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Abstract

Most general-purposeprocessors provide support for
memorypages of large sizes,called superpages. Su-
perpagesenableeach entry in the translationlookaside
buffer (TLB) to mapa largephysicalmemoryregion into
a virtual addressspace. This dramatically increases
TLB coverage, reducesTLB misses,and promisesper-
formanceimprovementsfor many applications. How-
ever, supportingsuperpagesposesseveral challengesto
the operating system,in termsof superpage allocation
andpromotiontradeoffs, fragmentationcontrol, etc. We
analyzetheseissues,and proposethe designof an ef-
fectivesuperpage managementsystem.We implementit
in FreeBSDon the Alpha CPU, and evaluateit on real
workloadsand benchmarks.We obtain substantialper-
formancebenefits,oftenexceeding30%; thesebenefits
aresustainedevenunderstressfulworkloadscenarios.

1 Intr oduction

Modern general-purposeprocessorsprovide virtual
memorysupport,usingpagetablesfor addresstransla-
tion. Most processorscachevirtual-to-physical-address
mappingsfrom the pagetablesin a translationlooka-
sidebuffer (TLB) [10]. TLB coverage is definedasthe
amountof memoryaccessiblethroughthesecachedmap-
pings, i.e., without incurring missesin the TLB. Over
the last decade,TLB coveragehasincreasedat a much
lower pacethanmain memorysize. For mostgeneral-
purposeprocessorstoday, TLB coverageis a megabyte
or less,thusrepresentingaverysmallfractionof physical
memory. Applicationswith largerworkingsetscanincur
many TLB missesandsuffer from a significantperfor-
mancepenalty. To alleviate this problem,mostmodern
general-purposeCPUsprovidesupportfor superpages.

A superpage is a memorypageof largersizethanan
�
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ordinarypage(henceforthcalleda basepage). They are
usually available in multiple sizes,often up to several
megabytes.Eachsuperpageoccupiesonly oneentry in
the TLB, so the TLB coveragedramatically increases
to cover the working setof mostapplications.This re-
sultsin performanceimprovementsof over30%in many
cases,aswedemonstratein Section6.2.Recentresearch
findingsontheTLB performanceof modernapplications
statethatTLB missesarebecomingincreasinglyperfor-
mancecritical [9].

However, inappropriateuseof large superpagescan
result in enlarged applicationfootprints, leadingto in-
creasedphysicalmemoryrequirementsandhigherpag-
ing traffic. TheseI/O costscaneasilyoutweighany per-
formanceadvantagesobtainedby avoiding TLB misses.
Thereforethe operatingsystemneedsto usea mixture
of pagesizes. The useof multiple pagesizesleadsto
theproblemof physicalmemoryfragmentation,andde-
creasesfuture opportunitiesfor using large superpages.
To ensuresustainedperformance,the operatingsystem
needsto control fragmentation,without penalizingsys-
temperformance.Theproblemof effectively managing
superpagesthusbecomesa complex, multi-dimensional
optimizationtask. Most general-purposeoperatingsys-
temseitherdo not supportsuperpagesat all, or provide
limited support[6, 19, 20].

This paperdevelopsa generalandtransparentsuper-
pagemanagementsystem.It balancesvarioustradeoffs
while allocatingsuperpages,so as to achieve high and
sustainedperformancefor realworkloadsandnegligible
degradationin pathologicalsituations. Whena process
allocatesmemory, our systemreservesa largercontigu-
ous region of physicalmemory in anticipationof sub-
sequentallocations. Superpagesare thencreatedin in-
creasingsizesas the processtouchespagesin this re-
gion. If thesystemlaterrunsout of contiguousphysical
memory, it maypreemptportionsof unusedcontiguous
regionsfrom theprocessesto which they wereoriginally
assigned.If theseregionsareexhausted,then the sys-
temrestorescontiguityby biasingthepagereplacement



schemeto evict contiguousinactive pages.This system
is implementedin FreeBSDon the Alpha architecture,
andis evaluatedon realapplicationsandbenchmarks.It
is shown to yield substantialbenefitswhen memoryis
plentiful andfragmentationis low. Furthermore,it sus-
tainsthesebenefitsover thelongterm,by controllingthe
fragmentationarisingfrom complex workloadscenarios.

The contributions of this work are four-fold. It ex-
tendsa previously proposedreservation-basedapproach
to work with multiple, potentiallyvery large superpage
sizes,anddemonstratesthebenefitsof doingso; it is, to
our knowledge,thefirst to investigatetheeffect of frag-
mentationonsuperpages;it proposesanovel contiguity-
aware pagereplacementalgorithm to control fragmen-
tation; andit tacklesissuesthathave to datebeenover-
lookedbut arerequiredto makeasolutionpractical,such
assuperpagedemotionandeviction of dirty superpages.

Section2 motivatesthe problem and establishesits
constraintsandcomplexities. Section3 examinesthere-
latedwork on superpages.Section4 and5 describeour
designand implementation,andSection6 presentsthe
resultsof anexperimentalevaluation.Finally, Section7
concludes.

2 The superpageproblem

This section discussesthe motivation, hardware con-
straints,issuesandtradeoffs in operatingsystemsupport
for superpages.

2.1 Moti vation

Main memoryhasgrown exponentiallyin size over at
leastthe last decadeand,ascauseor consequence,the
memoryrequirementsof applicationshave proportion-
ally increased[20]. In contrast,TLB coveragehaslagged
behind.TheTLB is usuallyfully associative andits ac-
cesstime must be kept low, since it is in the critical
path of every memoryaccess[13]. Hence,TLB size
hasremainedrelatively small, usually128 or fewer en-
tries, correspondingto a megabyteor lessof TLB cov-
erage.Figure1 depictstheTLB coverageachievedasa
percentageof main memorysize, for a numberof Sun
andSGIworkstationmodelsavailablebetween1986and
2001. Relative TLB coverageis seento be decreasing
by roughly a factor of 100 over ten years. As a con-
sequence,many modernapplicationshave working sets
larger than the TLB coverage. Section6.3 shows that
for many real applications,TLB missesdegradeperfor-
manceby asmuchas30%to 60%,contrastingto the4%
to 5%reportedin the1980’s[2, 24] or the5%to 10%re-
portedin the1990’s[17, 23]. Anothertrendthathascon-
tributedto thisperformancedegradationis thatmachines

are now usually shippedwith on-board,physically ad-
dressedcachesthatarelargerthantheTLB coverage.As
aresult,many TLB missesrequireaccessto thememory
banksto find a translationfor datathat is alreadyin the
cache,makingmissesrelatively moreexpensive.
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Figure 1: TLB coverage as percentage of main memory for
workstations, 1986-2001 (data collected from various websites).
(A) Sun 3/50; (B) Sun 3/180; (C) Sun 3/280; (D) Personal Iris;
(E) SPARCstation-5; (F) Iris Indigo; (G) SPARCstation-10; (H)
Indy; (I) Indigo2; (J) SPARCstation-20; (K) Ultra-1; (L) Ultra-2;
(M) O2; (N) Ultra-5; (O) Ultra-10; (P) Ultra-60; (Q) Ultra-450;
(R) Octane2.

We thereforeseeka methodof increasingTLB cover-
agewithout proportionallyenlarging theTLB size. One
option is to alwaysusebasepagesof a larger size,say
64KB or 4MB. However, this approachwould causein-
creasedinternalfragmentationdueto partly usedpages,
and thereforeinduceprematureonsetof memorypres-
sure[22]. Also, the I/O demandsbecomehigherdueto
increasedpaginggranularity.

In contrast,the useof multiple pagesizesenablesan
increasein TLB coveragewhile keepinginternal frag-
mentationanddisk traffic low. This technique,however,
imposesseveral challengesupon the operatingsystem
designer, which arediscussedin therestof this section.

2.2 Hardware-imposedconstraints

Thedesignof TLB hardwarein mostprocessorsimposes
a seriesof constraintson superpages.Firstly, thesuper-
pagesizemustbe amonga setof pagesizessupported
by theprocessor. For example,theAlpha processorpro-
vides8KB basepagesand64KB, 512KB and4MB su-
perpages;the i386 processorfamily supports4KB and
4MB pages,andthenew ItaniumCPUprovidestendif-
ferentpagesizesfrom 4KB to 256MB.

Secondly, a superpageis requiredto becontiguousin
physicalandvirtual addressspace.Thirdly, its starting
addressin the physicaland virtual addressspacemust
bea multiple of its size;for example,a 64KB superpage



mustbealignedona 64KB addressboundary.
Finally, the TLB entry for a superpageprovidesonly

a singlereferencebit, dirty bit, andsetof protectionat-
tributes.Thelatterimpliesthatall basepagesthatform a
superpagemusthavethesameprotectionattributes(read,
write,execute).Also,dueto thecoarsegranularityof ref-
erenceanddirty bits,theoperatingsystemcandetermine
whethersomepartof thesuperpagehasbeenaccessedor
written to, but cannotdistinguishbetweenbasepagesin
this regard.

2.3 Issuesand tradeoffs

The task of managingsuperpagescan be conceptually
broken down into a seriesof steps,eachgovernedby a
differentset of tradeoffs. The forthcominganalysisof
theseissuesis independentof any particularprocessor
architectureor operatingsystem.

We assumethat thevirtual addressspaceof eachpro-
cessconsistsof asetof virtual memoryobjects.A mem-
ory object occupiesa contiguousregion of the virtual
addressspaceandcontainsapplication-specificdata,as
shown in Figure2. Examplesof memoryobjectsinclude
memorymappedfiles,andthecode,data,stackandheap
segmentsof processes.Physicalmemoryfor theseob-
jects is allocatedas and when their pagesare first ac-
cessed.

Allocation: When a pagein a memoryobject is first
touchedby the application,the OS allocatesa physical
pageframe, and mapsit into the application’s address
space.In principle,any availablepageframecanbeused
for this purpose,just as in a systemwithout superpage
support. However, should the OS later wish to create
a superpagefor the object,alreadyallocatedpagesmay
requirerelocation(i.e., physicalcopying) to satisfy the
contiguityandalignmentconstraintsof superpages.The
copying costsassociatedwith this relocation-basedallo-
cationapproachcanbedifficult to recover, especiallyon
a busysystem.

An alternative is reservation-basedallocation. Here,
the OS tries to allocatea pageframethat is part of an
available,contiguousrangeof pageframesequalin size
and alignmentto the maximal desiredsuperpagesize,
andtentatively reservestheentiresetfor useby thepro-
cess.Subsequently, whentheprocessfirst touchesother
pagesthatfall within theboundsof areservation,thecor-
respondingbasepageframesareallocatedandmapped.
ShouldtheOSlaterdecideto createa superpagefor this
object,theallocatedpageframesalreadysatisfythecon-
tiguity andalignmentconstraints.Figure2 depictsthis
approach.

Reservation-basedallocation requires the a priori
choiceof asuperpagesizeto reserve,withoutforeknowl-

edgeof memoryaccessesto neighbouringpages.TheOS
mayoptimisticallychoosethedesiredsuperpagesizeas
the largestsupportedsizethat is smalleror equalto the
sizeof thememoryobject,but it mayalsobiasthis deci-
sion on the availability of contiguousphysicalmemory.
TheOSmusttradeoff theperformancegainsof usinga
large superpageagainstthe option of retainingthe con-
tiguousregion for later, possiblymorecritical use.

address
Virtual

space

allocated
page frame

alignment
superpage

boundary

Object
mapping

address
space

Physical

reservation

mapped pages

unused
page frame

Figure 2: Reservation-based allocation.

Fragmentation control: Whencontiguousmemoryis
plentiful, the OS succeedsin using superpagesof the
desiredsizes,and achieves the maximumperformance
dueto superpages.In practice,reservation-basedalloca-
tion, useof differentpagesizesandfile cacheaccesses
have the combinedeffect of rapidly fragmentingavail-
ablephysicalmemory. To sustainthe benefitsof super-
pages,theOSmayproactively releasecontiguouschunks
of inactivememoryfrom previousallocations,atthepos-
sible expenseof having to performdisk I/O later. The
OSmayalsopreemptanexisting,partiallyusedreserva-
tion, giventhepossibility that thereservationmaynever
becomea superpage.The OS mustthereforetreatcon-
tiguity asa potentiallycontendedresource,andtradeoff
the impact of variouscontiguity restorationtechniques
againstthebenefitsof usinglargesuperpages.

Promotion: Once a certain number of base pages
within apotentialsuperpagehavebeenallocated,assum-
ing that thesetof pagessatisfytheaforementionedcon-
straintsonsize,contiguity, alignmentandprotection,the
OSmaydecideto promotetheminto a superpage.This
usuallyinvolvesupdatingthepagetableentriesfor each
of theconstituentbasepagesof the superpageto reflect
the new superpagesize. Oncethe superpagehasbeen
created,asingleTLB entrystoringthetranslationfor any
addresswithin the superpagesufficesto mapthe entire
superpage.

Promotion can also be performed incrementally.
When a certainnumberof basepageshave beenallo-



catedin acontiguous,alignedsubsetof areservation,the
OSmaydecideto promotethesubsetinto a smallsuper-
page.Thesesuperpagesmaybeprogressively promoted
to largersuperpages,up to thesizeof theoriginal reser-
vation.

In choosingwhen to promote a partially allocated
reservation, the OS must tradeoff the benefitsof early
promotionin termsof reducedTLB missesagainstthe
increasedmemoryconsumptionthatresultsif notall con-
stituentpagesof thesuperpageareused.

Demotion: Superpage demotion is the process of
marking pagetable entriesto reducethe size of a su-
perpage,either to basepagesor to smallersuperpages.
Demotion is appropriatewhen a processis no longer
actively usingall portionsof a superpage,andmemory
pressurecalls for theeviction of theunusedbasepages.
Oneproblemis thatthehardwareonly maintainsasingle
referencebit for thesuperpage,makingit difficult for the
OSto efficientlydetectwhichportionsof asuperpageare
actively used.

Eviction: Evictionof superpagesis similar to theevic-
tion of basepages. When memorypressuredemands
it, an inactive superpagemay be evicted from physical
memory, causingall of its constituentbasepageframes
to becomeavailable. When an evicted page is later
faultedin, memoryis allocatedanda superpagemaybe
createdin thesameway asdescribedearlier.

One complicationariseswhen a dirty superpageis
pagedout. Sincethe hardwaremaintainsonly a single
dirty bit, thesuperpagemayhave to beflushedout in its
entirety, eventhoughsomeof its constituentbasepages
maybeclean.

Managingsuperpagesthusinvolvesa complex setof
tradeoffs; otherresearchershavealsoalludedto someof
theseissues[12, 13]. Thenext sectiondescribesprevious
approachesto theproblem,andSection4 describeshow
ourdesigneffectively tacklesall theseissues.

3 Relatedapproaches

Many operatingsystemsusesuperpagesfor kernelseg-
mentsand frame buffers. This sectiondiscussesexist-
ing superpagesolutionsfor applicationmemory, which
is thefocusof this work. Theseapproachescanbeclas-
sified by how they managethe contiguity requiredfor
superpages:reservation-basedschemestry to preserve
contiguity; relocation-basedapproachescreatecontigu-
ity; andhardware-basedmechanismsreduceor eliminate
thecontiguityrequirementfor superpages.

3.1 Reservations

Reservation-basedschemesmake superpage-awareallo-
cationdecisionsat page-fault time. On eachallocation,
they usesomepolicy to decidethe preferredsizeof the
allocationandattemptto find acontiguousregionof free
physicalmemoryof thatsize.

Talluri andHill proposea reservation-basedscheme,
in which a region is reservedat page-fault time andpro-
motedwhenthenumberof framesin usereachesa pro-
motion threshold.Undermemorypressure,reservations
canbe preemptedto regain free space[20]. The main
goal of Talluri and Hill’ s designis to provide a sim-
ple, best-effort mechanismtailoredto theuseof partial-
subblockTLBs, which aredescribedin Section3.3.

In contrast,superpagesin both the HP-UX [19] and
IRIX [6] operatingsystemsareeagerlycreatedat page-
fault time. Whenapageis faultedin, thesystemmayal-
locateseveralcontiguousframesto fault in surrounding
pagesandimmediatelypromotetheminto a superpage,
regardlessof whetherthe surroundingpagesare likely
to be accessed.Although pagesare never actually re-
served,this eagerpromotionmechanismis equivalentto
areservation-basedapproachwith apromotionthreshold
of oneframe.

In IRIX andHP-UX, the preferredsuperpagesize is
basedon memoryavailability at allocationtime, andon
a user-specifiedper-segmentpagesize hint. This hint
is associatedwith an applicationbinary’s text anddata
segments;IRIX also allows the hint to be specifiedat
runtime.

Themaindrawbackof IRIX andHP-UX’s eagerpro-
motion is that it is not transparent.It requiresexperi-
mentationto determinethe optimumsuperpagesizefor
the varioussegmentsof a givenapplication.A subopti-
malsettingwill resultin lowerperformance,dueto either
insufficientTLB coverageif superpagesaretoosmall,or
unnecessarypagingandpagepopulationcostsif super-
pagesaretoo large.

3.2 Pagerelocation

Relocation-basedschemescreatesuperpagesby physi-
cally copying allocatedpageframesto contiguousre-
gionswhenthey determinethatsuperpagesarelikely to
be beneficial. Relocation-basedapproachescan be en-
tirely and transparentlyimplementedin the hardware-
dependentlayer of the operatingsystem,but they need
to relocatemostof the allocatedbasepagesof a super-
pageprior to promotion,even whenthereareplenty of
contiguousavailableregions.

Romeretal. proposeacompetitivealgorithmthatuses
online cost-benefitanalysisto determinewhenthe ben-
efits of superpagesoutweighthe overheadof superpage



promotionthroughrelocation[16]. Theirdesignrequires
a software-managedTLB, sinceit associateswith each
potentialsuperpagea counterthat must be updatedby
the TLB misshandler. In the absenceof memorycon-
tention, this approachhasa strictly lower performance
thana reservation-basedapproach,because,in addition
to the relocationcosts,(1) therearemoreTLB misses,
sincerelocationis performedasa reactionto an exces-
sive numberof TLB misses,and (2) TLB missesare
moreexpensive— by afactorof four or more,according
to Romeretal. — dueto amorecomplex TLB misshan-
dler. On the otherhand,a relocationapproachis more
robustto fragmentation.

Reservations and page relocation can complement
eachother in a hybrid approach. One way would be
to userelocationwhenever reservationsfail to provide
enoughcontiguity and a large numberof TLB misses
is observed. Alternatively, pagerelocationcan be per-
formedasabackgroundtaskto dooff-line memorycom-
paction. The goal is to merge fragmentedchunksand
graduallyrestorecontiguityin thesystem.TheIRIX co-
alescingdaemondoesthisandis describedin [6], but no
evaluationis presented.

3.3 Hardwaresupport

The contiguity requirementfor superpagescan be re-
ducedor eliminatedby meansof additional hardware
support.

Talluri and Hill study different TLB organizations.
They advocatepartial-subblock TLBs, whichessentially
contain superpageTLB entries that allow “holes” for
missingbasepages.They claim thatwith this approach
most of the benefitsfrom superpagescan be obtained
with minimalmodificationsto theoperatingsystem[20].
Partial-subblockTLBs yield only moderatelylargerTLB
coveragethanthebasesystem,andit is not clearhow to
extendthepartial-subblockTLBs to multiple superpage
sizes.

Fangetal. describeahardware-basedmechanismthat
completelyeliminatesthe contiguity requirementof su-
perpages.They introduceanadditionallevel of address
translationin the memorycontroller, so that the operat-
ing systemcanpromotenon-adjacentphysicalpagesinto
a superpage.This greatlysimplifiesthetaskof theoper-
atingsystemfor supportingsuperpages[3].

To thebestof ourknowledge,neitherpartial-subblock
TLBs nor address-remappingmemory controllers are
supportedon commercial,general-purposemachines.

Our approachgeneralizesTalluri and Hill’ s reserva-
tion mechanismto multiple superpagesizes. To regain
contiguity on fragmentedphysicalmemorywithout re-
locatingpages,it biasesthe pagereplacementpolicy to

selectthosepagesthatcontributethemostto contiguity.
It also tacklesthe issuesof demotionandeviction (de-
scribedin Section2.3) not addressedby previouswork,
anddoesnot requirespecialhardwaresupport.

4 Design

Ourdesignadoptsthereservation-basedsuperpageman-
agementparadigmintroducedin [20]. It extendstheba-
sic designalongseveraldimensions,suchassupportfor
multiple superpagesizes,scalabilityto very largesuper-
pages,demotionof sparselyreferencedsuperpages,ef-
fective preservation of contiguity without the needfor
compaction,andefficient disk I/O for partially modified
superpages.As shown in Section6, this combination
of techniquesis generalenoughto work efficiently for
a rangeof realisticworkloads,andis believedto besuit-
ablefor deploymentin modernoperatingsystems.

A high-level sketchof thedesigncontainsthefollow-
ing components.Availablephysicalmemoryis classified
into contiguousregions of different sizes,and is man-
agedusing a buddy allocator [14]. A multi-list reser-
vation schemeis usedto track partially usedmemory
reservations,andto helpin choosingreservationsfor pre-
emption,asdescribedin Section4.8. A populationmap
keepstrack of memoryallocationsin eachmemoryob-
ject, asdescribedin Section4.9. Thesystemusesthese
datastructuresto implementallocation,preemption,pro-
motionanddemotionpolicies. Finally, it controlsexter-
nal memoryfragmentationby performingpagereplace-
mentsin acontiguity-awaremanner, asdescribedin Sec-
tion 4.4. The following subsectionselaborateon these
concepts.

4.1 Reservation-basedallocation

Mostoperatingsystemsallocatephysicalmemoryonap-
plication demand. Whena virtual memorypageis ac-
cessedby a programandno mappingexists in thepage
table,theOS’spagefaulthandleris invoked.Thehandler
attemptsto locatetheassociatedpagein mainmemory;
if it is not resident,an availablepageframeis allocated
andthecontentsareeitherzero-filledor fetchedfrom the
pagingdevice. Finally, the appropriatemappingis en-
teredinto thepagetable.

Insteadof allocatingphysicalmemoryoneframeat a
time, our systemdeterminesa preferredsuperpagesize
for theregionencompassingthebasepagewhoseaccess
causedthe pagefault. The choiceof a sizeis madeac-
cording to a policy describedin Section4.2. At page-
fault time, thesystemobtainsfrom thebuddyallocatora
setof contiguouspageframescorrespondingto thecho-
sensuperpagesize. The frame with the sameaddress



alignmentasthefaultedpageis usedto fault in thepage,
andamappingis enteredinto thepagetablefor thispage
only. Theentiresetof framesis tentatively reservedfor
potentialfutureuseasasuperpage,andaddedto a reser-
vation list. In the event of a pagefault on a pagefor
which a framehasalreadybeenreserved, a mappingis
enteredinto thepagetablefor thebasepage.

4.2 Preferred superpagesizepolicy

Next, we describethepolicy usedto choosethedesired
superpagesizeduring allocation. Sincethis decisionis
usuallymadeearly in a process’s execution,when it is
hardto predictits futurebehaviour, ourpolicy looksonly
at attributesof the memoryobjectto which the faulting
pagebelongs.If thechosensizeturnsout to betoo large,
thenthedecisionwill belateroverriddenby preempting
theinitial reservation.However, if thechosensizeis too
small,thenthedecisioncannotberevertedwithout relo-
catingpages.For thatreason,thepolicy tendsto choose
themaximumsuperpagesizethatcanbeeffectively used
in anobject.

For memoryobjectsthatarefixedin size,suchascode
segmentsandmemory-mappedfiles,thedesiredreserva-
tion size is the largest,alignedsuperpagethat contains
thefaultingpage,doesnotoverlapwith existing reserva-
tions or allocatedpages,anddoesnot reachbeyond the
endof theobject.

Dynamicallysizedmemoryobjectssuchasstacksand
heapscan grow one pageat a time. Under the policy
for fixedsizeobjects,they would not be ableto usesu-
perpages,becauseeachtime the policy would set the
preferredsizeto onebasepage. Thusa slightly differ-
entpolicy is required.As before,thedesiredsizeis the
largest,alignedsuperpagethatcontainsthefaultingpage
anddoesnotoverlapwith existingreservationsor alloca-
tions. However, therestrictionthat the reservationmust
not reachbeyondtheendof theobjectis droppedto al-
low for growth. To avoid wastageof contiguityfor small
objectsthat may never grow large, the size of this su-
perpageis limited to thecurrentsizeof theobject. This
policy thususeslarge reservationsonly for objectsthat
havealreadyreachedasufficiently largesize.

4.3 Preemptingreservations

When free physicalmemorybecomesscarceor exces-
sively fragmented,the systemcanpreemptframesthat
arereservedbut not yet used.Whenanallocationis re-
questedandno extentof frameswith thedesiredsizeis
available,thesystemhasto choosebetween(1) refusing
theallocationandthusreservingasmallerextentthande-
sired,or (2) preemptingan existing reservation thathas

enoughunallocatedframesto yield an extent of the de-
siredsize.

Our policy is that,wheneverpossible,thesystempre-
emptsexisting reservationsratherthanrefusingan allo-
cationof thedesiredsize.Whenmorethanonereserva-
tion canyield an extent of the desiredsize,the reserva-
tion is preemptedwhosemostrecentpageallocationoc-
curredleastrecently, amongall candidatereservations.
This policy is basedon theobservationthatusefulreser-
vationsareoftenpopulatedquickly, andthatreservations
thathave not experiencedany recentallocationsareless
likely to befully allocatedin thenearfuture.

4.4 Fragmentation control

Allocating physical memory in contiguousextents of
multiple sizesleadsto fragmentationof main memory.
Over time, extentsof large sizesmay becomeincreas-
ingly scarce,thuspreventingthe effective useof super-
pages.

To control fragmentation,our buddy allocator per-
formscoalescingof availablememoryregionswhenever
possible. However, coalescingby itself is only effec-
tive if the systemperiodically reachesa statewhereall
or mostof main memoryis available. To control frag-
mentationunderpersistentmemorypressure,the page
replacementdaemonis modifiedto performcontiguity-
aware pagereplacement.Section5.1 discussesthis in
greaterdetail.

4.5 Incr ementalpromotions

A superpageis createdassoonasany superpage-sized
and alignedextent within a reservation getsfully pop-
ulated. Promotion,therefore,is incremental:if, for in-
stance,pagesof a memoryobjectarefaultedin sequen-
tially, a promotionoccursto thesmallestsuperpagesize
assoonasthepopulationcountcorrespondsto thatsize.
Then,whenthepopulationcountreachesthenext larger
superpagesize, anotherpromotion occurs to the next
size,andsoon.

It is possibleto promoteto thenext sizewhenthepop-
ulationcountreachesacertainfractionof thatsize.How-
ever, beforeperformingthepromotionthesystemneeds
to populatetheentireregion,which couldartificially in-
flate thememoryfootprint of applications.We promote
only regionsthatarefully populatedby theapplication,
sincewe observe that most applicationspopulatetheir
addressspacedenselyandrelatively earlyin theirexecu-
tion.



4.6 Speculative demotions

Demotionoccursas a side-effect of pagereplacement.
Whenthe pagedaemonselectsa basepagefor eviction
that is part of a superpage,the eviction causesa demo-
tion of thatsuperpage.This demotionis alsoincremen-
tal, sinceit is not necessaryto demotea largesuperpage
all the way to basepagesjust becauseone of its con-
stituentbasepagesis evicted. Instead,the superpageis
first demotedto thenext smallersuperpagesize,thenthe
processis appliedrecursively for the smallersuperpage
thatencompassesthevictim page,andsoon. Demotion
is alsonecessarywhenever the protectionattributesare
changedonpartof asuperpage.This is requiredbecause
thehardwareprovidesonly asinglesetof protectionbits
for eachsuperpage.

Thesystemmayalsoperiodicallydemoteactivesuper-
pagesspeculativelyin ordertodetermineif thesuperpage
is still beingactively usedin its entirety. Recallthat the
hardwareonly providesa singlereferencebit with each
superpage.Therefore,the operatingsystemhasno way
to distinguisha superpagein which all the constituent
basepagesarebeingaccessed,from onein which only a
subsetof thebasepagesare.In thelattercase,it wouldbe
desirableto demotethe superpageundermemorypres-
sure,suchthat theunusedbasepagescanbediscovered
andevicted.

To addressthis problem,when the pagedaemonre-
setsthe referencebit of a superpage’s basepage,andif
thereis memorypressure,thenit recursively demotesthe
superpagethatcontainsthechosenbasepage,with acer-
tain probability � . In our currentimplementation,� is 1.
Incrementalrepromotionsoccurwhenall thebasepages
of a demotedsuperpagesarebeingreferenced.

4.7 Pagingout dirty superpages

Whena dirty superpageneedsto be written to disk, the
operatingsystemdoesnot possessdirty bit information
for individual basepages.It mustthereforeconsiderall
theconstituentbasepagesdirty, andwrite out thesuper-
pagein its entirety, even thoughonly a few of its base
pagesmay have actuallybeenmodified. For large,par-
tially dirty superpages,theperformancedegradationdue
to thissuperfluousI/O canconsiderablyexceedany ben-
efitsfrom superpages.

To preventthis problem,we demotecleansuperpages
whenever a processattemptsto write into them,andre-
promotelaterif all thebasepagesaredirtied. Thischoice
is evaluatedin Section6.7.

Inferring dirty basepagesusinghashdigests: As an
alternative, we considereda techniquethat retainsthe
benefitsof superpagesevenwhenthey arepartiallydirty,

while avoiding superfluousI/O. Whena cleanmemory
pageis readfrom disk,acryptographichashdigestof its
contentsis computedandrecorded.If apartiallydirty set
of basepagesis promotedto asuperpage,or if acleansu-
perpagebecomesdirty, thenall its constituentbasepages
areconsidereddirty. However, whenthepageis flushed
out, thehashof eachbasepageis recomputedandcom-
paredto determineif it wasactuallymodifiedandmust
bewritten to disk.

A 160-bit SHA-1 hash has a collision probability
of about one in �	��
 [4], which is much smaller than
the probability of a hardwarefailure. Hencethis tech-
niquecanbeconsideredsafe.However, preliminarymi-
crobenchmarksusingSHA-1revealsignificantoverhead,
upto 15%,ondisk-intensiveapplications.Thepatholog-
ical caseof a largesequentialreadwhentheCPUis satu-
ratedincursaworst-casedegradationof 60%.Therefore,
we did not usethis techniquein our implementation.

However, theseoverheadscanbereducedusinga va-
riety of optimizations. First, the hashcomputationcan
be postponeduntil thereis a partially dirty superpage,
so that fully-clean or fully-dirty superpagesandunpro-
motedbasepagesneednot behashed.Second,thehash-
ing costcanbeeliminatedfrom thecritical pathby per-
forming it entirely from the idle loop, since the CPU
mayfrequentlybeidle for disk-intensiveworkloads.An
evaluationof theseoptimizationsis thesubjectof future
work.

4.8 Multi-list reservation scheme

Reservation lists keeptrack of reserved pageframeex-
tentsthatarenot fully populated.Thereis onereserva-
tion list for eachpagesizesupportedby the hardware,
except for the largestsuperpagesize. Eachreservation
appearsin thelist correspondingto thesizeof thelargest
freeextent thatcanbeobtainedif thereservationis pre-
empted. Becausea reservation hasat leastone of its
framesallocated,the largestextentsit canyield if pre-
emptedareonepagesizesmallerthanits own size. For
instance,on animplementationfor theAlpha processor,
whichsupports4MB, 512KB,64KB and8KB pages,the
64KB reservation list may containreservationsof size
512KB and4MB.

Reservationsin eachlist are kept sortedby the time
of their most recentpageframeallocations. When the
systemdecidesto preemptareservationof agivensize,it
choosesthereservationattheheadof thelist for thatsize.
This satisfiesour policy of preemptingtheextentwhose
mostrecentallocationoccurredleastrecentlyamongall
reservationsin thatlist.

Preemptinga chosenreservation occursas follows.
Ratherthanbreakingthe reservation into basepages,it
is broken to smallerextents. Unpopulatedextentsare



transferredto thebuddyallocatorandpartiallypopulated
onesarereinsertedinto theappropriatelists. For exam-
ple, whenpreemptinga 512KB reservation taken from
headof the64KB list, thereservationis brokeninto eight
64KB extents.Theoneswith noallocationsarefreedand
the onesthat arepartially populatedare insertedat the
headof the8KB reservationlist. Fully populatedextents
arenot reinsertedinto thereservationlists.

When the systemneedsa contiguousregion of free
memory, it canobtainit from the buddyallocatoror by
preemptinga reservation. The mechanismis bestde-
scribedwith anexample.Still in thecontext of theAlpha
CPU,supposethatan applicationfaultsin a givenpage
for which thereis no reserved frame. Furtherassume
that thepreferredsuperpagesizefor thefaultingpageis
64KB. Thenthesystemfirst asksthebuddyallocatorfor
a 64KB extent. If that fails, it preemptsthe first reser-
vation in the 64KB reservation list, which shouldyield
at leastone64KB extent. If the64KB list is empty, the
systemwill try the512KB list. If that list is alsoempty,
then the systemhasto resortto basepages:the buddy
allocatoris tried first, andthenthe 8KB reservation list
asthelastresource.

4.9 Population map

Population maps keep track of allocated base pages
within eachmemoryobject.They servefour distinctpur-
poses:(1) on eachpagefault, they enabletheOSto map
the virtual addressto a pageframethat may alreadybe
reserved for this address;(2) while allocatingcontigu-
ous regions in physicaladdressspace,they enablethe
OSto detectandavoid overlappingregions;(3) they as-
sist in makingpagepromotiondecisions;and(4) while
preemptinga reservation, they help in identifying unal-
locatedregions.

A populationmapneedsto supportefficient lookups,
sinceit is queriedoneverypagefault. Weusearadixtree
in which eachlevel correspondsto a pagesize.Theroot
correspondsto the maximumsuperpagesizesupported
by the hardware,eachsubsequentlevel correspondsto
the next smallersuperpagesize, and the leaves corre-
spondto thebasepages.If thevirtual pagesrepresented
by anodehaveareservedextentof frames,thenthenode
hasa pointerto thereservationandthereservationhasa
backpointerto thenode.

Eachnon-leafnodekeepsa count of the numberof
superpage-sizedvirtual regions at the next lower level
that have a populationof at least one (the somepop
counter), and that are fully populated(the fullpop
counter),respectively. This countrangesfrom � through


, where



is the ratio betweenconsecutive superpage
sizes(8 on the Alpha processor).The treeis lazily up-
datedasthe object’s pagesarepopulated.The absence

of a child nodeis equivalentto having a child with both
counterszero. Sincecountersrefer to superpage-sized
regions,upwardpropagationof thecountersoccursonly
whensomepop transitionsbetween0 and 1, or when
fullpop transitionsbetween


����
and



. Figure3

showsonesuchtree.

(somepop, fullpop)
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3,1
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Figure 3: A population map. At the base page level, the actual
allocation of pages is shown.

A hashtable is usedto locatepopulationmaps. For
each population map, there is an entry associatinga
memoryobject, page index tuple with the map, where
page index is the offset of the startingpageof the map
within theobject.Thepopulationmapis usedasfollows:

Reserved frame lookup: On a pagefault, the virtual
addressof thefaultingpageis roundeddown to a multi-
ple of thelargestpagesize,convertedto thecorrespond-
ing memoryobject,page index tuple,andhashedto de-
terminethe root of the populationmap. From the root,
thetreeis traversedto locatethereservedpageframe,if
thereis one.

Overlap avoidance: If the above procedureyields no
reserved frame,thenwe attemptto make a reservation.
The maximumsizethat doesnot overlapwith previous
reservationsor allocationsis given by the first nodein
thepathfrom theroot whosesomepop counteris zero.

Promotion decisions: After a pagefault is serviced,
a promotion is attemptedat the first nodeon the path
from theroot to thefaultingpagethat is fully populated
and has an associatedreservation. The promotionat-
temptsucceedsonly if thefaultingprocesshasthepages
mappedwith uniformprotectionattributesanddirty bits.

Preemption assistance: When a reservation is pre-
emptedit is broken into smallerchunksthat needto be
freedor reinsertedin thereservation lists, dependingon
their allocationstatus,asdescribedin Section4.8. The
allocationstatuscorrespondsto thepopulationcountsin
thesuperpagemapnodeto which thereservationrefers.



5 Implementation notes

This sectiondescribessomeimplementationspecificis-
suesof our design.While thediscussionof our solution
is necessarilyOS-specific,theissuesaregeneral.

5.1 Contiguity-awarepagedaemon

FreeBSD’s pagedaemonkeepsthreelists of pages,each
in approximateLRU (A-LRU) order:active,inactiveand
cache. Pagesin the cachelist arecleanandunmapped
andhencecanbe easily freed undermemorypressure.
Inactive pagesarethosemappedinto the addressspace
of someprocess,andhavenotbeenreferencedfor a long
time. Active pagesare thosethat have beenaccessed
recently, but may or may not have their referencebit
set. Undermemorypressure,the daemonmovesclean
inactive pagesto the cache,pagesout dirty inactive
pages,and also deactivatessome unreferencedpages
from the active list. We madethe following changesto
factor contiguity restorationinto the pagereplacement
policy.

(1)Weconsidercachepagesasavailablefor reservations.
Thebuddyallocatorkeepsthemcoalescedwith the free
pages,increasingtheavailablecontiguityof thesystem.
Thesecoalescedregionsareplacedat thetail of their re-
spective lists, so that subsequentallocationstendto re-
specttheA-LRU order.

The contentsof a cachepageareretainedas long as
possible,whetherit is in a buddylist or in a reservation.
If a cachepageis referenced,then it is removed from
the buddy list or the reservation; in the latter case,the
reservation is preempted.The cachepageis reactivated
andits contentsarereused.

(2) The pagedaemonis activatednot only on memory
pressure,but alsowhenavailablecontiguityfalls low. In
our implementation,the criterion for low contiguity is
thefailureto allocateacontiguousregionof thepreferred
size.Thegoalof thedaemonis to restorethecontiguity
that would have beennecessaryto servicethe requests
that failed sincethe last time the daemonwas woken.
Thedaemonthentraversestheinactive list andmovesto
thecacheonly thosepagesthatcontributeto thisgoal. If
it reachestheendof thelist beforefulfilling its goal,then
it goesto sleepagain.

(3) Sincethe chancesof restoringcontiguity arehigher
if therearemoreinactivepagesto choosefrom, all clean
pagesbacked by a file aremoved to the inactive list as
soonas the file is closedby all processes.This differs
from the currentbehaviour of FreeBSD,wherea page
does not changeits statuson file closing or process
termination, and active pagesfrom closed files may

never be deactivated if there is no memory pressure.
In termsof overall performance,our systemthus finds
it worthwhile to favor the likelihood of recovering the
contiguity from thesefile-backed pages,than to keep
them for a longer time for the chancethat the file is
accessedagain.

Controllingfragmentationcomesata price.Themore
aggressively the systemrecoverscontiguity, the greater
is thepossibilityandtheextentof aperformancepenalty
inducedby the modifiedpagedaemon,due to its devi-
ation from A-LRU. Our modifiedpagedaemonaimsat
balancingthis tradeoff. Moreover, by judiciouslyselect-
ing pagesfor replacement,it attemptsto restoreasmuch
contiguityaspossibleby affectingasfew pagesaspossi-
ble. Section6.5demonstratesthebenefitsof this design.

5.2 Wir ed pageclustering

Memorypagesthatareusedby FreeBSDfor its internal
datastructuresarewired, thatis, markedasnon-pageable
sincethey cannotbeevicted. At systemboot time these
pagesareclusteredtogetherin physicalmemory, but as
the kernel allocatesmemorywhile other processesare
running, they tend to get scattered. Our systemwith
512MBof mainmemoryis foundto rapidlyreachapoint
wheremost4MB chunksof physicalmemorycontainat
leastonewired page.At this point, contiguity for large
pagesbecomesirrecoverable.

To avoid this fragmentationproblem, we identify
pagesthat areaboutto be wired for the kernel’s inter-
naluse.We clusterthemin poolsof contiguousphysical
memory, sothatthey do not fragmentmemoryany more
thannecessary.

5.3 Multiple mappings

Two processescan mapa file into different virtual ad-
dresses.If the addressesdiffer by, say, onebasepage,
then it is impossibleto build superpagesfor that file in
the pagetablesof both processes.At most one of the
processescanhave alignmentthatmatchesthe physical
addressof the pagesconstitutingthe file; only this pro-
cessis capableof usingsuperpages.

Our solution to this problem leveragesthe fact that
applicationsmostoftendo not specifyan addresswhen
mappingafile. Thisgivesthekerneltheflexibility to as-
sign a virtual addressfor the mappingin eachprocess.
Our systemthenchoosesaddressesthat arecompatible
with superpageallocation.Whenmappingafile, thesys-
tem usesa virtual addressthat aligns to the largestsu-
perpagethatis smallerthanthesizeof themapping,thus
retainingtheability to createsuperpagesin eachprocess.



6 Evaluation

This sectionreportsresultsof experimentsthatexercise
the systemon several classesof benchmarksand real
applications. We evaluatethe best-casebenefitsof su-
perpagesin situationswhensystemmemoryis plentiful.
Then,wedemonstratetheeffectivenessof ourdesign,by
showing how thesebenefitsaresustaineddespitediffer-
entkindsof stresson thesystem.Resultsshow theeffi-
ciency of ourdesignby measuringits overheadin several
pathologicalcases,andjustify thedesignchoicesin the
previoussectionusingappropriatemeasurements.

6.1 Platform

We implementedour designin the FreeBSD-4.3kernel
as a loadablemodule,along with hooksin the operat-
ing systemto call module functionsat specificpoints.
Thesepointsarepagefaults,pageallocationanddeal-
location, the pagedaemon,andat the physicallayer of
the VM system(to demotewhen changingprotections
andto keeptrack of dirty/modifiedbits of superpages).
We were also able to seamlesslyintegratethis module
into thekernel.Theimplementationcomprisesof around
3500linesof C code.

WeusedaCompaqXP-1000machinewith thefollow-
ing characteristics:

� Alpha 21264processorat 500MHz;� four pagesizes: 8KB basepages,64KB, 512KB
and4MB superpages;� fully associative TLB with 128entriesfor dataand
128for instructions;� software page tables, with firmware-basedTLB
loader;� 512MB RAM;� 64KB dataand64KB instructionL1 caches,virtu-
ally indexedand2-wayassociative;� 4MB unified,direct-mappedexternalL2 cache.

TheAlphafirmwareimplementssuperpagesby means
of page table entry (PTE) replication. The pagetable
storesan entry for every basepage,whetheror not it is
part of a superpage.EachPTE containsthe translation
informationfor abasepage,alongwith apagesizefield.
In this PTEreplicationscheme,thepromotionof a 4MB
region involvesthesettingof thepagesizefield of each
of the512pagetableentriesthatmaptheregion [18].

6.2 Workloads

We usedthe following benchmarksandapplicationsto
evaluateour system.
CINT2000: SPEC CPU2000 integer benchmark
suite[7].

CFP2000: SPECCPU2000floating-point benchmark
suite[7].
Web: The thttpd web server [15] servicing50000re-
questsselectedfrom anaccesslog of theCSdepartmen-
tal web server at Rice University. The working setsize
of this traceis 238MB,while its datasetis 3.6GB.
Image: 90-degreerotationof a800x600-pixel imageus-
ing thepopularopen-sourceImageMagicktools[8].
Povray: Raytracingof a simpleimage.
Link er: Link of the FreeBSDkernel with the GNU
linker.
C4: An alpha-betasearchsolver for a 12-ply position
of the connect-4game,also known as the fhourstones
benchmark.
Tree:A syntheticbenchmarkthatcapturesthebehaviour
of processesthatusedynamicallocationfor a largenum-
berof smallobjects,leadingto poorlocality of reference.
The benchmarkconsistsof four operationsperformed
randomlyon a 50000-nodered-blacktree: 50% of the
operationsare lookups,24% insertions,24% deletions,
and2% traversals. Nodeson the treecontaina pointer
to a 128-byterecord.On insertionsa new recordis allo-
catedandinitialized; on lookupsandtraversals,half of
therecordis read.
SP:Thesequentialversionof a scalarpentadiagonalun-
coupledequationsystemsolver, from the NAS Parallel
Benchmarksuite[1]. The input sizecorrespondsto the
“workstationclass”in NAS’snomenclature.
FFTW: The FastestFourier Transformin the West [5]
with a 200x200x200matrix asinput.
Matrix: A non-blocked matrix transposition of a
1000x1000matrix.

6.3 Best-casebenefitsdue to superpages

This first setof experimentsshows that several classes
of real workloadsyield large benefitswith superpages
whenfreememoryis plentiful andnon-fragmented.Ta-
ble 1 presentsthesebest-casespeedupsobtainedwhen
the benchmarksare given the contiguousmemory re-
gionsthey need,sothateveryattemptto allocateregions
of thepreferredsuperpagesize(asdefinedin Section4.2)
succeeds,andreservationsareneverpreempted.

The speedupsare computedagainstthe unmodified
systemusing the meanelapsedruntime of three runs
after an initial warm-up run. For both the CINT2000
and CFP2000entries in the table, the speedupsre-
flect, respectively, theimprovementin SPECint2000and
SPECfp2000(definedby SPECasthe geometricmean
of thenormalizedthroughputratios).

Thetablealsopresentsthesuperpagerequirementsof
eachof theseapplications(as a snapshotmeasuredat
peakmemoryusage),andthepercentagedataTLB miss
reductionachieved with superpages.In mostcasesthe



dataTLB missesarevirtually eliminatedby superpages,
asindicatedby amissreductioncloseto 100%.Thecon-
tribution of instructionTLB missesto the total number
of misseswasfoundto benegligible in all of thebench-
marks.

Superpageusage Miss
Bench- 8 64 512 4 reduc Speed-
mark KB KB KB MB (%) up

CINT2000 1.112
gzip 204 22 21 42 80.00 1.007
vpr 253 29 27 9 99.96 1.383
gcc 1209 1 17 35 70.79 1.013
mcf 206 7 10 46 99.97 1.676
crafty 147 13 2 0 99.33 1.036
parser 168 5 14 8 99.92 1.078
eon 297 6 0 0 0.00 1.000
perl 340 9 17 34 96.53 1.019
gap 267 8 7 47 99.49 1.017
vortex 280 4 15 17 99.75 1.112
bzip2 196 21 30 42 99.90 1.140
twolf 238 13 7 0 99.87 1.032

CFP2000 1.110
wupw 219 14 6 43 96.77 1.009
swim 226 16 11 46 98.97 1.034
mgrid 282 15 5 13 98.39 1.000
applu 1927 1647 90 5 93.53 1.020
mesa 246 13 8 1 99.14 0.985
galgel 957 172 68 2 99.80 1.289
art 163 4 7 0 99.55 1.122
equake 236 2 19 9 97.56 1.015
facerec 376 8 13 2 98.65 1.062
ammp 237 7 21 7 98.53 1.080
lucas 314 4 36 31 99.90 1.280
fma3d 500 17 27 22 96.77 1.000
sixtr 793 81 29 1 87.50 1.043
apsi 333 5 5 47 99.98 1.827

Web 30623 5 143 1 16.67 1.019
Image 163 1 17 7 75.00 1.228
Povray 136 6 17 14 97.44 1.042
Linker 6317 12 29 7 85.71 1.326
C4 76 2 9 0 95.65 1.360
Tree 207 6 14 1 97.14 1.503
SP 151 103 15 0 99.55 1.193
FFTW 160 5 7 60 99.59 1.549
Matrix 198 12 5 3 99.47 7.546

Table 1: Speedups and superpage requirements when plenty of
memory is available.

Nearly all the workloadsin the tabledisplaybenefits
due to superpages;someof theseare substantial. Out
of our 35 benchmarks,18 show improvementsover 5%
(speedupof 1.05),and10 show over 25%. Theonly ap-
plication that slows down is mesa,which degradesby
a negligible fraction. Matrix, with a speedupof 7.5, is
closeto the maximumpotentialbenefitsthat canpossi-

bly begainedwith superpages,becauseof its accesspat-
tern thatproducesoneTLB missfor every two memory
accesses.

Several commonplace desktop applications like
Linker (gnuld), gcc, andbzip2 observe significantper-
formanceimprovements.If sufficient contiguousmem-
ory is available,thentheseapplicationsstandto benefit
from a superpagemanagementsystem.In contrast,Web
gainslittle, becausethesystemcannotcreateenoughsu-
perpagesin spiteof its large 315MB footprint. This is
becauseWebaccessesa largenumberof smallfiles,and
thesystemdoesnotattemptto build superpagesthatspan
multiplememoryobjects.Extrapolatingfrom theresults,
a systemwithout such limitation (which is technically
feasible,but likely at a high cost in complexity) would
bring Web’s speedupcloserto a moreattractive 15%,if
it achieveda missreductioncloseto 100%.

Someapplicationscreateasignificantnumberof large
superpages.FFTW, in particular, standsout with 60
superpagesof size 4MB. The next sectionshows that
FFTW makesgooduseof large superpages,asthereis
almostno speedupif 4MB pagesarenotsupported.

Mesashowsasmallperformancedegradationof 1.5%.
Thiswasdeterminedto benotdueto theoverheadof our
implementation,but becauseour allocatordoesnot dif-
ferentiatezeroed-outpagesfrom otherfreepages.When
the OS allocatesa pagethat needsto be subsequently
zeroedout, it requeststhememoryallocatorto preferen-
tially allocateanalreadyzeroed-outpageif possible.Our
implementationof thebuddyallocatorignoresthis hint;
weestimatedthecostof thisomissionby comparingbase
systemperformancewith and without the zeroed-page
feature.We obtainedanaveragepenaltyof 0.9%,anda
maximumof 1.7%.

A side effect of using superpagesis that it sub-
sumespagecoloring[11], a techniquethatFreeBSDand
other operatingsystemsuse to reducecacheconflicts
in physically-addressedandespeciallyin direct-mapped
caches.By carefullyselectingamongfree frameswhen
mappinga page,the OS keepsvirtual-to-physicalmap-
pings in a way suchthat pagesthat are consecutive in
virtual spacemapto consecutive locationsin thecache.
Sincewith superpagesvirtually contiguouspagesmapto
physicallycontiguousframes,they automaticallymapto
consecutivelocationsin aphysically-mappedcache.Our
speedupresultsfactorouttheeffectof page-coloring,be-
causethebenchmarkswererun with enoughfreemem-
ory for the unmodifiedsystemto alwayssucceedin its
pagecoloring attempts.Thus,both the unmodifiedand
themodifiedsystemeffectively benefitfrom pagecolor-
ing.



6.4 Benefitsfr om multiple superpagesizes

We repeatedthe above experiments,but changedthe
systemto supportonly onesuperpagesize, for eachof
64KB, 512KB and 4MB, and comparedthe resulting
performanceagainstour multi-sizeimplementation.Ta-
bles2 and3 respectively presentthe speedupandTLB
missreductionfor thebenchmarks,excludingthosethat
have thesamespeedup(within 5%) in all four cases.

Benchmark 64KB 512KB 4MB All

CINT2000 1.05 1.09 1.05 1.11
vpr 1.28 1.38 1.13 1.38
mcf 1.24 1.31 1.22 1.68
vortex 1.01 1.07 1.08 1.11
bzip2 1.14 1.12 1.08 1.14

CFP2000 1.02 1.08 1.06 1.12
galgel 1.28 1.28 1.01 1.29
lucas 1.04 1.28 1.24 1.28
apsi 1.04 1.79 1.83 1.83

Image 1.19 1.19 1.16 1.23
Linker 1.16 1.26 1.19 1.32
C4 1.30 1.34 0.98 1.36
SP 1.19 1.17 0.98 1.19
FFTW 1.01 1.00 1.55 1.55
Matrix 3.83 7.17 6.86 7.54

Table 2: Speedups with different superpage sizes.

Theresultsshow thatthebestsuperpagesizedepends
on the application. For instance,it is 64KB for SP,
512KB for vpr, and4MB for FFTW. The reasonis that
while someapplicationsonly benefitfrom large super-
pages,othersaretoo small to fully populatelargesuper-
pages.To uselargesuperpageswith small applications,
thepopulationthresholdfor promotioncouldbelowered,
assuggestedin Section4.5.However, theOSwouldhave
to populateregionsthatareonly partiallymappedby the
application.Thiswouldenlargetheapplicationfootprint,
andalsoslightly changethe OS semantics,sincesome
invalid accesseswouldnot becaught.

The tablesalsodemonstratethat allowing the system
to choosebetweenmultiplepagesizesyieldshigherper-
formance,becausethe systemdynamically selectsthe
bestsizefor everyregionof memory. An extremecaseis
mcf, for which thepercentagespeedupwhenthesystem
getsto chooseamongseveralsizesmorethandoublesthe
speedupwith any singlesize.

Someapparentanomalies,likedifferentspeedupswith
thesameTLB missreduction(e.g.,Linker)arelikely due
to the coarsegranularityof the Alpha processor’s TLB
misscounter(512K misses). For short-runningbench-
marks,512K missescorrespondsto a two-digit percent-
ageof thetotalnumberof misses.

Benchmark 64KB 512KB 4MB All

CINT2000
vpr 82.49 98.66 45.16 99.96
mcf 55.21 84.18 53.22 99.97
vortex 46.38 92.76 80.86 99.75
bzip2 99.80 99.09 49.54 99.90

CFP2000
galgel 98.51 98.71 0.00 99.80
lucas 12.79 96.98 87.61 99.90
apsi 9.69 98.70 99.98 99.98

Image 50.00 50.00 50.00 75.00
Linker 57.14 85.71 57.14 85.71
C4 95.65 95.65 0.00 95.65
SP 99.11 93.75 0.00 99.55
FFTW 7.41 7.41 99.59 99.59
Matrix 90.43 99.47 99.47 99.47

Table 3: TLB miss reduction percentage with different superpage
sizes.

6.5 Sustainedbenefitsin the long term

Theperformancebenefitsof superpagescanbesubstan-
tial, providedcontiguousregionsof physicalmemoryare
available.However, conventionalsystemscanbesubject
to memoryfragmentationeven undermoderatelycom-
plex workloads.For example,we ran instancesof grep,
emacs,netscapeanda kernel compilationon a freshly
bootedsystem;within about15 minutes,we observed
severe fragmentation. The systemhad completelyex-
haustedall contiguousmemoryregionslargerthan64KB
thatwerecandidatesfor largersuperpages,eventhough
asmuchas360MB of the512MBwerefree.

Our systemseeksto preserve the performanceof su-
perpagesover time, so it actively restorescontiguityus-
ing techniquesdescribedin Sections4.4and5.1.To eval-
uatethesemethods,wefirst fragmentthesystemmemory
by runningawebserverandfeedingit with requestsfrom
thesameaccesslog asbefore.Thefile-backedmemory
pagesaccessedby thewebserverpersistin memoryand
reduceavailablecontiguityto aminimum.Moreover, the
accesspatternof thewebserver resultsin aninterleaved
distribution of active, inactive and cachepages,which
increasesfragmentation.

We presenttwo experimentsusingthis webserver.

Sequential execution: After the requestsfrom the
tracehave beenserviced,we run the FFTW benchmark
four timesin sequence.The goal is to seehow quickly
the systemrecoversjust enoughcontiguousmemoryto
build superpagesandperformefficiently.

Figure 4 comparesthe performanceof two contigu-
ity restorationtechniques.The cache schemetreatsall
cachedpagesasavailable,andcoalescesthem into the



buddy allocator. The graphdepictsno appreciableper-
formanceimprovementsof FFTW over thebasesystem.
We observedthat thesystemis unableto provide evena
single4MB superpagefor FFTW. This is becausemem-
ory is available (47MB in the first run and 290MB in
theothers),but is fragmenteddueto active, inactive and
wired pages.

The other scheme,calleddaemon, is our implemen-
tation of contiguity-awarepagereplacementand wired
pageclustering.Thefirst time FFTW runsaftertheweb
server, the pagedaemonis activateddue to contiguity
shortage,andis ableto recover 20 out of the requested
60contiguousregionsof 4MB size.Subsequentrunsget
a progressively larger numberof 4MB superpages,viz.
35, 38 and40. Thus,FFTW performancereachesnear-
optimumwithin two runs,i.e.,a speedupof 55%.
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Figure 4: Two techniques for fragmentation control.

The web server closesits files on exit, andour page
daemontreatsthis file memoryasinactive, asdescribed
in Section5.1.We now measuretheimpactof thiseffect
in conjunctionwith the pagedaemon’s drive to restore
contiguity, on thewebserver’s subsequentperformance.
We run the web server again after FFTW, and replay
the sametrace. We observe only a 1.6% performance
degradationover the basesystem, indicating that the
penaltyon thewebserverperformanceis small.

We furtheranalyzethis experimentby monitoringthe
availablecontiguity in the systemover time. We define
an empiricalcontiguitymetric asfollows. We assign1,
2 or 3 pointsto eachbasepagethatbelongsto a 64KB,
512KB, or 4MB memoryregion respectively, assuming
thattheregion is contiguous,alignedandfully available.
We computethe sumof theseper-pagepoints,andnor-
malizeit to thecorrespondingvalueif every pagein the
systemwereto befree.Figure5 showsaplot of thiscon-
tiguity metric againstexperimentaltime. Note that this
metricis unfavorableto thedaemonschemesinceit does
not considerasavailabletheextra contiguitythatcanbe
regainedby moving inactivepagesto thecache.

At the startof the experiment,neitherschemehasall
of thesystem’s512MBavailable;in particular, thecache
schemehaslost 5% morecontiguity dueto unclustered
wired pages. For about five minutes, the web server
consumesmemoryanddecreasesavailablecontiguityto
zero.Thereafter, thecacheschemerecoversonly 8.8%of
the system’s contiguity, which canbe seenin the graph
asshort,transitoryburstsbetweenFFTW executions.In
contrast,thedaemonschemerecoversasmuchas42.4%
of thecontiguity, which is consumedby FFTW while it
executes,andreleasedeachtimeit exits. TheFFTWexe-
cutionsthusfinish earlier, at 8.5minutesfor thedaemon
scheme,comparedto 9.8minutesfor thecachescheme.
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Figure 5: Contiguity as a function of time.

To estimate the maximum contiguity that can be
potentiallygainedbackafter the FFTW runscomplete,
we run a syntheticapplicationthat usesenoughanony-
mousmemoryto maximizethenumberof freepagesin
the systemwhen it exits. At this point, the amountof
contiguity lost is 54% in the cachescheme,mostly due
to scatteredwiredpages.In contrast,thedaemonscheme
in unableto recover 13%of theoriginal contiguity. The
reasonis that the few active and inactive pagesthat
remain at the end of the experimentare scatteredin
physical memory over as many as 54 4MB chunks.
Sincethe experimentstartson a freshly bootedsystem,
active and inactive pageswere physically closeat that
time, occupying only 22 suchchunks. Part of the lost
13% is due to inactive pagesthat are not countedin
the contiguity metric, but canbe recoveredby the page
daemon.Therefore,thereal lossin thelong termfor the
daemonschemeis boundedonly by thenumberof active
pages.

Concurrent execution: The next experimentrunsthe
webserverconcurrentlywith acontiguity-seekingappli-
cation. Thegoal is to measuretheeffect of thepagere-
placementpolicy on thewebserverduringasingle,con-



tinuousrun. Weisolatetheeffectof thepagereplacement
policy by disablingsuperpagepromotionsin this experi-
ment.

We warm up the web server footprint by playing
100,000requestsfrom the trace,and thenmeasurethe
timetakento servicethenext 100,000requests.Wewish
to avoid interferenceof theCPU-intensive FFTW appli-
cation with the web server, so we substituteit with a
dummyapplicationthatonly exercisestheneedfor con-
tiguity. Thisapplicationmaps,touchesandunmaps1MB
of memory, five timesasecond,andforcesthepagedae-
monto recovercontiguityratherthanjust memory.

The web server keepsits active files open while it
is running,soour pagedaemoncannotindiscriminately
treat this memoryas inactive. The web server’s active
memorypagesget scattered,andonly a limited amount
of contiguitycanbe restoredwithout compactingmem-
ory. Over thecourseof theexperiment,thedummyap-
plicationneedsabout3000contiguouschunksof 512KB
size. The original pagedaemononly satisfied3.3% of
theserequests,whereasour contiguity-awarepagedae-
mon fulfills 29.9%of the requests.This shows how the
changein the replacementpolicy succeedsin restoring
significantlymorecontiguity thanbefore,with negligi-
bleoverheadandessentiallynoperformancepenalty.

The overheadof the contiguity restorationoperations
of thepagedaemonis foundtobeonly 0.8%,andtheweb
serversuffersanadditional3% of performancedegrada-
tion, asa consequenceof the deviation of the pagere-
placementpolicy from A-LRU.

6.6 Adversary applications

This section exercisesthe system on three synthetic
pathologicalworkloads,andconcludeswith a measure-
mentof realisticoverhead.

Incr emental promotion overhead: We synthesized
an adversaryapplicationthat makes the systempay all
the costsof incrementalpromotionwithout gainingany
benefit. It allocatesmemory, accessesonebyte in each
page,and deallocatesthe memory, which rendersthe
TLB uselesssinceevery translationis usedonly once.
This adversaryshows a slowdown of 8.9%with our im-
plementation,but as much as 7.2% of this overhead
is due to the following hardware-specificreason. PTE
replication,asdescribedin Section6.1,forceseachpage
tableentryto betraversedsix times:oncepereachof the
threeincrementalpromotions,andonceper eachof the
threeincrementaldemotions.Theremaining1.7%of the
overheadis mainlydueto maintenanceof thepopulation
maps.

Sequential access overhead: Accessing pages se-
quentiallyasin our adversaryis actuallya commonbe-
haviour, but usuallyevery byteof eachpageis accessed,
which dilutes the overhead.We testedthe cmp utility,
which comparestwo files by mappingthemin memory,
usingtwo identical100MBfilesasinput,andobserveda
negligible performancedegradationof lessthan0.1%.

Preemption overhead: To measurethe overheadof
preemptingreservations, we set up a situation where
there is only 4MB of memory available and contigu-
ous,andruna processthattouchesmemorywith a 4MB
stride. In this situation,thereis a patternof onereser-
vation preemptionevery seven allocations. Every pre-
emptionsplits a reservation into 8 smallerchunks.One
remainsreserved with the pagethat madethe original
reservation;anotheris takenfor thepagebeingallocated,
and6 arereturnedto thefreelist. We measuredaperfor-
mancedegradationof 1.1%for this process.

Overhead in practice: Finally, we measurethe total
overheadof our implementationin real scenarios.We
usethesamebenchmarksof Section6.2,performall the
contiguousmemoryallocationand fragmentationman-
agementas before,but factor out the benefitof super-
pagesby simply not promotingthem. We preserve the
promotionoverheadby writing the new superpagesize
into someunusedportion of the pagetableentries. We
observe performancedegradationsof up to 2%, with an
averageof about1%. This shows how our systemonly
imposesnegligible overheadin practice,sothepatholog-
ical situationsdescribedabovearerarelyobserved.

6.7 Dirty superpages

To evaluateour decisionof demotingcleansuperpages
upon writing, as discussedin Section4.7, we codeda
programthatmapsa 100MB file, readsevery pagethus
triggering superpagepromotion,then writes into every
512th page,flushesthe file andexits. We comparedthe
runningtimeof theprocessbothwith andwithoutdemot-
ing on writing. As expected,sincetheI/O volumeis 512
timeslarger, theperformancepenaltyof not demotingis
huge:a factorof morethan20.

Our designdecisionmay deny the benefitsof super-
pagesto processesthat do not write to all of the base
pagesof a potentialsuperpage.However, accordingto
our policy, we chooseto pay thatprice in orderto keep
thedegradationin pathologicalcaseslow.

6.8 Scalability

If the historical tendenciesof decreasingrelative TLB
coverageandincreasingworkingsetsizescontinue,then



to keepTLB missoverheadlow, supportfor superpages
muchlargerthan4MB will beneededin thefuture.Some
processorslike the Itanium andthe Sparc64-IIIprovide
128MBandlargersuperpages,andoursuperpagesystem
is designedto scaleto suchsizes.However, architectural
peculiaritiesmayposesomeobstacles.

Most operationsin our implementationare either]_^a`cb
; or

]_^edfb
, where

d
is the numberof distinct su-

perpagesizes;or in thecaseof preemptingareservation,]_^gdihkjlb
, where

j
is theratiobetweenconsecutivesizes,

which is never morethan8 on modernprocessors.The
exceptionsarefour routineswith runningtime linear in
thesize(in basepages)of thesuperpagethat they oper-
ateon. Oneis the pagedaemonthat scanspages;since
it runsasa backgroundprocess,it is not in the critical
pathof memoryaccesses.The other threeroutinesare
promotion,demotion,anddirty/referencebit emulation.
They operateon eachpagetableentry in thesuperpage,
andowe their unscalabilityto thehardware-definedPTE
replicationschemedescribedin Section6.1.

Promotions and demotions: Often, under no mem-
ory pressure,pagesareincrementallypromotedearly in
a process’s life and only demotedat programexit. In
suchcase,thecostamortizedover all pagesusedby the
processis

]_^gdfb
, which is negligible in all of our bench-

marks.Theonly exceptionto this is theadversaryexper-
imentof Section6.6,whichpaysa7.2%overheaddueto
incrementalpromotionsanddemotions.However, when
thereis memorypressure,demotionsandrepromotions
mayhappenseveraltimesin aprocess’slife (asdescribed
in Sections4.6and4.7).Thecostof suchoperationsmay
becomesignificantfor very large superpages,given the
linearcostof PTEreplication.

Dirty/r eferencebit emulation: In many processors,
includingtheAlpha,dirty andreferencebitsmustbeem-
ulatedby the operatingsystem.This emulationis done
by protectingthepagesothat thefirst write or reference
triggersa softwaretrap.Thetraphandlerregistersin the
OS structuresthat the pageis dirty or referenced,and
resetsthepageprotection.For largesuperpages,setting
andresettingprotectioncanbe expensive if PTE repli-
cationis required,asit mustbedonefor everybasepage.

These problems motivate the need for more
superpage-friendly page table structures, whether
they aredefinedby the hardwareor the OS, in orderto
scalablysupportvery large superpages.Clustered page
tablesproposedby Talluri et al. [21] representonestep
in this direction.

7 Conclusions

This paperprovidesa transparentandeffective solution
to the problemof superpagemanagementin operating
systems. Superpagesare physicalpagesof large size,
which may be usedto increaseTLB coverage,reduce
TLB misses,andthusimproveapplicationperformance.
We describea practicaldesignand demonstratethat it
canbe integratedinto an existing general-purposeoper-
atingsystem.We evaluatethesystemon a rangeof real
workloadsandbenchmarks,observe performancebene-
fits of 30% to 60% in several cases,andshow that the
systemis robusteven in pathologicalcases.Theseben-
efits are sustainedundercomplex workload conditions
andmemorypressure,andtheoverheadsaresmall.
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