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1 Introduction

This is an introductory course on differentiable manifolds. These are higher dimen-
sional analogues of surfaces like this:

This is the image to have, but we shouldn’t think of a manifold as always sitting
inside a fixed Euclidean space like this one, but rather as an abstract object. One of
the historical driving forces of the theory was General Relativity, where the manifold
is four-dimensional spacetime, wormholes and all:

Spacetime is not part of a bigger Euclidean space, it just exists, but we need to learn
how to do analysis on it, which is what this course is about.

Another input to the subject is from mechanics – the dynamics of complicated me-
chanical systems involve spaces with many degrees of freedom. Just think of the
different configurations that an Anglepoise lamp can be put into:
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How many degrees of freedom are there? How do we describe the dynamics of this if
we hit it?

The first idea we shall meet is really the defining property of a manifold – to be able
to describe points locally by n real numbers, local coordinates. Then we shall need
to define analytical objects (vector fields, differential forms for example) which are
independent of the choice of coordinates. This has a double advantage: on the one
hand it enables us to discuss these objects on topologically non-trivial manifolds like
spheres, and on the other it also provides the language for expressing the equations
of mathematical physics in a coordinate-free form, one of the fundamental principles
of relativity.

The most basic example of analytical techniques on a manifold is the theory of dif-
ferential forms and the exterior derivative. This generalizes the grad, div and curl of
ordinary three-dimensional calculus. A large part of the course will be occupied with
this. It provides a very natural generalization of the theorems of Green and Stokes
in three dimensions and also gives rise to de Rham cohomology which is an analytical
way of approaching the algebraic topology of the manifold. This has been important
in an enormous range of areas from algebraic geometry to theoretical physics.

More refined use of analysis requires extra data on the manifold and we shall simply
define and describe some basic features of Riemannian metrics. These generalize
the first fundamental form of a surface and, in their Lorentzian guise, provide the
substance of general relativity. A more complete story demands a much longer course,
but here we shall consider just two aspects which draw on the theory of differential
forms: the study of geodesics via a vector field, the geodesic flow, on the cotangent
bundle, and some basic properties of harmonic forms.

Certain standard technical results which we shall require are proved in the Appendix
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so as not to interrupt the development of the theory.

A good book to accompany the course is: An Introduction to Differential Manifolds
by Dennis Barden and Charles Thomas (Imperial College Press £22 (paperback)).

2 Manifolds

2.1 Coordinate charts

The concept of a manifold is a bit complicated, but it starts with defining the notion
of a coordinate chart.

Definition 1 A coordinate chart on a set X is a subset U ⊆ X together with a
bijection

ϕ : U → ϕ(U) ⊆ Rn

onto an open set ϕ(U) in Rn.

Thus we can parametrize points x of U by n coordinates ϕ(x) = (x1, . . . , xn).

We now want to consider the situation where X is covered by such charts and satisfies
some consistency conditions. We have

Definition 2 An n-dimensional atlas on X is a collection of coordinate charts {Uα, ϕα}α∈I
such that

• X is covered by the {Uα}α∈I

• for each α, β ∈ I, ϕα(Uα ∩ Uβ) is open in Rn

• the map
ϕβϕ

−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is C∞ with C∞ inverse.

Recall that F (x1, . . . , xn) ∈ Rn is C∞ if it has derivatives of all orders. We shall also
say that F is smooth in this case. It is perfectly possible to develop the theory of
manifolds with less differentiability than this, but this is the normal procedure.
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Examples:

1. Let X = Rn and take U = X with ϕ = id. We could also take X to be any open
set in Rn.

2. Let X be the set of straight lines in the plane:

Each such line has an equation Ax + By + C = 0 where if we multiply A,B,C by a
non-zero real number we get the same line. Let U0 be the set of non-vertical lines.
For each line ` ∈ U0 we have the equation

y = mx+ c

where m, c are uniquely determined. So ϕ0(`) = (m, c) defines a coordinate chart
ϕ0 : U0 → R2. Similarly if U1 consists of the non-horizontal lines with equation

x = m̃y + c̃

we have another chart ϕ1 : U1 → R2.

Now U0 ∩ U1 is the set of lines y = mx+ c which are not horizontal, so m 6= 0. Thus

ϕ0(U0 ∩ U1) = {(m, c) ∈ R2 : m 6= 0}

which is open. Moreover, y = mx+ c implies x = m−1y − cm−1 and so

ϕ1ϕ
−1
0 (m, c) = (m−1,−cm−1)

which is smooth with smooth inverse. Thus we have an atlas on the space of lines.

3. Consider R as an additive group, and the subgroup of integers Z ⊂ R. Let X be
the quotient group R/Z and p : R→ R/Z the quotient homomorphism.

Set U0 = p(0, 1) and U1 = p(−1/2, 1/2). Since any two elements in the subset p−1(a)
differ by an integer, p restricted to (0, 1) or (−1/2, 1/2) is injective and so we have
coordinate charts

ϕ0 = p−1 : U0 → (0, 1), ϕ1 = p−1 : U1 → (−1/2, 1/2).
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Clearly U0 and U1 cover R/Z since the integer 0 ∈ U1.

We check:

ϕ0(U0 ∩ U1) = (0, 1/2) ∪ (1/2, 1), ϕ1(U0 ∩ U1) = (−1/2, 0) ∪ (0, 1/2)

which are open sets. Finally, if x ∈ (0, 1/2), ϕ1ϕ
−1
0 (x) = x and if x ∈ (1/2, 1),

ϕ1ϕ
−1
0 (x) = x− 1. These maps are certainly smooth with smooth inverse so we have

an atlas on X = R/Z.

4. Let X be the extended complex plane X = C ∪ {∞}. Let U0 = C with ϕ0(z) =
z ∈ C ∼= R2. Now take

U1 = C\{0} ∪ {∞}

and define ϕ1(z̃) = z̃−1 ∈ C if z̃ 6=∞ and ϕ1(∞) = 0. Then

ϕ0(U0 ∩ U1) = C\{0}

which is open, and

ϕ1ϕ
−1
0 (z) = z−1 =

x

x2 + y2
− i y

x2 + y2
.

This is a smooth and invertible function of (x, y). We now have a 2-dimensional atlas
for X, the extended complex plane.

5. Let X be n-dimensional real projective space, the set of 1-dimensional vector
subspaces of Rn+1. Each subspace is spanned by a non-zero vector v, and we define
Ui ⊂ RPn to be the subset for which the i-th component of v ∈ Rn+1 is non-zero.
Clearly X is covered by U1, . . . , Un+1. In Ui we can uniquely choose v such that the
ith component is 1, and then Ui is in one-to-one correspondence with the hyperplane
xi = 1 in Rn+1, which is a copy of Rn. This is therefore a coordinate chart

ϕi : Ui → Rn.

The set ϕi(Ui∩Uj) is the subset for which xj 6= 0 and is therefore open. Furthermore

ϕiϕ
−1
j : {x ∈ Rn+1 : xj = 1, xi 6= 0} → {x ∈ Rn+1 : xi = 1, xj 6= 0}

is

v 7→ 1

xi
v

which is smooth with smooth inverse. We therefore have an atlas for RPn.
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2.2 The definition of a manifold

All the examples above are actually manifolds, and the existence of an atlas is suf-
ficient to establish that, but there is a minor subtlety in the actual definition of a
manifold due to the fact that there are lots of choices of atlases. If we had used a
different basis for R2, our charts on the space X of straight lines would be different,
but we would like to think of X as an object independent of the choice of atlas. That’s
why we make the following definitions:

Definition 3 Two atlases {(Uα, ϕα)}, {(Vi, ψi)} are compatible if their union is an
atlas.

What this definition means is that all the extra maps ψiϕ
−1
α must be smooth. Com-

patibility is clearly an equivalence relation, and we then say that:

Definition 4 A differentiable structure on X is an equivalence class of atlases.

Finally we come to the definition of a manifold:

Definition 5 An n-dimensional differentiable manifold is a space X with a differen-
tiable structure.

The upshot is this: to prove something is a manifold, all you need is to find one atlas.
The definition of a manifold takes into account the existence of many more atlases.

Many books give a slightly different definition – they start with a topological space,
and insist that the coordinate charts are homeomorphisms. This is fine if you see the
world as a hierarchy of more and more sophisticated structures but it suggests that
in order to prove something is a manifold you first have to define a topology. As we’ll
see now, the atlas does that for us.

First recall what a topological space is: a set X with a distinguished collection of
subsets V called open sets such that

1. ∅ and X are open

2. an arbitrary union of open sets is open

3. a finite intersection of open sets is open
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Now suppose M is a manifold. We shall say that a subset V ⊆M is open if, for each
α, ϕα(V ∩Uα) is an open set in Rn. One thing which is immediate is that V = Uβ is
open, from Definition 2.

We need to check that this gives a topology. Condition 1 holds because ϕα(∅) = ∅
and ϕα(M ∩ Uα) = ϕα(Uα) which is open by Definition 1. For the other two, if Vi is
a collection of open sets then because ϕα is bijective

ϕα((∪Vi) ∩ Uα) = ∪ϕα(Vi ∩ Uα)

ϕα((∩Vi) ∩ Uα) = ∩ϕα(Vi ∩ Uα)

and then the right hand side is a union or intersection of open sets. Slightly less
obvious is the following:

Proposition 2.1 With the topology above ϕα : Uα → ϕα(Uα) is a homeomorphism.

Proof: If V ⊆ Uα is open in the induced topology on Uα then since Uα itself is open,
V is open in M . Then ϕα(V ) = ϕα(V ∩Uα) is open by the definition of the topology,
so ϕ−1α is certainly continuous.

Now let W ⊂ ϕα(Uα) be open, then ϕ−1α (W ) ⊆ Uα so we need to prove that ϕ−1α (W )
is open in M . But

ϕβ(ϕ−1α (W ) ∩ Uβ) = ϕβϕ
−1
α (W ∩ ϕα(Uα ∩ Uβ)) (1)

From Definition 2 the set ϕα(Uα ∩ Uβ) is open and hence its intersection with the
open set W is open. Now ϕβϕ

−1
α is C∞ with C∞ inverse and so certainly a homeo-

morphism, and it follows that the right hand side of (1) is open. Thus the left hand
side ϕβ(ϕ−1α W ∩ Uβ) is open and by the definition of the topology this means that
ϕ−1α (W ) is open, i.e. ϕα is continuous. 2

To make any reasonable further progress, we have to make two assumptions about
this topology which will hold for the rest of these notes:

• the manifold topology is Hausdorff

• in this topology we have a countable basis of open sets

Without these assumptions, manifolds are not even metric spaces, and there is not
much analysis that can reasonably be done on them.
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2.3 Further examples of manifolds

We need better ways of recognizing manifolds than struggling to find explicit coordi-
nate charts. For example, the sphere is a manifold

and although we can use stereographic projection to get an atlas:

there are other ways. Here is one.

Theorem 2.2 Let F : U → Rm be a C∞ function on an open set U ⊆ Rn+m and
take c ∈ Rm. Assume that for each a ∈ F−1(c), the derivative

DFa : Rn+m → Rm

is surjective. Then F−1(c) has the structure of an n-dimensional manifold which is
Hausdorff and has a countable basis of open sets.

Proof: Recall that the derivative of F at a is the linear map DFa : Rn+m → Rm

such that
F (a+ h) = F (a) +DFa(h) +R(a, h)
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where R(a, h)/‖h‖ → 0 as h→ 0.

If we write F (x1, . . . , xn+m) = (F1, . . . , Fm) the derivative is the Jacobian matrix

∂Fi
∂xj

(a) 1 ≤ i ≤ m, 1 ≤ j ≤ n+m

Now we are given that this is surjective, so the matrix has rank m. Therefore by
reordering the coordinates x1, . . . , xn+m we may assume that the square matrix

∂Fi
∂xj

(a) 1 ≤ i ≤ m, 1 ≤ j ≤ m

is invertible.

Now define
G : U → Rn+m

by
G(x1, . . . , xn+m) = (F1, . . . , Fm, xm+1, . . . , xn+m). (2)

Then DGa is invertible.

We now apply the inverse function theorem to G, a proof of which is given in the
Appendix. It tells us that there is a neighbourhood V of a, and W of G(a) such
that G : V → W is invertible with smooth inverse. Moreover, the formula (2) shows
that G maps V ∩ F−1(c) to the intersection of W with the copy of Rn given by
{x ∈ Rn+m : xi = ci, 1 ≤ i ≤ m}. This is therefore a coordinate chart ϕ.

If we take two such charts ϕα, ϕβ, then ϕαϕ
−1
β is a map from an open set in {x ∈

Rn+m : xi = c1, 1 ≤ i ≤ m} to another one which is the restriction of the map GαG
−1
β

of (an open set in) Rn+m to itself. But this is an invertible C∞ map and so we have
the requisite conditions for an atlas.

Finally, in the induced topology from Rn+m, Gα is a homeomorphism, so open sets
in the manifold topology are the same as open sets in the induced topology. Since
Rn+m is Hausdorff with a countable basis of open sets, so is F−1(c).

Effectively, (2) gives a coordinate chart on Rn+m such that F−1(c) is a linear subspace
there: we are treating Rn+m as a manifold in its own right. 2

We can now give further examples of manifolds:

Examples: 1. Let

Sn = {x ∈ Rn+1 :
n+1∑
1

x2i = 1}
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be the unit n-sphere. Define F : Rn+1 → R by

F (x) =
n+1∑
1

x2i .

This is a C∞ map and

DFa(h) = 2
∑
i

aihi

is non-zero (and hence surjective in the 1-dimensional case) so long as a is not iden-
tically zero. If F (a) = 1, then

n+1∑
1

a2i = 1 6= 0

so a 6= 0 and we can apply Theorem 2.2 and deduce that the sphere is a manifold.

2. Let O(n) be the space of n × n orthogonal matrices: AAT = I. Take the vector
space Mn of dimension n2 of all real n× n matrices and define the function

F (A) = AAT

to the vector space of symmetric n × n matrices. This has dimension n(n + 1)/2.
Then O(n) = F−1(I).

Differentiating F we have

DFA(H) = HAT + AHT

and putting H = KA this is

KAAT + AATKT = K +KT

if AAT = I, i.e. if A ∈ F−1(I). But given any symmetric matrix S, taking K = S/2
shows that DFI is surjective and so, applying Theorem 2.2 we find that O(n) is a
manifold. Its dimension is

n2 − n(n+ 1)/2 = n(n− 1)/2.

2.4 Maps between manifolds

We need to know what a smooth map between manifolds is. Here is the definition:
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Definition 6 A map F : M → N of manifolds is a smooth map if for each point
x ∈M and chart (Uα, ϕα) in M with x ∈ Uα and chart (Vi, ψi) of N with F (x) ∈ Vi,
the set F−1(Vi) is open and the composite function

ψiFϕ
−1
α

on ϕα(F−1(Vi) ∩ Uα) is a C∞ function.

Note that it is enough to check that the above holds for one atlas – it will follow from
the fact that ϕαϕ

−1
β is C∞ that it then holds for all compatible atlases.

Exercise 2.3 Show that a smooth map is continuous in the manifold topology.

The natural notion of equivalence between manifolds is the following:

Definition 7 A diffeomorphism F : M → N is a smooth map with smooth inverse.

Example: Take two of our examples above – the quotient group R/Z and the
1-sphere, the circle, S1. We shall show that these are diffeomorphic. First we define
a map

G : R/Z→ S1

by
G(x) = (cos 2πx, sin 2πx).

This is clearly a bijection. Take x ∈ U0 ⊂ R/Z then we can represent the point by
x ∈ (0, 1). Within the range (0, 1/2), sin 2πx 6= 0, so with F = x21 + x22, we have
∂F/∂x2 6= 0. The use of the inverse function theorem in Theorem 2.2 then says that
x1 is a local coordinate for S1, and in fact on the whole of (0, 1/2) cos 2πx is smooth
and invertible. We proceed by taking the other similar open sets to check fully that
G is a smooth, bijective map. To prove that its inverse is smooth, we can rely on the
inverse function theorem, since sin 2πx 6= 0 in the interval.

3 Tangent vectors and cotangent vectors

3.1 Existence of smooth functions

The most fundamental type of map between manifolds is a smooth map

f : M → R.
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We can add these and multiply by constants so they form a vector space C∞(M), the
space of C∞ functions on M . In fact, under multiplication it is also a commutative
ring. So far, all we can assert is that the constant functions lie in this space, so let’s
see why there are lots and lots of global C∞ functions. We shall use bump functions
and the Hausdorff property.

First note that the following function of one variable is C∞:

f(t) = e−1/t t > 0

= 0 t ≤ 0

Now form

g(t) =
f(t)

f(t) + f(1− t)
so that g is identically 1 when t ≥ 1 and vanishes if t ≤ 0. Next write

h(t) = g(t+ 2)g(2− t).

This function vanishes if |t| ≥ 2 and is 1 where |t| ≤ 1: it is completely flat on top.

Finally make an n-dimensional version

k(x1, . . . , xn) = h(x1)h(x2) . . . h(xn).

In the sup norm, this is 1 if |x| ≤ 1, so k(r−1x) is identically 1 in a ball of radius r
and 0 outside a ball of radius 2r.

We shall use this construction several times later on. For the moment, let M be
any manifold and (U,ϕU) a coordinate chart. Choose a function k of the type above
whose support (remember supp f = {x : f(x) 6= 0}) lies in ϕU(U) and define

f : M → R

by

f(x) = k ◦ ϕU(x) x ∈ U
= 0 x ∈M\U.
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Is this a smooth function? The answer is yes: by definition f is smooth for points
in the coordinate neighbourhood U . But supp k is closed and bounded in Rn and so
compact and since ϕU is a homeomorphism, f is zero on the complement of a compact
set in M . But a compact set in a Hausdorff space is closed, so its complement is open.
If y 6= U then there is a neighbourhood of y on which f is identically zero, in which
case clearly f is smooth at y.

3.2 The derivative of a function

Smooth functions exist in abundance. The question now is: we know what a differ-
entiable function is – so what is its derivative? We need to give some coordinate-
independent definition of derivative and this will involve some new concepts. The
derivative at a point a ∈M will lie in a vector space T ∗a called the cotangent space.

First let’s address a simpler question – what does it mean for the derivative to vanish?
This is more obviously a coordinate-invariant notion because on a compact manifold
any function has a maximum, and in any coordinate system in a neighbourhood of
that point, its derivative must vanish. We can check that: if f : M → R is smooth
then the composition

g = fϕ−1α

is a C∞ function of x1, . . . , xn. Suppose its derivative vanishes at ϕα(a) = (x1(a), . . . , xn(a))
and now take a different chart ϕβ with h = fϕ−1β . Then

g = fϕ−1α = fϕ−1β ϕβϕ
−1
α = hϕβϕ

−1
α .

But from the definition of an atlas, ϕβϕ
−1
α is smooth with smooth inverse, so

g(x1, . . . , xn) = h(y1(x), . . . , yn(x))

and by the chain rule
∂g

∂xi
=
∑
j

∂h

∂yj
(y(x))

∂yj
∂xi

(x).

Since y(x) is invertible, its Jacobian matrix is invertible, so that Dgx(a) = 0 if and
only if Dhy(a) = 0. We have checked then that the vanishing of the derivative at a
point a is independent of the coordinate chart. We let Za ⊂ C∞(M) be the subset of
functions whose derivative vanishes at a. Since Dfa is linear in f the subset Za is a
vector subspace.

Definition 8 The cotangent space T ∗a at a ∈M is the quotient space

T ∗a = C∞(M)/Za.
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The derivative of a function f at a is its image in this space and is denoted (df)a.

Here we have simply defined the derivative as all functions modulo those whose deriva-
tive vanishes. It’s almost a tautology, so to get anywhere we have to prove something
about T ∗a . First note that if ψ is a smooth function on a neighbourhood of x, we
can multiply it by a bump function to extend it to M and then look at its image in
T ∗a = C∞(M)/Za. But its derivative in a coordinate chart around a is independent of
the bump function, because all such functions are identically 1 in a neighbourhood
of a. Hence we can actually define the derivative at a of smooth functions which
are only defined in a neighbourhood of a. In particular we could take the coordinate
functions x1, . . . , xn. We then have

Proposition 3.1 Let M be an n-dimensional manifold, then

• the cotangent space T ∗a at a ∈M is an n-dimensional vector space

• if (U,ϕ) is a coordinate chart around x with coordinates x1, . . . , xn, then the
elements (dx1)a, . . . (dxn)a form a basis for T ∗a

• if f ∈ C∞(M) and in the coordinate chart, fϕ−1 = φ(x1, . . . , xn) then

(df)a =
∑
i

∂φ

∂xi
(ϕ(a))(dxi)a (3)

Proof: If f ∈ C∞(M), with fϕ−1 = φ(x1, . . . , xn) then

f −
∑ ∂φ

∂xi
(ϕ(a))xi

is a (locally defined) smooth function whose derivative vanishes at a, so

(df)a =
∑ ∂f

∂xi
(ϕ(a))(dxi)a

and (dx1)a, . . . (dxn)a span T ∗a .

If
∑

i λi(dxi)a = 0 then
∑

i λixi has vanishing derivative at a and so λi = 0 for all i.
2
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Remark: It is rather heavy handed to give two symbols f, φ for a function and its
representation in a given coordinate system, so often in what follows we shall use just
f . Then we can write (3) as

df =
∑ ∂φ

∂xi
dxi.

With a change of coordinates (x1, . . . , xn)→ (y1(x), . . . , yn(x)) the formalism gives

df =
∑
j

∂f

∂yj
dyj =

∑
i,j

∂f

∂yj

∂yj
∂xi

dxi.

Definition 9 The tangent space Ta at a ∈M is the dual space of the cotangent space
T ∗a .

This is admittedly a roundabout way of defining Ta, but since the double dual (V ∗)∗

of a finite dimensional vector space is naturally isomorphic to V the notation is
consistent. If x1, . . . , xn is a local coordinate system at a and (dx1)a, . . . , (dxn)a the
basis of T ∗a defined in (3.1) then the dual basis for the tangent space Ta is denoted(

∂

∂x1

)
a

, . . . ,

(
∂

∂xn

)
a

.

This definition at first sight seems far away from our intuition about the tangent
space to a surface in R3:

The problem arises because our manifold M does not necessarily sit in Euclidean
space and we have to define a tangent space intrinsically. There are two ways around
this: one would be to consider functions f : R→M and equivalence classes of these,
instead of functions the other way f : M → R. Another, perhaps more useful, one is
provided by the notion of directional derivative. If f is a function on a surface in R3,
then for every tangent direction u at a we can define the derivative of f at a in the
direction u, which is a real number: u · ∇f(a) or Dfa(u). Imitating this gives the
following:
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Definition 10 A tangent vector at a point a ∈M is a linear map Xa : C∞(M)→ R
such that

Xa(fg) = f(a)Xag + g(a)Xaf.

This is the formal version of the Leibnitz rule for differentiating a product.

Now if ξ ∈ Ta, it lies in the dual space of T ∗a = C∞(M)/Za and so

f 7→ ξ((df)a)

is a linear map from C∞(M) to R. Moreover from (3),

d(fg)a = f(a)(dg)a + g(a)(df)a

and so
Xa(f) = ξ((df)a)

is a tangent vector at a. In fact, any tangent vector is of this form, but the price paid
for the nice algebraic definition in (10) which is the usual one in textbooks is that we
need a lemma to prove it.

Lemma 3.2 Let Xa be a tangent vector at a and f a smooth function whose derivative
at a vanishes. Then Xaf = 0.

Proof: Use a coordinate system near a. By the fundamental theorem of calculus,

f(x)− f(a) =

∫ 1

0

∂

∂t
f(a+ t(x− a))dt

=
∑
i

(xi − ai)
∫ 1

0

∂f

∂xi
(a+ t(x− a))dt.

If (df)a = 0 then

gi(x) =

∫ 1

0

∂f

∂xi
(a+ t(x− a))dt

vanishes at x = a, as does hi(x) = xi − ai. Now although these functions are defined
locally, using a bump function we can extend them to M , so that

f = f(a) +
∑
i

gihi (4)

where gi(a) = hi(a) = 0.
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By the Leibnitz rule
Xa(1) = Xa(1.1) = 2Xa(1)

which shows that Xa annihilates constant functions. Applying the rule to (4)

Xa(f) = Xa(
∑
i

gihi) =
∑
i

(gi(a)Xahi + hi(a)Xagi) = 0.

This means that Xa : C∞(M)→ R annihilates Za. 2

Now if V ⊂ W are vector spaces then the annihilator of V in the dual space W ∗ is
naturally the dual of W/V . So a tangent vector, which lies in the dual of C∞(M) is
naturally a subspace of (C∞(M)/Za)

∗ which is, by our definition, the tangent space
Ta.

The vectors in the tangent space are therefore the tangent vectors as defined by (10).
Locally, in coordinates, we can write

Xa =
n∑
i

ci

(
∂

∂xi

)
a

and then

Xa(f) =
∑
i

ci
∂f

∂xi
(a) (5)

3.3 Derivatives of smooth maps

Suppose F : M → N is a smooth map and f ∈ C∞(N). Then f ◦ F is a smooth
function on M .

Definition 11 The derivative at a ∈ M of the smooth map F : M → N is the
homomorphism of tangent spaces

DFa : TaM → TF (a)N

defined by
DFa(Xa)(f) = Xa(f ◦ F ).

This is an abstract, coordinate-free definition. Concretely, we can use (5) to see that

DFa

(
∂

∂xi

)
a

(f) =
∂

∂xi
(f ◦ F )(a)

=
∑
j

∂Fj
∂xi

(a)
∂f

∂yj
(F (a)) =

∑
j

∂Fj
∂xi

(a)

(
∂

∂yj

)
F (a)

f
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Thus the derivative of F is an invariant way of defining the Jacobian matrix.

With this definition we can give a generalization of Theorem 2.2 – the proof is virtually
the same and is omitted.

Theorem 3.3 Let F : M → N be a smooth map and c ∈ N be such that at each
point a ∈ F−1(c) the derivative DFa is surjective. Then F−1(c) is a smooth manifold
of dimension dimM − dimN .

In the course of the proof, it is easy to see that the manifold structure on F−1(c)
makes the inclusion

ι : F−1(c) ⊂M

a smooth map, whose derivative is injective and maps isomorphically to the kernel of
DF . So when we construct a manifold like this, its tangent space at a is

Ta ∼= KerDFa.

This helps to understand tangent spaces for the case where F is defined on Rn:

Examples:

1. The sphere Sn is F−1(1) where F : Rn+1 → R is given by

F (x) =
∑
i

x2i .

So here
DFa(x) = 2

∑
i

xiai

and the kernel of DFa consists of the vectors orthogonal to a, which is our usual
vision of the tangent space to a sphere.

2. The orthogonal matrices O(n) are given by F−1(I) where F (A) = AAT . At A = I,
the derivative is

DFI(H) = H +HT

so the tangent space to O(n) at the identity matrix is KerDFI , the space of skew-
symmetric matrices H = −HT .

The examples above are of manifolds F−1(c) sitting inside M and are examples of
submanifolds. Here we shall adopt the following definition of a submanifold, which is
often called an embedded submanifold:
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Definition 12 A manifold M is a submanifold of N if there is an inclusion map

ι : M → N

such that

• ι is smooth

• Dιx is injective for each x ∈M

• the manifold topology of M is the induced topology from N

Remark: The topological assumption avoids a situation like this:

ι(t) = (t2 − 1, t(t2 − 1)) ∈ R2

for t ∈ (−1,∞). This is smooth and injective with injective derivative: it is the part
of the singular cubic y2 = x2(x + 1) consisting of the left hand loop and the part in
the first quadrant. Any open set in R2 containing 0 intersects the curve in a t-interval
(−1,−1 + δ) and an interval (1 − δ′, 1 + δ′). Thus (1 − δ′, 1 + δ′) on its own is not
open in the induced topology.

4 Vector fields

4.1 The tangent bundle

Think of the wind velocity at each point of the earth.
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This is an example of a vector field on the 2-sphere S2. Since the sphere sits inside
R3, this is just a smooth map X : S2 → R3 such that X(x) is tangential to the sphere
at x.

Our problem now is to define a vector field intrinsically on a general manifold M ,
without reference to any ambient space. We know what a tangent vector at a ∈ M
is – a vector in Ta – but we want to describe a smoothly varying family of these. To
do this we need to fit together all the tangent spaces as a ranges over M into a single
manifold called the tangent bundle. We have n degrees of freedom for a ∈ M and n
for each tangent space Ta so we expect to have a 2n-dimensional manifold. So the set
to consider is

TM =
⋃
x∈M

Tx

the disjoint union of all the tangent spaces.

First let (U,ϕU) be a coordinate chart for M . Then for x ∈ U the tangent vectors(
∂

∂x1

)
x

, . . . ,

(
∂

∂xn

)
x

provide a basis for each Tx. So we have a bijection

ψU : U ×Rn →
⋃
x∈U

Tx

defined by

ψU(x, y1, . . . , yn) =
n∑
1

yi

(
∂

∂xi

)
x

.

Thus
ΦU = (ϕU , id) ◦ ψ−1U :

⋃
x∈U

Tx → ϕU(U)×Rn
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is a coordinate chart for
V =

⋃
x∈U

Tx.

Given Uα, Uβ coordinate charts on M , clearly

Φα(Vα ∩ Vβ) = ϕα(Uα ∩ Uβ)×Rn

which is open in R2n. Also, if (x1, . . . , xn) are coordinates on Uα and (x̃1, . . . , x̃n) on
Uβ then (

∂

∂xi

)
x

=
∑
j

∂x̃j
∂xi

(
∂

∂x̃j

)
x

the dual of (3). It follows that

ΦβΦ−1α (x1, . . . , xn, y1 . . . , yn) = (x̃1, . . . , x̃n,
∑
i

∂x̃1
∂xi

yi, . . . ,
∑
i

∂x̃n
∂xi

yi).

and since the Jacobian matrix is smooth in x, linear in y and invertible, ΦβΦ−1α is
smooth with smooth inverse and so (Vα,Φα) defines an atlas on TM .

Definition 13 The tangent bundle of a manifold M is the 2n-dimensional differen-
tiable structure on TM defined by the above atlas.

The construction brings out a number of properties. First of all the projection map

p : TM →M

which assigns to Xa ∈ TaM the point a is smooth with surjective derivative, because
in our local coordinates it is defined by

p(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn).

The inverse image p−1(a) is the vector space Ta and is called a fibre of the projection.
Finally, TM is Hausdorff because if Xa, Xb lie in different fibres, since M is Hausdorff
we can separate a, b ∈ M by open sets U,U ′ and then the open sets p−1(U), p−1(U ′)
separate Xa, Xb in TM . If Xa, Ya are in the same tangent space then they lie in a
coordinate neighbourhood which is homeomorphic to an open set of R2n and so can
be separated there. Since M has a countable basis of open sets and Rn does, it is
easy to see that TM also has a countable basis.

We can now define a vector field:
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Definition 14 A vector field on a manifold is a smooth map

X : M → TM

such that
p ◦X = idM .

This is a clear global definition. What does it mean? We just have to spell things
out in local coordinates. Since p ◦X = idM ,

X(x1, . . . , xn) = (x1, . . . , xn, y1(x), . . . , yn(x))

where yi(x) are smooth functions. Thus the tangent vector X(x) is given by

X(x) =
∑
i

yi(x)

(
∂

∂xi

)
x

which is a smoothly varying field of tangent vectors.

Remark: We shall meet other manifolds Q with projections p : Q → M and the
general terminology is that a smooth map s : M → Q for which p◦s = idM is called a
section. When Q = TM is the tangent bundle we always have the zero section given
by the vector field X = 0. Using a bump function ψ we can easily construct other
vector fields by taking a coordinate system, some locally defined smooth functions
yi(x) and writing

X(x) =
∑
i

yi(x)

(
∂

∂xi

)
x

.

Multiplying by ψ and extending gives a global vector field.

Remark: Clearly we can do a similar construction using the cotangent spaces T ∗a
instead of the tangent spaces Ta, and using the basis

(dx1)x, . . . , (dxn)x

instead of the dual basis (
∂

∂x1

)
x

, . . . ,

(
∂

∂x1

)
x

.

This way we form the cotangent bundle T ∗M . The derivative of a function f is then
a map df : M → T ∗M satisfying p ◦ df = idM , though not every such map of this
form is a derivative.
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Perhaps we should say here that the tangent bundle and cotangent bundle are exam-
ples of vector bundles. Here is the general definition:

Definition 15 A real vector bundle of rank m on a manifold M is a manifold E with
a smooth projection p : E →M such that

• each fibre p−1(x) has the structure of an m-dimensional real vector space

• each point x ∈M has a neighbourhood U and a diffeomorphism

ψU : p−1(U) ∼= U ×Rm

such that ψU is a linear isomorphism from the vector space p−1(x) to the vector
space {x} ×Rm

• on the intersection U ∩ V

ψUψ
−1
V : U ∩ V ×Rm → U ∩ V ×Rm

is of the form
(x, v) 7→ (x, gUV (x)v)

where gUV (x) is a smooth function on U∩V with values in the space of invertible
m×m matrices.

For the tangent bundle gUV is the Jacobian matrix of a change of coordinates and for
the cotangent bundle, its inverse transpose.

4.2 Vector fields as derivations

The algebraic definition of tangent vector in Definition 10 shows that a vector field
X maps a C∞ function to a function on M :

X(f)(x) = Xx(f)

and the local expression for X means that

X(f)(x) =
∑
i

yi(x)

(
∂

∂xi

)
x

(f) =
∑
i

yi(x)
∂f

∂xi
(x).

Since the yi(x) are smooth, X(f) is again smooth and satisfies the Leibnitz property

X(fg) = f(Xg) + g(Xf).

In fact, any linear transformation with this property (called a derivation of the algebra
C∞(M)) is a vector field:
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Proposition 4.1 Let X : C∞(M)→ C∞(M) be a linear map which satisfies

X(fg) = f(Xg) + g(Xf).

Then X is a vector field.

Proof: For each a ∈ M , Xa(f) = X(f)(a) satisfies the conditions for a tangent
vector at a, so X defines a map X : M → TM with p ◦X = idM , and so locally can
be written as

Xx =
∑
i

yi(x)

(
∂

∂xi

)
x

.

We just need to check that the yi(x) are smooth, and for this it suffices to apply
X to a coordinate function xi extended by using a bump function in a coordinate
neighbourhood. We get

Xxi = yi(x)

and since by assumption X maps smooth functions to smooth functions, this is
smooth. 2

The characterization of vector fields given by Proposition 4.1 immediately leads to a
way of combining two vector fields X, Y to get another. Consider both X and Y as
linear maps from C∞(M) to itself and compose them. Then

XY (fg) = X(f(Y g) + g(Y f)) = (Xf)(Y g) + f(XY g) + (Xg)(Y f) + g(XY f)

Y X(fg) = Y (f(Xg) + g(Xf)) = (Y f)(Xg) + f(Y Xg) + (Y g)(Xf) + g(Y Xf)

and subtracting and writing [X, Y ] = XY − Y X we have

[X, Y ](fg) = f([X, Y ]g) + g([X, Y ]f)

which from Proposition 4.1 means that [X, Y ] is a vector field.

Definition 16 The Lie bracket of two vector fields X, Y is the vector field [X, Y ].

Example: If M = R then X = fd/dx, Y = gd/dx and so

[X, Y ] = (fg′ − gf ′) d
dx
.

We shall later see that there is a geometrical origin for the Lie bracket.
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4.3 One-parameter groups of diffeomorphisms

Think of wind velocity (assuming it is constant in time) on the surface of the earth
as a vector field on the sphere S2. There is another interpretation we can make. A
particle at position x ∈ S2 moves after time t seconds to a position ϕt(x) ∈ S2. After
a further s seconds it is at

ϕt+s(x) = ϕs(ϕt(x)).

What we get this way is a homomorphism of groups: from the additive group R to
the group of diffeomorphisms of S2 under the operation of composition. The technical
definition is the following:

Definition 17 A one-parameter group of diffeomorphisms of a manifold M is a
smooth map

ϕ : M ×R→M

such that (writing ϕt(x) = ϕ(x, t))

• ϕt : M →M is a diffeomorphism

• ϕ0 = id

• ϕs+t = ϕs ◦ ϕt.

We shall show that vector fields generate one-parameter groups of diffeomorphisms,
but only under certain hypotheses. If instead of the whole surface of the earth our
manifold is just the interior of the UK and the wind is blowing East-West, clearly after
however short a time, some particles will be blown offshore, so we cannot hope for
ϕt(x) that works for all x and t. The fact that the earth is compact is one reason why it
works there, and this is one of the results below. The idea, nevertheless, works locally
and is a useful way of understanding vector fields as “infinitesimal diffeomorphisms”
rather than as abstract derivations of functions.

To make the link with vector fields, suppose ϕt is a one-parameter group of diffeo-
morphisms and f a smooth function. Then

f(ϕt(a))

is a smooth function of t and we write

∂

∂t
f(ϕt(a))|t=0 = Xa(f).
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It is straightforward to see that, since ϕ0(a) = a the Leibnitz rule holds and this is a
tangent vector at a, and so as a = x varies we have a vector field. In local coordinates
we have

ϕt(x1, . . . , xn) = (y1(x, t), . . . , yn(x, t))

and

∂

∂t
f(y1, . . . , yn) =

∑
i

∂f

∂yi
(y)

∂yi
∂t

(x)|t=0

=
∑
i

ci(x)
∂f

∂xi
(x)

which yields the vector field

X =
∑
i

ci(x)
∂

∂xi
.

We now want to reverse this: go from the vector field to the diffeomorphism. The
first point is to track that “trajectory” of a single particle.

Definition 18 An integral curve of a vector field X is a smooth map ϕ : (α, β) ⊂
R→M such that

Dϕt

(
d

dt

)
= Xϕ(t).

Example: Suppose M = R2 with coordinates (x, y) and X = ∂/∂x. The derivative
Dϕ of the smooth function ϕ(t) = (x(t), y(t)) is

Dϕ

(
d

dt

)
=
dx

dt

∂

∂x
+
dy

dt

∂

∂y

so the equation for an integral curve of X is

dx

dt
= 1

dy

dt
= 0

which gives
ϕ(t) = (t+ a1, a2).

In our wind analogy, the particle at (a1, a2) is transported to (t+ a1, a2).
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In general we have:

Theorem 4.2 Given a vector field X on a manifold M and a ∈ M there exists a
maximal integral curve of X through a.

By “maximal” we mean that the interval (α, β) is maximal – as we saw above it may
not be the whole of the real numbers.

Proof: First consider a coordinate chart (Uγ, ψγ) around a then if

X =
∑
i

ci(x)
∂

∂xi

the equation

Dϕt

(
d

dt

)
= Xϕ(t)

can be written as the system of ordinary differential equations

dxi
dt

= ci(x1, . . . , xn).

The existence and uniqueness theorem for ODE’s (see Appendix) asserts that there
is some interval on which there is a unique solution with initial condition

(x1(0), . . . , xn(0)) = ψγ(a).

Suppose ϕ : (α, β) → M is any integral curve with ϕ(0) = a. For each x ∈ (α, β)
the subset ϕ([0, x]) ⊂ M is compact, so it can be covered by a finite number of
coordinate charts, in each of which we can apply the existence and uniqueness theorem
to intervals [0, α1], [α1, α2], . . . , [αn, x]. Uniqueness implies that these local solutions
agree with ϕ on any subinterval containing 0.

We then take the maximal open interval on which we can define ϕ. 2

To find the one-parameter group of diffeomorphisms we now let a ∈ M vary. In the
example above, the integral curve through (a1, a2) was t 7→ (t+a1, a2) and this defines
the group of diffeomorphisms

ϕt(x1, x2) = (t+ x1, x2).

Theorem 4.3 Let X be a vector field on a manifold M and for (t, x) ∈ R×M , let
ϕ(t, x) = ϕt(x) be the maximal integral curve of X through x. Then
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• the map (t, x) 7→ ϕt(x) is smooth

• ϕt ◦ ϕs = ϕt+s wherever the maps are defined

• if M is compact, then ϕt(x) is defined on R ×M and gives a one-parameter
group of diffeomorphisms.

Proof: The previous theorem tells us that for each a ∈M we have an open interval
(α(a), β(a)) on which the maximal integral curve is defined. The local existence
theorem also gives us that there is a solution for initial conditions in a neighbourhood
of a so the set

{(t, x) ∈ R×M : t ∈ (α(x), β(x))}
is open. This is the set on which ϕt(x) is maximally defined.

The theorem (see Appendix) on smooth dependence on initial conditions tells us that
(t, x) 7→ ϕt(x) is smooth.

Consider ϕt ◦ϕs(x). If we fix s and vary t, then this is the unique integral curve of X
through ϕs(x). But ϕt+s(x) is an integral curve which at t = 0 passes through ϕs(x).
By uniqueness they must agree so that ϕt ◦ϕs = ϕt+s. (Note that ϕt ◦ϕ−t = id shows
that we have a diffeomorphism wherever it is defined).

Now consider the case where M is compact. For each x ∈ M , we have an open
interval (α(x), β(x)) containing 0 and an open set Ux ⊆M on which ϕt(x) is defined.
Cover M by {Ux}x∈M and take a finite subcovering Ux1 , . . . , UxN , and set

I =
N⋂
1

(α(xi), β(xi))

which is an open interval containing 0. By construction, for t ∈ I we get

ϕt : I ×M →M

which defines an integral curve (though not necessarily maximal) through each point
x ∈M and with ϕ0(x) = x. We need to extend to all real values of t.

If s, t ∈ R, choose n such that (|s| + |t|)/n ∈ I and define (where multiplication is
composition)

ϕt = (ϕt/n)n, ϕs = (ϕs/n)n.

Now because t/n, s/n and (s+ t)/n lie in I we have

ϕt/nϕs/n = ϕ(s+t)/n = ϕs/nϕt/n
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and so because ϕt/n and ϕs/n commute, we also have

ϕtϕs = (ϕt/n)n(ϕs/n)n

= (ϕ(s+t)/n)n

= ϕs+t

which completes the proof. 2

4.4 The Lie bracket revisited

All the objects we shall consider will have the property that they can be transformed
naturally by a diffeomorphism, and the link between vector fields and diffeomorphisms
we have just observed provides an “infinitesimal’ version of this.

Given a diffeomorphism F : M →M and a smooth function f we get the transformed
function f ◦F . When F = ϕt, generated according to the theorems above by a vector
field X, we then saw that

∂

∂t
f(ϕt)|t=0 = X(f).

So: the natural action of diffeomorphisms on functions specializes through one-parameter
groups to the derivation of a function by a vector field.

Now suppose Y is a vector field, considered as a map Y : M → TM . With a
diffeomorphism F : M →M , its derivative DFx : Tx → TF (x) gives

DFx(Yx) ∈ TF (x).

This defines a new vector field Ỹ by

YF (x) = DFx(Ỹx) (6)

Thus for a function f ,
(Ỹ )(f ◦ F ) = (Y f) ◦ F (7)

Now if F = ϕt for a one-parameter group, we have Ỹt and we can differentiate to get

Ẏ =
∂

∂t
Ỹt

∣∣∣∣
t=0

From (7) this gives
Ẏ f + Y (Xf) = XY f

so that Ẏ = XY − Y X is the natural derivative defined above. Thus the natural
action of diffeomorphisms on vector fields specializes through one-parameter groups
to the Lie bracket [X, Y ].
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5 Tensor products

We have so far encountered vector fields and the derivatives of smooth functions as
analytical objects on manifolds. These are examples of a general class of objects
called tensors which we shall encounter in more generality. The starting point is pure
linear algebra.

Let V,W be two finite-dimensional vector spaces over R. We are going to define a
new vector space V ⊗W with two properties:

• if v ∈ V and w ∈ W then there is a product v ⊗ w ∈ V ⊗W

• the product is bilinear:

(λv1 + µv2)⊗ w = λv1 ⊗ w + µv2 ⊗ w
v ⊗ (λw1 + µw2) = λv ⊗ w1 + µv ⊗ w2

In fact, it is the properties of the vector space V ⊗ W which are more important
than what it is (and after all what is a real number? Do we always think of it as an
equivalence class of Cauchy sequences of rationals?).

Proposition 5.1 The tensor product V ⊗W has the universal property that if B :
V ×W → U is a bilinear map to a vector space U then there is a unique linear map

β : V ⊗W → U

such that B(v, w) = β(v ⊗ w).

There are various ways to define V ⊗W . In the finite-dimensional case we can say
that V ⊗W is the dual space of the space of bilinear forms on V ×W : i.e. maps
B : V ×W → R such that

B(λv1 + µv2, w) = λB(v1, w) + µB(v2, w)

B(v, λw1 + µw2) = λB(v, w1) + µB(v, w2)

Given v, w ∈ V,W we then define v ⊗ w ∈ V ⊗W as the map

(v ⊗ w)(B) = B(v, w).

This satisfies the universal property because given B : V ×W → U and ξ ∈ U∗, ξ ◦B
is a bilinear form on V ×W and defines a linear map from U∗ to the space of bilinear
forms. The dual map is the required homomorphism β from V ⊗W to (U∗)∗ = U .
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A bilinear form B is uniquely determined by its values B(vi, wj) on basis vectors
v1, . . . , vm for V and w1, . . . wn for W which means the dimension of the vector space
of bilinear forms is mn, as is its dual space V ⊗W . In fact, we can easily see that
the mn vectors

vi ⊗ wj
form a basis for V ⊗W . It is important to remember though that a typical element
of V ⊗W can only be written as a sum∑

i,j

aijvi ⊗ wj

and not as a pure product v ⊗ w.

Taking W = V we can form multiple tensor products

V ⊗ V, V ⊗ V ⊗ V = ⊗3V, . . .

We can think of ⊗pV as the dual space of the space of p-fold multilinear forms on V .

Mixing degrees we can even form the tensor algebra:

T (V ) = ⊕∞k=0(⊗kV ).

An element of T (V ) is a finite sum

λ1 + v0 +
∑

vi ⊗ vj + . . .+
∑

vi1 ⊗ vi2 . . .⊗ vip

of products of vectors vi ∈ V . The obvious multiplication process is based on extend-
ing by linearity the product

(v1 ⊗ . . .⊗ vp)(u1 ⊗ . . .⊗ uq) = v1 ⊗ . . .⊗ vp ⊗ u1 ⊗ . . .⊗ uq
It is associative, but noncommutative.

For the most part we shall be interested in only a quotient of this algebra, called the
exterior algebra.

5.1 The exterior algebra

Let T (V ) be the tensor algebra of a real vector space V and let I(V ) be the ideal
generated by elements of the form

v ⊗ v
where v ∈ V . So I(V ) consists of all sums of multiples by T (V ) on the left and right
of these generators.
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Definition 19 The exterior algebra of V is the quotient

Λ∗V = T (V )/I(V ).

If π : T (V )→ Λ∗V is the quotient projection then we set

ΛpV = π(⊗pV )

and call this the p-fold exterior power of V . We can think of this as the dual space of
the space of multilinear forms M(v1, . . . , vp) on V which vanish if any two arguments
coincide – the so-called alternating multilinear forms. If a ∈ ⊗pV, b ∈ ⊗qV then
a⊗ b ∈ ⊗p+qV and taking the quotient we get a product called the exterior product:

Definition 20 The exterior product of α = π(a) ∈ ΛpV and β = π(b) ∈ ΛqV is

α ∧ β = π(a⊗ b).

Remark: If v1, . . . , vp ∈ V then we define an element of the dual space of the space
of alternating multilinear forms by

v1 ∧ v2 ∧ . . . ∧ vp(M) = M(v1, . . . , vp).

The key properties of the exterior algebra follow:

Proposition 5.2 If α ∈ ΛpV, β ∈ ΛqV then

α ∧ β = (−1)pqβ ∧ α.

Proof: Because for v ∈ V , v ⊗ v ∈ I(V ), it follows that v ∧ v = 0 and hence

0 = (v1 + v2) ∧ (v1 + v2) = 0 + v1 ∧ v2 + v2 ∧ v1 + 0.

So interchanging any two entries from V in an expression like

v1 ∧ . . . ∧ vk
changes the sign.

Write α as a linear combination of terms v1 ∧ . . . ∧ vp and β as a linear combination
of w1 ∧ . . . ∧ wq and then, applying this rule to bring w1 to the front we see that

(v1 ∧ . . . ∧ vp) ∧ (w1 ∧ . . . ∧ wq) = (−1)pw1 ∧ v1 ∧ . . . vp ∧ w2 ∧ . . . ∧ wq.

For each of the q wi’s we get another factor (−1)p so that in the end

(w1 ∧ . . . ∧ wq)(v1 ∧ . . . ∧ vp) = (−1)pq(v1 ∧ . . . ∧ vp)(w1 ∧ . . . ∧ wq).

2
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Proposition 5.3 If dimV = n then dim ΛnV = 1.

Proof: Let w1, . . . , wn be n vectors in V and relative to some basis let M be the
square matrix whose columns are w1, . . . , wn. then

B(w1, . . . , wn) = detM

is a non-zero n-fold multilinear form on V . Moreover, if any two of the wi coincide,
the determinant is zero, so this is a non-zero alternating n-linear form – an element
in the dual space of ΛnV .

On the other hand, choose a basis v1, . . . , vn for V , then anything in ⊗nV is a linear
combination of terms like vi1 ⊗ . . . ⊗ vin and so anything in ΛnV is, after using
Proposition 5.2, a linear combination of v1 ∧ . . . ∧ vn.

Thus ΛnV is non-zero and at most one-dimensional hence is one-dimensional. 2

Proposition 5.4 let v1, . . . , vn be a basis for V , then the
(
n
p

)
elements vi1∧vi2∧. . .∧vip

for i1 < i2 < . . . < ip form a basis for ΛpV .

Proof: By reordering and changing the sign we can get any exterior product of the
vi’s so these elements clearly span ΛpV . Suppose then that∑

ai1...ipvi1 ∧ vi2 ∧ . . . ∧ vip = 0.

Because i1 < i2 < . . . < ip, each term is uniquely indexed by the subset {i1, i2, . . . , ip} =
I ⊆ {1, 2, . . . , n}, and we can write ∑

I

aIvI = 0 (8)

If I and J have a number in common, then vI ∧ vJ = 0, so if J has n − p elements,
vI ∧ vJ = 0 unless J is the complementary subset I ′ in which case the product is a
multiple of v1 ∧ v2 . . .∧ vn and by Proposition 5.3 this is non-zero. Thus, multiplying
(8) by each term vI′ we deduce that each coefficient aI = 0 and so we have linear
independence. 2

Proposition 5.5 The vector v is linearly dependent on the linearly independent vec-
tors v1, . . . , vp if and only if v1 ∧ v2 ∧ . . . ∧ vp ∧ v = 0.
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Proof: If v is linearly dependent on v1, . . . , vp then v =
∑
aivi and expanding

v1 ∧ v2 ∧ . . . ∧ vp ∧ v = v1 ∧ v2 ∧ . . . ∧ vp ∧ (

p∑
1

aivi)

gives terms with repeated vi, which therefore vanish. If not, then v1, v2 . . . , vp, v can
be extended to a basis and Proposition 5.4 tells us that the product is non-zero. 2

Proposition 5.6 If A : V → W is a linear transformation, then there is an induced
linear transformation

ΛpA : ΛpV → ΛpW

such that
ΛpA(v1 ∧ . . . ∧ vp) = Av1 ∧ Av2 ∧ . . . ∧ Avp.

Proof: From Proposition 5.4 the formula

ΛpA(v1 ∧ . . . ∧ vp) = Av1 ∧ Av2 ∧ . . . ∧ Avp

actually defines what ΛpA is on basis vectors but doesn’t prove it is independent of
the choice of basis. But the universal property of tensor products gives us

⊗pA : ⊗pV → ⊗pW

and ⊗pA maps the ideal I(V ) to I(W ) so defines ΛpA invariantly. 2

Proposition 5.7 If dimV = n, then the linear transformation ΛnA : ΛnV → ΛnV is
given by detA.

Proof: From Proposition 5.3, ΛnV is one-dimensional and so ΛnA is multiplication
by a real number λ(A). So with a basis v1, . . . , vn,

ΛnA(v1 ∧ . . . ∧ vn) = Av1 ∧ Av2 ∧ . . . Avn = λ(A)v1 ∧ . . . ∧ vn.

But
Avi =

∑
j

Ajivj

and so

Av1 ∧ Av2 ∧ . . . ∧ Avn =
∑

Aj1,1vj1 ∧ Aj2,2vj2 ∧ . . . ∧ Ajn,nvjn
=

∑
σ∈Sn

Aσ1,1vσ1 ∧ Aσ2,2vσ2 ∧ . . . ∧ Aσn,nvσn
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where the sum runs over all permutations σ. But if σ is a transposition then the term
vσ1 ∧ vσ2 . . . ∧ vσn changes sign, so

Av1 ∧ Av2 ∧ . . . ∧ Avn =
∑
σ∈Sn

sgnσAσ1,1Aσ2,2 . . . Aσn,nv1 ∧ . . . ∧ vn

which is the definition of (detA)v1 ∧ . . . ∧ vn. 2

6 Differential forms

6.1 The bundle of p-forms

Now let M be an n-dimensional manifold and T ∗x the cotangent space at x. We form
the p-fold exterior power

ΛpT ∗x

and, just as we did for the tangent bundle and cotangent bundle, we shall make

ΛpT ∗M =
⋃
x∈M

ΛpT ∗x

into a vector bundle and hence a manifold.

If x1, . . . , xn are coordinates for a chart (U,ϕU) then for x ∈ U , the elements

dxi1 ∧ dxi2 ∧ . . . ∧ dxip

for i1 < i2 < . . . < ip form a basis for ΛpT ∗x . The
(
n
p

)
coefficients of α ∈ ΛpT ∗x then

give a coordinate chart ΨU mapping to the open set

ϕU(U)× ΛpRn ⊆ Rn ×R(np).

When p = 1 this is just the coordinate chart we used for the cotangent bundle:

ΦU(x,
∑

yidxi) = (x1, . . . , xn, y1, . . . , yn)

and on two overlapping coordinate charts we there had

ΦβΦ−1α (x1, . . . , xn, y1 . . . , yn) = (x̃1, . . . , x̃n,
∑
j

∂x̃i
∂x1

yi, . . . ,
∑
i

∂x̃i
∂xn

yi).
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For the p-th exterior power we need to replace the Jacobian matrix

J =
∂x̃i
∂xj

by its induced linear map
ΛpJ : ΛpRn → ΛpRn.

It’s a long and complicated expression if we write it down in a basis but it is invertible
and each entry is a polynomial in C∞ functions and hence gives a smooth map with
smooth inverse. In other words,

ΨβΨ−1α

satisfies the conditions for a manifold of dimension n+
(
n
p

)
.

Definition 21 The bundle of p-forms of a manifold M is the differentiable structure
on ΛpT ∗M defined by the above atlas. There is a natural projection p : ΛpT ∗M →M
and a section is called a differential p-form

Examples:

1. A zero-form is a section of Λ0T ∗ which by convention is just a smooth function f .

2. A 1-form is a section of the cotangent bundle T ∗. From our definition of the
derivative of a function, it is clear that df is an example of a 1-form. We can write
in a coordinate system

df =
∑
j

∂f

∂xj
dxj.

By using a bump function we can extend a locally-defined p-form like dx1 ∧ dx2 ∧
. . . ∧ dxp to the whole of M , so sections always exist. In fact, it will be convenient
at various points to show that any function, form, or vector field can be written as a
sum of these local ones. This involves the concept of partition of unity.

6.2 Partitions of unity

Definition 22 A partition of unity on M is a collection {ϕi}i∈I of smooth functions
such that

• ϕi ≥ 0
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• {suppϕi : i ∈ I} is locally finite

•
∑

i ϕi = 1

Here locally finite means that for each x ∈ M there is a neighbourhood U which
intersects only finitely many supports suppϕi.

In the appendix, the following general theorem is proved:

Theorem 6.1 Given any open covering {Vα} of a manifold M there exists a partition
of unity {ϕi} on M such that suppϕi ⊂ Vα(i) for some α(i).

We say that such a partition of unity is subordinate to the given covering.

Here let us just note that in the case when M is compact, life is much easier: for each
point x ∈ {Vα} we take a coordinate neighbourhood Ux ⊂ {Vα} and a bump function
which is 1 on a neighbourhood Vx of x and whose support lies in Ux. Compactness says
we can extract a finite subcovering of the {Vx}x∈X and so we get smooth functions
ψi ≥ 0 for i = 1, . . . , N and equal to 1 on Vxi . In particular the sum is positive, and
defining

ϕi =
ψi∑N
1 ψi

gives the partition of unity.

Now, not only can we create global p-forms by taking local ones, multiplying by ϕi
and extending by zero, but conversely if α is any p-form, we can write it as

α = (
∑
i

ϕi)α =
∑
i

(ϕiα)

which is a sum of extensions of locally defined ones.

At this point, it may not be clear why we insist on introducing these complicated
exterior algebra objects, but there are two motivations. One is that the algebraic
theory of determinants is, as we have seen, part of exterior algebra, and multiple
integrals involve determinants. We shall later be able to integrate p-forms over p-
dimensional manifolds.

The other is the appearance of the skew-symmetric cross product in ordinary three-
dimensional calculus, giving rise to the curl differential operator taking vector fields
to vector fields. As we shall see, to do this in a coordinate-free way, and in all
dimensions, we have to dispense with vector fields and work with differential forms
instead.
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6.3 Working with differential forms

We defined a differential form in Definition 21 as a section of a vector bundle. In a
local coordinate system it looks like this:

α =
∑

i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 . . . ∧ dxip (9)

where the coefficients are smooth functions. If x(y) is a different coordinate system,
then we write the derivatives

dxik =
∑
j

∂xik
∂yj

dyj

and substitute in (9) to get

α =
∑

j1<j2<...<jp

ãj1j2...jp(y)dyj1 ∧ dyj2 . . . ∧ dyjp .

Example: Let M = R2 and consider the 2-form ω = dx1 ∧ dx2. Now change to
polar coordinates on the open set (x1, x2) 6= (0, 0):

x1 = r cos θ, x2 = r sin θ.

We have

dx1 = cos θdr − r sin θdθ

dx2 = sin θdr + r cos θdθ

so that
ω = (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ) = rdr ∧ dθ.

We shall often write
Ωp(M)

as the infinite-dimensional vector space of all p-forms on M .

Although we first introduced vector fields as a means of starting to do analysis on
manifolds, in many ways differential forms are better behaved. For example, suppose
we have a smooth map

F : M → N.
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The derivative of this gives at each point x ∈M a linear map

DFx : TxM → TF (x)N

but if we have a section of the tangent bundle TM – a vector field X – then DFx(Xx)
doesn’t in general define a vector field on N – it doesn’t tell us what to choose in
TaN if a ∈ N is not in the image of F .

On the other hand suppose α is a section of ΛpT ∗N – a p-form on N . Then the dual
map

DF ′x : T ∗F (x)N → T ∗xM

defines
Λp(DF ′x) : ΛpT ∗F (x)N → ΛpT ∗xM

and then
Λp(DF ′x)(αF (x))

is defined for all x and is a section of ΛpT ∗M – a p-form on M .

Definition 23 The pull-back of a p-form α ∈ Ωp(N) by a smooth map F : M → N
is the p-form F ∗α ∈ Ωp(M) defined by

(F ∗α)x = Λp(DF ′x)(αF (x)).

Examples:

1. The pull-back of a 0-form f ∈ C∞(N) is just the composition f ◦ F .

2. By the definition of the dual map DF ′x we have DF ′x(α)(Xx) = αF (x)(DFx(Xx)),
so if α = df , DF ′x(df)(Xx) = dfF (x)(DFx(Xx)) = Xx(f ◦ F ) by the definition of DFx.
This means that F ∗(df) = d(f ◦ F ).

3. Let F : R3 → R2 be given by

F (x1, x2, x3) = (x1x2, x2 + x3) = (x, y)

and take
α = xdx ∧ dy.

Then, using the definition of Λp(DF ′x) and the previous example,

F ∗α = (x ◦ F )d(x ◦ F ) ∧ d(y ◦ F )

= x1x2d(x1x2) ∧ d(x2 + x3)

= x1x2(x1dx2 + x2dx1) ∧ d(x2 + x3)

= x21x2dx2 ∧ dx3 + x1x
2
2dx1 ∧ dx2 + x1x

2
2dx1 ∧ dx3
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From the algebraic properties of the maps

ΛpA : ΛpV → ΛpV

we have the following straightforward properties of the pull-back:

• (F ◦G)∗α = G∗(F ∗α)

• F ∗(α + β) = F ∗α + F ∗β

• F ∗(α ∧ β) = F ∗α ∧ F ∗β

6.4 The exterior derivative

We now come to the construction of the basic differential operator on forms – the
exterior derivative which generalizes the grads, divs and curls of three-dimensional
calculus. The key feature it has is that it is defined naturally by the manifold structure
without any further assumptions.

Theorem 6.2 On any manifold M there is a natural linear map

d : Ωp(M)→ Ωp+1(M)

called the exterior derivative such that

1. if f ∈ Ω0(M), then df ∈ Ω1(M) is the derivative of f

2. d2 = 0

3. d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ if α ∈ Ωp(M)

Examples: Before proving the theorem, let’s look at M = R3, following the rules
of the theorem, to see d in all cases p = 0, 1, 2.

p = 0: by definition

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3

which we normally would write as grad f .

p = 1: take a 1-form
α = a1dx1 + a2dx2 + a3dx3
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then applying the rules we have

d(a1dx1 + a2dx2 + a3dx3) = da1 ∧ dx1 + da2 ∧ dx2 + da3 ∧ dx3

=

(
∂a1
∂x1

dx1 +
∂a1
∂x2

dx2 +
∂a1
∂x3

dx3

)
∧ dx1 + . . .

=

(
∂a1
∂x3
− ∂a3
∂x1

)
dx3 ∧ dx1 +

(
∂a2
∂x1
− ∂a1
∂x2

)
dx1 ∧ dx2 +

(
∂a3
∂x2
− ∂a2
∂x3

)
dx2 ∧ dx3.

The coefficients of this define what we would call the curl of the vector field a but
a has now become a 1-form α and not a vector field and dα is a 2-form, not a
vector field. The geometrical interpretation has changed. Note nevertheless that the
invariant statement d2 = 0 is equivalent to curl grad f = 0.

p = 2: now we have a 2-form

β = b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2

and

dβ =
∂b1
∂x1

dx1 ∧ dx2 ∧ dx3 +
∂b2
∂x2

dx1 ∧ dx2 ∧ dx3 +
∂b3
∂x3

dx1 ∧ dx2 ∧ dx3

=

(
∂b1
∂x1

+
∂b2
∂x2

+
∂b3
∂x3

)
dx1 ∧ dx2 ∧ dx3

which would be the divergence of a vector field b but in our case is applied to a 2-form
β. Again d2 = 0 is equivalent to div curl b = 0.

Here we see familiar formulas, but acting on unfamiliar objects. The fact that we can
pull differential forms around by smooth maps will give us a lot more power, even in
three dimensions, than if we always considered these things as vector fields.

Let us return to the Theorem 6.2 now and give its proof.

Proof: We shall define dα by first breaking up α as a sum of terms with support in
a local coordinate system (using a partition of unity), define a local d operator using
a coordinate system, and then show that the result is independent of the choice.

So, to begin with, write a p-form locally as

α =
∑

i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip
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and define
dα =

∑
i1<i2<...<ip

dai1i2...ip ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxip .

When p = 0, this is just the derivative, so the first property of the theorem holds.

For the second part, we expand

dα =
∑

j,i1<i2<...<ip

∂ai1i2...ip
∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxip

and then calculate

d2α =
∑

j,k,i1<i2<...<ip

∂2ai1i2...ip
∂xj∂xk

dxk ∧ dxj ∧ dxi1 ∧ dxi2 . . . ∧ dxip .

The term
∂2ai1i2...ip
∂xj∂xk

is symmetric in j, k but it multiplies dxk∧dxj in the formula which is skew-symmetric
in j and k, so the expression vanishes identically and d2α = 0 as required.

For the third part, we check on decomposable forms

α = fdxi1 ∧ . . . ∧ dxip = fdxI

β = gdxj1 ∧ . . . ∧ dxjq = gdxJ

and extend by linearity. So

d(α ∧ β) = d(fgdxI ∧ dxJ)

= d(fg) ∧ dxI ∧ dxJ
= (fdg + gdf) ∧ dxI ∧ dxJ
= (−1)pfdxI ∧ dg ∧ dxJ + df ∧ dxI ∧ gdxJ
= (−1)pα ∧ dβ + dα ∧ β

So, using one coordinate system we have defined an operation d which satisfies the
three conditions of the theorem. Now represent α in coordinates y1, . . . , yn:

α =
∑

i1<i2<...<ip

bi1i2...ipdyi1 ∧ dyi2 ∧ . . . ∧ dyip
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and define in the same way

d′α =
∑

i1<i2<...<ip

dbi1i2...ip ∧ dyi1 ∧ dyi2 ∧ . . . ∧ dyip .

We shall show that d = d′ by using the three conditions.

From (1) and (3),

dα = d(
∑

bi1i2...ipdyi1 ∧ dyi2 . . . ∧ dyip) =∑
dbi1i2...ip ∧ dyi1 ∧ dyi2 ∧ . . . ∧ dyip +

∑
bi1i2...ipd(dyi1 ∧ dyi2 ∧ . . . ∧ dyip)

and from (3)

d(dyi1 ∧ dyi2 ∧ . . . ∧ dyip) = d(dyi1) ∧ dyi2 ∧ . . . ∧ dyip − dyi1 ∧ d(dyi2 ∧ . . . ∧ dyip).

From (1) and (2) d2yi1 = 0 and continuing similarly with the right hand term, we get
zero in all terms.

Thus on each coordinate neighbourhood U dα =
∑

i1<i2<...<ip
dbi1i2...ip ∧ dyi1 ∧ dyi2 ∧

. . . ∧ dyip = d′α and dα is thus globally well-defined. 2

One important property of the exterior derivative is the following:

Proposition 6.3 Let F : M → N be a smooth map and α ∈ Ωp(N). then

d(F ∗α) = F ∗(dα).

Proof: Recall that the derivative DFx : TxM → TF (x)N was defined in (11) by

DFx(Xx)(f) = Xx(f ◦ F )

so that the dual map DF ′x : T ∗F (x)N → T ∗xM satisfies

DF ′x(df)F (x) = d(f ◦ F )x.

From the definition of pull-back this means that

F ∗(df) = d(f ◦ F ) = d(F ∗f) (10)
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Now if
α =

∑
i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip ,

F ∗α =
∑

i1<i2<...<ip

ai1i2...ip(F (x))F ∗dxi1 ∧ F ∗dxi2 ∧ . . . ∧ F ∗dxip

by the multiplicative property of pull-back and then using the properties of d and
(10)

d(F ∗α) =
∑

i1<i2<...<ip

d(ai1i2...ip(F (x))) ∧ F ∗dxi1 ∧ F ∗dxi2 ∧ . . . ∧ F ∗dxip

=
∑

i1<i2<...<ip

F ∗dai1i2...ip ∧ F ∗dxi1 ∧ F ∗dxi2 ∧ . . . ∧ F ∗dxip

= F ∗(dα).

2

6.5 The Lie derivative of a differential form

Suppose ϕt is the one-parameter (locally defined) group of diffeomorphisms defined
by a vector field X. Then there is a naturally defined Lie derivative

LXα =
∂

∂t
ϕ∗tα

∣∣∣∣
t=0

of a p-form α by X. It is again a p-form. We shall give a useful formula for this
involving the exterior derivative.

Proposition 6.4 Given a vector field X on a manifold M , there is a linear map

iX : Ωp(M)→ Ωp−1(M)

(called the interior product) such that

• iXdf = X(f)

• iX(α ∧ β) = iXα ∧ β + (−1)pα ∧ iXβ if α ∈ Ωp(M)
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The proposition tells us exactly how to work out an interior product: if

X =
∑
i

ai
∂

∂xi
,

and α = dx1 ∧ dx2 ∧ . . . ∧ dxp is a basic p-form then

iXα = a1dx2 ∧ . . . ∧ dxp − a2dx1 ∧ dx3 ∧ . . . ∧ dxp + . . . (11)

In particular

iX(iXα) = a1a2dx3 ∧ . . . ∧ dxp − a2a1dx3 ∧ . . . ∧ dxp + . . . = 0.

Example: Suppose

α = dx ∧ dy, X = x
∂

∂x
+ y

∂

∂y

then
iXα = xdy − ydx.

The interior product is just a linear algebra construction. Above we have seen how
to work it out when we write down a form as a sum of basis vectors. We just need to
prove that it is well-defined and independent of the way we do that, which motivates
the following more abstract proof:

Proof: In Remark 5.1 we defined ΛpV as the dual space of the space of alternating
p-multilinear forms on V . If M is an alternating (p − 1)-multilinear form on V and
ξ a linear form on V then

(ξM)(v1, . . . , vp) = ξ(v1)M(v2, . . . , vp)− ξ(v2)M(v1, v3, . . . , vp) + . . . (12)

is an alternating p-multilinear form. So if α ∈ ΛpV we can define iξα ∈ Λp−1V by

(iξα)(M) = α(ξM).

Taking V = T ∗ and ξ = X ∈ V ∗ = (T ∗)∗ = T gives the interior product. Equation
(12) gives us the rule (11) for working out interior products. 2

Here then is the formula for the Lie derivative:

Proposition 6.5 The Lie derivative LXα of a p-form α is given by

LXα = d(iXα) + iXdα.
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Proof: Consider the right hand side

RX(α) = d(iXα) + iXdα.

Now iX reduces the degree p by 1 but d increases it by 1, so RX maps p-forms to
p-forms. Also,

d(d(iXα) + iXdα) = diXdα = (diX + iXd)dα

because d2 = 0, so RX commutes with d. Finally, because

iX(α ∧ β) = iXα ∧ β + (−1)pα ∧ iXβ
d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

we have
RX(α ∧ β) = (RXα) ∧ β + α ∧RX(β).

On the other hand
ϕ∗t (dα) = d(ϕ∗tα)

so differentiating at t = 0, we get

LXdα = d(LXα)

and
ϕ∗t (α ∧ β) = ϕ∗tα ∧ ϕ∗tβ

and differentiating this, we have

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

Thus both LX and RX preserve degree, commute with d and satisfy the same Leibnitz
identity. Hence, if we write a p-form as

α =
∑

i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip

LX and RX will agree so long as they agree on functions. But

RXf = iXdf = X(f) =
∂

∂t
f(ϕt)

∣∣∣∣
t=0

= LXf

so they do agree. 2
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6.6 de Rham cohomology

In textbooks on vector calculus, you may read not only that curl grad f = 0, but also
that if a vector field a satisfies curl a = 0, then it can be written as a = grad f for
some function f . Sometimes the statement is given with the proviso that the open
set of R3 on which a is defined satisfies the topological condition that it is simply
connected (any closed path can be contracted to a point).

In the language of differential forms on a manifold, the analogue of the above state-
ment would say that if a 1-form α satisfies dα = 0, and M is simply-connected, there
is a function f such that df = α.

While this is true, the criterion of simply connectedness is far too strong. We want
to know when the kernel of

d : Ω1(M)→ Ω2(M)

is equal to the image of
d : Ω0(M)→ Ω1(M).

Since d2f = 0, the second vector space is contained in the first and what we shall do
is simply to study the quotient, which becomes a topological object in its own right,
with an algebraic structure which can be used to say many things about the global
topology of a manifold.

Definition 24 The p-th de Rham cohomology group of a manifold M is the quotient
vector space:

Hp(M) =
Ker d : Ωp(M)→ Ωp+1(M)

Im d : Ωp−1(M)→ Ωp(M)

Remark:

1. Although we call it the cohomology group, it is simply a real vector space. There
are analogous structures in algebraic topology where the additive group structure is
more interesting.

2. Since there are no forms of degree −1, the group H0(M) is the space of functions
f such that df = 0. Now each connected component Mi of M is an open set of M
and hence a manifold. The mean value theorem tells us that on any open ball in a
coordinate neighbourhood of Mi, df = 0 implies that f is equal to a constant c, and
the subset of Mi on which f = c is open and closed and hence equal to Mi.

Thus if M is connected, the de Rham cohomology group H0(M) is naturally isomor-
phic to R: the constant value c of the function f . In general H0(M) is the vector
space of real valued functions on the set of components. Our assumption that M
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has a countable basis of open sets means that there are at most countably many
components. When M is compact, there are only finitely many, since components
provide an open covering. In fact, the cohomology groups of a compact manifold are
finite-dimensional vector spaces for all p, though we shall not prove that here.

It is convenient in discussing the exterior derivative to introduce the following termi-
nology:

Definition 25 A form α ∈ Ωp(M) is closed if dα = 0.

Definition 26 A form α ∈ Ωp(M) is exact if α = dβ for some β ∈ Ωp−1(M).

The de Rham cohomology group Hp(M) is by definition the quotient of the space of
closed p-forms by the subspace of exact p-forms. Under the quotient map, a closed
p-form α defines a cohomology class [α] ∈ Hp(M), and [α′] = [α] if and only if
α′ − α = dβ for some β.

Here are some basic features of the de Rham cohomology groups:

Proposition 6.6 The de Rham cohomology groups of a manifold M of dimension n
have the following properties:

• Hp(M) = 0 if p > n

• for a ∈ Hp(M), b ∈ Hq(M) there is a bilinear product ab ∈ Hp+q(M) which
satisfies

ab = (−1)pqba

• if F : M → N is a smooth map, it defines a natural linear map

F ∗ : Hp(N)→ Hp(M)

which commutes with the product.

Proof: The first part is clear since ΛpT ∗ = 0 for p > n.

For the product, this comes directly from the exterior product of forms. If a = [α], b =
[β] we define

ab = [α ∧ β]
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but we need to check that this really does define a cohomology class. Firstly, since
α, β are closed,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ = 0

so there is a class defined by α∧β. Suppose we now choose a different representative
α′ = α + dγ for a. Then

α′ ∧ β = (α + dγ) ∧ β = α ∧ β + d(γ ∧ β)

using dβ = 0, so d(γ ∧ β) = dγ ∧ β. Thus α′ ∧ β and α ∧ β differ by an exact form
and define the same cohomology class. Changing β gives the same result.

The last part is just the pull-back operation on forms. Since

dF ∗α = F ∗dα

F ∗ defines a map of cohomology groups. And since

F ∗(α ∧ β) = F ∗α ∧ F ∗β

it respects the product. 2

Perhaps the most important property of the de Rham cohomology, certainly the
one that links it to algebraic topology, is the deformation invariance of the induced
maps F . We show that if Ft is a smooth family of smooth maps, then the effect on
cohomology is independent of t. As a matter of terminology (because we have only
defined smooth maps of manifolds) we shall say that a map

F : M × [a, b]→ N

is smooth if it is the restriction of a smooth map on the product with some slightly
bigger open interval M × (a− ε, b+ ε).

Theorem 6.7 Let F : M × [0, 1] → N be a smooth map. Set Ft(x) = F (x, t) and
consider the induced map on de Rham cohomology F ∗t : Hp(N)→ Hp(M). Then

F ∗1 = F ∗0 .

Proof: Represent a ∈ Hp(N) by a closed p-form α and consider the pull-back form
F ∗α on M × [0, 1]. We can decompose this uniquely in the form

F ∗α = β + dt ∧ γ (13)
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where β is a p-form onM (also depending on t) and γ is a (p−1)-form onM , depending
on t. In a coordinate system it is clear how to do this, but more invariantly, the form
β is just F ∗t α. To get γ in an invariant manner, we can think of

(x, s) 7→ (x, s+ t)

as a local one-parameter group of diffeomorphisms of M × (a, b) which generates a
vector field X = ∂/∂t. Then

γ = iXF
∗α.

Now α is closed, so from (13),

0 = dMβ + dt ∧ ∂β
∂t
− dt ∧ dMγ

where dM is the exterior derivative in the variables of M . It follows that

∂β

∂t
= dMγ.

Now integrating with respect to the parameter t, and using

∂

∂t
F ∗t α =

∂β

∂t

we obtain

F ∗1α− F ∗0α =

∫ 1

0

∂

∂t
F ∗t α dt = d

∫ 1

0

γ dt.

So the closed forms F ∗1α and F ∗0α differ by an exact form and

F ∗1 (a) = F ∗0 (a).

2

Here is an immediate corollary:

Proposition 6.8 The de Rham cohomology groups of M = Rn are zero for p > 0.

Proof: Define F : Rn × [0, 1]→ Rn by

F (x, t) = tx.

Then F1(x) = x which is the identity map, and so

F ∗1 : Hp(Rn)→ Hp(Rn)
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is the identity.

But F0(x) = 0 which is a constant map. In particular the derivative vanishes, so the
pull-back of any p-form of degree greater than zero is the zero map. So for p > 0

F ∗0 : Hp(Rn)→ Hp(Rn)

vanishes.

From Theorem 6.7 F ∗0 = F ∗1 and we deduce that Hp(Rn) vanishes for p > 0. Of
course Rn is connected so H0(Rn) ∼= R. 2

Exercise 6.9 Show that the previous proposition holds for a star shaped region in
Rn: an open set U with a point a ∈ U such that for each x ∈ U the straight-line
segment ax ⊂ U . This is usually called the Poincaré lemma.

The same argument above can be used for the map Ft : M ×Rn →M ×Rn given by
Ft(a, x) = (a, tx) to show that Hp(M ×Rn) ∼= Hp(M).

We are in no position yet to calculate many other de Rham cohomology groups, but
here is a first non-trivial example. Consider the case of R/Z, diffeomorphic to the
circle. In the atlas given earlier, we had ϕ1ϕ

−1
0 (x) = x or ϕ1ϕ

−1
0 (x) = x − 1 so the

1-form dx = d(x − 1) is well-defined, and nowhere zero. It is not the derivative of
a function, however, since R/Z is compact and any function must have a minimum
where df = 0. We deduce that

H1(R/Z) 6= 0.

On the other hand, suppose that α = g(x)dx is any 1-form (necessarily closed because
it is the top degree). Then g is a periodic function: g(x+ 1) = g(x). To solve df = α
means solving f ′(x) = g(x) which is easily done on R by:

f(x) =

∫ x

0

g(s)ds.

But we want f(x+ 1) = f(x) which will only be true if∫ 1

0

g(x)dx = 0.

Thus in general

α = g(x)dx =

(∫ 1

0

g(s)ds

)
dx+ df

and any 1-form is of the form cdx+ df . Thus H1(R/Z) ∼= R.
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We can use this in fact to start an inductive calculation of the de Rham cohomology
of the n-sphere.

Theorem 6.10 For n > 0, Hp(Sn) ∼= R if p = 0 or p = n and is zero otherwise.

Proof: We have already calculated the case of n = 1 so suppose that n > 1.

Clearly the group vanishes when p > n, the dimension of Sn, and for n > 0, Sn is
connected and so H0(Sn) ∼= R.

Decompose Sn into open sets U, V , the complement of closed balls around the North
and South poles respectively. By stereographic projection these are diffeomorphic to
open balls in Rn. If α is a closed p-form for 1 < p < n, then by the Poincaré lemma
α = du on U and α = dv on V for some (p−1) forms u, v. On the intersection U ∩V ,

d(u− v) = α− α = 0

so (u− v) is closed. But
U ∩ V ∼= Sn−1 ×R

so
Hp−1(U ∩ V ) ∼= Hp−1(Sn−1)

and by induction this vanishes, so on U ∩ V , u− v = dw.

Now look at U ∩ V as a product with a finite open interval: Sn−1 × (−2, 2). We can
find a bump function ϕ(s) which is 1 for s ∈ (−1, 1) and has support in (−2, 2). Take
slightly smaller sets U ′ ⊂ U, V ′ ⊂ V such that U ′ ∩ V ′ = Sn−1 × (−1, 1). Then ϕw
extends by zero to define a form on Sn and we have u on U ′ and v + d(ϕw) on V ′

with u = v + dw = v + d(ϕw) on U ′ ∩ V ′. Thus we have defined a (p − 1) form β
on Sn such that β = u on U ′ and v + d(ϕw) on V ′ and α = dβ on U ′ and V ′ and so
globally α = dβ. Thus the cohomology class of α is zero.

This shows that we have vanishing of Hp(Sn) for 1 < p < n.

When p = 1, in the argument above u−v is a function on U∩V and since d(u−v) = 0
it is a constant c if U ∩ V is connected, which it is for n > 1. Then d(v + c) = α
and the pair of functions u on U and v + c on V agree on the overlap and define a
function f such that df = α.

When p = n the form u−v defines a class in Hn−1(U ∩V ) ∼= Hn−1(Sn−1) ∼= R. So let
ω be an (n− 1) form on Sn−1 whose cohomology class is non-trivial and pull it back
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to Sn−1 × (−2, 2) by the projection onto the first factor. Then Hn−1(Sn−1 × (−2, 2))
is generated by [ω] and we have

u− v = λω + dw

for some λ ∈ R. If λ = 0 we repeat the process above, so Hn(Sn) is at most one-
dimensional. Note that λ is linear in α and is independent of the choice of u and v
– if we change u by a closed form then it is exact since Hp−1(U) = 0 and we can
incorporate it into w.

All we need now is to find a class in Hn(Sn) for which λ 6= 0. To do this consider

ϕdt ∧ ω

extended by zero outside U ∩ V . Then(∫ t

−2
ϕ(s)ds

)
ω

vanishes for t < −2 and so extends by zero to define a form u on U such that du = α.
When t > 2 this is non-zero but we can change this to

v =

(∫ t

−2
ϕ(s)ds

)
ω −

(∫ 2

−2
ϕ(s)ds

)
ω

which does extend by zero to V and still satisfies dv = α. Thus taking the difference,
λ above is the positive number

λ =

∫ 2

−2
ϕ(s)ds.

2

To get more information on de Rham cohomology we need to study the other aspect
of differential forms: integration.
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7 Integration of forms

7.1 Orientation

Recall the change of variables formula in a multiple integral:

∫
f(y1, . . . , yn)dy1dy2 . . . dyn =

∫
f(y1(x), . . . , yn(x))| det ∂yi/∂xj|dx1dx2 . . . dxn

and compare to the change of coordinates for an n-form on an n-dimensional manifold:

θ = f(y1, . . . , yn)dy1 ∧ dy2 ∧ . . . ∧ dyn

= f(y1(x), . . . , yn(x))
∑
i

∂y1
∂xi

dxi ∧ . . . ∧
∑
p

∂yn
∂xp

dxp

= f(y1(x), . . . , yn(x))(det ∂yi/∂xj)dx1 ∧ dx2 . . . ∧ dxn

The only difference is the absolute value, so that if we can sort out a consistent sign,
then we should be able to assign a coordinate-independent value to the integral of an
n-form over an n-dimensional manifold. The sign question is one of orientation.

Definition 27 An n-dimensional manifold is said to be orientable if it has an ev-
erywhere non-vanishing n-form ω.

Definition 28 Let M be an n-dimensional orientable manifold. An orientation on
M is an equivalence class of non-vanishing n-forms ω where ω ∼ ω′ if ω′ = fω with
f > 0.

Clearly a connected orientable manifold has two orientations: the equivalence classes
of ±ω.

Example:

1. Let M ⊂ Rn+1 be defined by f(x) = c, with df(a) 6= 0 if f(a) = c. By Theorem
2.2, M is a manifold and moreover, if ∂f/∂xi 6= 0, x1, . . . , xi−1, xi+1, xn+1 are local
coordinates. Consider, on such a coordinate patch,

ω = (−1)i
1

∂f/∂xi
dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 . . . ∧ dxn+1 (14)
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This is non-vanishing.

Now M is defined by f(x) = c so that on M∑
j

∂f

∂xj
dxj = 0

and if ∂f/∂xj 6= 0

dxj = − 1

∂f/∂xj
(∂f/∂xidxi + . . .).

Substituting in (14) we get

ω = (−1)j
1

∂f/∂xj
dx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 . . . ∧ dxn+1.

The formula (14) therefore defines for all coordinate charts a non-vanishing n-form,
so M is orientable.

The obvious example is the sphere Sn with

ω = (−1)i
1

xi
dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 . . . ∧ dxn+1.

2. Consider real projective space RPn and the smooth map

p : Sn → RPn

which maps a unit vector in Rn+1 to the one-dimensional subspace it spans. Con-
cretely, if x1 6= 0, we use x = (x2, . . . , xn+1) as coordinates on Sn and the usual
coordinates (x2/x1, . . . , xn+1/x1) on RPn, then

p(x) =
1√

1− ‖x‖2
x. (15)

This is smooth with smooth inverse

q(y) =
1√

1 + ‖y‖2
y

so we can use (x2, . . . , xn+1) as local coordinates on RPn.

Let σ : Sn → Sn be the diffeomorphism σ(x) = −x. Then

σ∗ω = (−1)i
1

−xi
d(−x1) ∧ . . . ∧ d(−xi−1) ∧ d(−xi+1) . . . ∧ d(−xn+1) = (−1)n−1ω.
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Suppose RPn is orientable, then it has a non-vanishing n-form θ. Since the map
(15) has a local smooth inverse, the derivative of p is invertible, so that p∗θ is a
non-vanishing n-form on Sn and so

p∗θ = fω

for some non-vanishing smooth function f . But p ◦ σ = p so that

fω = p∗θ = σ∗p∗θ = (f ◦ σ)(−1)n−1ω.

Thus, if n is even,
f ◦ σ = −f

and if f(a) > 0, f(−a) < 0. But RPn = p(Sn) and Sn is connected so RPn is
connected. This means that f must vanish somewhere, which is a contradiction.

Hence RP2m is not orientable.

There is a more sophisticated way of seeing the non-vanishing form on Sn which gives
many more examples. First note that a non-vanishing n-form on an n-dimensional
manifold is a non-vanishing section of the rank 1 vector bundle ΛnT ∗M . The top
exterior power has a special property: suppose U ⊂ V is an m-dimensional vector
subspace of an n-dimensional space V , then V/U has dimension n−m. There is then
a natural isomorphism

ΛmU ⊗ Λn−m(V/U) ∼= ΛnV. (16)

To see this let u1, . . . , um be a basis of U and v1, . . . , vn−m vectors in V/U . By
definition there exist vectors ṽ1, . . . , ṽn−m such that vi = ṽi + U . Consider

u1 ∧ u2 . . . ∧ um ∧ ṽ1 ∧ . . . ∧ ṽn−m.

This is independent of the choice of ṽi since any two choices differ by a linear combi-
nation of ui, which is annihilated by u1 ∧ . . . um. This map defines the isomorphism.
Because it is natural it extends to the case of vector bundles.

Suppose now that M of dimension n is defined as the subset f−1(c) of Rn where
f : Rn → Rm has surjective derivative on M . This means that the 1-forms df1, . . . dfm
are linearly independent at the points of M ⊂ Rn. We saw that in this situation, the
tangent space TaM of M at a is the subspace of TaR

n annihilated by the derivative
of f , or equivalently the 1-forms dfi. Another way of saying this is that the cotangent
space T ∗aM is the quotient of T ∗aR

n by the subspace U spanned by df1, . . . , dfm. From
(16) we have an isomorphism

ΛmU ⊗ Λn−m(T ∗M) ∼= ΛnT ∗Rn.
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Now df1 ∧ df2 ∧ . . . ∧ dfm is a non-vanishing section of ΛmU , and dx1 ∧ . . . ∧ dxn is a
non-vanishing section of ΛnT ∗Rn so the isomorphism defines a non-vanishing section
ω of Λn−mT ∗M .

All such manifolds, and not just the sphere, are therefore orientable. In the case
m = 1, where M is defined by a single real-valued function f , we have

df ∧ ω = dx1 ∧ dx2 . . . ∧ dxn.

If ∂f/∂xn 6= 0, then x1, . . . , xn−1 are local coordinates and so from this formula we
see that

ω = (−1)n−1
1

∂f/∂xn
dx1 ∧ . . . ∧ dxn−1

as above.

Remark: Any compact manifold Mm can be embedded in RN for some N , but
the argument above shows that M is not always cut out by N −m globally defined
functions with linearly independent derivatives, because it would then have to be
orientable.

Orientability helps in integration through the following:

Proposition 7.1 A manifold is orientable if and only if it has a covering by coordi-
nate charts such that

det

(
∂yi
∂xj

)
> 0

on the intersection.

Proof: AssumeM is orientable, and let ω be a non-vanishing n-form. In a coordinate
chart

ω = f(x1, . . . , xn)dx1 ∧ . . . dxn.
After possibly making a coordinate change x1 7→ c − x1, we have coordinates such
that f > 0.

Look at two such overlapping sets of coordinates. Then

ω = g(y1, . . . , yn)dy1 ∧ . . . ∧ dyn
= g(y1(x), . . . , yn(x))(det ∂yi/∂xj)dx1 ∧ dx2 . . . ∧ dxn
= f(x1, . . . , xn)dx1 ∧ . . . dxn
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Since f > 0 and g > 0, the determinant det ∂yi/∂xj is also positive.

Conversely, suppose we have such coordinates. Take a partition of unity {ϕα} subor-
dinate to the coordinate covering and put

ω =
∑

ϕαdy
α
1 ∧ dyα2 ∧ . . . ∧ dyαn .

Then on a coordinate neighbourhood Uβ with coordinates x1, . . . , xn we have

ω|Uβ =
∑

ϕα det(∂yαi /∂xj)dx1 ∧ . . . dxn.

Since ϕα ≥ 0 and det(∂yαi /∂xj) is positive, this is non-vanishing. 2

Now suppose M is orientable and we have chosen an orientation. We shall define the
integral ∫

M

θ

of any n-form θ of compact support on M .

We first choose a coordinate covering as in Proposition 7.1. On each coordinate
neighbourhood Uα we have

θ|Uα = fα(x1, . . . , xn)dx1 ∧ . . . ∧ dxn.

Take a partition of unity ϕi subordinate to this covering. Then

ϕiθ|Uα = gi(x1, . . . , xn)dx1 ∧ . . . ∧ dxn

where gi is a smooth function of compact support on the whole of Rn. We then define∫
M

θ =
∑
i

∫
M

ϕiθ =
∑
i

∫
Rn

gi(x1, . . . , xn)dx1dx2 . . . dxn.

Note that since θ has compact support, its support is covered by finitely many open
sets on which ϕi 6= 0, so the above is a finite sum.

The integral is well-defined precisely because of the change of variables formula in
integration, and the consistent choice of sign from the orientation.
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7.2 Stokes’ theorem

The theorems of Stokes and Green in vector calculus are special cases of a single result
in the theory of differential forms, which by convention is called Stokes’ theorem. We
begin with a simple version of it:

Theorem 7.2 Let M be an oriented n-dimensional manifold and ω ∈ Ωn−1(M) be
of compact support. Then ∫

M

dω = 0.

Proof: Use a partition of unity subordinate to a coordinate covering to write

ω =
∑

ϕiω.

Then on a coordinate neighbourhood

ϕiω = a1dx2 ∧ . . . ∧ dxn − a2dx1 ∧ dx3 ∧ . . . ∧ dxn + . . .

and

d(ϕiω) =

(
∂a1
∂x1

+ . . .+
∂an
∂xn

)
dx1 ∧ dx2 ∧ . . . ∧ dxn.

From the definition of the integral, we need to sum each∫
Rn

(
∂a1
∂x1

+ . . .+
∂an
∂xn

)
dx1dx2 . . . dxn.

Consider ∫
Rn

∂a1
∂x1

dx1dx2 . . . dxn.

By Fubini’s theorem we evaluate this as a repeated integral∫
R

∫
R

. . .

(∫
∂a1
∂x1

dx1

)
dx2dx3 . . . dxn.

But a1 has compact support, so vanishes if |x1| ≥ N and thus∫
R

∂a1
∂x1

dx1 = [a1]
N
−N = 0.

The other terms vanish in a similar way. 2
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Theorem 7.2 has an immediate payoff for de Rham cohomology:

Proposition 7.3 Let M be a compact orientable n-dimensional manifold. Then the
de Rham cohomology group Hn(M) is non-zero.

Proof: Since M is orientable, it has a non-vanishing n-form θ. Because there are
no n+ 1-forms, it is closed, and defines a cohomology class [θ] ∈ Hn(M).

Choose the orientation defined by θ and integrate: we get∫
M

θ =
∑∫

fidx1dx2 . . . dxn

which is positive since each fi ≥ 0 and is positive somewhere.

Now if the cohomology class [θ] = 0, θ = dω, but then Theorem 7.2 gives∫
M

θ =

∫
M

dω = 0

a contradiction. 2

Here is a topological result which follows directly from the proof of the above fact:

Theorem 7.4 Every vector field on an even-dimensional sphere S2m vanishes some-
where.

Proof: Suppose for a contradiction that there is a non-vanishing vector field. For
the sphere, sitting inside R2m+1, we can think of a vector field as a smooth map

v : S2m → R2m+1

such that (x, v(x)) = 0 and if v is non-vanishing we can normalize it to be a unit
vector. So assume (v(x), v(x)) = 1.

Now define Ft : S2m → R2m+1 by

Ft(x) = cos t x+ sin t v(x).

Since (x, v(x)) = 0, we have

(cos t x+ sin t v(x), cos t x+ sin t v(x)) = 1
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so that Ft maps the unit sphere to itself. Moreover,

F0(x) = x, Fπ(x) = −x.

Now let ω be the standard orientation form on S2m:

ω = dx1 ∧ dx2 ∧ . . . ∧ dx2m/x2m+1.

We see that
F ∗0ω = ω, F ∗πω = −ω.

But by Theorem 6.7, the maps F ∗0 , F
∗
π on H2m(S2m) are equal. We deduce that the

de Rham cohomology class of ω is equal to its negative and so must be zero, but this
contradicts that fact that its integral is positive. Thus the vector field must have a
zero. 2

Green’s theorem relates a surface integral to a volume integral, and the full version of
Stokes’ theorem does something similar for manifolds. The manifolds we have defined
are analogues of a surface – the sphere for example. We now need to find analogues
of the solid ball that the sphere bounds. These are still called manifolds, but with a
boundary.

Definition 29 An n-dimensional manifold with boundary is a set M with a collec-
tion of subsets Uα and maps

ϕα : Uα → (Rn)+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}

such that

• M = ∪αUα

• ϕα : Uα → ϕα(Uα) is a bijection onto an open set of (Rn)+ and ϕα(Uα ∩ Uβ) is
open for all α, β,

• ϕβϕ−1α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) is the restriction of a C∞ map from a
neighbourhood of ϕα(Uα ∩ Uβ) ⊆ (Rn)+ ⊂ Rn to Rn.

The boundary ∂M of M is defined as

∂M = {x ∈M : ϕα(x) ∈ {(x1, . . . , xn−1, 0) ∈ Rn}

and these charts define the structure of an (n− 1)-manifold on ∂M .
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Example:

1. The model space (Rn)+ is a manifold with boundary xn = 0.

2. The unit ball {x ∈ Rn : ‖x‖ ≤ 1} is a manifold with boundary Sn−1.

3. The Möbius band is a 2-dimensional manifold with boundary the circle:

4. The cylinder I × S1 is a 2-dimensional manifold with boundary the union of two
circles – a manifold with two components.

We can define differential forms etc. on manifolds with boundary in a straightforward
way. Locally, they are just the restrictions of smooth forms on some open set in Rn

to (Rn)+. A form on M restricts to a form on its boundary.

Proposition 7.5 If a manifold M with boundary is oriented, there is an induced
orientation on its boundary.

Proof: We choose local coordinate systems such that ∂M is defined by xn = 0 and
det(∂yi/∂xj) > 0. So, on overlapping neighbourhoods,

yi = yi(x1, . . . , xn), yn(x1, . . . , xn−1, 0) = 0.

Then the Jacobian matrix has the form
∂y1/∂x1 ∂y1/∂x2 ∂y1/∂xn
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 0 ∂yn/∂xn

 (17)
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From the definition of manifold with boundary, ϕβϕ
−1
α maps xn > 0 to yn > 0, so yn

has the property that if xn = 0, yn = 0 and if xn > 0, yn > 0. It follows that

∂yn
∂xn

∣∣∣∣
xn=0

> 0.

From (17) the determinant of the Jacobian for ∂M is given by

det(J∂M)
∂yn
∂xn

∣∣∣∣
xn=0

= det(JM)

so if det(JM) > 0 so is det(J∂M).

2

Remark: The boundary of an oriented manifold has an induced orientation, but
there is a convention about which one to choose: for a surface in R3 this is the choice
of an “inward” or “outward” normal. Our choice will be that if dx1∧ . . .∧dxn defines
the orientation on M with xn ≥ 0 defining M locally, then (−1)ndx1∧ . . .∧dxn−1 (the
“outward” normal) is the induced orientation on ∂M . The boundary of the cylinder
gives opposite orientations on the two circles. The Möbius band is not orientable,
though its boundary the circle of course is.

We can now state the full version of Stokes’ theorem:

Theorem 7.6 (Stokes’ theorem) Let M be an n-dimensional oriented manifold with
boundary ∂M and let ω ∈ Ωn−1(M) be a form of compact support. Then, using the
induced orientation ∫

M

dω =

∫
∂M

ω.

Proof: We write again

ω =
∑

ϕiω

and then ∫
M

dω =
∑∫

M

d(ϕiω).

We work as in the previous version of the theorem, with

ϕiω = a1dx2∧ . . .∧dxn−a2dx1∧dx3∧ . . .∧dxn+ . . .+(−1)n−1andx1∧dx2∧ . . .∧dxn−1
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(7.2), but now there are two types of open sets. For those which do not intersect ∂M
the integral is zero by Theorem 7.2. For those which do, we have∫

M

d(ϕiω) =

∫
xn≥0

(
∂a1
∂x1

+ . . .+
∂an
∂xn

)
dx1dx2 . . . dxn

=

∫
Rn−1

[an]∞0 dx1 . . . dxn−1

= −
∫
Rn−1

an(x1, x2, . . . , xn−1, 0)dx1 . . . dxn−1

=

∫
∂M

ϕiω

2

where the last line follows since

ϕiω|∂M = (−1)n−1andx1 ∧ dx2 ∧ . . . ∧ dxn−1

and we use the induced orientation (−1)ndx1 ∧ . . . ∧ dxn−1.

An immediate corollary is the following classical result, called the Brouwer fixed point
theorem.

Theorem 7.7 Let B be the unit ball {x ∈ Rn : ‖x‖ ≤ 1} and let F : B → B be a
smooth map from B to itself. Then F has a fixed point.

Proof: Suppose there is no fixed point, so that F (x) 6= x for all x ∈ B. For each
x ∈ B, extend the straight line segment F (x)x until it meets the boundary sphere of
B in the point f(x). Then we have a smooth function

f : B → ∂B

such that if x ∈ ∂B, f(x) = x.

Let ω be the standard non-vanishing (n− 1)-form on Sn−1 = ∂B, with∫
∂B

ω = 1.

Then

1 =

∫
∂B

ω =

∫
∂B

f ∗ω
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since f is the identity on Sn−1. But by Stokes’ theorem,∫
∂B

f ∗ω =

∫
B

d(f ∗ω) =

∫
B

f ∗(dω) = 0

since dω = 0 as ω is in the top dimension on Sn−1.

The contradiction 1 = 0 means that there must be a fixed point. 2

8 The degree of a smooth map

By using integration of forms we have seen that for a compact orientable manifold of
dimension n the de Rham cohomology group Hn(M) is non-zero, and that this fact
enabled us to prove some global topological results about such manifolds. We shall
now refine this result, and show that the group is (for a compact, connected, orientable
manifold) just one-dimensional. This gives us a concrete method of determining the
cohomology class of an n-form: it is exact if and only if its integral is zero.

8.1 de Rham cohomology in the top dimension

First a lemma:

Lemma 8.1 Let Un = {x ∈ Rn : |xi| < 1} and let ω ∈ Ωn(Rn) be a form with
support in Un such that ∫

Un
ω = 0.

Then there exists β ∈ Ωn−1(Rn) with support in Un such that ω = dβ.

Proof: We prove the result by induction on the dimension n, but we make the
inductive assumption that ω and β depend smoothly on a parameter λ ∈ Rm, and
also that if ω vanishes identically for some λ, so does β.

Consider the case n = 1, so ω = f(x, λ)dx. Clearly taking

β(x, λ) =

∫ x

−1
f(u, λ)du (18)

gives us a function with dβ = ω. But also, since f has support in U , there is a δ > 0
such that f vanishes for x > 1− δ or x < −1 + δ. Thus∫ x

−1
f(u, λ)du =

∫ 1

−1
f(u, λ)du = 0
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for x > 1− δ and similarly for x < −1 + δ which means that β itself has support in
U . If f(x, λ) = 0 for all x, then from the integration (18) so does β(x, λ).

Now assume the result for dimensions less than n and let

ω = f(x1, . . . , xn, λ)dx1 ∧ . . . ∧ dxn

be the given form. Fix xn = t and consider

f(x1, . . . , xn−1, t, λ)dx1 ∧ . . . ∧ dxn−1

as a form on Rn−1, depending smoothly on t and λ. Its integral is no longer zero,
but if σ is a bump function on Un−1 such that the integral of σdx1 ∧ . . .∧ dxn−1 is 1,
then putting

g(t, λ) =

∫
Un−1

f(x1, . . . , xn−1, t, λ)dx1 ∧ . . . ∧ dxn−1

we have a form

f(x1, . . . , xn−1, t, λ)dx1 ∧ . . . ∧ dxn−1 − g(t, λ)σdx1 ∧ . . . ∧ dxn−1

with support in Un−1 and zero integral. Apply induction to this and we can write it
as dγ where γ has support in Un−1.

Now put t = xn, and consider d(γ ∧ dxn). The xn-derivative of γ doesn’t contribute
because of the dxn factor, and σ is independent of xn, so we get

d(γ ∧ dxn) = f(x1, . . . , xn−1, xn, λ)dx1 ∧ . . . ∧ dxn − g(xn, λ)σdx1 ∧ . . . ∧ dxn.

Putting

ξ(x1, . . . , xn, λ) = (−1)n−1(

∫ xn

−1
g(t, λ)dt)σdx1 ∧ . . . ∧ dxn−1

also gives
dξ = g(xn, λ)σdx1 ∧ . . . ∧ dxn.

We can therefore write

f(x1, . . . , xn−1, xn, λ)dx1 ∧ . . . ∧ dxn = d(γ ∧ dxn + ξ) = dβ.

Now by construction β has support in |xi| < 1 for 1 ≤ i ≤ n − 1, but what about
the xn direction? Since f(x1, . . . , xn−1, t, λ) vanishes for t > 1− δ or t < −1 + δ, the

69



inductive assumption tells us that γ does also for xn > 1− δ. As for ξ, if t > 1− δ,∫ t

−1
g(s, λ)ds =

∫ t

−1

(∫
Un−1

f(x1, . . . , xn−1, t, λ)dx1 ∧ . . . ∧ dxn−1
)
dt

=

∫ 1

−1

(∫
Un−1

f(x1, . . . , xn−1, t, λ)dx1 ∧ . . . ∧ dxn−1
)
dt

=

∫
Un
f (x1, . . . , xn, λ) dx1 ∧ . . . ∧ dxn

= 0

by assumption. Thus the support of ξ is in Un. Again, examining the integrals, if
f(x, λ) is identically zero for some λ, so is β.

2

Using the lemma, we prove:

Theorem 8.2 If M is a compact, connected orientable n-dimensional manifold, then
Hn(M) ∼= R.

Proof: Take a covering by coordinate neighbourhoods which map to Un = {x ∈
Rn : |xi| < 1} and a corresponding partition of unity {ϕi}. By compactness, we can
assume we have a finite number U1, . . . , UN of open sets. Using a bump function, fix
an n-form α0 with support in U1 and∫

M

α0 = 1.

Thus, by Theorem 7.3 the cohomology class [α0] is non-zero. To prove the theorem
we want to show that for any n-form α,

[α] = c[α0]

i.e. that α = cα0 + dγ.

Given α use the partition of unity to write

α =
∑

ϕiα

then by linearity it is sufficient to prove the result for each ϕiα, so we may assume
that the support of α lies in a coordinate neighbourhood Um. Because M is connected

70



we can connect p ∈ U1 and q ∈ Um by a path and by the connectedeness of open
intervals we can assume that the path is covered by a sequence of Ui’s, each of which
intersects the next: i.e. renumbering, we have

p ∈ U1, Ui ∩ Ui+1 6= ∅, q ∈ Um.

Now for 1 ≤ i ≤ m− 1 choose an n-form αi with support in Ui ∩Ui+1 and integral 1.
On U1 we have ∫

(α0 − α1) = 0

and so applying Lemma 8.1, there is a form β0 with support in U1 such that

α0 − α1 = dβ1.

Continuing, we get altogether

α0 − α1 = dβ1

α1 − α2 = dβ2

. . . = . . .

αm−2 − αm−1 = dβm−1

and adding, we find

α0 − αm−1 = d(
∑
i

βi) (19)

On Um, we have ∫
α = c =

∫
cαm−1

and applying the Lemma again, we get α− cαm−1 = dβ and so from (19)

α = cαm−1 + dβ = cα0 + d(β − c
∑
i

βi)

as required.

2

Theorem 8.2 tells us that for a compact connected oriented n-dimensional manifold,
Hn(M) is one-dimensional. Take a form ωM whose integral over M is 1, then [ωM ] is
a natural basis element for Hn(M). Suppose

F : M → N
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is a smooth map of compact connected oriented manifolds of the same dimension n.
Then we have the induced map

F ∗ : Hn(N)→ Hn(M)

and relative to our bases
F ∗[ωN ] = k[ωM ] (20)

for some real number k. We now show that k is an integer.

Theorem 8.3 Let M , N be oriented, compact, connected manifolds of the same di-
mension n, and F : M → N a smooth map. There exists an integer, called the degree
of F such that

• if ω ∈ Ωn(N) then ∫
M

F ∗ω = degF

∫
N

ω

• if a is a regular value of F then

degF =
∑

x∈F−1(a)

sgn(detDFx)

Remark:

1. A regular value for a smooth map F : M → N is a point a ∈ N such that for each
x ∈ F−1(a), the derivative DFx is surjective. When dimM = dimN this means that
DFx is invertible. Sard’s theorem (a proof of which is in the Appendix) shows that
for any smooth map most points in N are regular values.

2. The expression sgn(detDFx) in the theorem can be interpreted in two ways, but
depends crucially on the notion of orientation – consistently associating the right
sign for all the points x ∈ F−1(a). The straightforward approach uses Proposition
7.1 to associate to an orientation a class of coordinates whose Jacobians have positive
determinant. If detDFx is written as a Jacobian matrix in such a set of coordinates
for M and N , then sgn(detDFx) is just the sign of the determinant. More invariantly,
DFx : TxM 7→ TaN defines a linear map

Λn(DF ′x) : ΛT ∗Na → ΛT ∗xM.

Orientations on M and N are defined by non-vanishing forms ωM , ωN and

Λn(DF ′x)(ωN) = λωM .

Then sgn(detDFx) is the sign of λ.

3. Note the immediate corollary of the theorem: if F is not surjective, then degF = 0.
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Proof: For the first part of the theorem, the cohomology class of ω is [ω] = c[ωN ]
and so integrating (and using Proposition 7.2),∫

N

ω = c

∫
N

ωN = c.

Using the number k in (20),

F ∗[ω] = cF ∗[ωN ] = ck[ωM ]

and integrating, ∫
M

F ∗ω = ck

∫
M

ωM = ck = k

∫
N

ω.

For the second part, since DFx is an isomorphism at all points in F−1(a), from
Theorem 3.3, F−1(a) is a zero-dimensional manifold. Since it is compact (closed
inside a compact space M) it is a finite set of points. The inverse function theorem
applied to these m points shows that there is a coordinate neighbourhood U of a ∈ N
such that F−1(U) is a disjoint union of m open sets Ui such that

F : Ui → U

is a diffeomorphism.

Let σ be an n-form supported in U with
∫
N
σ = 1 and consider the diffeomorphism

F : Ui → U . Then by the coordinate invariance of integration of forms, and using
the orientations on M and N ,∫

Ui

F ∗σ = sgnDFxi

∫
U

σ = sgnDFxi .

Hence, summing ∫
M

F ∗σ =
∑
i

sgnDFxi

and this is from the first part

k = k

∫
N

σ =

∫
M

F ∗σ

which gives

k =
∑
i

sgnDFxi .

2
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Example: Let M be the extended complex plane: M = C ∪ {∞}. This is a
compact, connected, orientable 2-manifold. In fact it is the 2-sphere. Consider the
map F : M →M defined by

F (z) = zk + a1z
k−1 + . . .+ ak, z 6=∞

F (∞) = ∞

This is smooth because in coordinates near z =∞, F is defined (for w = 1/z) by

w 7→ wk

1 + a1w + . . . akwk
.

To find the degree of F , consider

Ft(z) = zk + t(a1z
k−1 + . . .+ ak).

This is a smooth map for all t and by Theorem 6.7 the action on cohomology is
independent of t, so

degF = degF0

where F0(z) = zk.

We can calculate this degree by taking a 2-form, with |z| = r and z = x+ iy

f(r)dx ∧ dy = f(r)rdr ∧ dθ

with f(r) of compact support. Then the degree is given by

degF0

∫
R2

f(r)rdr ∧ dθ =

∫
R2

f(rk)rkd(rk)kdθ = k

∫
R2

f(r)rdr ∧ dθ.

Thus degF = k. If k > 0 this means in particular that F is surjective and therefore
takes the value 0 somewhere, so that

zk + a1z
k−1 + . . .+ ak = 0

has a solution. This is the fundamental theorem of algebra.

Example: Take two smooth maps f1, f2 : S1 → R3. These give two circles in R3 –
suppose they are disjoint. Define

F : S1 × S1 → S2
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by

F (s, t) =
f1(s)− f2(t)
‖f1(s)− f2(t)‖

.

The degree of this map is called the linking number.

Example: Let M ⊂ R3 be a compact surface and n its unit normal. The Gauss
map is the map

F : M → S2

defined by F (x) = n(x). If we work out the degree by integration, we take the
standard 2-form ω on S2. Then one finds that∫

M

F ∗ω =

∫
M

K
√
EG− F 2dudv

where K is the Gaussian curvature. The Gauss-Bonnet theorem tells us that the
degree is half the Euler characteristic of M .
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9 Riemannian metrics

Differential forms and the exterior derivative provide one piece of analysis on mani-
folds which, as we have seen, links in with global topological questions. There is much
more one can do when one introduces a Riemannian metric. Since the whole subject
of Riemannian geometry is a huge one, we shall here look at only two aspects which
relate to the use of differential forms: the study of harmonic forms and of geodesics.
In particular, we ignore completely here questions related to curvature.

9.1 The metric tensor

In informal terms, a Riemannian metric on a manifold M is a smoothly varying
positive definite inner product on the tangent spaces Tx. To make global sense of
this, note that an inner product is a bilinear form, so at each point x we want a
vector in the tensor product

T ∗x ⊗ T ∗x .

We can put, just as we did for the exterior forms, a vector bundle structure on

T ∗M ⊗ T ∗M =
⋃
x∈M

T ∗x ⊗ T ∗x .

The conditions we need to satisfy for a vector bundle are provided by two facts we
used for the bundle of p-forms:

• each coordinate system x1, . . . , xn defines a basis dx1, . . . , dxn for each T ∗x in the
coordinate neighbourhood and the n2 elements

dxi ⊗ dxj, 1 ≤ i, j ≤ n

give a corresponding basis for T ∗x ⊗ T ∗x

• the Jacobian of a change of coordinates defines an invertible linear transforma-
tion J : T ∗x → T ∗x and we have a corresponding invertible linear transformation
J ⊗ J : T ∗x ⊗ T ∗x → T ∗x ⊗ T ∗x .

Given this, we define:

Definition 30 A Riemannian metric on a manifold M is a section g of T ∗ ⊗ T ∗

which at each point is symmetric and positive definite.
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In a local coordinate system we can write

g =
∑
i,j

gij(x)dxi ⊗ dxj

where gij(x) = gji(x) and is a smooth function, with gij(x) positive definite. Often
the tensor product symbol is omitted and one simply writes

g =
∑
i,j

gij(x)dxidxj.

Example:

1. The Euclidean metric on Rn is defined by

g =
∑

dxi ⊗ dxi.

So

g(
∂

∂xi
,
∂

∂xj
) = δij.

2. A submanifold of Rn has an induced Riemannian metric: the tangent space at x
can be thought of as a subspace of Rn and we take the Euclidean inner product on
Rn.

Given a smooth map F : M → N and a metric g on N , we can pull back g to a
section F ∗g of T ∗M ⊗ T ∗M :

(F ∗g)x(X, Y ) = gF (x)(DFx(X), DFx(Y )).

If DFx is invertible, this will again be positive definite, so in particular if F is a
diffeomorphism.

Definition 31 A diffeomorphism F : M → N between two Riemannian manifolds is
an isometry if F ∗gN = gM .

Example: Let M = {(x, y) ∈ R2 : y > 0} and

g =
dx2 + dy2

y2
.

If z = x+ iy and

F (z) =
az + b

cz + d
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with a, b, c, d real and ad− bc > 0, then

F ∗dz = (ad− bc) dz

(cz + d)2

and

F ∗y = y ◦ F =
1

i

(
az + b

cz + d
− az̄ + b

cz̄ + d

)
=

ad− bc
|cz + d|2

y.

Then

F ∗g = (ad− bc)2 dx
2 + dy2

|(cz + d)2|2
|cz + d|4

(ad− bc)2y2
=
dx2 + dy2

y2
= g.

So these Möbius transformations are isometries of a Riemannian metric on the upper
half-plane.

We have learned in Section 4.3 that a one-parameter group ϕt of diffeomorphisms
defines a vector field X. Then we can define the Lie derivative of a Riemannian
metric by

LXg =
d

dt
ϕ∗tg|t=0.

If this is a group of isometries then since ϕ∗tg = g, we have LXg = 0. Such a vector
field is called a Killing vector field or an infinitesimal isometry.

The Lie derivative obeys the usual derivation rules, and commutes with d. Since
LXf = Xf we have

LX
∑
i

gijdxi⊗dxj =
∑
i

(Xgij)dxi⊗dxj +
∑
i

gijd(Xxi)⊗dxj +
∑
i

gijdxi⊗d(Xxj).

Example: Take the Euclidean metric g =
∑

i dxi ⊗ dxi, and a vector field of the
form

X =
∑
i,j

Aijxi
∂

∂xj

where Aij is a constant matrix.

This is a Killing vector field if and only if

0 =
∑
k,i

d(Akixk)⊗ dxi + dxi ⊗ d(Akixk) =
∑
k,i

(Aki + Aik)dxi ⊗ dxk.

In other words if A is skew-symmetric.

With a Riemannian metric one can define the length of a curve:
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Definition 32 Let M be a Riemannian manifold and γ : [0, 1] → M a smooth map
(i.e. a smooth curve in M). The length of the curve is

`(γ) =

∫ 1

0

√
g(γ′, γ′)dt

where γ′(t) = Dγt(d/dt).

With this definition, any Riemannian manifold is a metric space: define

d(x, y) = inf{`(γ) ∈ R : γ(0) = x, γ(1) = y}.

In fact a metric defines an inner product on T ∗ as well as on T , for the map

X 7→ g(X,−)

defines an isomorphism from T to T ∗. In concrete terms, if g∗ is the inner product
on T ∗, then

g∗(
∑
j

gijdxj,
∑
k

gkldxl) = gik

which means that
g∗(dxj, dxk) = gjk

where gjk denotes the inverse matrix to gjk.

We can also define an inner product on the exterior product spaces ΛpT ∗.

(α1 ∧ α2 ∧ . . . ∧ αp, β1 ∧ β2 ∧ . . . ∧ βp) = det g∗(αi, βj) (21)

In particular, on an n-manifold there is an inner product on each fibre of the bundle
ΛnT ∗. Since each fibre is one-dimensional there are only two unit vectors ±u.

Definition 33 Let M be an oriented Riemannian manifold, then the volume form is
the unique n-form ω of unit length in the equivalence class defined by the orientation.

In local coordinates,the definition of the inner product (21) gives

(dx1 ∧ . . . ∧ dxn, dx1 ∧ . . . ∧ dxn) = det g∗ij = (det gij)
−1

Thus if dx1 ∧ . . . ∧ dxn defines the orientation,

ω =
√

det gijdx1 ∧ . . . ∧ dxn.

On a compact manifold we can integrate this to obtain the total volume – so a metric
defines not only lengths but also volumes.

Are Riemannian manifolds special? No, because:
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Proposition 9.1 Any manifold admits a Riemannian metric.

Proof: Take a covering by coordinate neighbourhoods and a partition of unity
subordinate to the covering. On each open set Uα we have a metric

gα =
∑
i

dx2i

in the local coordinates. Define

g =
∑

ϕigα(i).

This sum is well-defined because the supports of ϕi are locally finite. Since ϕi ≥ 0
at each point every term in the sum is positive definite or zero, but at least one is
positive definite so the sum is positive definite. 2

9.2 The geodesic flow

Consider any manifold M and its cotangent bundle T ∗M , with projection to the base
p : T ∗M →M . Let X be tangent vector to T ∗M at the point ξa ∈ T ∗a . Then

Dpξa(X) ∈ TaM

so
θ(X) = ξa(Dpξa(X))

defines a canonical 1-form θ on T ∗M . In coordinates (x, y) 7→
∑

i yidxi, the projection
p is

p(x, y) = x

so if

X =
∑

ai
∂

∂xi
+
∑

bi
∂

∂yi

then
θ(X) =

∑
i

yidxi(DpξaX) =
∑
i

yiai

which gives

θ =
∑
i

yidxi.

We now take the exterior derivative

ω = −dθ =
∑

dxi ∧ dyi
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which is the canonical 2-form on the cotangent bundle. It is non-degenerate, so that
the map

X 7→ iXω

from the tangent bundle of T ∗M to its cotangent bundle is an isomorphism.

Now suppose f is a smooth function on T ∗M . Its derivative is a 1-form df . Because
of the isomorphism above, there is a unique vector field X on T ∗M such that

iXω = df.

If g is another function with vector field Y , then

Y (f) = df(Y ) = iY iXω = −iXiY ω = −X(g) (22)

On a Riemannian manifold there is a natural function on T ∗M given by the induced
inner product: we consider the function on T ∗M defined by

H(ξa) = g∗(ξa, ξa).

In local coordinates this is

H(x, y) =
∑
ij

gij(x)yiyj.

Definition 34 The vector field X on T ∗M given by iXω = dH is called the geodesic
flow of the metric g.

Definition 35 If γ : (a, b)→ T ∗M is an integral curve of the geodesic flow, then the
curve p(γ) in M is called a geodesic.

In local coordinates, if the geodesic flow is

X =
∑

ai
∂

∂xi
+
∑

bi
∂

∂yi

then

iXω =
∑
k

(akdyk − bkdxk) = dH =
∑
ij

∂gij

∂xk
dxkyiyj + 2

∑
ij

gijyidyj.
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Thus the integral curves are solutions of

dxk
dt

= 2
∑
j

gkjyj (23)

dyk
dt

= −
∑
ij

∂gij

∂xk
yiyj (24)

Before we explain why this is a geodesic, just note the qualitative behaviour of these
curves. For each point a ∈ M , choose a point ξa ∈ T ∗a and consider the unique
integral curve starting at ξa. Equation (23) tells us that the projection of the integral
curve is parallel at a to the tangent vector Xa such that g(Xa,−) = ξa. Thus these
curves have the property that through each point and in each direction there passes
one geodesic.

Geodesics are normally thought of as curves of shortest length, so next we shall link
up this idea with the definition above. Consider the variational problem of looking
for critical points of the length functional

`(γ) =

∫ 1

0

√
g(γ′, γ′)dt

for curves with fixed end-points γ(0) = a, γ(1) = b. For simplicity assume a, b are in
the same coordinate neighbourhood. If

F (x, z) =
∑
ij

gij(x)zizj

then the first variation of the length is

δ` =

∫ 1

0

1

2
F−1/2

(
∂F

∂xi
ẋi +

∂F

∂zi

dẋi
dt

)
dt

=

∫ 1

0

1

2
F−1/2

∂F

∂xi
ẋi −

d

dt

(
1

2
F−1/2

∂F

∂zi

)
ẋidt.

on integrating by parts with ẋi(0) = ẋi(1) = 0. Thus a critical point of the functional
is given by

1

2
F−1/2

∂F

∂xi
− d

dt

(
1

2
F−1/2

∂F

∂zi

)
= 0

If we parametrize this critical curve by arc length:

s =

∫ t

0

√
g(γ′, γ′)dt
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then F = 1, and the equation simplifies to

∂F

∂xi
− d

ds

(
∂F

∂zi

)
= 0.

But this is ∑ ∂gjk
∂xi

dxj
ds

dxk
ds
− d

ds

(
2gik

dxk
ds

)
= 0 (25)

But now define yi by
dxk
dt

= 2
∑
j

gkjyj

as in the first equation for the geodesic flow (23) and substitute in (25) and we get

4
∑ ∂gjk

∂xi
gjayag

kbyb −
d

dt

(
4gikg

kaya
)

= 0

and using ∑
j

gijgjk = δik

this yields

−∂g
jk

∂xi
yjyk =

dyi
dt

which is the second equation for the geodesic flow. (Here we have used the formula
for the derivative of the inverse of a matrix G: D(G−1) = −G−1DGG−1).

The formalism above helps to solve the geodesic equations when there are isometries
of the metric. If F : M → M is a diffeomorphism of M then its natural action on
1-forms induces a diffeomorphism of T ∗M . Similarly with a one-parameter group ϕt.
Differentiating at t = 0 this means that a vector field X on M induces a vector field X̃
on T ∗M . Moreover, the 1-form θ on T ∗M is canonically defined and hence invariant
under the induced action of any diffeomorphism. This means that

LX̃θ = 0

and therefore, using (6.5) that

iX̃dθ + d(iX̃θ) = 0

so since ω = −dθ
iX̃ω = df

where f = iX̃θ.
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Proposition 9.2 The function f above is f(ξx) = ξx(Xx).

Proof: Write in coordinates

X̃ =
∑

ai
∂

∂xi
+
∑

bi
∂

∂yi

where θ =
∑

i yidxi. Since X̃ projects to the vector field X on M , then

X =
∑

ai
∂

∂xi

and
iX̃θ =

∑
i

aiyi = ξx(Xx)

by the definition of θ. 2

Now let M be a Riemannian manifold and H the function on T ∗M defined by the
metric as above. If ϕt is a one-parameter group of isometries, then the induced
diffeomorphisms of T ∗M will preserve the function H and so the vector field Ỹ will
satisfy

Ỹ (H) = 0.

But from (22) this means that X(f) = 0 where X is the geodesic flow and f the
function iỸ θ. This function is constant along the geodesic flow, and is therefore a
constant of integration of the geodesic equations.

To see what this constant is, we note that Ỹ is the natural lift of a Killing vector field

Y =
∑
i

ai
∂

∂xi

so the function f is f =
∑

i aiyi.

The first geodesic equation is

dxk
dt

= 2
∑
j

gkjyj

so ∑
k

gjk
dxk
dt

= 2yj

84



and

f =
1

2

∑
k

gjkaj
dxk
dt

=
1

2
g(γ′, X).

Sometimes this observation enables us to avoid solving any differential equations as
in this example:

Example: Consider the metric

g =
dx21 + dx22

x22

on the upper half plane and its geodesic flow X.

The map (x1, x2) 7→ (x1 + t, x2) is clearly a one-parameter group of isometries (the
Möbius transformations z 7→ z + t) and defines the vector field

Y =
∂

∂x1
.

On the cotangent bundle this gives the function

f(x, y) = y1

which is constant on the integral curve.

The map z 7→ etz is also an isometry with vector field

Z = x1
∂

∂x1
+ x2

∂

∂x2

so that
g(x, y) = x1y1 + x2y2

is constant.

We also have automatically that H = x22(y
2
1 + y22) is constant since

X(H) = iXiXω = 0.

We therefore have three equations for the integral curves of the geodesic flow:

y1 = c1

x1y1 + x2y2 = c2

x22(y
2
1 + y22) = c3
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Eliminating y1, y2 gives the geodesics:

(c1x1 − c2)2 + c21x
2
2 = c3.

If c1 6= 0, this is a semicircle with centre at (x1, x2) = (c2/c1, 0). If c1 = 0 then y1 = 0
and the geodesic equation gives x1 = const. Together, these are the straight lines of
non-Euclidean geometry.
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10 APPENDIX: Technical results

10.1 The inverse function theorem

Lemma 10.1 (Contraction mapping principle) Let M be a complete metric space
and suppose T : M →M is a map such that

d(Tx, Ty) ≤ kd(x, y)

where k < 1. Then T has a unique fixed point.

Proof: Choose any point x0, then

d(Tmx0, T
nx0) ≤ kmd(x0, T

n−mx0) for n ≥ m

≤ km(d(x0, Tx0) + d(Tx0, T
2x0) + . . .+ d(T n−m−1x0, T

n−mx0))

≤ km(1 + k + . . .+ kn−m−1)d(x0, Tx0)

≤ km

1− k
d(x0, Tx0)

This is a Cauchy sequence, so completeness of M implies that it converges to x. Thus
x = limT nx0 and so by continuity of T ,

Tx = limT n+1x0 = x

For uniqueness, if Tx = x and Ty = y, then

d(x, y) = d(Tx, Ty) ≤ kd(x, y)

and so k < 1 implies d(x, y) = 0. 2

Theorem 10.2 (Inverse function theorem) Let U ⊆ Rn be an open set and f :
U → Rn a C∞ function such that Dfa is invertible at a ∈ U . Then there exist
neighbourhoods V,W of a and f(a) respectively such that f(V ) = W and f has a C∞

inverse on W .

Proof: By an affine transformation x 7→ Ax + b we can assume that a = 0 and
Dfa = I. Now consider g(x) = x − f(x). By construction Dg0 = 0 so by continuity
there exists r > 0 such that if ‖x‖ < 2r,

‖Dgx‖ <
1

2
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It follows from the mean value theorem that

‖g(x)‖ ≤ 1

2
‖x‖

and so g maps the closed ball B̄(0, r) to B̄(0, r/2). Now consider

gy(x) = y + x− f(x)

(The choice of gy is made so that a fixed point gy(x) = x solves f(x) = y).

If now ‖y‖ ≤ r/2 and ‖x‖ ≤ r, then

‖gy(x)‖ ≤ 1

2
r + ‖g(x)‖ ≤ 1

2
r +

1

2
r = r

so gy maps the complete metric space M = B̄(0, r) to itself. Moreover

‖gy(x1)− gy(x2)‖ = ‖g(x1)− g(x2)‖ ≤
1

2
‖x1 − x2‖

if x1, x2 ∈ B̄(0, r), and so gy is a contraction mapping. Applying Lemma 1 we have a
unique fixed point and hence an inverse ϕ = f−1.

We need to show first that ϕ is continuous and secondly that it has derivatives of all
orders. From the definition of g and the mean value theorem,

‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖+ ‖g(x1)− g(x2)‖

≤ ‖f(x1)− f(x2)‖+
1

2
‖x1 − x2‖

so
‖x1 − x2‖ ≤ 2‖f(x1)− f(x2)‖

which is continuity for ϕ. It follows also from this inequality that if y1 = f(x1) and
y2 = f(x2) where y1, y2 ∈ B(0, r/2) then x1, x2 ∈ B̄(0, r), and so

‖ϕ(y1)− ϕ(y2)− (Dfx2)
−1(y1 − y2)‖ = ‖x1 − x2 − (Dfx2)

−1(f(x1)− f(x2))‖
≤ ‖(Dfx2)−1‖‖Dfx2(x1 − x2)− f(x1) + f(x2)‖
≤ A‖x1 − x2‖R

where A is a bound on ‖(Dfx2)−1‖ and the function ‖x1 − x2‖R is the remainder
term in the definition of differentiability of f . But ‖x1 − x2‖ ≤ 2‖y1 − y2‖ so as
y1 → y2, x1 → x2 and hence R→ 0, so ϕ is differentiable and moreover its derivative
is (Df)−1.

Now we know the derivative of ϕ:

Dϕ = (Df)−1

so we see that it is continuous and has as many derivatives as f itself, so ϕ is C∞. 2
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10.2 Existence of solutions of ordinary differential equations

Lemma 10.3 Let M be a complete metric space and T : M → M a map. If T n is
a contraction mapping, then T has a unique fixed point.

Proof: By the contraction mapping principle, T n has a unique fixed point x. We
also have

T n(Tx) = T n+1x = T (T nx) = Tx

so Tx is also a fixed point of T n. By uniqueness Tx = x. 2

Theorem 10.4 Let f(t, x) be a continuous function on |t− t0| ≤ a, ‖x−x0‖ ≤ b and
suppose f satisfies a Lipschitz condition

‖f(t, x1)− f(t, x2)‖ ≤ ‖x1 − x2‖.

If M = sup |f(t, x)| and h = min(a, b/M), then the differential equation

dx

dt
= f(t, x), x(t0) = x0

has a unique solution for |t− t0| ≤ h.

Proof: Let

(Tx)(t) = x0 +

∫ t

t0

f(s, x(s))ds

Then Tx is differentiable since f and x are continuous and if Tx = x, x satisfies the
differential equation (differentiate the definition). We use the metric space

X = {x ∈ C([t0 − h, t0 + h],Rn) : ‖x(t)− x0‖ ≤Mh}

with the uniform metric

d(x1, x2) = sup
|t−t0|≤h

‖x1(t)− x2(t)‖

which makes it complete. If x ∈M , then Tx ∈M and we claim

|T kx1(t)− T kx2(t)‖ ≤
ck

k!
|t− t0|kd(x1, x2)
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For k = 0 this is clear, and in general we use induction to establish:

‖T kx1(t)− T kx2(t)‖ ≤
∫ t

t0

‖f(s, T k−1x1(s)− f(s, T k−1x2(s)‖ds

≤ c

∫ t

t0

‖T k−1x1(s)− T k−1x2(s)‖ds

≤ (ck/(k − 1)!)

∫ t

t0

|s− t0|k−1ds d(x1, x2)

≤ (ck/k!)|t− t0|kd(x1, x2)

So T n is a contraction mapping for large enough N , and the result follows. 2

Theorem 10.5 The solution above depends continuously on the initial data x0.

Proof: Take h1 ≤ h and δ > 0 such that Mh+ δ ≤ b, and let

Y = {y ∈ C([t0 − h1, t0 + h1]× B̄(x0, δ); R
n : ‖y(t, x)− x‖ ≤Mh, y(t0, x) = x}

which is a complete metric space as before. Now set

(Ty)(t, x) = x+

∫ t

t0

f(s, y(s, x))ds

Since Mh1 + δ ≤ b, T maps Y to Y and just as before T n is a contraction mapping
with a unique fixed point which satisfies

∂y

∂t
= f(t, y), y(t0, x) = x

Since y is continuous in t and x this is what we need. 2

If f(t, x) is smooth then we need more work to prove that the solution to the equation
is smooth and smoothly dependent on parameters.

10.3 Smooth dependence

Lemma 10.6 Let A(t, x), B(t, x) be continuous matrix-valued functions and take
M ≥ supt,x ‖B‖. The solutions of the linear differential equations

dξ(t, x)

dt
= A(t, x)ξ(t, x), ξ(t0, x) = a(x)

dη(t, x)

dt
= B(t, x)η(t, x), η(t0, x) = b(x)
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satisfy

sup
x
‖ξ(t, x)− η(t, x)‖ ≤ C‖A−B‖e

M |t−t0| − 1

M
+ ‖a− b‖eM |t−t0|

where C is a constant depending only on A and a.

Proof: By the existence theorem we know how to find solutions as limits of ξn, ηn
where

ξk = a+

∫ t

t0

Aξk−1ds

ηk = b+

∫ t

t0

Bηk−1ds

Let gk(t) = supx ‖ξk(t, x)− ηk(t, x)‖ and C = supk,x,t ‖ξk‖. Then

gn(t) ≤ ‖a− b‖+ C‖A−B‖|t− t0|+M

∫ t

t0

gn−1(s)ds

Now define fn by f0(t) = ‖a− b‖ and then inductively by

fn(t) = ‖a− b‖+ C‖A−B‖|t− t0|+M

∫ t

t0

fn−1(s)ds

Comparing these two we see that fn ≥ gn. This is a contraction mapping, so that
fn → f with

f(t) = ‖a− b‖+ C‖A−B‖|t− t0|+M

∫ t

t0

f(s)ds

and solving the corresponding differential equation we get

f(t) = ‖a− b‖eM |t−t0| + C‖A−B‖e
M |t−t0| − 1

M

As gn(t) ≤ fn(t),
sup
x
‖ξn(t, x)− ηn(t, x)‖ ≤ fn(t)

and the theorem follows by letting n→∞. 2

Theorem 10.7 If f is Ck and

d

dt
α(t, x) = f(t, α(t, x)), α(0, x) = x

then α is also Ck.
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Proof: The hardest bit is k = 1. Assume f is C1 so that ∂f/∂t and ∂f/∂xi exist
and are continuous. We must show that α is C1 in all variables. If that were true,
then the matrix valued function λ where (λi = ∂α/∂xi) would be the solution of the
differential equation

dλ

dt
= Dxf(t, α)λ (26)

so we shall solve this equation by the existence theorem and prove that the solution
is the derivative of α. Let F (s) = f(t, a+ s(b− a)). Then

dF

ds
= Dxf(t, a+ s(b− a))(b− a)

so

f(t, b)− f(t, a) =

∫ 1

0

Dxf(t, a+ s(b− a))(b− a)ds

But then

d

dt
(α(t, x+ y)− α(t, x)) = f(t, α(t, x+ y))− f(t, α(t, x))

=

∫ 1

0

Dxf(t, α(t, x) + s(α(t, x+ y)− α(t, x)))(α(t, x+ y)− α(t, x))ds

Let A(t, x) = Dxf(t, α(t, x)) and ξ(t, x) = λ(t, x)y and

By(t, x) =

∫ 1

0

Dxf(t, α(t, x)+s(α(t, x+y)−α(t, x)))ds, ηy(t, x) = α(t, x+y)−α(t, x).

The mean value theorem for a function g gives

‖g(x+ h)− g(x)−Dg(x)h‖ ≤ K‖h‖ sup
‖y‖≤‖h‖

‖Dg(x+ y)−Dg(x)‖.

Use this estimate for g(x) = f(t, α(t, x)), apply the previous lemma and use the
continuity of the derivative of f and we get

sup
|t|≤ε
‖λ(t, x)y − (α(t, x+ y)− α(x))‖ = o(‖y‖)

and so Dxα = λ, which is continuous in (t, x). Since also dα/dt = f(t, α) this means
that α is C1 in all variables.

To continue, suppose inductively that the theorem is true for k − 1, and f is Ck.
Then A(t, x) = Dxf(t, α(t, x)) is Ck−1 but since

dλ

dt
= Aλ

we have λ is Ck−1. Now Dxα = λ so the xi-derivatives of α are Ck−1. But also
dα/dt = f(t, α) is Ck−1 too, so α is Ck. 2
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10.4 Partitions of unity on general manifolds

Definition 36 A partition of unity on M is a collection {ϕi}i∈I of smooth functions
such that

• ϕi ≥ 0

• {suppϕi : i ∈ I} is locally finite

•
∑

i ϕi = 1

Here locally finite means that for each x ∈ M there is a neighbourhood U which
intersects only finitely many supports suppϕi.

Theorem 10.8 Given any open covering {Vα} of M there exists a partition of unity
{ϕi} on M such that suppϕi ⊂ Vα(i) for some α(i).

Proof: (by exhaustion – !)

1. M is locally compact since each x ∈ M has a neighbourhood homeomorphic to,
say, the open unit ball in Rn. So take U homeomorphic to a smaller ball, then Ū
is compact. Since M is Hausdorff, Ū is closed (compact implies closed in Hausdorff
spaces).

2. M has a countable basis of open sets {Uj}j∈N, so x ∈ Uj ⊂ U and Ūj ⊂ Ū is
compact so M has a countable basis of open sets with Ūj compact.

3. Put G1 = U1. Then

Ḡ1 ⊂
∞⋃
j=1

Uj

so by compactness there is k > 1 such that

Ḡ1 ⊂
k⋃
j=1

Uj = G2

Now take the closure of G2 and do the same. We get compact sets Ḡj with

Ḡj ⊂ Gj+1 M =
∞⋃
j=1

Uj
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4. By construction we have

Ḡj\Gj−1 ⊂ Gj+1\Ḡj−2

and the set on the left is compact and the one on the right open. Now take the given
open covering {Vα}. The sets Vα ∩ (Gj+1\Ḡj−2) cover Ḡj\Gj−1. This latter set is
compact so take a finite subcovering, and then proceed replacing j with j + 1. This
process gives a countable locally finite refinement of {Vα}, i.e. each Vα∩ (Gj+1\Ḡj−2)
is an open subset of Vα. It is locally finite because

Gj+1\Ḡj−2 ∩Gj+4\Ḡj+1 = ∅

5. For each x ∈ M let j be the largest natural number such that x ∈ M\Ḡj. Then
x ∈ Vα ∩ (Gj+2\Ḡj−1). Take a coordinate system within this open set and a bump
function f which is identically 1 in a neighbourhood Wx of x.

6. The Wx cover Ḡj+1\Gj and so as x ranges over the points of Gj+2\Ḡj−1 we get
an open covering and so by compactness can extract a finite subcovering. Do this
for each j and we get a countable collection of smooth functions ψi such that ψi ≥ 0
and, since the set of supports is locally finite,

ψ =
∑

ψi

is well-defined as a smooth function on M . Moreover

suppψi ⊂ Vα ∩ (Gm\Ḡm−3) ⊂ Vα

so each support is contained in a Vα. Finally define

ϕi =
ψi
ψ

then this is the required partition of unity. 2

10.5 Sard’s theorem (special case)

Theorem 10.9 Let M and N be differentiable manifolds of the same dimension n
and suppose F : M → N is a smooth map. Then the set of critical values of F has
measure zero in N . In particular, every smooth surjective map F has at least one
regular value.
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Proof: Since a countable union of null sets (=sets of measure zero) is null, and M
and N have a countable basis of open sets, it suffices to consider the local case of
F : U → Rn. Moreover since U is a countable union of compact cubes we need only
prove that the image of the set of critical points in the compact cube K = {x ∈ Rn :
|xi| ≤ 1} is of measure zero.

Now suppose a ∈ K is a critical point, so that the image of DFa is contained in a
proper subspace of Rn, and so is annihilated by a linear form f . Let H ⊂ Rn be the
hyperplane f(x− F (a)) = 0. Then

d(F (x), H) ≤ ‖F (x)− (F (a) +DFa(x− a))‖ (27)

On the other hand since F is C∞, from Taylor’s theorem we have a constant C such
that

‖F (x)− F (y)−DFy(x− y)‖ ≤ C‖x− y‖2

for all x, y ∈ K, since K is compact. Substituting in (27) this yields

d(F (x), H) ≤ C‖x− a‖2

If ‖x− a‖ ≤ η, then d(F (x), H) ≤ Cη2. Let M = sup{‖DFx‖ : x ∈ K}, then by the
mean value theorem

‖F (x)− F (a)‖ ≤M‖x− a‖
for x, a ∈ K and so d(F (x), F (a)) ≤Mη. Thus F (x) lies in the intersection of a slab
of thickness 2Cη2 around H and a ball of radius Mη centred on F (a). Putting the
ball in a cube of side 2Mη, the volume of this intersection is less than

2Cη2(2Mη)n−1 = 2nCMn−1ηn+1

Now subdivide the cube into Nn cubes of side 1/N , and repeat the argument for each
cube. Since now ‖x − y‖ ≤

√
n/N , critical points in this cube lie in a volume less

than

2nCMn−1
(√

n

N

)n+1

Since there are at most Nn such volumes, the total is less than(
2nMn−1Cn(n+1)/2

)
N−1

which tends to zero as N →∞.

Thus the set of critical values is of measure zero. 2
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