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Abstract

Electrical impedance tomography is solved by solving an inverse problem of elliptic equation, and a new numerical
method or a new technique is argued to consider finite element (such as normal element and mixed element) in this paper
on three dimensional region. Introducing different perturbations to boundary restrictions and using different spacial steps,
the authors obtain numerical solutions and give comparison with exact solutions. Numerical data show that numerical
solution can approximate exact solution well as spacial step taken small and the approximation of Neumann boundary
condition is more stable than that of Dirichlet case. For Newton iterations on finite element method, a large-scaled system
of massive linear equations is solved in each iteration, thus the computation is quite expensive. So two techniques are
argued in the first half of this paper. Firstly, the invariance property of quasi-element stiffness matrix is used in the
iterations and a type of special current model is introduced. Then the minimum number of direct problems solved is
considered. Later a local conservative numerical approximation, low order mixed element (block-centered method) is
presented in the latter part and the positive semi-definiteness and the existence of its solution are proved. Computational
formula of error functional Jacobi matrix is derived and the least direct problems in each iteration are solved by using
the symmetry of algorithm and a special current basis. This method has been applied successfully in actual numerical
simulation of three-dimensional electrical impedance tomography.

Keywords: three-dimensional electrical impedance tomography, numerical simulation, normal finite element, low order
mixed element, stability
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1. Introduction

Electrical Impedance Tomography (EIT) is a new biomedicine imagining technique. Firstly some electrodes are attached
on the skin and safe current is injected. Secondly, the values of potentials are measured and the distribution is obtained.
Thirdly, the data are input in a computer and the distribution of electrical resistivity inside the body is illustrated by the
monochrome graph after calculations and transformations. Since electrical resistivity is assigned by different values at
different places, so the graph shows where and how the inner organs are. This technique is safe and economic, so EIT can
be generalized in numerical simulation of more actual problems such as geophysical exploration, hydrogeology detection,
dam body detection and underwater target detection. Therefore, this method is important and arouses more attention on
theoretical research and its applications (Kirsch, 1996; Cheney, 1999; Webster, 1990; Tamburrino, 2002; Breckon, 1987;
Du, 1997).

Electrical impedance tomography is essentially described by an inverse problem of elliptic partial differential equation,

∇ · (ρ−1∇u) = 0, x ∈ Ω, (1a)

ρ−1 ∂u
∂ν
= ψ, x ∈ ∂Ω, (1b)

u = φ, x ∈ ∂Ω, (1c)

where u(x) denotes the potential, ρ > 0 is the electrical resistivity, ψ(x) is the boundary electric density and φ(x) denotes
the boundary potential.

Given the electric resistivity ρ(x) and the boundary density ψ(x), then the potential distribution u(x) is obtained by (1a)
and (1b). This is called Neumann boundary problem. Dirichlet boundary problem is interpreted by the fact that u(x) is
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computed by (1a) and (1c) as ρ(x) and φ(x) are given. The above two types are direct problems while EIT is an inverse
problem. The functions ρ(x) and u(x) are unknown and ρ is an objective function as only two boundary value conditions
ψ(x) and φ(x) are given. If ρ(x) is known, the potential distribution u(x) is determined by a proper boundary current
density ψ(x) only different by a constant, then the boundary potential u(x)|∂Ω = φ(x) is obtained. Therefore, the electrical
resistivity distribution ρ(x) can define a mapping on the boundary current density set Ψ into the boundary potential set
Φ(x):

Fρ : ψ(x)→ φ(x).

EIT shows how the electric resistivity ρ(x) is obtained under the mapping Fρ = F0 satisfying

Fρ(ψ) = F0(ψ), ψ ∈ Ψ(x). (2)

It is hard to get the exact relation of ρ(x) and Fρ (direct problem), and the boundary current density ψ(x) is measured
hardly. So this problem is solved by numerical approximations.

At present many numerical methods are discussed in solving this problem, and Newton iteration of normal finite method is
a powerful tool. While Newton iteration gives rise to large-scaled computation especially for three-dimensional case. The
method of finite element has high order of accuracy and has strong suitability in computational geometric regions. But the
computation of three numerical integrals in generating coefficient matrices is generally quite expensive, where coefficient
matrix is reformulated in each iteration to compute the gradient vector and Hesse matrix of objective function. Thus, in
this paper we introduce the quasi-element stiffness matrix combined with normal finite element, because quasi-element
has little-amounted and small-sized matrix fixed at each iteration. The element matrix has simple relation with coefficient
matrix and the numerical integral computation cost is shortened. Another difficult of quasi-element stiffness matrix is to
compute the gradient vector and Hesse matrix and to solve large-scaled linear equations (direct problem), so we introduce
a special current forcing model. This uses sufficiently the potentials at all the nodes (solutions of direct problem), derives
simply a Jacobi matrix of error vectors and finishes the computations of gradient vector and Hesse matrix. In the latter part
the authors present a local conservative, low order mixed element scheme (block-centered finite volume element) (Russell,
1983; Weiser, 1988; Mishev, 1998; Lazarov, 1996; Larsson, 2003), and prove the scheme’s positive semi-definiteness and
the solution’s existence. Computational formula is derived for Jacobi matrix of error functional and the number of direct
problems is minimized at each iteration by the symmetry and special current basis vectors. Two different EIT models
of continuous model and electrode model are considered. The model’s correctness and the algorithm’s reliability and
feasibility are testified by exact solution simulation for continuous model, then actual algorithm is concluded for electrode
model.

Numerical simulation is discussed in this paper for the inverse problem. On normal finite element method some discussion
of iteration algorithm and numerical simulation is given in §2, and the algorithm’s feasibility and the model’s correctness
are testified by comparing exact solutions on three dimensional domain (0, 1)3 with numerical simulation data of different
perturbations. In §3, considering actual simulation of EIT problem, the authors present quasi-element stiffness matrix
technique to decrease numerical integral computation and discuss a handling method for Neumann boundary condition.
The projection Fρ is disretized and transformed into a mapping of currents and potentials at different electrodes, and
a new current model and computational algorithm of Jacobi matrix are given. EIT problem on a cylinder is simulated
numerically. In §4, a numerical method of low order mixed element (or named block-centered finite volume element)
and its approximations are argued. This algorithm has the nature of mass conservation. In §5, image reconstruction and
simulation experiments of mixed element method are considered.

2. Normal Finite Element Numerical Method and Simulation of Inverse Problem

An inverse problem is solved usually by the method of iterations. Firstly Neumann problem is solved by using normal
finite element method. Then an ordinary least squares problem is given by combing its numerical solution and Dirichlet
boundary condition.

2.1 Normal Finite Element Method of Neumann Boundary Problem

Neumann boundary problem of (1a) and (1b) is changed into a Galerkin variation as follows: to find u ∈ H1(Ω) such that

D(u, v) = G(v), ∀v ∈ H1(Ω), (3)

where
D(u, v) =

∫
Ω

ρ−1∇u · ∇vdx, G(v) =
∫
∂Ω

vρ−1 ∂u
∂ν

dS .

Ω is partitioned by a series of elements {Km}Mm=1 whose vertexes make up a grid Ω̄ = {xi}ni=1, xi = (xi,1, xi,2, xi,3). A
piecewise defined constant function ρh(x) is used to approximate ρ(x), ρh(x)|Km = ρm, and the discretized linear equations
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are formulated by
A(ρh)u = b, (4)

where A = (ai j)n×n and b = (b1, b2, · · · , bn)T . Let Ni(x) be the node basis function on i = 1, 2, · · · , n, and let the number
of nodes of each element be denoted by p,

ā(m)
i j =

∫
Km

∇Ni · ∇N jdx. (5)

The quasi-element stiffness matrix is defined as follows.
Definition 1 Ā(m) = (ā(m)

i j )p×p is made up of ā(m)
i j ordered by the node labels of Km, then Ā(m) is called the quasi-element

stiffness matrix of the element Km.

The element stiffness matrix is defined by A(m) = (a(m)
i j )p×p, where

a(m)
i j =

∫
Km

ρ−1∇Ni · ∇N jdx ≈ ρ−1
m

∫
Km

∇Ni · ∇N jdx = ρ−1
m ā(m)

i j , (6)

and it is easy to find the relation of A(m) and Ā(m)

A(m) = ρ−1
m Ā(m). (7)

Noting that

a(m)
i j = D(Ni,N j) =

M∑
m=1

∫
Km

ρ−1∇Ni · ∇N jdx ≈
M∑

m=1

ρ−1
m

∫
Km

∇Ni · ∇N jdx =
M∑

m=1

ρ−1
m ā(m)

i j , (8)

bi = G(Ni) =
∫
∂Ω

NiψdS , (9)

and letting [A(m)] and [Ā(m)] of order n denote the expanded formulations of the matrices A(m) and Ā(m) of order p, then we
have the following relation

A =
M∑

m=1

[A(m)] =
M∑

m=1

[ρ−1
m Ā(m)] =

M∑
m=1

ρ−1
m [Ā(m)]. (10)

Similar to Neumann problem, the solutions of finite element equation (4) differ by constants, that is to say the solution
exists solely by assigning the value of a node, ui0 = ψ(xi0 ). The equation (4) turns into an equivalent symmetric and
positive definite system

Adud = bd, (11)

where Ad is obtained by deleting the (i0, j) entries of the i0th row and the (i, i0) entries of the i0th column from the matrix
A, and the vectors ud, bd are given by deleting the i0th component from u, b. Given ρh(x), the equation (11) is solved by

ud = A−1
d bd. (12)

U denotes the vector of potentials at all the boundary nodes regardless the reference node xi0 , whose components are
included in ud, then

U = Pud = PA−1
d (ρh)bd. (13)

The (i, j) entries of matrix P are assigned either by the number 0 or by the number 1, corresponding to the reference nodes
and the other nodes.

2.2 Iterations of Inverse Problem

Let U0 denote the vector of the values of φ(x) at the boundary nodes except xi0 , and ρ = (ρ1, ρ2, · · · , ρM)T is defined by
the values of ρh(x) at all the elements. Let r = U − U0, then we solve inverse problem by solving the following nonlinear
optimization problem,

min
ρ∈C

f (ρ) =
1
2

rT r, (14)

where C = {ρ : ρm > 0,m = 1, 2, · · · ,M}.
The gradient vector of objective function f (ρ) is given by

∇ f (ρ) = (
∂ f
∂ρ1

,
∂ f
∂ρ2

, · · · , ∂ f
∂ρM

)T = JT r, (15)
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where

J =
(
∂U
∂ρ1

,
∂U
∂ρ2

, · · · , ∂U
∂ρM

)
(16)

denotes the Jacobi matrix of r.

By (13),
∂U
∂ρm
= P

∂A−1
d

∂ρm
bd, (17)

we find that it is adequate to only compute ∂A−1
d

∂ρm
.

Using the technique in (Cheney, 1999), and noting that A−1
d Ad = I, we get ∂A−1

d
∂ρm

Ad + A−1
d

∂Ad
∂ρm
= 0. Then,

∂A−1
d

∂ρm
= −A−1

d
∂Ad

∂ρm
A−1

d . (18)

For Ad is the remaining matrix of A deleted the i0th row and the i0th column, we get the expression of ∂Ad
∂ρm

similarly from
∂A
∂ρm

∂Ad

∂ρm
=

[ ∂A
∂ρm

]
d. (19)

From (10),
∂A
∂ρm
= − 1

ρ2
m

[
Ā(m)]. (20)

Substituting (18), (19) and (20) into (17), and noting that (12), we have

∂U
∂ρm
= −PA−1

d
∂Ad

∂ρm
A−1

d bd = −PA−1
d

[
∂A
∂ρm

]
ud =

1
ρ2

m
PA−1

d

[
Ā(m)

]
d

ud. (21)

Hesse matrix of objective function f (ρ) is defined by H = ∇2 f (ρ) =
(
∂2 f (ρ)
∂ρm∂ρk

)
M×M

≈ JT J, and Levenberg-Marquardt

iteration is formulated as follows for solving (14),

ρ(k+1) = ρ(k) − (H + µkI)−1∇ f (ρ), (22)

where I is an identity matrix.

2.3 Numerical Simulation and Data

In this subsection we give several experimental tests to show the successful applications. Take Ω = (0, 1)3, and let Γi

denote boundary surfaces,
Γ1 : (0, 1) × (0, 1) × {0}, Γ2 : (0, 1) × (0, 1) × {1},
Γ3 : (0, 1) × {0} × (0, 1), Γ4 : (0, 1) × {1} × (0, 1),
Γ5 : {0} × (0, 1) × (0, 1), Γ6 : {1} × (0, 1) × (0, 1),

then we find that ∂Ω =
6∪

i=1
Γ̄i. Each (0, 1) interval is divided into n1 subintervals with equal step h = 1/n1, and Ω is divided

into n3
1 cubes. Basis node functions {Ni(x)} are defined by three piecewise defined linear interpolation functions. Relative

error function is defined by

r =
||ρh(x) − ρ(x)||L2(Ω)

||ρ(x)||L2(Ω)
.

2.3.1 Experiment 1

Suppose that exact solution of (1a) is ρ(x) = u(x) = ex1+x2+x3 , satisfying two boundary conditions (1b) and (1c), where
ψ = (−1)i, x ∈ Γi. Initial iteration values are defined by ρ(0)

m ≡ 1,m = 1, 2, · · · ,M, and numerical data are shown in Table
1.
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Table 1. Without perturbation

h Relative error r Time cost (second) Iteration times
1/4 13.35% 10 5
1/8 6.77% 545 8
1/12 4.83% 5988 9
1/16 3.96% 35578 10

To show how the initial data affect numerical results, we consider ψ(x) and φ(x) perturbed in the simulation by

ψδ1 (x) = ψ(x)(1 + δ1(sinωπx1 + sinωπx2 + sinωπx3)), (23)

φδ2 (x) = φ(x)(1 + δ2(cosωπx1 + cosωπx2 + cosωπx3)), (24)

and give the perturbation effects in Table 2.

Table 2. Perturbation effects (ω = 10)

h δ1 δ2 Relative error r Time cost(second) Iteration times
1/8 5% 0 7.34% 550 8
1/8 10% 0 8.39% 555 8
1/12 5% 0 5.52% 6125 9
1/12 10% 0 7.53% 6835 10
1/8 0 0.5% 10.80% 550 8
1/8 0 1% 17.58% 578 8
1/12 0 0.5% 11.06% 6335 9
1/12 0 1% 24.02% 17986 10

2.3.2 Experiment 2

Exact solutions of (1a) are ρ(x) = (2.5+ x2
1 −2x2

2 + x2
3)−1 and u(x) = ln(2.5+ x2

1 −2x2
2 + x2

3), where ψ(x) = ((−1)i +1)( 3
4 (i−

4)2 − 2), x ∈ Γi. Initial approximations are taken by ρ(0)
m ≡ 1,m = 1, 2, · · · ,M, and numerical data are illustrated in Table

3. The boundary conditions ψ(x) and φ(x) are perturbed by (23) and (24) (see Table 4).

Table 3. Without perturbation

h Relative error r Time cost (second) Iteration times
1/4 22.36% 17 8
1/8 15.05% 945 12
1/12 14.05% 15368 14
1/16 14.69% 125930 16

Table 4. Perturbation effects (ω = 10)

h δ1 δ2 Relative error r Time cost(second) Iteration times
1/8 1% 0 15.13% 959 12
1/8 5% 0 15.96% 947 12
1/12 1% 0 14.12% 15211 14
1/12 5% 0 15.26% 14043 13
1/8 0 0.5% 15.88% 965 12
1/8 0 1% 17.32% 884 11
1/12 0 0.5% 15.41% 14618 13
1/12 0 1% 18.31% 14245 12
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2.3.3 Experiment 3

The functions ρ(x), u(1)(x), ψ(1)(x) are taken as ρ(x), u(x), ψ(x) of Experiment 2. u(2)(x) = x1x2x3 is exact solution of (1a)
corresponding to ρ(x), and Neumann boundary condition is defined by

ψ(2)(x) =


(−1)ix1x2(i + 1.5 + x2

1 − 2x2
2), x ∈ Γi, i = 1, 2,

(−1)ix1x3(−2i + 8.5 + x2
1 + x2

3), x ∈ Γi, i = 3, 4,
(−1)ix2x3(i − 2.5 − 2x2

2 + x2
3), x ∈ Γi, i = 5, 6.

(25)

The objective function (14) is modified by f (ρ) = 1
2

2∑
l=1

[
r(l)

]T
r(l). Let r(l) = U(l) − U(l)

0 , where U(l) is defined by (13) and

U(l)
0 is defined by the values at boundary nodes of u(l)(x). Gradient operator and Hesse matrix are formulated by

∇ f (ρ) =
2∑

l=1

[
J(l)

]T
r(l), H = ∇2 f (ρ) ≈

2∑
l=1

[
J(l)

]T
J(l),

where J(l) denotes Jacobi matrix of r(l). Numerical data are shown in Table 5 and Table 6 after repeated simulations of
Experiment 1 and Experiment 2.

Table 5. Without perturbation

h Relative error r Time cost (second) Iteration times
1/4 23.54% 16 7
1/8 13.55% 926 12
1/12 9.87% 14300 14
1/16 8.55% 105410 16

Table 6. Perturbation effects (ω = 1)

h δ1 δ2 Relative error r Time cost(second) Iteration times
1/8 1% 0 14.06% 928 12
1/8 5% 0 16.65% 916 12
1/12 1% 0 10.46% 13643 13
1/12 5% 0 14.20% 12783 12
1/8 0 0.5% 17.60% 775 9
1/8 0 1% 21.36% 752 8
1/12 0 0.5% 16.94% 13717 10
1/12 0 1% 20.64% 14055 9

Notes. Since the problem has distinct semi-convergence, so numerical data in Table 5 and Table 6 denote optimal values
of iteration computations.

2.3.4 Conclusions and Discussions

From numerical experiments, we conclude that numerical solution of inverse problem can approximate exact solution
well as h approaches zero. However, the convergence rate is slow and the computational cost increases rapidly for three-
dimensional problems. The problem is ill-conditioned, while numerical solution of Neumann boundary condition is
more stable than that of Dirichlet case. Comparing Experiment 2 with Experiment 3, we can develop the accuracy by
considering boundary condition but don’t increase supplemental work, because the computation cost on modifying the
L-M parameter µk decreases. The model (2) is testified correctly. For numerical simulation of inverse problems, at present
there only has the primary regularization theory of Tikhonov and Lavnentiv (Borcea, 2003,Newman2000; Quarteroni,
2000; Stoer, 1993). Therefore, it is necessary to give a careful discussion on the convergence and stability analysis, and
this is a major problem in theoretical research on inverse problem (Wang, 2007; Liu, 2005; Xiao, 2003).

3. Application of Normal Finite Element in Electrical Impedance Tomography

In actual imagining problem, some computation and measures should be solved as follows.
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3.1 Quasi-element Stiffness Matrix Strategy

In the previous section, the iteration algorithm is formulated on finite element method, where massive three-dimensional
numerical integrals are considered in expressing coefficient matrix, and this is most expensive. Furthermore, coefficient
matrices are different in the iterations and give a large amount of additional computation. Thus we introduce quasi-element
stiffness matrix and use constant function to approximate ρ(x). Quasi-element stiffness matrix only depends on the values
of the node and basis function (5), and doesn’t vary during the iteration. The square matrix of order p is described by
(10), where p denotes the number of nodes in an element, and all the small-scaled matrices derived from a numerical
integral calculation are stored and expanded into the coefficient matrix with ρh(x). As shown in the previous numerical
experiments, the domain is divided uniformly and all the quasi-element stiffness matrices have a same definition (5). So
only an 8 × 8 square matrix is computed and stored, and this computation cost can be ignored.

Actual imaging region Ω is usually irregular, and it is partitioned into a series of rectangular subdomains and an irregular
subdomain. Rectangular domain is divided equally into lots of small rectangles, and the element size determines a quasi-
element stiffness matrix only stored one time in the computation. Irregular domain is partitioned by isoparametric element
method and all the quasi-element stiffness matrices are stored. For regular elements are more greatly than irregular ele-
ments, so the size and quality of stored quasi-element stiffness matrices are very small and their storage and computation
are simple.

The quasi-element stiffness matrix of irregular element is determined as follows. In (Borcea, 2003), let K̂ denote reference
unit, and let node basis function Ni(ξ) be defined by a three piecewise linear interpolation. Define

∇u =


∂u
∂x1
∂u
∂x2
∂u
∂x3

 , ∇̂u =


∂u
∂ξ1
∂u
∂ξ2
∂u
∂ξ3

 , Bm =


∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3

 ,
then ∇u = B−1

m ∇̂u. Bm is Jacobi matrix of isoparametric transformation of reference unit K̂ to grid unit Km, and by (5), the
quasi-element stiffness matrix Ā(m) is defined by

ā(m)
i j =

∫
Km

(B−1
m ∇̂Ni) · (B−1

m ∇̂N j)|det(Bm)|dξ. (26)

3.2 Neumann Boundary Condition Argument

Boundary current density ψ(x) (Neumann boundary condition) is immeasurable, so it is necessary to be properly handled.
Boundary potential φ(x) (Dirichlet boundary condition) can be measured by U0 only at the electrodes (partial boundary
nodes).

Electrodes, whose total quantity is n0, are supposed to locate at boundary nodes (see Fig. 1), and each electrode only
covers a node. The curved face covered by the kth electrode is denoted by γk, where the node is x jk and the measurable
current intensity is Ik =

∫
γk
ψdS . Let I represent the current vector of Ik.

Figure 1. Electrode and grids

Because the current in-out takes place only at electrodes, ψ(x) = 0, x ∈ ∂Ω \
n0∪

k=1
γk, we make integrals on both sides of
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(1a) on Ω and use Gauss formula to get∫
Ω

∇ · (ρ−1∇u)dx =
∫
∂Ω

ρ−1 ∂u
∂n

dS =
∫
∂Ω

ψdS =
n0∑

k=1

∫
γk

ψdS =
n0∑

k=1

Ik = 0. (27)

It is obviously seen that the input equals the output, and permissible current vector can be expanded to an n0−1 dimensional
space. The right-hand side term of (4) is treated by

bi = G(Ni) =
∫
∂Ω

NiψdS =
n0∑

k=1

∫
γk

NiψdS ≈
n0∑

k=1

Ni(x jk )
∫
γk

ψdS = qikIki , (28)

where ki is the electrode number corresponding to the node xi,

qik =

{
1, jk = i, i.e., xi ∈ γk,
0, otherwise. (29)

That is to say that

bi =

{
Ik, xi ∈ γk,
0, otherwise. (30)

Let b = [I], where b is an n dimensional vector expanded from the n0 dimensional vector I according the node numbers.
Therefore, (4) is changed into

Au = [I]. (31)

The right expression is given by the measured current directly, that is to say that the function ψ(x) and numerical integrals
are not involved.

Denote Q = (qi j)n×n0 , then [I] = QI. (31) turns into

Au = QI. (32)

Similar analysis as in §2 is considered,
ud = A−1

d QdI, (33)

U = Pud = PA−1
d QdI. (34)

Qd is the remaining matrix of Q deleted the i0th row. P is an (n0 − 1) × (n0 − 1) matrix made up of the numbers 0 and 1,
and it can extract the potentials at the electrodes except the ki0 electrode of ud. U denotes an n0 − 1 dimensional vector
consisting of the electrode potentials except the reference node.

3.3 Current Model and Simplified Calculation of Jacobi Matrix and Hesse Matrix

(34) shows that the relation of current vector and boundary potential vector (a discretization of Fρ) is linear. Different
boundary currents I(l), l = 1, 2, · · · , L are imposed on Ω, where {I(l)} at least includes a basis. Measuring the potential at
the boundary electrodes U(l)

0 , then we give an objective function

f (ρ) =
1
2

L∑
l=1

[r(l)]T r(l), (35)

where r(l) = U(l) − U(l)
0 and U(l) is defined by (34), L ≥ n0 − 1. Similarly,

∇ f (ρ) =
L∑

l=1

[J(l)]T r(l), H = ∇2 f (ρ) ≈
L∑

l=1

[J(l)]T J(l),

where J(l) denotes the Jacobi matrix of r(l). Adopting the expression of (31), then we reformulate (33) and (34) as follows

ud = A−1
d [I]d, (36)

U = Pud = PA−1
d [I]d, (37)

where [I]d is an n − 1 dimensional vector by deleting the i0th element from [I].
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Jacobi matrix, gradient vector and Hesse matrix are computed by (21), and the following equation system is solved

Ady =
[
Ā(m)]

dud. (38)

The quantity is determined by the number of partitioned elements and the measurement times, and there at least n×(n0−1)
systems are solved at each iteration for finite element problem. So its computation is greatly complicated. A technique of
(Du, 1997) is introduced and improved. Noting that Ad and (A−1

d )T = (AT
d )−1 = A−1

d are symmetric and positive definite,
we give another expression of (21),

∂U
∂ρm
=

1
ρ2

m
PA−1

d

[
Ā(m)

]
d

ud =
1
ρ2

m

(
A−1

d PT
)T [

Ā(m)
]
d

ud. (39)

PT is an (n−1)× (n0−1) matrix, thus the calculation of A−1
d PT turns into solving (n0−1) systems of equations. Moreover,

the current model is arranged as follows. A unit current is input at the reference electrode (the i0th node) and is output
at the others. The reference electrode is supposed to be labeled by the node n, and the current model is equivalent to the
following current basis,

I(1) = (1, 0, 0, · · · , 0,−1)T , I(2) = (0, 1, 0, · · · , 0,−1)T , · · · , I(n0−1) = (0, 0, 0, · · · , 1,−1)T . (40)

Collecting the vectors as W = ([I(1)], [I(2)], · · · , [I(n0−1)]), and deleting the i0th row, we have

Wd = ([I(1)]d, [I(2)]d, · · · , [I(n0−1)]d). (41)

This shows the entries −1 are deleted from W, and Wd = PT . Then,

A−1
d PT = A−1

d Wd = (A−1
d [I(1)]d, A−1

d [I(2)]d, · · · , A−1
d [I(n0−1)]d) = (u(1)

d , u(2)
d , · · · , u(n0−1)

d ) = V. (42)

u(l)
d computed previously is the solution of (32), and it is the potential vector of the lth time imposing current I(l)

d except
the reference node i0. Then (39) is equivalent to

∂U
∂ρm
=

1
ρ2

m
VT

[
Ā(m)

]
d

ud. (43)

Therefore, it is adequate to solve n0 − 1 finite element problems (systems of equations) at each iteration, and the compu-
tations of Jacobi matrix, gradient vector and Hesse matrix end out of the complicated formula (38).

A numerical experiment follows on a cylinder domain Ω = {x : x2
1 + x2

2 ≤ 1, 0 ≤ x3 ≤ 1} with ρ(x) = 2− x2
1 − x2

2 + x2
3. The

function ψ(x) has no analytical expression, and I(l) is known. Using this method above we can get numerical solutions
of u(x) and boundary potential U(l) to replace measurement solution U(l)

0 . Initial approximation is taken by ρm ≡ 1,
and the electrical resistivity ρ is solved by L-M method. It aims to testify how the approximation ρh(x) approaches the
preestablished function ρ(x). The domain Ω is divided into 10 element strips from the top to the bottom, 300 units in
each strip and the total number is 3000. The domain is separated by 11 node layers, 331 nodes in each layer, and the total
number is 3641. In the simulation 261 electrodes are arranged and numerical data are shown in Table 7.

Table 7. Simulation results on a cylinder

Figure Boundary current Boundary potential Relative error Time cost Iteration
No. perturbation perturbation r (second) times
3 0 0 2.26% 18906 20
4 0.1% 0 3.81% 19117 20
5 0 0.1% 3.92% 19177 20

For convenience, we take the section x3 = 0.55 as an illustration, and the comparisons of true data and numerical sim-
ulations are shown in Fig. 2–Fig. 5. All the numerical data are obtained by Matlab software in our personal computer.

4. Low Order Mixed Element Numerical Method of Inverse Problem and Numerical Simulation

4.1 Low Order Mixed Element Method

A local conservative low order mixed element method, or named block-centered finite volume method, is discussed in this
section (Russell, 1983,Weiser1988; Mishev, 1998; Lazarov, 1996; Larsson, 2003). The domain Ω is enclosed by several
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Figure 2. True distribution Figure 3. EIT simulation without perturbation

Figure 4. EIT simulation with current
perturbation

Figure 5. EIT simulation with potential
perturbation

faces parallel to the coordinate planes. The space R3 is partitioned by lots of rectangular solids with the length, the weight
and the height equal to (h1, h2, h3), whose centers xi = (xi,1, xi,2, xi,3) form a grid ω̄ = {xi}ni=1, and the center of boundary
block is supposed to lie in the boundary ∂Ω (see Fig. 6 and Fig. 7). The subset of cuboid and Ω is called control volume,
in symbol Vi. It holds obviously

Ω̄ =

n∪
i=1

V̄i, Vi ∩ V j = ∅, V̄i ∩ V̄ j = γi j, i , j,

where γi j is a rectangle and its area is denoted by m(γi j). Let ω = ω̄ ∩Ω, ∂ω = ω̄ ∩ ∂Ω. Introduce the notations,

d(xi, x j) =
[ 3∑

k=1

(xi,k − x j,k)2]1/2
, Σ(i) = { j : j , i,m(γi j) , 0}.

Figure 6. Inner nodes, control volume Vi

and adjacent points Σ(i)
Figure 7. Boundary points, control volume Vi

and adjacent points Σ(i)

Making integral on both sides of (1a) on any subset V ⊂ Ω, and using Gauss formula, we get the electric quantity balance
equation, ∫

∂V
ρ−1 ∂u

∂ν
dS = 0. (44)
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Taking V = Vi, and letting

di j = d(xi, x j), ρi j =
ρ(xi) + ρ(x j)

2
, (45)

then, we have

−
∫
∂Vi

ρ−1 ∂u
∂ν

dS = −
∫
∂Vi |Ω

ρ−1 ∂u
∂ν

dS − −
∫
∂Vi∩∂Ω

ρ−1 ∂u
∂ν

dS

= −
∑
j∈Σ(i)

∫
γi j

ρ−1 ∂u
∂ν

dS −
∫
∂Vi∩∂Ω

ψ(x)dS

≈ −
∑
j∈Σ(i)

1
ρi j

uh, j − uh,i

di j
m(γi j) −

∫
∂Vi∩∂Ω

ψ(x)dS .

(46)

As xi ∈ ω̄, it is true that ∂Vi ∩ ∂Ω = ∅,
∫
∂Vi∩∂Ω

ψ(x)dS = 0.

Therefore, we get the algorithm of finite volume element,

Lhuh = ψh, (47)

where
Lhuh,i ≡ −

∑
j∈Σ(i)

1
ρi j

uh, j − uh,i

di j
m(γi j), i = 1, 2, · · · , n, (48)

ψh,i =

∫
∂Vi∩∂Ω

ψ(x)dS . (49)

Let

aii =
∑
j∈Σ(i)

1
ρi j

m(γi j)
di j

, ai j = −
1
ρi j

m(γi j)
di j

, j ∈ Σ(i), (50)

then, we have the following statement

Theorem 1 Suppose that the grid ω̄ is connected and the coefficient matrix of (47) is denoted by A = (ai j)n×n, then A is
symmetric and positive semi-definite, the rank r(A) = n − 1, and any equation of (47) can be derived from the other n − 1
equations.
Proof: From (50) it follows clearly that A is symmetric.

y(x) and z(x) are supposed to be grid functions on ω̄, then by the symmetry of A we have

(Lhy, z) = −
∑
xi∈ω̄

zi

∑
j∈Σ(i)

1
ρi j

y j − yi

di j
m(γi j)

=
1
2

∑
xi∈ω̄

∑
j∈Σ(i)

1
ρi j

(y j − yi)z j − (y j − yi)zi

di j
m(γi j)

=
1
2

∑
xi∈ω̄

∑
j∈Σ(i)

1
ρi j

(y j − yi)(z j − zi)
di j

m(γi j).

(51)

Take z = y in the above expression, we have

(Lhy, y) =
1
2

∑
xi∈ω̄

∑
j∈Σ(i)

1
ρi j

(y j − yi)2

di j
m(γi j) ≥ 0.

Then A is positive semi-definite.

Considering Lhy = 0 and the above expression together, we have y j = yi, j ∈ Σ(i), xi ∈ ω̄, then by the connected property
of ω̄ we have yi ≡ C. Then the kernel space of A is one-dimensional, therefore r(A) = n − 1.

Making summation on i = 1, 2, · · · , n of (47),

n∑
i=1

Lhuh,i = −
n∑

i=1

∑
j∈Σ(i)

1
ρi j

uh, j − uh,i

di j
m(γi j) = (Lhuh, 1) = 0.
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Making integrals on both sides of (1a) on Ω, and using Gauss formula and (1b), we have∫
Ω

∇ · (ρ−1∇u)dx =
∫
∂Ω

ρ−1 ∂u
∂ν

dS =
∫
∂Ω

ψ(x)dS = 0,

then we get
n∑

i=1

ψh,i =
∑

xi∈∂ω

∫
∂Vi∩∂Ω

ψ(x)dS =
∫
∂Ω

ψ(x)dS = 0.

That is to say that any equation of (47) can be expressed by the other n − 1 equations. �

From the proof of Theorem 1, we can get the following corollary.
Corollary 1: Any two solutions of (47) are different by a constant.

Given ρ(x), it is next to solve the equation (47). Let u = (uh,1, uh,2, · · · , uh,n)T , and express (47) in matrices

Au = b. (52)

By Theorem 1 and Corollary 1, the potential at a node xi0 (electrode) is taken as the reference potential uh,i0 = 0, then the
solution of (47) exists and is unique. Deleting the i0th equation (as a redundant equation), we have

Adud = bd, (53)

where the matrix Ad is obtained by deleting the entries of the i0th row and the i0th column and it is symmetric and positive
definite. ud and bd are obtained from u and b similarly. Its solution is

ud = A−1
d bd. (54)

U denotes a potential vector of all the boundary nodes except the reference node, and U is made up of the partial compo-
nents of ud. Therefore,

U = Pud = PA−1
d bd, (55)

where the entries of P are assigned by the number 0 or by the number 1, and the values correspond to the potentials of the
nodes except the reference node.

4.2 Mixed Element Iteration Algorithm of Inverse Problem

Let U(l)
0 denote the vector of the values of ϕ(l) at the boundary nodes except xi0 , l = 1, 2, · · · , L. U is defined by (55), an

approximation to U(l)
0 by using finite volume element, and ρ = (ρ1, ρ2, · · · , ρn)T is defined by the values of ρh(x) at all the

grids. Let r(l) = U(l) − U(l)
0 , then we solve inverse problem by solving the following nonlinear optimization problem,

min
ρh∈Rn

f (ρh) =
1
2

L∑
l=1

[r(l)]T r(l), (56)

where Rn
+ = {z ∈ Rn : zi > 0, i = 1, 2, · · · , n}.

Here we adopt the method of Levenberg-Marquardt, and we have to formulate the gradient vector and the Hesse matrix
of objective function.

The gradient vector of f (ρ), ∇ f (ρ) = ( ∂ f
∂ρ1
, ∂ f
∂ρ2
, · · · , ∂ f

∂ρn
)T , is calculated later,

∂ f
∂ρm
=

L∑
l=1

(U(l) − U(l)
0 )T ∂U(l)

∂ρm
. (57)

For convenience to discuss, we omit all the superscript (l). By the definition (55), it holds

∂U
∂ρm
= P

∂A−1
d

∂ρm
bd. (58)

and it is adequate to only compute ∂A−1
d

∂ρm
.
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By A−1
d Ad = I, we have ∂A−1

d
∂ρm

Ad + A−1
d

∂Ad
∂ρm
= 0, then we have ∂A−1

d
∂ρm
= −A−1

d
∂Ad
∂ρm

A−1
d . Then it follows from (58) and (54),

∂U
∂ρm
= −PA−1

d
∂Ad

∂ρm
A−1

d bd = −PA−1
d
∂Ad

∂ρm
ud. (59)

From the definition of Ad, we get that ∂Ad
∂ρm

is derived from ∂A
∂ρm

by deleting the i0th row and the i0th column,

∂Ad

∂ρm
=

[ ∂A
∂ρm

]
d. (60)

Let ∂A
∂ρm
= (αm

i j)n×n, then

αm
i j =



− ∑
k∈Σ(m)

2
(ρm+ρk)2 · m(rmk)

dmk
, i = j = m,

− 2
(ρm+ρi)2 · m(rmi)

dmi
, i = j ∈ Σ(m),

2
(ρm+ρ j)2 · m(rm j)

dm j
, i = m, j ∈ Σ(m),

2
(ρm+ρi)2 · m(rmi)

dmi
, j = m, i ∈ Σ(m),

0, otherwise.

(61)

Hesse matrix of objective function f (ρ) is defined by ∇2 f (ρ) =
( ∂2 f (ρ)
∂ρm∂ρk

)
n×n, where

∂2 f (ρ)
∂ρm∂ρk

=

L∑
l=1

(∂U(l)

∂ρk

)T ∂U(l)

∂ρm
+

L∑
l=1

(U(l) − U(l)
0 )T ∂2U(l)

∂ρm∂ρk

≈
L∑

l=1

(∂U(l)

∂ρk

)T ∂U(l)

∂ρm
.

(62)

The Levenberg-Marquardt iteration is formulated as follows to solve (56)

ρ(k+1) = ρ(k) − (H + µkI)−1∇ f (ρ), (63)

where I is an identity matrix.

4.3 Mixed Finite Element Numerical Approximation of Inverse Problem

In this subsection we give several experimental tests to show the feasibility. TakeΩ = (0, 0.8)× (0, 1)× (0, 1.2), and define
discrete norms on ω̄ as follows

|v(x)|0,h =
( ∑

xi∈ω̄
v(xi)2m(Vi)

)1/2
, (64)

where m(Vi) denotes the volume of Vi, and relative error is

r =
|ρh(x) − ρ(x)|0,h
|ρ(x)|0,h

. (65)

4.3.1 Experiment 1

Suppose that exact solution of inverse problem is defined by ρ(x) = ex1+x2+x3 , and exact solution of (1a) satisfying two
types of boundary conditions is

u(l)(x) = ex1+x2+x3 û(l)(x),

where û(l)(x) = (a(l)x1 + b(l)x2 + c(l)x3 + d(l)), a(l) + b(l) + c(l) = 0, l = 1, 2, 3, 4. Then,

ψ(l)(x) = [û(l)(x)(1, 1, 1) + (a(l), b(l), c(l))] · ν,

and and the values of a(l), b(l), c(l), d(l) are given in Table 8.
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Table 8. The values of related coefficients

l a(l) b(l) c(l) d(l)

1 0 0 0 1
2 −1 0.5 0.5 0
3 0.5 −1 0.5 0
4 0.5 0.5 −1 0

To show how initial data affect numerical results, we give the perturbations of ψ(x) and φ(x) as follows

ψ(l)
δ1

(x) = ψ(l)(x)(1 + δ1(sinωπx1 + sinωπx2 + sinωπx3)), (66)

φ(l)
δ2

(x) = φ(l)(x)(1 + δ2(cosωπx1 + cosωπx2 + cosωπx3)), (67)

replacing ψ(x), φ(x) for numerical simulation. Initial approximations are taken by ρ(0)
i ≡ 1, i = 1, 2, · · · , n, and numerical

data are illustrated in Table 9.

Table 9. Perturbation effects (ω = 10)

(h1, h2, h3) δ1 δ2 r Time cost(second) Iteration times
(0.1600, 0.1250, 0.1500) 0 0 4.71% 365 11
(0.0800, 0.0625, 0.0750) 0 0 3.32% 23587 15
(0.1600, 0.1250, 0.1500) 5% 0 5.16% 368 11
(0.0800, 0.0625, 0.0750) 5% 0 4.73% 20660 13
(0.1600, 0.1250, 0.1500) 0 1% 11.71% 295 9
(0.0800, 0.0625, 0.0750) 0 1% 13.87% 12179 8

4.3.2 Experiment 2

Exact solution of inverse problem is defined by ρ(x) = (2.5 + x2
1 − 2x2

2 + x2
3)−1, and exact solution of (1a) and Neumann

boundary condition are given as follows,

u(1)(x) = ln(2.5 + x2
1 − 2x2

2 + x2
3), x ∈ Ω, ψ(1)(x) = (2x1,−4x2, 2x3) · ν, x ∈ ∂Ω,

u(2)(x) = x1x2x3, x ∈ Ω, ψ(2)(x) = (2.5 + x2
1 − 2x2

2 + x2
3)(x2x3, x1x3, x1x2) · ν, x ∈ ∂Ω.

Initial approximations are taken by ρ(0)
i ≡ 1, i = 1, 2, · · · , n, and numerical data are shown in Table 10 after a similar

process of the above experiment.

Table 10. Perturbation effect (ω = 10)

(h1, h2, h3) δ1 δ2 r Time cost(second) Iteration times
(0.1600, 0.1250, 0.1500) 0 0 26.34% 518 14
(0.0800, 0.0625, 0.0750) 0 0 21.43% 43718 20
(0.1600, 0.1250, 0.1500) 5% 0 27.92% 486 13
(0.0800, 0.0625, 0.0750) 5% 0 24.34% 37338 16
(0.1600, 0.1250, 0.1500) 0 1% 32.95% 425 11
(0.0800, 0.0625, 0.0750) 0 1% 31.68% 29301 11

Notes. Since the problem is distinctly semi-convergent, so numerical data in Table 9 and Table 10 denote optimal values
of iteration computations.
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4.3.3 Conclusions and Discussions

From numerical experiments, we conclude that numerical solution of inverse problem can approximate exact solution
well as h approaches zero. Meanwhile, the convergence rate is slow and the computational cost increases rapidly for
three-dimensional problems. The problem is ill-posed, while numerical solution of Neumann boundary condition is more
stable than that of Dirichlet case. For direct problems, low order mixed element (block-centered finite volume element)
is argued as a powerful tool in numerical simulation of oil reservoir (Russell, 1995; Jones, 1995; Rui, 2012; Rui, 2013;
Rui, 20122; Yuan, 2016; Yuan, 2015), which originates from the principle of mass conservation in physical science and is
expressed in a discrete formulation. It has many advantages such as the simplicity and the small-scaled calculation of the
scheme. The coefficient matrix is symmetric and positive definite and the problem is solved easily. Its numerical solution
is convergent of second order accuracy. Therefore, the convergence and stability analysis of inverse problem should be
paid more attention.

5. Mixed Element Simulation Experiment of Image Reconstruction

In actual image reconstruction, Neumann boundary condition ψ(x) denotes the boundary current density and is immea-
surable. What we can measure is the current intensity through the electrodes, and it is just handled by finite volume
element. The electrodes only cover partial boundary nodes, so the boundary potentials (boundary condition) we measure
denote the potential values of partial boundary nodes. Generally, the computational region is not a cuboid. The simulation
experiment of image reconstruction is discussed and the simple algorithm of Jacobi matrix is shown.

Let Ω1 = (0, 1)× (0, 1)× (0, 0.5), Ω2 = (0.25, 0.75)× (0.25, 0.75)× (0.5, 1), and take Ω̄ = Ω̄1 ∪ Ω̄2. N denotes the number
of electrodes, and Γi denotes the contact surface of the ith electrode and Ω (see Fig. 8 and Fig. 9). For any interface Γk,
it is supposed to find xi ∈ ∂ω such that xi ∈ Γk ⊂ (∂Vi ∩ ∂Ω), i.e., the electrodes are supposed to be set at the boundary
nodes, then Γi ⊂ ∂Ω, i = 1, 2, · · · ,N, Γ̄i ∩ Γ̄ j = ∅, i , j. Let Γ0 = ∂Ω \ ∪N

i=1Γi, then ∂Ω = ∪N
i=0Γi.

Figure 8. Stepped domain Ω Figure 9. Electrode set

In electrical impedance tomograph problems, electric current flows in and out only through the interface, then we give the
following restriction,

ψ(x) = 0, x ∈ Γ0. (68)

Define Ji =
∫
Γi
ψ(x)dS , i = 1, 2, · · · ,N, and electric current vector J = (J1, · · · , JN)T , then we have

Lemma 1. Suppose that u(x) is the solution of (1a) and (1b) satisfying Neumann boundary condition, and ψ(x) satisfies
(68), then we have

∑N
i=1 Ji = 0.

Proof: Making integrals on both sides of (1a) on Ω, applying Gauss formula, and using the assumption (68), we have∫
Ω

∇ · (ρ−1∇u)dx =
∫
∂Ω

ρ−1 ∂u
∂ν

dS =
N∑

i=1

∫
Γi

ψ(x)dS =
N∑

i=1

Ji = 0.

�

From Lemma 1 we see that the power inside Ω is conservative and allowable current vector can be expanded into an
(N − 1) dimensional vector.

Later we discuss the relation of current vector J and the right-hand side terms of (47) or (52). By (49), we have for xi ∈ ω,

bi = 0. (69)

For xi ∈ ∂ω, there is not any electrode at xi, ∂Vi ∩ ∂Ω ⊂ Γ0, then we have

bi =

∫
∂Vi∩∂Ω

ψ(x)dS =
∫
∂Vi∩∂Ω

0dS = 0. (70)
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Considering xi ∈ ∂ω, an electrode k is set at xi, xi ∈ Γk, k , 0, then we have

bi =

∫
∂Vi∩∂Ω

ψ(x)dS =
∫
∂Γk

ψ(x)dS = Jk. (71)

From (69)-(71), it follows that b is an n-dimensional vector expanded by an N-dimensional vector J in the order of nodes,
denoted by b = [J]. Eq. (53) is rewritten by

Adud = [J]d. (72)

Jacobi matrix, gradient vector and Hesse matrix are computed by (59), where a series of large-scaled equations are argued
such as

Ady = z. (73)

The number of equations is determined by the number of grid points and measurement times. Using (59), we solve at least
n × (N − 1) equations during an iteration of direct problem. We give some proper modifications to solve the large-scaled
computations. Noting that Ad is symmetric and positive definite, we see that (A−1

d )T = (AT
d )−1 = A−1

d is still symmetric
and positive definite, and we change (59) into

∂U
∂ρm
= −PA−1

d
[ ∂A
∂ρm

]
dud = −(A−1

d PT )T [ ∂A
∂ρm

]
dud. (74)

PT is an (n− 1)× (N − 1) matrix, and A−1
d PT is computed by solving (N − 1) equations. Electric current model is taken as

follows. Unit current is input at reference electrode i0 and is output at other electrodes in turns. The reference electrode is
set at the node n, the current model is interpreted by a basis

J(1) = (1, 0, 0, · · · , 0, 0,−1)T , J(2) = (0, 1, 0, · · · , 0, 0,−1)T , · · · , J(N−1) = (0, 0, 0, · · · , 0, 1,−1)T . (75)

Collecting all the n-dimensional current vectors together as W = ([J(1)], [J(2)], · · · , [J(N−1)]), then deleting the i0th row,
we have

Wd = ([J(1)]d, [J(2)]d, · · · , [J(N−1)]d). (76)

It means deleting the row of the number −1 of W, then we have Wd = PT . Thus,

A−1
d PT = A−1

d Wd = (A−1
d [J(1)]d, A−1

d [J(2)]d, · · · , A−1
d [J(N−1)]d) = (u(1)

d , u(2)
d , · · · , u(N−1)

d ) = G. (77)

In the above expressions u(l)
d denotes the potential at different nodes except the reference node according to the lth imposed

current J(l), and it is the solution of finite volume element equation (52). The potential has been computed previously. Eq.
(59) is changed into

∂U
∂ρm
= −GT [ ∂A

∂ρm

]
ud. (78)

Therefore, it is adequate to solve N − 1 direct equations in every iteration of EIT and (73) is not used to solve Jacobi
matrix. By (57) and (62), we compute gradient vectors and Hesse matrix similarly.

We apply Matlab software and discuss image reconstruction simulation to testify the feasibility of this type of algorithms.
Spacial step is taken equally by h1 = h2 = h3 = 0.0625, the number of total nodes is n = 3249, the number of boundary
nodes is 1282 and the number of electrodes is N = 610.

Numerical simulation consists of two different modules.

One is observation simulation module. The electrical resistivity distribution is assigned by ρ(x) = 1 + x2
1 + x2

2 + x2
3, and

a current basis is defined by (75). At electrode N a unit current is input and is output from the electrodes 1, 2, · · · , n.
The boundary conditions of two types and analytical solution of (1a) are not formulated explicitly, while we can use the
method of finite volume element to solve Neumann problems. By (55) we get the boundary potential vector U(i) to replace
measured values U(i)

0 , i = 1, 2, · · · ,N − 1.

Another is image reconstruction module. Giving proper perturbations for electric field intensity or potential, taking initial
values by ρ(i)

0 ≡ 0, i = 1, 2, · · · , n, we use L-M algorithm to get electrical resistivity distribution ρ, then we want to confirm
whether the resulting distribution approximates the preestablished values well or not. The comparisons are illustrated at
x3 = 0.25 in the following figures (Fig. 10–Fig. 13), whose simulation data are shown in Table 11.
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Figure 10. Actual electrical resistivity distribution Figure 11. Numerical distribution without
perturbation

Figure 12. Numerical distribution with
0.01% current perturbation

Figure 13. Numerical distribution with
0.01% potential perturbation

Table 11. Simulation data on stepped region

Figure Current Potential Relative Time cost Iteration
No. perturbation perturbation error r (second) times
11 0 0 0.03% 118650 40
12 0.01% 0 3.35% 18319 6
13 0 0.01% 1.85% 23776 8

6. Discussions

In this paper the highlights are concluded as follows.

(I) Electrical impedance tomography is a new technique in simulating biological medicine imagining technology. So this
research has important theoretical and applicable values.

(II) Quasi-element stiffness matrix is applied in the iterations and has invariance property, so numerical integral computa-
tion of coefficient matrix is shortened greatly.

(III) A special current forcing model is put forward to compute gradient vector and Hesse matrix by using enough data. It
is not necessary to consider large-scale linear equations.

(IV) Based on standard finite element method, a conservative low-order mixed finite element is established and its semi-
positive definiteness and existence are testified.

(V) From lots numerical simulations and data, we conclude that this method is a powerful, efficient and effective tool to
solve some science problems such as geophysical exploration and hydrogeology.
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