan are higher than some entry in the table, reject the plan. (It will always be

more expensive than an existing plan in the table.) Otherwise, enter the plan in the table with its

cost function, and generate another plan. Do this until the plan space has been exhausted. We

assume that the number of plans possible for a given recipe is relatively small, so the size of this

table is reasonable.

5 Conclusion

We have proposed here a system for database support of scienti�c visualization applications. Pro-

viding a natural user interface for the scientist has motivated work on multiple cursors for a query

plan, intelligent bu�ering of computed data, and guaranteed delivery. We currently have a prelim-

inary system, including an N-dimensional browser, working. Areas for further study include the

simulation of bu�ering algorithms, and the e�ect on bu�ering of limited disk space. We plan work

as well on the estimation and monitoring of the number of run-time parameter changes made by

a user. Another goal is to study further the impact of a distributed environment on these ideas.

Full implementation of the constructs presented in this paper is expected during 1993.

References

[Agra89] Agrawal, R. and Gehani, N., \ODE: The Language and the Data Model," Proc. 1989

ACM-SIGMOD Conference on Management of Data, Portland, OR, May 1989.

[Baru84] Baru, C. and Su, S., \Performance Evaluation of the Statistical Aggregation by Catego-

rization in the SM3 System," Proc. 1984 ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1984.

[Chen92] Chen, J. \RASQL: A Graphical Query Language for Recipes," work in progress.

[DeWi82] Dewitt, D. et. al., \A Framework for Research in Database Management for Statistical

Analysis," Proceedings of the 1982 SIGMOD International Conference on Management

of Data, Orlando, FL, June 1982.

[Dozi89] Dozier, J., \Spectral Signature of Alpine Snow Cover from the Landsat Thematic Map-

per," Remote Sensing Environment, March 1989.

[Ferr90] Ferrari, D., \Client Requirements for Real-Time Communication Services," IEEE Com-

munications Magazine, November 1990.

[Gree89] Greene, D., \An Implementation and Performance Analysis of Spatial Data Access

Methods," Proc. 1989 Data Engineering Conference, Los Angeles, CA, February 1989.

[Gutm84] Gutman, A., \R-trees: A Dynamic Index Structure for Spatial Searching," Proc. 1984

ACM-SIGMOD Conference on Management of Data, Boston, MA, June 1984.

[Haas90] Haas, L. et. al., \Starburst Mid-Flight: As the Dust Clears," IEEE Transactions on

Knowledge and Data Engineering, March 1990.

18

[Hero80] Herot, Christopher F., \Spatial Management of Data,"ACM Transactions on Database

Systems, December 1980.

[John92] Johnson, R.R. et. al., \USD - A Database Management System for Scienti�c Research,"

Proceedings of the 1992 SIGMOD International Conference on Management of Data,

San Diego, CA, June 1992.

[Kim90] Kim, W. et. al., \Architecture of the ORION Next-Generation Database System," IEEE

Transactions on Knowledge and Data Engineering, March 1990.

[Kolo91] Kolovson, C. and Stonebraker, M., \Segment Indexes: Dynamic Indexing Techniques

for Multi-dimensional Interval Data," Proc. 1991 ACM-SIGMOD Conference on Man-

agement of Data, Denver, CO.

[Mech91] Mechoso, C. et. al., \Distribution of a Coupled Atmosphere-Ocean General Circulation

Model Across High-Speed Networks," Proceedings of the 4th International Symposium

on Computational Fluid Dynamics, 1991.

[Mosh91] Mosher, C. ed., \The POSTGRES Reference Manual," Electronics Research Labora-

tory, University of California, Berkeley, CA, Memo 91/57, August 1991.

[Niev84] Nievergelt, J. et. al., \The Grid File: An Adaptable, Symmetric Multikey File Struc-

ture," ACM Transactions on Database Systems, March 1984.

[Ozso85] Ozsoyoglu, G. et. al., \A Language and a Physical Organization Technique for Summary

Tables," Proc. 1985 ACM-SIGMOD Conference on Management of Data, Austin, TX,

May 1985.

[Rich87] Richardson, J. and Carey, M., \Programming Constructs for Database System Imple-

mentation in EXODUS," Proc. 1987 ACM-SIGMOD Conference on Management of

Data, San Francisco, CA, May 1987.

[Robi81] Robinson, J., \The K-D-B Tree: A Search Structure for Large Multidimensional In-

dexes," Proc. 1981 ACM-SIGMOD Conference on Management of Data, Ann Arbor,

MI, May 1981.

[Roge87] Rogers, T.R., and Cattel, R.G.G., \Entity-Relationship Database User Interfaces,"

Proceedings of the ER Institute, Baton Rouge, LA, 1987.

[Rous85] Rousoupoulis, N. and Leifker, D., \Direct Spatial Search on Pictorial Databases Us-

ing Packed R-trees," Proc. 1985 ACM-SIGMOD Conference on Management of Data,

Austin, TX, June 1985.

[Seli79] Selinger, P. et. al., \Access Path Selection in a Relational Data Base System," Proc

1979 ACM-SIGMOD Conference on Management of Data, Boston, MA, June 1979.

[Sell88] Sellis, T.K., \Multiple-Query Optimization," ACM Transactions on Database Systems,

March 1988.

[Sell90] Sellis, T.K. and Ghosh, S., \On the Multiple-Query Optimization Problem," IEEE

Transactions on Knowledge and Data Engineering, June 1990.

19

[Ston75] Stonebraker, M., \Implementation of Integrity Constraints and Views by Query Modi-

�cation," Proc. 1975 ACM-SIGMOD Conference, San Jose, CA, May 1975.

[Ston84] Stonebraker, M. and Rowe, L., \Database Portals - A New Application Program In-

terface," Proceedings of the 10th International Conference on Very Large Databases,

Singapore, August 1984.

[Ston86] Stonebraker, M. and Rowe, L., \The Design of POSTGRES," Proc. 1986 ACM-

SIGMOD Conference on Management of Data, Washington, D.C., May 1986.

[Ston90] Stonebraker, M. et. al., \The Implementation of POSTGRES," IEEE Transactions on

Knowledge and Data Engineering, March 1990.

[Ston91] Stonebraker, M., \Managing Persistent Objects in a Multi-level Store," Electronics Re-

search laboratory Memorandum M91/72, University of California, Berkeley, February

1991.

[Ston92] Stonebraker, M. and Dozier, J., \SEQUOIA 2000: Large Capacity Object Servers to

Support Global Change Research," SEQUOIA 2000 Technical Report No 1, Electronics

Research Lab, University of California, Berkeley, March 1992.

[Wilk90] Wilkinson, K. et. al., \The IRIS Architecture and Implementation," IEEE Transactions

on Knowledge and Data Engineering, March 1990.

20

