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ABSTRACT

Capsules provide an algebraic representation of the state of a computation in higher-
order functional and imperative languages. A capsule is essentially a finite coalgebraic
representation of a regular closed A-coterm. One can give an operational semantics
based on capsules for a higher-order programming language with functional and imper-
ative features, including mutable bindings. Static (lexical) scoping is captured purely
algebraically without stacks, heaps, or closures. All operations of interest are typable
with simple types, yet the language is Turing complete. Recursive functions are repre-
sented directly as capsules without the need for fixpoint combinators.
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1. Introduction

Capsules provide an algebraic representation of the state of a computation in higher-
order functional and imperative programming languages. They conservatively extend
the classical A-calculus with mutable variables and assignment, enabling the con-
struction of certain regular coterms (infinite terms) representing recursive functions
without the need for fixpoint combinators. They have a well-defined statically-scoped
evaluation semantics, are typable with simple types, and are Turing complete.
Representations of state have been studied in the past by many authors. Ap-
proaches include syntactic theories of control and state [11, 12], the semantics of local
storage [14], functional languages with effects [22, 23, 24], monads [28], closure struc-
tures [3, 4, 5] and denotational semantics [27, 35, 36]. Capsules provide a purely
algebraic alternative in that no combinatorial structures are needed. Perhaps the
most important aspect of capsules is that static scoping and local variables are cap-
tured without the need for closures. Cumbersome combinatorial machinery such as
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heaps, stores, stacks, and pointers are replaced with the single mathematical concept
of variable binding. Nevertheless, capsules are equally expressive and represent the
same data dependencies and liveness structure. In a sense, capsules are to closures
what graphs are to their adjacency list representations.

Formally, a capsule is a particular syntactic representation of a finite coalgebra of
the same signature as the A-calculus. A capsule represents a regular closed A-coterm
(infinite A-term) under the unique morphism to the final coalgebra of this signature.
This final coalgebra has been studied under the name infinitary A-calculus, focusing
mostly on infinitary rewriting [8, 18]. It has been observed that the infinitary version
does not share many of the desirable properties of its finitary cousin; for example, it is
not confluent, and there exist coterms with no computational significance. However,
all coterms represented by capsules are computationally meaningful.

One can give an operational semantics based on capsules for a higher-order pro-
gramming language with both functional and imperative features, including recursion
and mutable variables, and this is one of the primary motivations of this work. All
operations of interest are typable with simple types. Recursive functions are con-
structed directly using Landin’s knot [21] without the need for fixpoint combinators,
which involve self-application and are untypable with simple types. Moreover, the
traditional Y~ combinator forces a normal-order (lazy) evaluation strategy to ensure
termination. Other more complicated fixpoint combinators can be used with applica-
tive order by encapsulating the self-application in a thunk to delay evaluation, but
this is even more unnatural. In contrast, the construction of recursive functions with
Landin’s knot is direct and simply typable, and corresponds more closely to imple-
mentations. Turing completeness is impossible with finite types and finite terms, as
the simply-typed A-calculus is strongly normalizing; so we must have either infinitary
types or infinitary terms. Whereas the former is more conventional, we believe the
latter is more natural and closer to implementations.

Dynamic scoping, which was the scoping discipline in early versions of LISP and
Python, and which still exists in many languages today, can be regarded as an imple-
mentation of lazy S-reduction that fails to observe the principle of safe substitution
(a-conversion to avoid capture of free variables). We explain this view more fully with
a detailed example in §3. In contrast, the A-calculus with S-reduction and safe sub-
stitution is statically scoped. Both capsules and closures provide static scoping, but
capsules do so without any extra combinatorial machinery. Moreover, capsules work
correctly in the presence of mutable variables, whereas closures, naively implemented,
do not (a counterexample is given in §4.4). To correctly handle mutable variables,
closures require some form of indirection, and care must be taken to perform updates
nondestructively. The connection between closures and capsules in the presence of
mutable variables has been investigated by the first author [15]. Capsules have also
been applied to the study of separation logic [17].

Capsules provide a common framework for representing the global state of compu-
tation for both functional and imperative programs. Valuations of mutable variables
used in the semantics of imperative programs and closure structures used in the opera-
tional semantics of functional programs can be simulated. Capsules also allow a clean
mathematical definition of garbage collection: there is a natural notion of morphism,
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and the garbage-collected version of a capsule is the unique (up to isomorphism)
initial object among its monomorphic preimages.

There is much previous work on reasoning about references and local state [12, 25,
30, 31, 32, 33]. State is typically modeled by some form of heap from which storage
locations can be allocated and deallocated [14, 22, 23, 24, 27, 35, 36]. Others use
game semantics to reason about local state [6, 7, 20]. Moggi [28] uses monads to
model state. Our approach is most closely related to the work of Mason and Talcott
[22, 23, 24], Felleisen and Hieb [12], and especially to the syntactic theories of control
and state of Felleisen, Findler, and Flatt [11]. Abadi, Cardelli, Curien and Lévy study
substitutions explicitly [2], while Curien develops a calculus based on closures [10].
Moran and Sands develop an abstract machine to handle the call-by-need A-calculus
[29]. Objects can be modeled as collections of mutable bindings, as for example in
the ¢-calculus of Abadi and Cardelli [1]. Here we have avoided the introduction of
mutable datatypes other than A-terms in order to develop the theory in its simplest
form and to emphasize that no auxiliary datatypes are needed to provide a basic
operational semantics for a statically-scoped higher-order language with functional
and imperative features.

This paper is organized as follows. In §2, we give formal definitions of capsules.
In §3, we give a detailed motivating example comparing how closures and capsules
deal with scoping issues. In §4 we prove two theorems. The first (Theorem 1) es-
tablishes that capsule evaluation faithfully models S-reduction in the A-calculus with
safe substitution. The second (Theorem 7) defines closure conversion for capsules and
proves soundness of the translation, provided there is no variable assignment. Taken
together, these two theorems establish that closures also correctly model S-reduction
in the A-calculus with safe substitution. The same results hold in the presence of
assignment, but the definition of closures must be extended; the definition of cap-
sules remains the same [15]. The proof techniques in this section are purely algebraic
and involve some interesting applications of coinduction. Finally, in §5, we describe
a simply-typed functional/imperative language with mutable bindings and give an
operational semantics in terms of capsules.

2. Definitions

2.1. Capsules

Consider the simply-typed A-calculus with typed constants (e.g., 3 : int, true : bool,
+ :int — int — int, < :int — int — bool). The set of A-abstractions is denoted A-Abs
and the set of constants is denoted Const. A A-term is irreducible if it is either a A-
abstraction Az.e or a constant ¢. The set of irreducible terms is Irred = A-Abs+ Const.
Note that variables x are not irreducible.

Let FV(e) denote the set of free variables of e. A capsule is a pair (e, o), where e
is a A-term and o : Var — lIrred is a partial function with finite domain dom o, such
that

(i) FV(e) C domo
(ii) if z € domo, then FV(o(z)) C domo.
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A capsule (e, o) is irreducible if e is.
Note that cycles are allowed; this is how recursive functions are represented. For
example, we might have o(f) = An.if n =0 then 1l else n- f(n —1).

2.2. Scope, Free and Bound Variables

Let (e, o) be a capsule and let d be either e or o(y) for some y € domo. The scope of
an occurrence of a binding operator Az in d is its scope in the A-term d as normally
defined.

Consider an occurrence of a variable z in d. The closure conditions (i) and (ii) of
§2.1 ensure that one of the following two conditions holds:

e that occurrence of z falls in the scope of a binding operator Az in d, in which
case it is bound to the innermost binding operator Az in d in whose scope it
lies; or

e it is free in d, but « € dom o, in which case it is bound by o to the value o(x).

Thus every variable x in a capsule is essentially bound. These conditions thus preclude
catastrophic failure due to access of unbound variables.

It is important to note that scope does not extend through bindings in o. For
example, consider the capsule (Az.y, [y = A\z.x, x =2]). The free occurrence of z
in Az.z is not bound to the Az in Ax.y, but rather to the value 2. The coalgebra
represented by the capsule has three states and represents the closed term Azx.A\z.2.
For this reason, one cannot simply substitute o(y) for y in e without a-conversion.
This is also reflected in the evaluation rules to be given in §4.1. In a capsule (e, o),
all free variables in e or o(y) are in dom o, therefore bound to a value; thus every
capsule represents a closed coterm.

The term a-conversion refers to the renaming of bound variables. With a capsule
(e, o), this can happen in two ways. The traditional form maps a subterm Az.d to
Ay.d[z/y], provided y would not be captured in d. One can also rename a variable
x € domo and all free occurrences of z in e and o(z) for z € domo to y, provided
y &€ dom o already and y would not be captured.

3. Scoping Issues

We motivate the results of Section 4 with an example illustrating how dynamic scoping
arises from a naive implementation of lazy substitution and how capsules and closures
remedy the situation.

3.1. The X\-Calculus

The oldest and simplest of all functional languages is the A-calculus. In this system,
a state is a closed A-term, and computation consists of a sequence of S-reductions

(Ax.d) e — d[z/e],
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where d[x/e] denotes the safe substitution of e for all free occurrences of x in d. Safe
substitution means that bound variables in d may have to be renamed (a-converted)
to avoid capturing free variables of the substituted term e.

For example, consider the closed A-term (Ay.(Az.Ay.z4) Az.y) 32. Evaluating this
term in (shallow) applicative order!, we get the following sequence of terms leading
to the value 3:

(Ay.(Az.Ay.z 4) Az.y) 32 — (Az.Ay.z 4) (Ax.3) 2
= (Ay.(Ax3)4) 2 — (A\x.3)4—3 (1)

No a-conversion was necessary. In fact, no a-conversion is ever necessary with
applicative-order evaluation of closed terms, because the argument substituted for a
parameter in a [-reduction is closed, thus has no free variables to be captured. It
is key that the term being evaluated be closed, as studied in the combinatorial weak
A-calculus [9] and closed reductions [13].

However, the A-calculus is confluent, and we may choose a different order of evalu-
ation; but an alternative order may require a-conversion. For example, the following
reduction sequence is also valid:

(Ay.(Az.A\y.z 4) Az.y) 32 = Ay w.(Az.y) 4) 32
= (Aw.(Az.3) 4) 2 = (A\z.3) 4 — 3 (2)

A change of bound variable was required in the first step to avoid capturing the
free occurrence of y in Az.y substituted for z. Failure to do so results in the erroneous
value 2:

(Ay.(Az.Ay.z 4) Az.y) 32 — (AyAy.(A\z.y) 4) 32
= (Ay.(Azy)4) 2 —> (A\z.2) 4 —2 (3)

8.2. Dynamic Scoping

In the early development of functional programming, specifically with the language
LISP, it was quickly determined that physical substitution is too inefficient because it
requires copying [26]. This led to the introduction of environments, used to effect lazy
substitution. Instead of doing the actual substitution when performing a S-reduction,
one can defer the substitution by saving it in an environment, then look up the value
when needed.

An environment is a partial function ¢ : Var — Irred with finite domain. A state
is a pair (e, o), where e is the term to be evaluated and o is an environment with
bindings for the free variables in e. Environments need to be updated, which requires
a rebinding operator

e, ifx =y,
o(y), ifz#y.
LAlso known as left-to-right call-by-value order, the order of evaluation in which the leftmost

innermost redex is reduced first, except that redexes in the scope of binding operators Az are ineligible
for reduction.

alz/el(y) = {
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Naively implemented, the rules are
(Az.d)e, o) = (d, ol/e]) {y, 0) = (o(y), o)

where the first rule saves the deferred substitution in the environment and the second
looks up the value. This is quite easy to implement. Moreover, it stands to reason
that if S-reduction in applicative order does not require any a-conversions, then the
lazy approach should not either. After all, the same terms are being substituted, just
at a later time.

However, this is not the case. In the example above, we obtain the following
sequence of states leading to the value 2:

(My-(AzAy.z 4) Aey) 32, [1), (AzAy.z 4) (Mvy) 2, [y =31),

(Ay.z4)2, [y=3, z=dzyl), (z 4, l[y=2, z=Az.yl),

(M) 4, ly=2, z=Azyl), (v, ly=2, z=Azy, z=41),

(2, ly=2, z=Az.y, x =41).
The issue is that the lazy approach fails to observe safe substitution. This example
effectively performs the deferred substitutions in the order (3) without the change of

bound variable. Nevertheless, this was the strategy adopted by early versions of LISP
[26]. Tt was not considered a bug but a feature and was called dynamic scoping.

3.8. Static Scoping with Closures

The semantics of evaluation was brought more in line with the A-calculus with the
introduction of closures [21, 26]. Formally, a closure is defined as a pair {A\z.e, o},
where the Azx.e is a A-abstraction and ¢ is a partial function from variables to values
that is used to interpret the free variables of Az.e. When a A-abstraction is evaluated,
it is paired with the environment o at the point of the evaluation, and the value is
the closure {Az.e, o}. Thus we have

o : Var — Val Val = Const + Cl

where Cl denotes the set of closures. We require that for a closure {A\z.e, o},
FV(Ax.e) C domo. Note that the definitions of values and closures are mutually
dependent.

The new reduction rules are

(Ax.d, o) — {dxd, o} {\xd, o} e, 7) — (d, oz/e]) (y, oy — o(y).

The second rule says that an application uses the context o that was in effect when
the closure was created, not the context 7 of the call. Turning to our running example,

(ANy.(Az A y.z 4) Axy) 32, [1), (Azdy.z 4) (Azy) 2, [y =31),
(MNy.z4)2, ly=3, z={A\z.y, [y =31}1),

(z4, ly=2, z={ .y, ly=31}1),

{rzy, ly=31}1 4, ly=2, z={dzy, ly=31}1), ((Az.y) 4, [y =31),
(y, ly=3, x=41), 3, [y=3, x =4]).
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3.4. Static Scoping with Capsules

Closures correctly capture the semantics of S-reduction with safe substitution, but at
the expense of introducing extra combinatorial machinery to represent and manipulate
pairs {\z.e, o}. Capsules allow us to revert to a purely A-theoretic framework without
losing the benefits of closures.

Capsules were defined formally in §2.1. The small-step reduction rules for capsules
are

((Az.e) v, o) = (e[z/y], aly/v]) (y fresh) {y, o) = (a(y), o)

The key difference is the introduction of the fresh variable y in the application rule.
This is tantamount to performing an a-conversion on the parameter of a function just
before applying it. Turning to our running example, we see that this approach gives
the correct result.

(Ay.(NzAy.z 4) Azy) 32, [1), (M2 Ay.z 4) (Mxy') 2, [y = 31),
(Ay.z" 4) 2, [y =3, 2/ =Xxy']), (' 4, [y =3, 2/ = .y, y' =21),
(Mey) 4, [y =3, 2/ =Xy, vy’ =21),

(W, ly =3, 2 =Xz, y' =2, ' =41),

3, [y =3, 2=z, vy =2, 2/ =4]).

We prove soundness formally in Section 4.

4. Soundness

In this section we show that capsule evaluation is statically scoped under applicative-
order evaluation and correctly models S-reduction in the A-calculus with safe substi-
tution.

4.1. Ewvaluation Rules for Capsules

Let d,e, ... denote A-terms and u, v, ... irreducible A-terms (A-abstractions and con-
stants). Variables are denoted z,y, . .. and constants ¢, f. For any constant f denoting
a function in the language, there exists an application function from terms to terms,
that is also written f.

The small-step evaluation rules for capsules consist of reduction rules

(Az.€) v, o) = (elz/y], aly/v]) (y fresh)
(fe o) = (f(c), o)
(y, o) = (o(y), o)
and context rules
(d, o) & {d', T) (e, o) = (¢!, T)
(de, o) 5 (d e, T) (ve,o) B (ve, 1)

—~ o~~~
S U
= Z

(7)

where = denotes the repetition of zero or more steps of —. The reduction rules
(4)—(6) identify three forms of redex: an application (Az.e) v, an application f ¢
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where f and ¢ are constants, or a variable y € dom o. The context rules (7) uniquely
identify a redex in a well-typed non-irreducible capsule according to an applicative-
order reduction strategy.

The corresponding large-step rules are

{y, o) = (a(y), o) (8)
(d,o) = ({f,m)  (em) = (e p) ()
(de, o) = (f(c), p)

d, o) % (Aw.a, 7) (e, ) > (v, p) {alz/yl], ply/v]) 5 (u, )
(de, o) (u, ) (y fresh) (10)

These rules are best understood in terms of the interpreter they generate:

Eval(c,0) = (¢, o)

Eval(\z.e,0) = (A\z.e, o) (11)
Eval(y,0) = (0(y), o)
Eval(d e, o) = let (u, 7) = Eval(d, o) in
let (v, p) = Eval(e, 7) in
Apply(u, v, p)

Apply(f, ¢, o) = (f(c), o)
Apply(Az.e,v,0) = Eval(e[z/y],oly/v]) (y fresh) (12)

4.2. B-Reduction

The small-step evaluation rules for S-reduction in applicative order are the same as
for capsules, except we replace (4) with

((Az.e) v, o) = (e[z/v], o) (13)

(substitution instead of rebinding). The other rules (5)—(7) are the same. This makes
sense even in the presence of cycles (recursive functions).

Note that the initial valuation o persists unchanged throughout the computation.
We might suppress it to simplify notation, giving

(Az.e) v — e[z /v] fe— flo) y—o(y)
d>= d e e
(de) > (de) (ve)S (ve)

However, it is still implicitly present, as it is needed to evaluate variables y.
The corresponding interpreter Evalg is defined exactly like Eval except for rule (12),
which we replace with

Applys(Az.e,v,0) = Evalg(e[z/v], o).
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4.8. Soundness

Let S denote a sequential composition of rebinding operators [y /v1] - - [yx/vk], ap-
plied from left to right. Applied to a partial valuation o : Var — lIrred, the operator
S sequentially rebinds y; to vy, then y to vs, and so on. The result is denoted ¢.S.
Formally, o(S[y/v]) = (¢5)[y/v].

To every rebinding operator S = [y1/v1] - - [yx/vk] there corresponds a safe substi-
tution operator S~ = [yg/vk] - - - [y1/v1], also applied from left to right. Applied to a
A-term e, S~ safely substitutes vy for all free occurrences of yi in e, then vg_q for all
free occurrences of y,_1 in e[yr/vk], and so on. The result is denoted eS~. Formally,
e(S~[y/v]) = (eS7)[y/v]. Note that (ST)” =T-S5".

If S = [y1/v1] - - - [yx/vk), we assume that y; does not occur in v; for ¢ > j; however,
y; may occur in v; if ¢ < j. This means that if FV(e) C {y1,...,yx} and FV(v;) C
{v1,.-.,yj-1}, 1 <j <k, then eS™ is closed.

The following theorem establishes soundness of capsule evaluation with respect to
B-reduction in the A-calculus.

Theorem 1 Evalg(e,0) = (v, 0) if and only if there exist irreducible terms
V1. .., Uk, U and a rebinding operator S = [y1/v1] - - [yk/vk], where y1,...,yr do not
occur in e, v, or o, such that Eval(e,o) = (u, 0S) and v =uS~.

Proof. We show the implication in both directions by induction on the number of
steps in the evaluation. The result is trivially true for inputs of the form {(c, o),
(Az.e, o), and (o(y), o), and this gives the basis of the induction.

For an input of the form (d e, o), we show the implication in both directions. We
first show that if Eval(d e, o) is defined, then so is Evalg(d €, ), and the relationship
between the two values is as described in the statement of the theorem. By definition
of Eval, we have

Eval(d, o) = (u,05) Eval(e,05) = (v,05T)
for some § = [y1/v1] -+ [y /vm] a0d T = [yt /Vms1] - [y /0], Where ys,...,p
are the fresh variables and vy, ..., v, the irreducible terms bound to them in applica-

tions of the rule (12) during the evaluation of d and e. By the induction hypothesis,
we have

Evalg(d,o) = (uS~, o) Evalg(e,05) = (vI'~, 0S).
Since the variables y1, . . ., y,» do not occur in e, they are not accessed in its evaluation,
thus Evalg(e,0) = (vT'~, o). Also, since Y41, - -,Yn donot occur in uw and y1, . . ., Ym

do not occur in v, we have uS™ = u(ST)~ and vT~ = v(ST) ", thus
Evalg(d, o) = (w(ST)™, o) Evalg(e, o) = (v(ST)~, o).
We thus have

Eval(d e, o) = Apply(u,v,0ST) Evalg(d e,0) = Applys(u(ST) ™, v(ST)™, 0)
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If u and v are constants, say v = f and v = ¢, then
Eval(d e, ) = Apply(f,c,a:ST) = (f(c), ST}
Evalﬁ(d 6,0) = Applyﬂ(fv c, U) = <f(C), 0>7

and the implication holds. If u is a A-abstraction, say u = Az.a, then u(ST)~ =
Az.a(ST)~. Then

a(ST)" [x/v(ST)"] = alz/v)(ST)™ = alz/yn1]lyns1/v](ST)~
= a[z/yn41] (ST [yn+1/v]) ",
therefore
Eval(d e, o) = Apply(Ax.a,v,05T) = Eval(a[z/yn+1], 05T [Yn+1/v])
Evalg(d e,0) = Applyg(Az.a(ST) ™, v(ST)™,0) = Evalg(a(ST) ™ [z/v(ST)"],0)
= Evalg(alz/yn+1](ST[yn+1/v]) ", 0),

and the implication holds in this case as well.

For the reverse implication, assume that Evalg(d e,o) is defined. Let (u, o) =
Evalg(d, o) and (v, o) = Evalg(e, o). By the induction hypothesis, there exist variables
Y1, - -, Ym and irreducible terms vy, ..., v, and r such that

u=rS" Eval(d,o) = (r, 0.5),
where S = [y1/v1] - [Um/vm]. We also have (v, 0S) = Evalg(e,cS), since the eval-
uation of e does not depend on the variables yi,...,¥ym,. Again by the induction

hypothesis, there exist variables y,,41, ...,y and irreducible terms vy, 41, ..., v, and
s such that

v=sT" =T858 =s(ST)~ Eval(e,0S) = (s, 0ST),
where T = [ym+1/Vm+1] -+ [Yn/vn]. Then ST = [y1/v1] - - [yn/vs] and
Evalg(d e,0) = Applys(u, v, o) Eval(d e, o) = Apply(r, s,05T).

If v and v are constants, say u = f and v = ¢, then r = f and s = ¢. In this case
we have

Evalg(d e,0) = Applys(f,c,0) = (f(c), o)
Eval(d e, o) = Apply(f,c,o8T) = (f(c), aST),

and the implication holds. If u is a A-abstraction, then r = Ax.a and v = Az.aS™ =
Az.a(ST)~. In this case

a(ST)" [z/s(ST)"] = alx/s|(ST)™ = alz/yns1llynt1/s](ST)~
= a[z/yn+1] (ST [yn+1/5]) ",
thus
Evalg(d e,0) = Applys(Az.a(ST) ™ ,v,0) = Evalg(a(ST) " [x/s(ST) "], 0)
= Bvalg(alz/yn 1) (STYynt1/5]) ", 0),
Eval(d e, o) = Apply(Ax.a, s,05T) = Eval(a[z/yn+1], 0 ST [Yn+1/8]),

so the implication holds in this case as well. O



Computing with Capsules 195

4.4. Closure Conversion

In this section we demonstrate how to closure-convert a capsule and show that the
transformation is sound with respect to the evaluation semantics of closures and
capsules in applicative-order evaluation, provided variables are not mutable.

Closures do not work in the presence of mutable variables without introducing
the further complication of references and indirection. This is because closures fix
the environment once and for all when the closure is formed, whereas mutable vari-
ables allow the environment to be subsequently changed. An example is given by
(Ay.(Az.y) (y := 4;y)) 3, for which capsules give 4 and closures, implemented naively
as above, give 3. Capsules handle the assignment correctly, but with closures, the
assignment has no effect.

Care must also be taken to implement updates nondestructively so as not to over-
write parameters and local variables of recursive procedures, an issue that is usually
addressed at the implementation level. Again, the issue does not arise with capsules.

Even without indirection, the types of closures and closure environments are more
involved than those of capsules. A closer look at the definitions of §3.3 shows that the
definitions are mutually dependent and require a recursive, coinductive type definition
[34, §11]. The types are

Env = Var — Val closure environments
Val = Const + Cl values
Cl = M\-Abs x Env closures

We use boldface for closure environments o : Env to distinguish them from the simpler
capsule environments. Closures {Az.e, o} must satisfy the additional requirement
that FV(Az.e) C domo.
A state is now a pair (e, o), where FV(e) C dom o, but the result of an evaluation
is a Val. The evaluation semantics for closures, expressed as an interpreter Eval, is
Eval.(c,0) = ¢
Eval.(Az.e,o) = {\x.e, o}
Eval.(y, o) = o (y)
Eval.(d e,0) = let uw = Eval.(d, o) in
let v = Evalc(e, o) in
Apply(u,v)
Apply.(f;c) = f(e)
Apply.({Az.a, p},v) = Bvalc(a, plz/v]) (14)
The types are
Eval. : Exp x Env — Val Apply, : Val x Val — Val.

The correspondence with capsules becomes simpler to state if we modify the inter-
preter to a-convert the term Az.a to Ay.a[z/y| just before applying it, where y is
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the fresh variable that would be chosen by the capsule interpreter. Accordingly, we
replace (14) with

Apply.({Az.a, p},v) = BEvalc(alz/y], ply/v]) (y fresh)
The corresponding large-step rules are
(¢, o) 2 c (Az.e, o) o {Aze, o} (y, o) 2 o(y) (15)

(doo)of leo)pc
(de o) flc)

(16)

(d, o) 2 {Mwa, py (e, o) v (alz/y], ply/v]) o v (

(de, o) u y fresh)  (17)

The closure-converted form of a capsule (e, o) is (e, ), where for any o, we define
7 as a map with domo = dom& and

e — {J(y), 5}7 if U(y) : )\—AbS,
) {a(y)7 if o(y) : Const.

This definition is not circular, it is a well-defined coinductive definition. A thorough
explanation of coinductive definitions and why they are well-defined, as well as similar
examples of coinductive definitions, can be found in [34, §11].

To state the relationship between capsules and closures, we define a binary re-
lation C on capsule environments, closure environments, and values. For capsule
environments, define o C 7 if domo C dom 7 and for all y € domo, o(y) = 7(y). The
definition for values and closure environments is by mutual coinduction: C is defined
to be the largest relation such that

e on closure environments, o C 7 if

— domo C dom T, and

— for all y € domeo, o(y) C 7(y); and
e on values, u C v if either

— u and v are constants and u = v; or

— u={\z.e, p}, v={A\z.e, w}, and p C .

Lemma 2 The relation C is transitive.

Proof. This is obvious for capsule environments.

For closure environments and values, we proceed by coinduction. Suppose o C
7 C p. Then domeo C domT C dom p, so domeo C dom p, and for all y € domo,
o(y) C 7(y) C p(y), therefore o(y) C p(y) by the transitivity of C on values.

For values, suppose u Cv C w. If u =¢, then v =cand w =c. If u={\z.e, o},
then v = {Az.e, 7} and w = {Az.e, p} and ¢ C 7 C p, therefore & = p by the
transitivity of C on closure environments. O
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Lemma 3 Closure conversion is monotone with respect to . That is, if o C 7, then
TCT.

Proof. We have doma = domo C dom 7 = dom7. Moreover, for y € domo,

F(y) = {{)\x.e, c}, ifo(y ; =Az.e, {{Ax.e, g}, if 7(y) = Az.e,

¢, if o(y ¢, ifr(y) =c

Ax.e, 7}, if 7(y) = Ax.e, _
ct J . ( =7(y)-
c, if 7(y) =
The C step in the above reasoning is by the coinduction hypothesis. ]

Define a map V : Cap — Val on irreducible capsules as follows:

V(Az.a,0) = {Az.a, 7} V(e,0) =c. (18)

Lemma 4 5(y) = V(o(y),0).
Proof.

ifo(y)=c (c,0) ifo(y)=c

{)\x e, a}t, ifo(y) = Az.e, _ V(Azx.e,0), if o(y) = Ax.e,
Vv
v

(())

Lemma 5 Ify & domo, then ay/V(v,0)] C oly/v].
Proof. By Lemma 4,

aly/vl(y) = V(ely/vl(y),oly/v]) = V(v,oly/v]). (19)
If y € dom o, then

aly/V(v,0)] E oly/vlly/V(v,0)] T oly/vlly/V(v,oly/v])] = oly/v],
the first two inequalities by Lemma 3 and the last equation by (19). O

Lemma 6 If o C T, then Eval.(e,o) exists if and only if Eval.(e,T) does, and
Eval.(e,o) C Eval.(e, 7). Moreover, they are derivable by the same large-step proofs.

Proof. 'We proceed by induction on the proof tree under the large-step rules (15) —
(17). For the single-step rules (15), we have

Eval.(c,0) = ¢ = Evalc(c, T)
Eval.(Az.a,0) = {\x.a, 0} C {Az.a, 7} = Eval.(A\z.a, T)
Eval.(y,o) = o(y) C 7(y) = Eval.(y, 7).

For the rule (16), (d e, o) = f(c) is derivable by an application of (16) iff (d, o) = f
and (e, o) =» c are derivable by smaller proofs. Similarly, (d e, T) = f(c) is derivable
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by an application of (16) iff (d, 7) = f and (e, T) = ¢ are derivable by smaller proofs.
By the induction hypothesis, (d, o) =+ f and (d, T) = f are derivable by the same
proof, and similarly (e, o) 2> ¢ and (e, ) = ¢ are derivable by the same proof.
Finally, for the rule (17), (d e, o) = wu; is derivable by an application of (17)
ff (d, o) = {A\z.a, p1}, (e, o) = v1, and (a[z/y], p1[y/vi]) = w1 are derivable by
smaller proofs. Similarly, (d e, T) = wug is derivable by an application of (17) iff
(d, T) %) {Ar.a, p2}, (e, T) %) v2, and (alz/y], p2[y/val) %) ug are derivable by
smaller proofs. By the induction hypothesis, (d, o) = {Az.a, p1} and (d, T) =
{Az.a, p2} are derivable by the same proof, and p; T po. Similarly, (e, o) = v;
and (e, T) = v are derivable by the same proof, and vy T wvy. It follows that
pily/v1] T paly/ve]. Again by the induction hypothesis, (a[z/y], p1y/v1]) = u1 and

(alz/y], p2ly/va]) = ug are derivable by the same proof, and u; C us. |

The following theorem establishes the soundness of closure conversion for capsules.

Theorem 7 Eval(e,o) exists if and only if Eval.(e,5) does, and Eval.(e,7) C
V(Eval(e,0)). Moreover, they are derivable by isomorphic large-step proofs under
the obvious correspondence between the large-step rules of both systems.?

Proof. We proceed by induction on the proof tree under the large-step rules. The
proof is similar to the proof of Lemma 6. We write = for the derivability relation under
the large-step rules (15)—(17) for closures to distinguish them from the corresponding
large-step rules (8)—(10) for capsules, which we continue to denote by =.

For the single-step rules (15), we have

Eval.(c,7) = ¢ = V(Eval(c,0))
Eval.(Az.a,7) = {\x.a, 7} = V(\z.a,0) = V(Eval(\z.a,0))
Evale(y,7) = 7(y) = V(o (y), 0) = V(Eval(y, o).

The last line uses Lemma 4.

Consider the corresponding rules (9) and (16). A conclusion (d e, G) = f(c) is
derivable by an application of (16) iff (d, @) =» f and (e, 7) = c are derivable by
smaller proofs. Similarly, (d e, o) = (f(c), p) is derivable by an application of (9) iff
(d, o) = (f, 0S) and (e, 0.S) = (¢, 0ST) are derivable by smaller proofs.

By the induction hypothesis, (d, @) = f = V(f,0S) and (d, o) = (f, aS) are
derivable by isomorphic proofs. By Lemma 6, (e, 7) = ¢ and (e, 0S) = ¢ are
derivable by the same proof. Again by the induction hypothe51s (e, 0 S) = ¢ and
(e, 0S) & (c, 0ST) are derivable by isomorphic proofs, therefore so are (e, ) = ¢ =
V(e,0ST) and (e, 0S) = (¢, cST).

Finally, consider the corresponding rules (10) and (17). A conclusion (d e, T) = u
is derivable by an application of (17) iff for some Az.a, p, and v,

(d, @) & {\z.a, p} (e,7) 2w (alz/y], ply/v]) = u

2For this purpose, the definition of V' in (18) can be viewed as a pair of proof rules corresponding
to the first two rules of (15).
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are derivable by smaller proofs. Similarly, (d e, o) = (t, 7) is derivable by an appli-
cation of (10) iff for some Az.b, S, T, and w,

(d, o)y = (Az.b, 0S) (e, 0S8y = (w, 0ST) (blz/y], oST[y/w]) = (t, T)

are derivable by smaller proofs.

By the induction hypothesis, (d, 7) = {Az.a, p} and (d, o) = (A\z.b, 0S) are
derivable by isomorphic proofs, and {\z.a, p} C V(\z.b,0S) = {\z.b, ¢S}, therefore
Ar.a= M z.band pC oS C oST.

By Lemmas 3 and 6, for some v/, (e, 7) = v and (e, 0S) 2> v/ are derivable by
the same proof, and v C v’. Again by the induction hypothesis, (e, ¢S) = v’ and
(e, 0S) = (w, 0ST) are derivable by isomorphic proofs, and v' C V(w,cST). By
transitivity, (e, o) = v and (e, 0S) = (w, 0ST) are derivable by isomorphic proofs,
and v C V(w,0ST). By Lemma 5,

ply/v] € oSTly/V(w,0S8T)] © oST[y/w].

Again by Lemma 6, for some v, (a[z/y], ply/v]) = wand (a[z/y], o STy/w]) = v’
are derivable by the same proof, and v C u; and again by the induction hypoth-
esis, (alz/y], oST[y/w]) = u' and (alz/y], oST[y/w]) = (t, T) are derivable by
isomorphic proofs, and u' T V(t,7). By transitivity, (alz/y], ply/v]) = u and
(alz/y], oSTy/w]) = (t, 7) are derivable by isomorphic proofs, and v T V(t,7).

O

5. A Functional/Imperative Language

In this section we give an operational semantics for a simply-typed higher-order func-
tional and imperative language with mutable bindings. We thus fulfill the original
desire to provide a unified semantics for functional and imperative languages.

5.1. Expressions

Expressions Exp = {d, e, ...} contain both functional and imperative features. There

is an unlimited supply of variables z,y, ... of all (simple) types, as well as constants
f,c, ... for primitive values. In addition, there are functional features

e \-abstraction Az.e

e application (de),

imperative features

e assignment Tri=e

e composition d;e

e conditional if b then d else e
e repeat loop repeat e until b,

and syntactic sugar

eletx=dine (A\z.e) d
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eletrec f=gine let f=hinf:=g;e

where h is any term of the appropriate type.

5.2. Types

Types are just simple types built inductively from the base types and a type construc-
tor — representing partial functions. Every variable carries its own (unique) type.
The typing rules are:

T:a e:f d:a—=p e:a d:a e:p
Ar.e:a— (de): B die:
b:bool d:a e:a b:bool e:a ria e:q
if bthen d else e : repeat e until b : « rTi=e:aq

5.3. Evaluation

A wvalue v is an expression that is either a Ad-abstraction or a constant. A capsule value
is the equivalence class of an irreducible capsule modulo bisimilarity and a-conversion;
equivalently, the A-coterm represented by the capsule modulo a-conversion. It is also
a capsule whose first element is a value.

A program determines a binary relation on capsules. The functional features are
interpreted by the rules of §4.1. Assignment is interpreted by the following large-step
and small-step rules, respectively:

(e, o) = (v, T)

(x:=re, 0) 5 (v, T[z/]) (@ €domo)  {w:=v,7) = (v, 7[z/v]) (x€domT)

The remaining imperative constructs are defined by the following large-step rules.

(d, o) = (u, p) (e, py = (v, T)
(dse, o) = (v, T)

(b, o) = (true, p) d, p) = (v, )

(if b then d else e, o) = (v, T)
b, 0) 5 (fakse, p) e, p) 5 (v, 7)

(if b then d else e, o) = (v, T)
(e, o)y 5 (v, p) (b, p) = (true, T)

(repeat e until b, o) = (v, )
(e;b, o) = (false, p) (repeat e until b, p) = (v, T)

(repeat e until b, o) = (v, T)

5.4. Garbage Collection

A monomorphism h : (d, o) — (e, T) is an injective map h : domo — dom 7 such
that
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. T(i(zi(x)) = h(o(z)) for all x € dom o, where h(e) = e[z/h(x)] (safe substitution);

e h(d) =e.

The collection of monomorphic preimages of a given capsule contains an initial object
that is unique up to a-conversion. This is the garbage collected version of the capsule.

6. Conclusion

Capsules provide an algebraic representation of state for higher-order functional and
imperative programs. They are mathematically simpler than closures and correctly
model static scope without auxiliary data constructs, even in the presence of recur-
sion and mutable variables. Capsules form a natural coalgebraic extension of the
A-calculus, and we have shown how coalgebraic techniques can be brought to bear
on arguments involving state. We have shown that capsule evaluation is faithful to
B-reduction with safe substitution in the A-calculus. We have shown how to closure-
convert capsules, and we have proved soundness of the transformation in the absence
of assignments. Finally, we have shown how capsules can be used to give a natu-
ral operational semantics to a higher-order functional and imperative language with
mutable bindings.

Subsequent to this work, the relationship between capsules and closures established
in Theorem 7 has been strengthened to small-step bisimulation [16]. Also, with appro-
priate extensions to the definition of closure to allow indirection, the same relationship
has been shown to hold in the presence of assignment [15]. Capsules have also been
used to model objects [19] and to provide a semantics for separation logic [17].
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