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Abstract

Most geneml-purpose processas provide support for

memorypages of large sizes,called superpages Su-
perpagesenableead entryin the translationlookaside
buffer (TLB) to mapa large physicalmemoryregioninto

a virtual addressspace This dramatically increases
TLB coverage, reducesTLB misses.and promisesper-

formanceimprovementsfor many applications. How-

ever, supportingsuperp@esposesseveral challengesto

the operating system,n termsof superpae allocation

and promotiontradeofs, fragmentationcontmol, etc. We

analyzetheseissues,and proposethe designof an ef-

fectivesuperpge manajementsystem.\W\e implementt

in FreeBSDon the Alpha CPU, and evaluateit on real

workloadsand bentymarks. We obtain substantialper-

formancebenefits,often exceeding30%; thesebenefits
are sustainedevenunderstressfulworkloadscenarios.

1 Intr oduction

Modern general-purposeprocessors provide virtual
memorysupport,using pagetablesfor addresgransla-
tion. Most processorgachevirtual-to-physical-address
mappingsfrom the pagetablesin a translationlooka-
side buffer (TLB) [10]. TLB coverage is definedasthe
amountbf memoryaccessibléhroughthesecachednap-
pings, i.e., without incurring missesin the TLB. Over
the lastdecade,TLB coveragehasincreasecat a much
lower pacethan main memorysize. For mostgeneral-
purposeprocessorsoday TLB coverageis a megabyte
orlessthusrepresentingverysmallfractionof physical
memory Applicationswith largerworking setscanincur
mary TLB missesand suffer from a significantperfor
mancepenalty To alleviate this problem,mostmodern
general-purpos€PUsprovide supportfor superpaes
A superpae is amemorypageof largersizethanan

* Appearsn Proc.of the5th UsenixSymposiunon OperatingSys-
temsDesignandimplementationBoston,MA, Decembe2002.

ordinarypage(henceforthcalleda basepage). They are
usually available in multiple sizes,often up to several
megabytes.Eachsuperpag@ccupiesonly oneentryin
the TLB, so the TLB coveragedramaticallyincreases
to cover the working setof mostapplications. This re-
sultsin performancémprovementof over30%in mary
casesaswe demonstratén Section6.2. Recentresearch
findingsonthe TLB performancef modernapplications
statethat TLB missesarebecomingincreasinglyperfor
mancecritical [9].

However, inappropriateuse of large superpagegan
resultin enlaged applicationfootprints, leadingto in-
creasedohysicalmemoryrequirementsand higherpag-
ing traffic. Thesel/O costscaneasilyoutweighany per
formanceadwantage®obtainedby avoiding TLB misses.
Thereforethe operatingsystemneedsto usea mixture
of pagesizes. The useof multiple pagesizesleadsto
the problemof physicalmemoryfragmentationandde-
creaseduture opportunitiesfor usinglarge superpages.
To ensuresustainedperformancethe operatingsystem
needsto control fragmentationwithout penalizingsys-
tem performance The problemof effectively managing
superpagethusbecomes comple, multi-dimensional
optimizationtask. Most general-purposeperatingsys-
temseitherdo not supportsuperpageat all, or provide
limited support6, 19, 20Q].

This paperdevelopsa generalandtransparensuper
pagemanagemensystem. It balances/arioustradeofs
while allocatingsuperpagesso asto achieve high and
sustainegerformancdor realworkloadsandnegligible
degradationin pathologicalsituations. Whena process
allocatesmemory our systemresenesa larger contigu-
ous region of physicalmemoryin anticipationof sub-
sequenillocations. Superpagesrethen createdin in-
creasingsizesas the processtouchespagesin this re-
gion. If the systemlaterrunsout of contiguousphysical
memory it may preemptportionsof unusedcontiguous
regionsfrom the processeso which they wereoriginally
assigned.If theseregions are exhaustedthen the sys-
temrestorecontiguity by biasingthe pagereplacement



schemeo evict contiguousinactive pages.This system
is implementedn FreeBSDon the Alpha architecture,
andis evaluatedon real applicationsandbenchmarkslt
is shawn to yield substantiabenefitswhen memoryis
plentiful andfragmentationis low. Furthermorejt sus-
tainsthesebenefitooverthelong term, by controllingthe
fragmentatiorarisingfrom complex workloadscenarios.

The contributions of this work are four-fold. It ex-
tendsa previously proposedesenation-basedpproach
to work with multiple, potentially very large superpage
sizes,anddemonstratethe benefitsof doingso; it is, to
our knowledge,thefirst to investigatethe effect of frag-
mentationon superpagest proposes novel contiguity-
aware pagereplacementlgorithmto control fragmen-
tation; andit tacklesissuesthat have to datebeenover-
lookedbut arerequiredto make asolutionpractical,such
assuperpagelemotionandeviction of dirty superpages.

Section2 motivatesthe problem and establishests
constraintandcompleities. Section3 examinesthere-
latedwork on superpagesSection4 and5 describeour
designand implementation and Section6 presentghe
resultsof an experimentalevaluation. Finally, Section7
concludes.

2 The supempageproblem

This section discusseghe motivation, hardware con-
straintsissuesandtradeofs in operatingsystemsupport
for superpages.

2.1 Motivation

Main memoryhasgrown exponentiallyin size over at
leastthe last decadeand, as causeor consequencehe
memory requirementof applicationshave proportion-
ally increased?20]. In contrast,TLB coveragehaslagged
behind. The TLB is usuallyfully associatie andits ac-
cesstime must be kept low, sinceit is in the critical
path of every memoryaccesg13]. Hence, TLB size
hasremainedrelatively small, usually 128 or fewer en-
tries, correspondingo a megabyteor lessof TLB cov-
erage.Figurel depictsthe TLB coverageachieredasa
percentagef main memorysize, for a numberof Sun
andSGlworkstationmodelsavailablebetweerl986and
2001. Relatve TLB coverageis seento be decreasing
by roughly a factor of 100 over ten years. As a con-
sequencemary modernapplicationshave working sets
larger thanthe TLB coverage. Section6.3 shavs that
for mary real applications, TLB missesdegradeperfor
manceby asmuchas30%to 60%, contrastingo the 4%
to 5%reportedn the1980%5[2, 24] orthe5%to 10%re-
portedin the1990%5[17, 23]. Anothertrendthathascon-
tributedto this performancelegradatioris thatmachines

are now usually shippedwith on-board,physically ad-
dressedacheghatarelargerthanthe TLB coverage As
aresult,mary TLB missegequireaccesso thememory
banksto find a translationfor datathatis alreadyin the
cachemakingmissegelatively moreexpensve.
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Figure 1: TLB coverage as percentage of main memory for
workstations, 1986-2001 (data collected from various websites).
(A) Sun 3/50; (B) Sun 3/180; (C) Sun 3/280; (D) Personal Iris;
(E) SPARCstation-5; (F) Iris Indigo; (G) SPARCstation-10; (H)
Indy; (1) Indigo2; (J) SPARCstation-20; (K) Ultra-1; (L) Ultra-2;
(M) O2; (N) Ultra-5; (O) Ultra-10; (P) Ultra-60; (Q) Ultra-450;
(R) Octane2.

We thereforeseeka methodof increasingTLB cover-
agewithout proportionallyenlaging the TLB size. One
optionis to alwaysusebasepagesof a larger size, say
64KB or 4MB. However, this approachwould causen-
creasednternalfragmentatiordueto partly usedpages,
and thereforeinduce prematureonsetof memorypres-
sure[22]. Also, thel/O demandsecomehigherdueto
increasegaginggranularity

In contrastthe useof multiple pagesizesenablesan
increasein TLB coveragewhile keepinginternal frag-
mentationanddisk traffic low. Thistechniquehowever,
imposesseveral challengesupon the operatingsystem
designerwhich arediscussedn therestof this section.

2.2 Hardware-imposedconstraints

Thedesignof TLB hardwarein mostprocessorfmposes
a seriesof constraintson superpageskirstly, the super
pagesize mustbe amonga setof pagesizessupported
by the processarFor example,the Alpha processopro-
vides8KB basepagesand64KB, 512KB and4MB su-
perpagesthe i386 processoifamily supports4KB and
4MB pagesandthe new Itanium CPU providesten dif-
ferentpagesizesfrom 4KB to 256 MB.

Secondlya superpagés requiredto be contiguousn
physicalandvirtual addressspace. Thirdly, its starting
addressdn the physicaland virtual addressspacemust
beamultiple of its size;for example,a 64KB superpage



mustbealignedon a 64KB addresdoundary

Finally, the TLB entry for a superpagerovidesonly
a singlereferencebit, dirty bit, andsetof protectionat-
tributes.Thelatterimpliesthatall basepageghatform a
superpagenusthave thesameprotectionattributes(read,
write, execute).Also, dueto thecoarsegranularityof ref-
erenceanddirty bits,theoperatingsystencandetermine
whethersomepartof the superpag&asbeenaccesseadr
written to, but cannotdistinguishbetweerbasepagesn
thisregard.

2.3 Issuesand tradeoffs

The task of managingsuperpagegan be conceptually
broken down into a seriesof steps,eachgovernedby a
differentset of tradeofs. The forthcominganalysisof
theseissuesis independentf ary particular processor
architectureor operatingsystem.

We assumehatthe virtual addresspaceof eachpro-
cessconsistof asetof virtual memoryobjects.A mem-
ory object occupiesa contiguousregion of the virtual
addressspaceand containsapplication-specifidata,as
shavn in Figure2. Examplesof memoryobjectsinclude
memorymappediles, andthe code,data,stackandheap
segmentsof processesPhysicalmemoryfor theseob-
jectsis allocatedas and when their pagesare first ac-
cessed.

Allocation: Whena pagein a memoryobjectis first
touchedby the application,the OS allocatesa physical
pageframe, and mapsit into the applications address
spaceln principle,arny availablepageframecanbeused
for this purposejust asin a systemwithout superpage
support. However, shouldthe OS later wish to create
a superpagédor the object,alreadyallocatedpagesmay
requirerelocation(i.e., physicalcopying) to satisfy the
contiguity andalignmentconstraintof superpagesThe
copying costsassociateavith thisrelocation-basedello-
cationapproacttanbe difficult to recover, especiallyon
abusysystem.

An alternatve is reservation-basedillocation. Here,
the OS tries to allocatea pageframethatis part of an
available,contiguousrangeof pageframesequalin size
and alignmentto the maximal desiredsuperpagesize,
andtentatvely resenesthe entiresetfor useby the pro-
cess.Subsequentlywhenthe procesdirst touchesother
pageshatfall within theboundsof aresenation,thecor
respondinghasepageframesareallocatedandmapped.
Shouldthe OSlaterdecideto createa superpagéor this
object,theallocatedpageframesalreadysatisfythe con-
tiguity and alignmentconstraints.Figure 2 depictsthis
approach.

Resenration-basedallocation requires the a priori
choiceof asuperpagsizeto resene, withoutforeknowl-

edgeof memoryaccesset® neighbouringpages TheOS
may optimistically choosethe desiredsuperpagsize as
the largestsupportedsizethatis smalleror equalto the
sizeof thememoryobiject,but it mayalsobiasthis deci-
sion on the availability of contiguousphysicalmemory
The OS musttradeoff the performancegainsof usinga
large superpagegainstthe option of retainingthe con-
tiguousregion for later, possiblymorecritical use.

Object
mapping /,mapped pages
Virtual
address ‘ t] O >
space i 7
) — superpage
P ) === alignment
Physical g y boundary
address OO ‘
space 1 :
allocated unused --reservation
page frame  page frame

Figure 2: Reservation-based allocation.

Fragmentation control: Whencontiguousmemoryis
plentiful, the OS succeedsn using superpage®f the
desiredsizes,and achieves the maximum performance
dueto superpagedn practice resenation-basedlloca-
tion, useof differentpagesizesandfile cacheaccesses
have the combinedeffect of rapidly fragmentingavail-
able physicalmemory To sustainthe benefitsof super
pagestheOSmayproactiely releaseontiguoushunks
of inactve memoryfrom previousallocationsatthe pos-
sible expenseof having to performdisk I/O later The
OSmayalsopreempianexisting, partially usedresena-
tion, giventhe possibility thatthe resenation may never
becomea superpage The OS mustthereforetreatcon-
tiguity asa potentiallycontendedesourceandtradeoff
the impact of various contiguity restorationtechniques
againsthe benefitsof usinglarge superpages.

Promotion: Once a certain number of base pages
within a potentialsuperpagéave beenallocated assum-
ing thatthe setof pagessatisfythe aforementionedon-
straintson size,contiguity, alignmentandprotection the
OS may decideto promotetheminto a superpageThis
usuallyinvolvesupdatingthe pagetableentriesfor each
of the constituenthasepagesof the superpagéo reflect
the new superpagssize. Oncethe superpagéasbeen
createdasingleTLB entrystoringthetranslatiorfor any
addresswithin the superpagesufficesto mapthe entire
superpage.

Promotion can also be performed incrementally
When a certainnumberof basepageshave beenallo-



catedin acontiguousalignedsubsebf aresenation,the
OSmaydecideto promotethe subseinto a smallsuper

page.Thesesuperpagemay be progressiely promoted
to largersuperpagesyp to the sizeof the original reser

vation.

In choosingwhen to promote a partially allocated
resenation, the OS musttradeoff the benefitsof early
promotionin termsof reducedTLB missesagainstthe
increaseanemoryconsumptiorthatresultsf notall con-
stituentpagef the superpagareused.

Demotion: Superpge demotion is the process of
marking pagetable entriesto reducethe size of a su-

perpage eitherto basepagesor to smallersuperpages.

Demotionis appropriatewhen a processis no longer
actively usingall portionsof a superpageand memory
pressurecalls for the eviction of the unusedbasepages.
Oneproblemis thatthe hardwareonly maintainsasingle
referencebit for the superpageanakingit difficult for the
OSto efficiently detectwhich portionsof asuperpageare
actively used.

Eviction: Eviction of superpagess similarto theevic-
tion of basepages. When memory pressuredemands
it, an inactive superpagemay be evicted from physical
memory causingall of its constituenthasepageframes
to becomeavailable. When an evicted pageis later
faultedin, memoryis allocatedanda superpagenay be
createdn thesameway asdescribecearliet

One complicationariseswhen a dirty superpagds
pagedout. Sincethe hardware maintainsonly a single
dirty bit, the superpagenay have to be flushedoutin its
entirety eventhoughsomeof its constituentasepages
may be clean.

Managingsuperpagethusinvolvesa complex setof
tradeofs; otherresearcherbave alsoalludedto someof
thesdssueq12, 13]. Thenext sectiondescribeprevious
approache$o the problem,andSection4 describeshow
our designeffectively tacklesall theseissues.

3 Relatedapproaches

Many operatingsystemausesuperpagefor kernelsey-
mentsand frame buffers. This sectiondiscussesxist-
ing superpagsesolutionsfor applicationmemory which
is thefocusof this work. Theseapproachesanbe clas-
sified by how they managethe contiguity requiredfor
superpagesresenation-basedschemesdry to presere
contiguity; relocation-base@pproachesreatecontigu-
ity; andhardware-basedhechanismseduceor eliminate
the contiguityrequirementor superpages.

3.1 Resewations

Resenration-basedchemesnake superpagemareallo-
cationdecisionsat page-ault time. On eachallocation,
they usesomepolicy to decidethe preferredsize of the
allocationandattemptto find a contiguousregion of free
physicalmemoryof thatsize.

Talluri andHill proposea resenation-basedscheme,
in which aregionis reseredat page-aulttime andpro-
motedwhenthe numberof framesin usereaches pro-
motionthreshold.Undermemorypressureresenations
can be preemptedo regain free space[20]. The main
goal of Talluri and Hill' s designis to provide a sim-
ple, best-efort mechanisntailoredto the useof partial-
subblockTLBs, which aredescribedn Section3.3.

In contrast,superpage boththe HP-UX [19] and
IRIX [6] operatingsystemsare eagerlycreatedat page-
faulttime. Whena pageis faultedin, the systemmayal-
locateseveral contiguousframesto faultin surrounding
pagesandimmediatelypromotetheminto a superpage,
regardlessof whetherthe surroundingpagesare likely
to be accessed.Although pagesare never actually re-
sened,this eagempromotionmechanisms equivalentto
aresenation-base@pproactwith apromotionthreshold
of oneframe.

In IRIX andHP-UX, the preferredsuperpagesize is
basedon memoryavailability at allocationtime, andon
a userspecifiedpersegmentpagesize hint. This hint
is associatedvith an applicationbinary’s text and data
sgments;IRIX also allows the hint to be specifiedat
runtime.

The maindrawbackof IRIX andHP-UX's eagerpro-
motion is that it is not transparent.It requiresexperi-
mentationto determinethe optimum superpagesize for
the varioussggmentsof a givenapplication. A subopti-
malsettingwill resultin lower performanceglueto either
insufficient TLB coverageif superpagearetoosmall,or
unnecessarpagingand pagepopulationcostsif super
pagesaretoo large.

3.2 Pagerelocation

Relocation-basedchemesreatesuperpagedy physi-
cally copying allocatedpageframesto contiguousre-
gionswhenthey determinethat superpagearelikely to
be beneficial. Relocation-basedpproachegan be en-
tirely and transparentlyimplementedin the hardware-
dependentayer of the operatingsystem,but they need
to relocatemostof the allocatedbasepagesof a super
pageprior to promotion,even whenthereare plenty of
contiguousavailableregions.

Romeretal. proposea competitvealgorithmthatuses
online cost-benefianalysisto determinewhenthe ben-
efits of superpagesutweighthe overheadof superpage



promotionthroughrelocation16]. Theirdesignrequires
a software-managed LB, sinceit associatesvith each
potential superpage counterthat must be updatedby

the TLB misshandler In the absenceof memorycon-

tention, this approachhasa strictly lower performance
thana resenation-basedpproachbecausein addition

to the relocationcosts,(1) thereare more TLB misses,
sincerelocationis performedasa reactionto an exces-
sive numberof TLB misses,and (2) TLB missesare

moreexpensve— by afactorof four or more,according
to Romeretal. — dueto amorecomplex TLB misshan-

dler. On the otherhand,a relocationapproachis more

robustto fragmentation.

Resenrations and page relocation can complement
eachotherin a hybrid approach. One way would be
to userelocationwhenerer resenationsfail to provide
enoughcontiguity and a large numberof TLB misses
is obsered. Alternatively, pagerelocationcan be per
formedasabackgroundaskto do off-line memorycom-
paction The goalis to memge fragmentedchunksand
graduallyrestorecontiguityin thesystem.TheIRIX co-
alescingdaemordoesthis andis describedn [6], but no
evaluationis presented.

3.3 Hardware support

The contiguity requirementfor superpagegan be re-
ducedor eliminatedby meansof additional hardware
support.

Talluri and Hill study different TLB organizations.
They adwocatepartial-subblok TLBs, which essentially
contain superpagelLB entriesthat allow “holes” for
missingbasepages.They claim thatwith this approach
most of the benefitsfrom superpagegan be obtained
with minimal modificationsto the operatingsysteni20].
Partial-subblockTLBs yield only moderateljtargerTLB
coveragethanthe basesystemandit is not clearhow to
extendthe partial-subblockTLBs to multiple superpage
sizes.

Fangetal. describea hardware-basedhechanisnihat
completelyeliminatesthe contiguity requiremenof su-
perpagesThey introducean additionallevel of address
translationin the memorycontroller, sothatthe operat-
ing systemcanpromotenon-adjacenphysicalpagesnto
asuperpageThis greatlysimplifiesthe taskof the oper
ating systenmfor supportingsuperpagefs].

To the bestof ourknowledge neitherpartial-subblock
TLBs nor address-remappinghnemory controllers are
supportecbn commercialgeneral-purposmachines.

Our approachgeneralizesTalluri and Hill' s resena-
tion mechanisnto multiple superpagesizes. To regain
contiguity on fragmentedphysicalmemorywithout re-
locating pagesiit biasesthe pagereplacemenpolicy to

selectthosepageghat contribute the mostto contiguity:.
It alsotacklesthe issuesof demotionand eviction (de-
scribedin Section2.3) not addressedy previouswork,
anddoesnotrequirespecialhardwaresupport.

4 Design

Ourdesignadoptgheresenation-baseduperpagenan-
agemenparadigmintroducedin [20]. It extendsthe ba-
sic designalongseveral dimensionssuchassupportfor
multiple superpagsizes,scalabilityto very large super
pages,demotionof sparselyreferencedsuperpagesef-
fective preseration of contiguity without the needfor
compactionandefficient disk I/O for partially modified
superpages.As shavn in Section6, this combination
of techniqueds generalenoughto work efficiently for
arangeof realisticworkloads,andis believedto be suit-
ablefor deploymentin modernoperatingsystems.

A high-level sketchof the designcontainsthe follow-
ing componentsAvailablephysicalmemoryis classified
into contiguousregions of differentsizes,and is man-
agedusing a buddy allocator[14]. A multi-list reser
vation schemeis usedto track partially usedmemory
resenations,andto helpin choosingesenationsfor pre-
emption,asdescribedn Section4.8. A populationmap
keepstrack of memoryallocationsin eachmemoryob-
ject, asdescribedn Section4.9. The systemusesthese
datastructurego implementallocation preemptionpro-
motionanddemotionpolicies. Finally, it controlsexter-
nal memoryfragmentatiorby performingpagereplace-
mentsin a contiguity-avaremanneyasdescribedn Sec-
tion 4.4. The following subsection®laborateon these
concepts.

4.1 Resewation-basedallocation

Mostoperatingsystemsllocatephysicalmemoryon ap-
plication demand. When a virtual memorypageis ac-
cessedy a programandno mappingexistsin the page
table theOS’'spagefaulthandleris invoked. Thehandler
attemptgo locatethe associateghagein main memory;
if it is not resident,an available pageframeis allocated
andthecontentsareeitherzero-filledor fetchedfrom the
pagingdevice. Finally, the appropriatemappingis en-
teredinto the pagetable.

Insteadof allocatingphysicalmemoryoneframeat a
time, our systemdeterminesa preferredsuperpagsize
for theregion encompassinthe basepagewhoseaccess
causedhe pagefault. The choiceof a sizeis madeac-
cordingto a policy describedn Section4.2. At page-
faulttime, the systemobtainsfrom the buddyallocatora
setof contiguougpageframescorrespondingo the cho-
sensuperpagesize. The frame with the sameaddress



alignmentasthefaultedpageis usedto faultin thepage,
andamappingis enterednto the pagetablefor thispage
only. The entiresetof framesis tentatvely reservedor

potentialfuture useasa superpageandaddedo areser

vation list. In the event of a pagefault on a pagefor

which a framehasalreadybeenresenred, a mappingis

enterednto the pagetablefor the basepage.

4.2 Preferred supempagesizepolicy

Next, we describethe policy usedto choosethe desired
superpagesize during allocation. Sincethis decisionis

usually madeearly in a processs execution,whenit is

hardto predictits future behaiour, our policy looksonly

at attributesof the memoryobjectto which the faulting

pagebelongs.If thechosersizeturnsoutto betoolarge,

thenthedecisionwill belateroverriddenby preempting
theinitial resenation. However, if the chosersizeis too

small,thenthe decisioncannotbe revertedwithout relo-

catingpages.For thatreasonthe policy tendsto choose
themaximumsuperpagsizethatcanbeeffectively used
in anobject.

For memoryobjectsthatarefixedin size,suchascode
segmentsaandmemory-mappeflles, thedesiredresera-
tion sizeis the largest,alignedsuperpagehat contains
thefaulting page doesnot overlapwith existingresera-
tions or allocatedpagesand doesnot reachbeyond the
endof theobject.

Dynamicallysizedmemoryobjectssuchasstacksand
heapscan grow one pageat a time. Under the policy
for fixed size objects,they would not be ableto usesu-
perpagesbecausesachtime the policy would set the
preferredsizeto one basepage. Thusa slightly differ-
entpolicy is required. As before,the desiredsizeis the
largest,alignedsuperpag¢hatcontainghefaultingpage
anddoesnotoverlapwith existing resenationsor alloca-
tions. However, the restrictionthatthe resenation must
not reachbeyondthe endof the objectis droppedto al-
low for growth. To avoid wastageof contiguityfor small
objectsthat may never grow large, the size of this su-
perpagss limited to the currentsize of the object. This
policy thususeslarge resenationsonly for objectsthat
have alreadyreachedh sufiiciently large size.

4.3 Preemptingreserations

When free physicalmemorybecomesscarceor exces-
sively fragmentedthe systemcan preemptframesthat
arereseredbut not yet used. Whenan allocationis re-
guestedandno extent of frameswith the desiredsizeis
available,the systemhasto choosebetween(1) refusing
theallocationandthusreservingasmallerextentthande-
sired,or (2) preemptingan existing resenationthathas

enoughunallocatedramesto yield an extent of the de-
siredsize.

Our policy is that,whenever possible the systempre-
emptsexisting resenationsratherthanrefusingan allo-
cationof the desiredsize. Whenmorethanoneresena-
tion canyield an extent of the desiredsize,the resena-
tion is preemptedvhosemostrecentpageallocationoc-
curredleastrecently amongall candidateresenations.
This policy is basedon the obsenationthatusefulreser
vationsareoftenpopulatedjuickly, andthatresenations
thathave not experiencedary recentallocationsareless
likely to befully allocatedn thenearfuture.

4.4 Fragmentation control

Allocating physical memory in contiguousextents of
multiple sizesleadsto fragmentationof main memory
Over time, extentsof large sizesmay becomeincreas-
ingly scarcethuspreventingthe effective useof super
pages.

To control fragmentation,our buddy allocator per
formscoalescingf availablememoryregionswhenever
possible. However, coalescingby itself is only effec-
tive if the systemperiodically reachesa statewhereall
or mostof main memoryis available. To control frag-
mentationunder persistentmemory pressure the page
replacementlaemonis modifiedto performcontiguity-
aware pagereplacement. Section5.1 discusseghis in
greaterdetail.

4.5 Incrementalpromotions

A superpagés createdas soonasary superpage-sized
and aligned extent within a resenation getsfully pop-
ulated. Promotion,therefore,is incremental:if, for in-
stancepagesof a memoryobjectarefaultedin sequen-
tially, a promotionoccursto the smallestsuperpagsize
assoonasthe populationcountcorrespondso thatsize.
Then,whenthe populationcountreacheshe next larger
superpagesize, anotherpromotion occursto the next
size,andsoon.

It is possibleto promoteto the next sizewhenthepop-
ulationcountreaches certainfractionof thatsize. How-
ever, beforeperformingthe promotionthe systemneeds
to populatethe entireregion, which could artificially in-
flate the memoryfootprint of applications.We promote
only regionsthatarefully populatedoy the application,
sincewe obsene that most applicationspopulatetheir
addresspaceadenselyandrelatively earlyin theirexecu-
tion.



4.6 Speculatve demotions

Demotionoccursas a side-efect of pagereplacement.
Whenthe pagedaemonselectsa basepagefor eviction
thatis partof a superpagethe eviction causesa demo-
tion of that superpageThis demotionis alsoincremen-
tal, sinceit is not necessaryo demotea large superpage
all the way to basepagesjust becauseone of its con-
stituentbasepagess evicted. Instead the superpagés
first demotedo thenext smallersuperpagsize,thenthe
processs appliedrecursvely for the smallersuperpage
thatencompasseahe victim page,andsoon. Demotion
is alsonecessarywhenever the protectionattributesare
changedn partof asuperpageThisis requiredbecause
thehardwareprovidesonly a singlesetof protectionbits
for eachsuperpage.

Thesystenmayalsoperiodicallydemoteactive super
pagesspeculativelyn orderto determinef thesuperpage
is still beingactively usedin its entirety Recallthatthe
hardware only providesa singlereferencebit with each
superpageTherefore the operatingsystemhasno way
to distinguisha superpagen which all the constituent
basepagesarebeingaccessedrom onein which only a
subsebfthebasepagesare.In thelattercasejt wouldbe
desirableto demotethe superpageindermemorypres-
sure,suchthatthe unusedasepagescanbe discovered
andevicted.

To addressghis problem,whenthe pagedaemonre-
setsthe referencebit of a superpage basepage,andif
thereis memorypressurethenit recursvely demoteghe
superpagé¢hatcontainghechoserbasepage with acer
tain probability p. In our currentimplementationp is 1.
Incrementakepromotionsoccurwhenall the basepages
of ademotedsuperpagearebeingreferenced.

4.7 Pagingout dirty supempages

Whena dirty superpag@eedsto be written to disk, the
operatingsystemdoesnot possesglirty bit information
for individual basepages.It mustthereforeconsiderall
the constituenbasepagedirty, andwrite out the super
pagein its entirety eventhoughonly a few of its base
pagesmay have actuallybeenmodified. For large, par
tially dirty superpageshe performancealegradationdue
to this superfluous/O canconsiderablyexceedary ben-
efitsfrom superpages.

To preventthis problem,we demotecleansuperpages
whenever a processattemptsto write into them,andre-
promotelaterif all thebasepagesaredirtied. Thischoice
is evaluatedn Section6.7.

Inferring dirty basepagesusing hashdigests: Asan
alternatve, we considereda techniquethat retainsthe
benefitsof superpagesvenwhenthey arepartially dirty,

while avoiding superfluoud/O. Whena cleanmemory
pageis readfrom disk, a cryptographichashdigestof its

contentds computedandrecorded|f apartially dirty set
of basepageds promotedo asuperpageyr if acleansu-

perpagéecomeslirty, thenall its constituenbasepages
areconsideredlirty. However, whenthe pageis flushed
out, the hashof eachbasepageis recomputedcandcom-

paredto determineif it wasactuallymodifiedand must
bewritten to disk.

A 160-bit SHA-1 hash has a collision probability
of aboutone in 28 [4], which is much smallerthan
the probability of a hardware failure. Hencethis tech-
niguecanbe consideredafe. However, preliminarymi-
crobenchmarkasingSHA-1revealsignificantoverhead,
upto 15%,ondisk-intensve applications The patholog-
ical caseof alargesequentiateadwhenthe CPUis satu-
ratedincursaworst-casalegradatiorof 60%. Therefore,
we did not usethis techniquan ourimplementation.

However, theseoverheadsanbe reducedusinga va-
riety of optimizations. First, the hashcomputationcan
be postponeduntil thereis a partially dirty superpage,
so that fully-clean or fully-dirty superpagesndunpro-
motedbasepageseednot be hashed Secondthe hash-
ing costcanbe eliminatedfrom the critical pathby per
forming it entirely from the idle loop, sincethe CPU
may frequentlybeidle for disk-intensve workloads.An
evaluationof theseoptimizationsis the subjectof future
work.

4.8 Multi-list resewation scheme

Resenration lists keeptrack of resened pageframe ex-
tentsthatarenot fully populated.Thereis oneresena-
tion list for eachpagesize supportedby the hardware,
exceptfor the largestsuperpagessize. Eachresenation
appearsn thelist correspondingdo thesizeof thelargest
free extentthatcanbe obtainedif the resenationis pre-
empted. Becausea resenation has at leastone of its
framesallocated,the largestextentsit canyield if pre-
emptedareonepagesizesmallerthanits own size. For
instance pn animplementatiorfor the Alpha processar
which supportsAMB, 512KB, 64KB and8KB pagesthe
64KB resenation list may containresenationsof size
512KB and4MB.

Reserationsin eachlist are kept sortedby the time
of their mostrecentpageframe allocations. Whenthe
systendecidego preemptaresenationof agivensize,it
choosesheresenationattheheadof thelist for thatsize.
This satisfiesour policy of preemptinghe extentwhose
mostrecentallocationoccurredeastrecentlyamongall
resenationsin thatlist.

Preemptinga chosenresenation occursas follows.
Ratherthanbreakingthe resenation into basepages,it
is brokento smallerextents. Unpopulatedextentsare



transferredo thebuddyallocatorandpartially populated
onesarereinsertednto the appropriatdists. For exam-
ple, when preemptinga 512KB resenation taken from
headof the64KB list, theresenationis brokeninto eight
64KB extents.Theoneswith noallocationsarefreedand
the onesthat are partially populatedare insertedat the
headof the 8KB resenationlist. Fully populatedextents
arenotreinsertednto theresenationlists.

When the systemneedsa contiguousregion of free
memory it canobtainit from the buddy allocatoror by
preemptinga resenation. The mechanismis bestde-
scribedwith anexample.Still in thecontext of theAlpha
CPU, supposehat an applicationfaultsin a given page
for which thereis no resered frame. Furtherassume
thatthe preferredsuperpagsizefor the faulting pageis
64KB. Thenthe systenfirst asksthe buddyallocatorfor
a 64KB extent. If thatfails, it preemptghe first reser
vationin the 64KB resenation list, which shouldyield
atleastone64KB extent. If the 64KB list is empty the
systemwill try the 512KB list. If thatlist is alsoempty
thenthe systemhasto resortto basepages:the buddy
allocatoris tried first, andthenthe 8KB resenation list
asthelastresource.

4.9 Population map

Population maps keep track of allocated base pages
within eachmemoryobject. They senefour distinctpur-

posesi(1) on eachpagefault, they enablethe OSto map
the virtual addresgo a pageframethat may alreadybe
resened for this address;(2) while allocatingcontigu-
ousregionsin physicaladdressspace,they enablethe
OSto detectandavoid overlappingregions;(3) they as-
sistin making pagepromotiondecisions;and(4) while

preemptinga resenation, they helpin identifying unal-
locatedregions.

A populationmapneedsto supportefficient lookups,
sinceit is queriedonevery pagefault. We usearadixtree
in which eachlevel correspond$o a pagesize. Theroot
correspondgo the maximumsuperpagssize supported
by the hardware, eachsubsequentevel correspondgo
the next smaller superpagesize, and the leaves corre-
spondto thebasepages If thevirtual pagesepresented
by anodehave aresenedextentof framesthenthenode
hasa pointerto theresenationandthe resenationhasa
backpointerto thenode.

Eachnon-leafnode keepsa count of the numberof
superpage-sizedirtual regions at the next lower level
that have a populationof at leastone (the sonmepop
counter), and that are fully populated(the f ul | pop
counter)respectiely. This countrangesrom 0 through
R, whereR is theratio betweenconsecutre superpage
sizes(8 on the Alpha processor).The treeis lazily up-
datedasthe object’s pagesare populated. The absence

of a child nodeis equialentto having a child with both
counterszero. Sincecountersrefer to superpage-sized
regions,upward propagatiorof the countersoccursonly
whensomepop transitionsbetween0 and 1, or when
ful | pop transitionsbetweenRk — 1 and R. Figure3
showvs onesuchtree.
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Figure 3: A population map. At the base page level, the actual
allocation of pages is shown.
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A hashtableis usedto locate populationmaps. For
each population map, there is an entry associatinga
memoryobject, page_index tuple with the map, where
page_index is the offset of the startingpageof the map
within theobject. The populationmapis usedasfollows:

Resewred frame lookup: On a pagefault, the virtual
addresf the faulting pageis roundeddown to a multi-
ple of thelargestpagesize,corvertedto the correspond-
ing memoryobject, page.index tuple,andhashedo de-
terminethe root of the populationmap. From the root,
thetreeis traversedto locatetheresened pageframe, if
thereis one.

Overlap avoidance: If the above procedureyields no
resened frame, thenwe attemptto make a resenation.
The maximumsize that doesnot overlapwith previous
resenationsor allocationsis given by the first nodein
thepathfrom therootwhosesonmepop counteris zero.

Promotion decisions: After a pagefault is serviced,
a promotionis attemptedat the first node on the path
from theroot to the faulting pagethatis fully populated
and has an associatedesenation. The promotion at-
temptsucceedsnly if thefaultingprocessasthe pages
mappedvith uniform protectionattributesanddirty bits.

Preemption assistance: When a resenation is pre-
emptedit is brokeninto smallerchunksthat needto be
freedor reinsertedn the resenationlists, dependingon
their allocationstatus,asdescribedn Section4.8. The
allocationstatuscorrespondso the populationcountsin
thesuperpagenapnodeto whichtheresenationrefers.



5 Implementation notes

This sectiondescribesomeimplementatiorspecificis-
suesof our design.While the discussiorof our solution
is necessarily0S-specifictheissuesaregeneral.

5.1 Contiguity-aware pagedaemon

FreeBSDs5 pagedaemorkeepsthreelists of pagesgach
in approximatd_RU (A-LRU) order:active,inactiveand
cache. Pagesin the cachelist are cleanand unmapped
and hencecan be easily freed undermemory pressure.
Inactive pagesarethosemappedinto the addresspace
of someprocessandhave notbeenreferencedor along
time. Active pagesare thosethat have beenaccessed
recently but may or may not have their referencebit
set. Undermemorypressurethe daemonmovesclean
inactive pagesto the cache, pagesout dirty inactive
pages,and also deactvates some unreferencedpages
from the active list. We madethe following changego
factor contiguity restorationinto the pagereplacement

policy.

(1) We considercachgpagesasavailablefor resenations.
The buddy allocatorkeepsthemcoalescedvith the free
pagesincreasingthe available contiguity of the system.
Thesecoalescedegionsareplacedat thetail of theirre-
spectve lists, so that subsequendllocationstendto re-
spectthe A-LRU ordet

The contentsof a cachepageare retainedaslong as
possiblewhetherit is in abuddylist or in aresenation.
If a cachepageis referencedthenit is removed from
the buddy list or the resenation; in the latter case,the
resenationis preempted.The cachepageis reactvated
andits contentsaarereused.

(2) The pagedaemonis activatednot only on memory
pressurebut alsowhenavailablecontiguityfalls low. In
our implementation the criterion for low contiguity is
thefailureto allocatea contiguousegionof thepreferred
size. The goal of the daemoris to restorethe contiguity
that would have beennecessaryo servicethe requests
that failed since the last time the daemonwas woken.
Thedaemorthentraversegheinactive list andmovesto
the cacheonly thosepageghatcontributeto this goal. If
it reachesheendof thelist beforefulfilling its goal,then
it goesto sleepagain.

(3) Sincethe chancef restoringcontiguity are higher
if therearemoreinactive pagego chooserom, all clean
pagesbacked by a file are movedto the inactive list as
soonasthefile is closedby all processes.This differs
from the currentbehaiour of FreeBSD,wherea page
does not changeits statuson file closing or process
termination, and active pagesfrom closed files may

never be deactvated if thereis no memory pressure.
In termsof overall performance pur systemthus finds

it worthwhile to favor the likelihood of recovering the

contiguity from thesefile-backed pages,than to keep
them for a longer time for the chancethat the file is

accessedgain.

Controllingfragmentatiorcomesata price. Themore
aggressiely the systemrecoverscontiguity;, the greater
is the possibilityandthe extentof a performanceenalty
inducedby the modified pagedaemondueto its devi-
ation from A-LRU. Our modified pagedaemonaims at
balancingthis tradeof. Moreover, by judiciously select-
ing pagedor replacementit attemptgo restoreasmuch
contiguityaspossibleby affectingasfew pagesaspossi-
ble. Section6.5 demonstratethe benefitsof this design.

5.2 Wired pageclustering

Memorypageghatareusedby FreeBSDfor its internal
datastructuresrewired thatis, markedasnon-pageable
sincethey cannotbe evicted. At systemboottime these
pagesare clusteredtogetherin physicalmemory but as
the kernel allocatesmemorywhile other processesre
running, they tend to get scattered. Our systemwith
512MB of mainmemoryis foundto rapidly reachapoint
wheremost4MB chunksof physicalmemorycontainat
leastonewired page. At this point, contiguity for large
pagesbecomesrrecoverable.

To avoid this fragmentationproblem, we identify
pagesthat are aboutto be wired for the kernel's inter-
nal use.We clusterthemin poolsof contiguougphysical
memory sothatthey do notfragmentmemoryary more
thannecessary

5.3 Multiple mappings

Two processeganmap a file into differentvirtual ad-
dresses.If the addressesliffer by, say one basepage,
thenit is impossibleto build superpagefor thatfile in
the pagetablesof both processes.At mostone of the
processesanhave alignmentthat matcheghe physical
addresof the pagesconstitutingthe file; only this pro-
cesss capableof usingsuperpages.

Our solution to this problemleveragesthe fact that
applicationsmostoften do not specifyan addressvhen
mappingafile. This givesthekerneltheflexibility to as-
sign a virtual addresdor the mappingin eachprocess.
Our systemthen choosesaddressethat are compatible
with superpagellocation.Whenmappingafile, thesys-
tem usesa virtual addresghat alignsto the largestsu-
perpagehatis smallerthanthesizeof themapping thus
retainingtheability to createsuperpage eachprocess.



6 Evaluation

This sectionreportsresultsof experimentsthat exercise
the systemon several classesof benchmarksand real
applications. We evaluatethe best-casdenefitsof su-
perpagesn situationswhensystemmemoryis plentiful.

Then,we demonstrat¢he effectivenes®f our design by
shaving how thesebenefitsare sustainediespitediffer-

entkinds of stresson the system.Resultsshawv the effi-

cieng of our designby measuringts overheadn several
pathologicalcasesandjustify the designchoicesin the
previous sectionusingappropriateneasurements.

6.1 Platform

We implementedour designin the FreeBSD-4.Xernel
as a loadablemodule, along with hooksin the operat-
ing systemto call module functionsat specific points.
Thesepoints are pagefaults, pageallocationand deal-
location, the pagedaemon,and at the physicallayer of

the VM system(to demotewhen changingprotections

andto keeptrack of dirty/modified bits of superpages).

We were also able to seamlesslyintegrate this module
into thekernel. Theimplementatiorcomprisesf around
3500linesof C code.

We useda CompagXP-1000machinewith thefollow-
ing characteristics:

e Alpha?21264processoat 500MHz;

o four pagesizes: 8KB basepages,64KB, 512KB
and4MB superpages;

o fully associatie TLB with 128 entriesfor dataand
128for instructions;

¢ software page tables, with firmware-basedTLB
loader;

e 512MBRAM;

e 64KB dataand64KB instructionL1 cachesyirtu-
ally indexedand2-way associatie;

¢ 4MB unified,direct-mappedaxternallL2 cache.

TheAlphafirmwareimplementsuperpageby means
of page table entry (PTE) replication The pagetable
storesan entry for every basepage,whetheror notit is
part of a superpage EachPTE containsthe translation
informationfor abasepage alongwith a pagesizefield.
In this PTE replicationschemethe promotionof a4MB
region involvesthe settingof the pagesizefield of eath
of the 512 page table entriesthatmaptheregion [18].

6.2 Workloads

We usedthe following benchmarksand applicationsto
evaluateour system.

CINT2000: SPEC CPU2000 integer benchmark
suite[7].

CFP2000: SPEC CPU2000floating-point benchmark
suite[7].

Web: The thttpd web sener [15] servicing50000re-
questsselectedrom anaccesdog of the CSdepartmen-
tal web sener at Rice University The working setsize
of thistraceis 238MB, while its datasetis 3.6GB.
Image: 90-degreerotationof a 800x600-pixelimageus-
ing the popularopen-sourcémageMagickiools|[8].
Povray: Raytracingof asimpleimage.

Linker: Link of the FreeBSDkernel with the GNU
linker.

C4: An alpha-betasearchsolver for a 12-ply position
of the connect-4game,also known as the fhourstones
benchmark.

Tree: A synthetidoenchmarkhatcapturegshebehaiour
of processethatusedynamicallocationfor alargenum-
berof smallobjectsJeadingto poorlocality of reference.
The benchmarkconsistsof four operationsperformed
randomlyon a 50000-nodered-blacktree: 50% of the
operationsare lookups, 24% insertions,24% deletions,
and 2% traversals. Nodeson the tree containa pointer
to a128-byterecord.Oninsertionsa new recordis allo-
catedandinitialized; on lookupsandtraversals,half of
therecordis read.

SP: The sequentiaversionof a scalarpentadiagonalin-
coupledequationsystemsolver, from the NAS Parallel
Benchmarksuite[1]. Theinput sizecorrespondso the
“workstationclass”in NAS’s nomenclature.

FFTW: The FastestFourier Transformin the West[5]
with a200x200x200natrix asinput.

Matrix: A non-blocled matrix transposition of a
1000x1000matrix.

6.3 Best-casebenefitsdue to superpages

This first setof experimentsshavs that several classes
of real workloadsyield large benefitswith superpages
whenfree memoryis plentiful andnon-fragmentedTa-
ble 1 presentghesebest-casespeedupobtainedwhen
the benchmarksare given the contiguousmemory re-
gionsthey need sothatevery attemptto allocateregions
of thepreferredsuperpagsize(asdefinedn Sectior4.2)
succeedsandresenationsarenever preempted.

The speedupsare computedagainstthe unmodified
systemusing the mean elapsedruntime of three runs
after an initial warm-uprun. For both the CINT2000
and CFP2000entries in the table, the speedupsre-
flect, respectiely, theimprovementin SPECint200@&nd
SPECfp200Qdefinedby SPECasthe geometricmean
of thenormalizedthroughputatios).

Thetablealsopresentghe superpageequirement®f
eachof theseapplications(as a snapshotmeasuredat
peakmemoryusage)andthe percentagelataTLB miss
reductionachieved with superpagesin mostcaseshe



dataTLB missesarevirtually eliminatedby superpages,
asindicatedby a missreductioncloseto 100%. Thecon-
tribution of instructionTLB missesto the total number
of misseswvasfoundto be negligible in all of the bench-
marks.

Supemageusage Miss
Bench- 8 64 512 4 reduc || Speed-
mark KB KB KB | MB (%) up
CINT2000 1.112
gzip 204 22| 21| 42| 80.00| 1.007
vpr 253 29 | 27 9] 99.96 || 1.383
gcc 1209 1 17| 35| 70.79| 1.013
mcf 206 7 10 | 46| 99.97| 1.676
crafty 147 13 2 0| 99.33| 1.036
parser 168 5 14 8 | 99.92| 1.078
eon 297 6 0 0 0.00 || 1.000
perl 340 9 17| 34| 96.53| 1.019
gap 267 8 7| 47| 99.49| 1.017
vortex 280 4 15| 17| 99.75| 1.112
bzip2 196 21| 30| 42| 99.90|| 1.140
twolf 238 13 7 0 || 99.87| 1.032
CFP2000 1.110
wupw 219 14 6 | 43| 96.77|| 1.009
swim 226 16 11| 46| 98.97 | 1.034
mgrid 282 15 5] 13 98.39 | 1.000
applu 1927 | 1647 | 90 5| 93.53| 1.020
mesa 246 13 8 11 99.14 | 0.985
galgel 957 | 172 | 68 2] 99.80 | 1.289
art 163 4 7 0 || 99.55| 1.122
equale 236 2 19 9| 97.56 || 1.015
facerec|| 376 8| 13 2| 98.65| 1.062
ammp 237 7 21 7 || 98.53| 1.080
lucas 314 4 36 | 31| 99.90| 1.280
fma3d 500 17| 27| 22| 96.77| 1.000
sixtr 793 81| 29 1] 87.50| 1.043
apsi 333 5 5| 47 99.98 | 1.827
Web 30623 5] 143 1| 16.67 | 1.019
Image 163 1 17 7 || 75.00| 1.228
Povray 136 6 17 | 14| 97.44 | 1.042
Linker 6317 12 | 29 7 || 85.71| 1.326
C4 76 2 9 0 || 95.65| 1.360
Tree 207 6 14 1] 97.14 | 1.503
SP 151 | 103 | 15 0| 99.55| 1.193
FFTW 160 5 7| 60 99.59| 1.549
Matrix 198 12 5 3 || 99.47 | 7.546

Table 1: Speedups and superpage requirements when plenty of
memory is available.

Nearly all the workloadsin the table display benefits
due to superpagessomeof theseare substantial. Out
of our 35 benchmarks18 shov improvementsover 5%
(speedumf 1.05),and10 shav over 25%. The only ap-
plication that slows down is mesa,which degradesby
a nggligible fraction. Matrix, with a speedupf 7.5, is
closeto the maximumpotentialbenefitsthat can possi-

bly be gainedwith superpagedecausef its accespat-
ternthatproducesone TLB missfor every two memory
accesses.

Several commonplace desktop applications like
Linker (gnuld), gcc, and bzip2 obsere significantper
formanceimprovements.If sufficient contiguousmem-
ory is available,thentheseapplicationsstandto benefit
from a superpagenanagemengystem.In contrastWeb
gainslittle, because¢he systemcannotcreateenoughsu-
perpagesn spite of its large 315MB footprint. This is
becaus&Vebaccessea large numberof smallfiles, and
thesystemdoesnotattempto build superpagethatspan
multiple memoryobjects.Extrapolatingrom theresults,
a systemwithout suchlimitation (which is technically
feasible,but likely at a high costin complexity) would
bring Web’s speeduploserto a moreattractve 15%, if
it achieveda missreductioncloseto 100%.

Someapplicationgreatea significantnumberof large
superpages. FFTW, in particular standsout with 60
superpage®f size 4MB. The next sectionshaws that
FFTW makesgooduseof large superpagesasthereis
almostno speedujf 4MB pagesarenot supported.

Mesashavsasmallperformancelegradatiorof 1.5%.
Thiswasdeterminedo benotdueto the overheadf our
implementationput becauseur allocatordoesnot dif-
ferentiatezeroed-oupagesrom otherfree pagesWhen
the OS allocatesa pagethat needsto be subsequently
zeroedout, it requestshe memoryallocatorto preferen-
tially allocateanalreadyzeroed-oupageif possible Our
implementatiorof the buddy allocatorignoresthis hint;
we estimatedhe costof thisomissionby comparingbase
systemperformancewith and without the zeroed-page
feature.We obtainedan averagepenaltyof 0.9%,anda
maximumof 1.7%.

A side effect of using superpagess that it sub-
sumegpagecoloring[11], atechniquethatFreeBSDand
other operatingsystemsuse to reducecacheconflicts
in physically-addresseandespeciallyin direct-mapped
caches By carefully selectingamongfree frameswhen
mappinga page,the OS keepsvirtual-to-physicalmap-
pingsin a way suchthat pagesthat are consecutie in
virtual spacemapto consecutie locationsin the cache.
Sincewith superpagesirtually contiguougpagesnapto
physicallycontiguousrames they automaticallymapto
consecutrelocationsin aphysically-mappedache Our
speedupesultsfactorouttheeffectof page-coloringbe-
causethe benchmarksvererun with enoughfree mem-
ory for the unmodifiedsystemto always succeedn its
pagecoloring attempts. Thus, both the unmodifiedand
the modifiedsystemeffectively benefitfrom pagecolor-

ing.



6.4 Benefitsfrom multiple supempagesizes

We repeatedthe above experiments,but changedthe
systemto supportonly one superpagesize, for eachof
64KB, 512KB and 4MB, and comparedthe resulting
performanceagainstour multi-sizeimplementation.Ta-
bles2 and 3 respectiely presenthe speedumand TLB
missreductionfor the benchmarksexcluding thosethat
have the samespeedupgwithin 5%) in all four cases.

Benchmark || 64KB | 512KB | 4MB || All |

CINT2000 1.05 1.09| 1.05| 1.11
vpr 1.28 1.38| 1.13 | 1.38
mcf 1.24 131| 1.22| 1.68
vortex 1.01 1.07| 1.08 | 1.11
bzip2 1.14 1.12| 1.08| 1.14

CFP2000 1.02 1.08| 1.06 || 1.12
galgel 1.28 1.28| 1.01] 1.29
lucas 1.04 1.28| 1.24 | 1.28
apsi 1.04 1.79| 1.83| 1.83
Image 1.19 1.19| 1.16 || 1.23
Linker 1.16 1.26| 119 1.32

Cc4 1.30 1.34| 098] 1.36

SP 1.19 1.17| 098 1.19
FFTW 1.01 1.00| 1.55| 1.55
Matrix 3.83 7.17 | 6.86 || 7.54

Table 2: Speedups with different superpage sizes.

Theresultsshav thatthe bestsuperpagesizedepends
on the application. For instance,it is 64KB for SP
512KB for vpr, and4MB for FFTW. The reasonis that
while someapplicationsonly benefitfrom large super
pagespthersaretoo smallto fully populatelarge super
pages.To uselarge superpagewith small applications,
thepopulationthresholdor promotioncouldbelowered,
assuggesteth Sectiord.5. However, theOSwould have
to populateregionsthatareonly partially mappedoy the
application.Thiswould enlagetheapplicationfootprint,
and also slightly changethe OS semanticssincesome
invalid accessewould not be caught.

The tablesalsodemonstratehat allowing the system
to choosebetweemmultiple pagesizesyieldshigherper
formance,becausahe systemdynamically selectsthe
bestsizefor everyregionof memory An extremecases
mcf, for which the percentagspeedupvhenthe system
getsto chooseamongsereralsizesmorethandoubleghe
speedupith ary singlesize.

Someapparenanomalieslik e differentspeedupsiith
thesameTLB missreduction(e.g.,Linker)arelikely due
to the coarsegranularityof the Alpha processos TLB
miss counter(512K misses). For short-runningbench-
marks,512K missescorrespondso a two-digit percent-
ageof thetotal numberof misses.

| Benchmark || 64KB | 512KB [ 4MB || Al |
CINT2000
vpr 82.49| 98.66 | 45.16 || 99.96
mcf 55.21| 84.18| 53.22 | 99.97
vortex 46.38| 92.76 | 80.86 | 99.75
bzip2 99.80| 99.09 | 49.54 || 99.90
CFP2000
galgel 98.51] 98.71] 0.00 ] 99.80
lucas 12.79| 96.98| 87.61 | 99.90
apsi 9.69 | 98.70| 99.98 | 99.98
Image 50.00 | 50.00 | 50.00 || 75.00
Linker 57.14| 85.71| 57.14| 85.71
C4 95.65| 95.65| 0.00| 95.65
SP 99.11| 93.75| 0.00 || 99.55
FFTW 7.41 7.41 | 99.59 || 99.59
Matrix 90.43| 99.47| 99.47 | 99.47

Table 3: TLB miss reduction percentage with different superpage
sizes.

6.5 Sustainedbenefitsin the long term

The performancéenefitsof superpagesanbe substan-
tial, providedcontiguougegionsof physicalmemoryare
available.However, corventionalsystemsanbe subject
to memoryfragmentationeven undermoderatelycom-
plex workloads. For example,we raninstancef grep,
emacs,netscapeand a kernel compilationon a freshly
bootedsystem;within about15 minutes,we obsened
severe fragmentation. The systemhad completelyex-
hausteall contiguousmemoryregionslargerthan64KB
thatwere candidategor larger superpagesventhough
asmuchas360MB of the 512MB werefree.

Our systemseeksto presere the performanceof su-
perpage®vertime, soit actively restorescontiguity us-
ing techniqueslescribedn Sectiongt.4and5.1. To eval-
uatethesemethodswefirst fragmenthesystemmemory
by runningawebsenerandfeedingit with requestérom
the sameaccessog asbefore. Thefile-backed memory
pagesaccessedly the websener persistin memoryand
reduceavailablecontiguityto aminimum. Moreover, the
accesgatternof theweb senerresultsin aninterleaved
distribution of active, inactive and cachepages,which
increase$ragmentation.

We presentwo experimentausingthis websener.

Sequential execution: After the requestsfrom the
tracehave beenservicedwe run the FFTW benchmark
four timesin sequenceThe goalis to seehow quickly
the systemrecoversjust enoughcontiguousmemoryto
build superpageandperformefficiently.

Figure 4 compareghe performanceof two contigu-
ity restorationtechniques.The cache schemetreatsall
cachedpagesas available, and coalescesheminto the



buddy allocator The graphdepictsno appreciableger
formanceimprovementsof FFTW over the basesystem.
We obsenedthatthe systemis unableto provide evena
single4MB superpagdéor FFTW. Thisis becausenem-
ory is available (47MB in the first run and 290MB in
the others),but is fragmenteddueto active, inactive and
wired pages.

The other scheme called daemon is our implemen-
tation of contiguity-avare pagereplacementand wired
pageclustering.Thefirst time FFTW runsafterthe web
sener, the pagedaemonis activateddue to contiguity
shortageandis ableto recover 20 out of the requested
60 contiguousregionsof 4MB size.Subsequenunsget
a progressiely larger numberof 4MB superpagesyiz.
35,38 and40. Thus,FFTW performanceaeachesear
optimumuwithin two runs,i.e.,a speedumf 55%.

2 r O Cache  mDaemon

Best-case speedu

Speedup

FFTW runs

time >
Figure 4: Two techniques for fragmentation control.

The web sener closesits files on exit, and our page
daemontreatsthis file memoryasinactive, asdescribed
in Section5.1. We now measurgheimpactof this effect
in conjunctionwith the pagedaemons drive to restore
contiguity, onthewebsener’s subsequenperformance.
We run the web sener again after FFTW, and replay
the sametrace. We obsere only a 1.6% performance
degradationover the basesystem,indicating that the
penaltyonthewebsener performances small.

We furtheranalyzethis experimentby monitoringthe
available contiguity in the systemover time. We define
an empirical contiguity metric asfollows. We assign1,
2 or 3 pointsto eachbasepagethatbelongsto a 64KB,
512KB, or 4MB memoryregion respectiely, assuming
thattheregionis contiguousalignedandfully available.
We computethe sumof theseperpagepoints,andnor-
malizeit to the correspondingalueif every pagein the
systemwereto befree. Figure5 shovsaplot of thiscon-
tiguity metric againstexperimentaltime. Note thatthis
metricis unfavorableto thedaemorschemesinceit does
not considerasavailablethe extra contiguity thatcanbe
regainedby moving inactive pagego the cache.

At the startof the experiment,neitherschemenasall
of thesystems 512MB available;in particular the cache
schemehaslost 5% more contiguity dueto unclustered
wired pages. For aboutfive minutes,the web sener
consumesnemoryanddecreaseavailablecontiguity to
zero.Thereafterthecacheschemeaecoversonly 8.8%of
the systems contiguity, which canbe seenin the graph
asshort,transitoryburstsbetweenFTW executions.In
contrastthedaemorschemeaecorersasmuchas42.4%
of the contiguity, which is consumedy FFTW while it
executesandrelease@achtimeit exits. TheFFTW exe-
cutionsthusfinish earlier at 8.5 minutesfor the daemon
schemegcomparedo 9.8 minutesfor the cachescheme.
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Figure 5: Contiguity as a function of time.

To estimatethe maximum contiguity that can be
potentially gainedback after the FFTW runs complete,
we run a syntheticapplicationthat usesenoughanory-
mousmemoryto maximizethe numberof free pagesn
the systemwhenit exits. At this point, the amountof
contiguity lost is 54%in the cacheschememostly due
to scatteredvired pageslin contrastthedaemorscheme
in unableto recover 13% of the original contiguity. The
reasonis that the few active and inactive pagesthat
remain at the end of the experimentare scatteredin
physical memory over as mary as 54 4MB chunks.
Sincethe experimentstartson a freshly bootedsystem,
active and inactive pageswere physically close at that
time, occupying only 22 suchchunks. Part of the lost
13% is due to inactive pagesthat are not countedin
the contiguity metric, but canbe recoveredby the page
daemon.Thereforethereallossin thelong termfor the
daemorschemas boundednly by the numberof active
pages.

Concurrent execution: The next experimentrunsthe
websenerconcurentlywith a contiguity-seekingppli-
cation. The goalis to measurahe effect of the pagere-
placemenpolicy onthewebsener duringasingle,con-



tinuousrun. Weisolatetheeffectof thepagereplacement
policy by disablingsuperpagg@romotionsin this experi-
ment.

We warm up the web sener footprint by playing
100,000requestdrom the trace,and then measurethe
time takento servicethe next 100,000requestsWe wish
to avoid interferenceof the CPU-intensie FFTW appli-
cation with the web sener, so we substituteit with a
dummyapplicationthatonly exerciseghe needfor con-
tiguity. ThisapplicationmapstouchesandunmapsLMB
of memory five timesa secondandforcesthe pagedae-
monto recover contiguity ratherthanjust memory

The web sener keepsits active files open while it
is running, so our pagedaemoncannotindiscriminately
treatthis memoryasinactive. The web sener’s active
memorypagesget scatteredandonly a limited amount
of contiguity canbe restoredwithout compactingnem-
ory. Over the courseof the experiment,the dummyap-
plicationneedsabout3000contiguouschunksof 512KB
size. The original pagedaemononly satisfied3.3% of
theserequestswhereasour contiguity-avare pagedae-
mon fulfills 29.9%of the requests.This showvs how the
changein the replacemenpolicy succeedsn restoring
significantly more contiguity than before, with negligi-
ble overheadandessentiallyno performanceenalty

The overheadof the contiguity restorationoperations
of thepagedaemoris foundto beonly 0.8%,andtheweb
sener suffersanadditional3% of performancealegrada-
tion, asa consequencef the deviation of the pagere-
placemenpolicy from A-LRU.

6.6 Adversary applications

This section exercisesthe systemon three synthetic
pathologicalworkloads,and concludeswith a measure-
mentof realisticoverhead.

Incremental promotion overhead: We synthesized
an adwersaryapplicationthat makes the systempay all
the costsof incrementalpromotionwithout gainingany
benefit. It allocatesmemory accessesnebytein each
page, and deallocategshe memory which rendersthe
TLB uselesssince every translationis usedonly once.
This adwersaryshaws a slowdown of 8.9% with our im-
plementation,but as much as 7.2% of this overhead
is dueto the following hardware-specifiaeason. PTE
replication,asdescribedn Section6.1,forceseachpage
tableentryto betraversedsix times: oncepereachof the
threeincrementalpromotions,andonceper eachof the
threeincrementatlemotions Theremainingl.7%of the
overheads mainly dueto maintenancef the population
maps.

Sequential accessoverhead: Accessing pages se-
quentiallyasin our adwersaryis actuallya commonbe-
haviour, but usuallyevery byte of eachpageis accessed,
which dilutesthe overhead. We testedthe cnp utility,
which comparegwo files by mappingthemin memory
usingtwo identical LOOMB files asinput,andobseneda
negligible performancealegradationof lessthan0.1%.

Preemption overhead: To measurethe overheadof

preemptingresenations, we set up a situation where
thereis only 4MB of memory available and contigu-
ous,andrun a procesghattouchesmemorywith a4MB

stride. In this situation,thereis a patternof onereser

vation preemptionevery seven allocations. Every pre-
emptionsplits a resenationinto 8 smallerchunks.One
remainsresened with the pagethat madethe original

resenation;anothelis takenfor thepagebeingallocated,
and6 arereturnedo thefreelist. We measured perfor

mancedegradationof 1.1%for this process.

Overhead in practice: Finally, we measurethe total
overheadof our implementationin real scenarios. We
usethe samebenchmark®f Section6.2, performall the
contiguousmemoryallocationand fragmentationrman-
agementas before, but factor out the benefitof super
pagesby simply not promotingthem. We presere the
promotionoverheadby writing the new superpagesize
into someunusedportion of the pagetable entries. We
obsene performancelegradationof up to 2%, with an
averageof about1%. This shovs how our systemonly
imposesggligible overheadn practice sothepatholog-
ical situationsdescribedhbove arerarely obsened.

6.7 Dirty superpages

To evaluateour decisionof demotingcleansuperpages
uponwriting, as discussedn Section4.7, we codeda
programthat mapsa 100MB file, readsevery pagethus
triggering superpaggromotion, then writes into every
512" page,flushesthe file andexits. We comparedhe
runningtime of theproces$othwith andwithoutdemot-
ing onwriting. As expectedsincethel/O volumeis 512
timeslarger, the performancepenaltyof not demotingis
huge:afactorof morethan20.

Our designdecisionmay dery the benefitsof super
pagesto processeshat do not write to all of the base
pagesof a potentialsuperpage.However, accordingto
our policy, we chooseto pay that price in orderto keep
thedegradationin pathologicakcasedow.

6.8 Scalability

If the historical tendencief decreasingelative TLB
coverageandincreasingvorking setsizescontinue then



to keepTLB missoverheadow, supportfor superpages 1 Conclusions

muchlargerthan4MB will beneededn thefuture. Some
processordik e the Itanium andthe Sparc64-1l1provide
128MB andlargersuperpagesndour superpagsystem
is designedo scaleto suchsizes.However, architectural
peculiaritiesmay posesomeobstacles.

Most operationsin our implementationare either
O(1); or O(S), whereS is the numberof distinct su-
perpagesizes;or in the caseof preemptingaresenation,
O(S*R), whereR istheratiobetweerconsecutiesizes,
which is never morethan8 on modernprocessorsThe
exceptionsare four routineswith runningtime linearin
the size(in basepages)f the superpagé¢hatthey oper
ateon. Oneis the pagedaemonthat scanspages;since
it runsasa backgroundprocessit is not in the critical
pathof memoryaccessesThe otherthreeroutinesare
promotion,demotion,anddirty/referencebit emulation.
They operateon eachpagetableentryin the superpage,
andowe their unscalabilityto the hardware-definedPTE
replicationschemedescribedn Section6.1.

Promotions and demotions: Often, underno mem-
ory pressurepagesareincrementallypromotedearly in
a processs life and only demotedat programexit. In
suchcase the costamortizedover all pagesusedby the
procesds O(S), whichis negligible in all of our bench-
marks.Theonly exceptionto thisis theadwersaryexper
imentof Section6.6,which paysa7.2%overheaciueto
incrementapromotionsanddemotions.However, when
thereis memorypressuredemotionsand repromotions
mayhapperseveraltimesin aprocesslife (asdescribed
in Sectionst.6and4.7). Thecostof suchoperationsnay
becomesignificantfor very large superpagesgiven the
linearcostof PTEreplication.

Dirty/r eferencebit emulation: In mary processors,
includingtheAlpha, dirty andreferenceits mustbeem-
ulatedby the operatingsystem. This emulationis done
by protectingthe pagesothatthefirst write or reference
triggersa softwaretrap. Thetrap handlerregistersin the
OS structuresthat the pageis dirty or referencedand
resetshe pageprotection. For large superpagessetting
and resettingprotectioncan be expensve if PTE repli-
cationis required asit mustbedonefor everybasepage.

These problems motivate the need for more
superpage-friendly page table structures, whether
they aredefinedby the hardwareor the OS, in orderto
scalablysupportvery large superpagesClusteed page
tablesproposedy Talluri et al. [21] represenbne step
in this direction.

This paperprovidesa transparenand effective solution
to the problem of superpagenanagemenin operating
systems. Superpagesre physical pagesof large size,
which may be usedto increaseTLB coverage,reduce
TLB missesandthusimprove applicationperformance.
We describea practicaldesignand demonstratehat it
canbe integratedinto an existing general-purposeper
ating system.We evaluatethe systemon a rangeof real
workloadsandbenchmarkspbsene performancebene-
fits of 30% to 60% in several casesandshow that the
systemis robustevenin pathologicalcases.Theseben-
efits are sustainedundercomplex workload conditions
andmemorypressureandthe overheadsaresmall.
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