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1 Introduction

This is an introductory course on differentiable manifolds. These are higher dimen-
sional analogues of surfaces like this:

This is the image to have, but we shouldn’t think of a manifold as always sitting
inside a fixed Euclidean space like this one, but rather as an abstract object. One of
the historical driving forces of the theory was General Relativity, where the manifold
is four-dimensional spacetime, wormholes and all:

Spacetime is not part of a bigger Euclidean space, it just exists, but we need to learn
how to do analysis on it, which is what this course is about.

Another input to the subject is from mechanics — the dynamics of complicated me-
chanical systems involve spaces with many degrees of freedom. Just think of the
different configurations that an Anglepoise lamp can be put into:



How many degrees of freedom are there? How do we describe the dynamics of this if
we hit it?

The first idea we shall meet is really the defining property of a manifold — to be able
to describe points locally by n real numbers, local coordinates. Then we shall need
to define analytical objects (vector fields, differential forms for example) which are
independent of the choice of coordinates. This has a double advantage: on the one
hand it enables us to discuss these objects on topologically non-trivial manifolds like
spheres, and on the other it also provides the language for expressing the equations
of mathematical physics in a coordinate-free form, one of the fundamental principles
of relativity.

The most basic example of analytical techniques on a manifold is the theory of dif-
ferential forms and the exterior derivative. This generalizes the grad, div and curl of
ordinary three-dimensional calculus. A large part of the course will be occupied with
this. It provides a very natural generalization of the theorems of Green and Stokes
in three dimensions and also gives rise to de Rham cohomology which is an analytical
way of approaching the algebraic topology of the manifold. This has been important
in an enormous range of areas from algebraic geometry to theoretical physics.

More refined use of analysis requires extra data on the manifold and we shall simply
define and describe some basic features of Riemannian metrics. These generalize
the first fundamental form of a surface and, in their Lorentzian guise, provide the
substance of general relativity. A more complete story demands a much longer course,
but here we shall consider just two aspects which draw on the theory of differential
forms: the study of geodesics via a vector field, the geodesic flow, on the cotangent
bundle, and some basic properties of harmonic forms.

Certain standard technical results which we shall require are proved in the Appendix



so as not to interrupt the development of the theory.

A good book to accompany the course is: An Introduction to Differential Manifolds
by Dennis Barden and Charles Thomas (Imperial College Press £22 (paperback)).

2 Manifolds

2.1 Coordinate charts

The concept of a manifold is a bit complicated, but it starts with defining the notion
of a coordinate chart.

Definition 1 A coordinate chart on a set X is a subset U C X together with a
bijection

o:U— pU)CR"
onto an open set p(U) in R™.

Thus we can parametrize points x of U by n coordinates p(z) = (x1,...,x,).

We now want to consider the situation where X is covered by such charts and satisfies
some consistency conditions. We have

Definition 2 An n-dimensional atlas on X is a collection of coordinate charts {Uy, ¢a }acr
such that

o X is covered by the {Uy}aer

o for each o, € I, po(Uy NUg) is open in R™

e the map
ps¥a’ : 9alUa NUs) — 5(Ua N Us)

18 C°° with C* inverse.

Recall that F(z1,...,x,) € R™is C* if it has derivatives of all orders. We shall also
say that F' is smooth in this case. It is perfectly possible to develop the theory of
manifolds with less differentiability than this, but this is the normal procedure.



Examples:

1. Let X = R"™ and take U = X with ¢ = id. We could also take X to be any open
set in R"™.

2. Let X be the set of straight lines in the plane:

Ax+By+C=0 |

Each such line has an equation Ax + By + C = 0 where if we multiply A, B,C by a
non-zero real number we get the same line. Let Uy be the set of non-vertical lines.
For each line ¢ € U, we have the equation

Yy=mx—+c

where m, ¢ are uniquely determined. So ¢o(¢) = (m,c) defines a coordinate chart
©o : Uy — R2. Similarly if U; consists of the non-horizontal lines with equation

r=my+c

we have another chart ¢; : U; — R2.

Now Uy N Uy is the set of lines y = ma + ¢ which are not horizontal, so m # 0. Thus
wo(Ug NUL) = {(m,c) € R?* :m #0}
which is open. Moreover, y = mx + ¢ implies x = m 'y — em ™! and so
o195 (m,c) = (m™, —em™)

which is smooth with smooth inverse. Thus we have an atlas on the space of lines.

3. Consider R as an additive group, and the subgroup of integers Z C R. Let X be
the quotient group R/Z and p : R — R/Z the quotient homomorphism.

Set Uy = p(0,1) and U; = p(—1/2,1/2). Since any two elements in the subset p~*(a)
differ by an integer, p restricted to (0,1) or (—1/2,1/2) is injective and so we have
coordinate charts

wo=p " :Uy— (0,1), @or=p':U — (~1/2,1/2).

7



Clearly Uy and U; cover R/Z since the integer 0 € Uj.
We check:
QO()(U() N Ul) = (O, 1/2) U (1/2, 1), QOl(Uo N Ul) = (—1/2,0) U (0, 1/2)

which are open sets. Finally, if € (0,1/2), p19,"(z) = z and if z € (1/2,1),
0195 (z) = x — 1. These maps are certainly smooth with smooth inverse so we have
an atlas on X = R/Z.

4. Let X be the extended complex plane X = CU {oo}. Let Uy = C with ¢g(z) =
z € C = R? Now take
Uy = C\{0} U {o0}

and define p;(2) = 27! € Cif Z # oo and ¢;(0c0) = 0. Then
¢o(Uo N U1) = C\{0}

which is open, and

1__r Y
22 +92 242

P15 (2) =2

This is a smooth and invertible function of (z,y). We now have a 2-dimensional atlas
for X, the extended complex plane.

5. Let X be n-dimensional real projective space, the set of 1-dimensional vector
subspaces of R"*!. Each subspace is spanned by a non-zero vector v, and we define
U; € RP™ to be the subset for which the i-th component of v € R™"! is non-zero.
Clearly X is covered by Uy, ...,U,1. In U; we can uniquely choose v such that the
1th component is 1, and then U; is in one-to-one correspondence with the hyperplane
x; = 1 in R", which is a copy of R™. This is therefore a coordinate chart

w; Uy — R".
The set ¢;(U; NU;) is the subset for which z; # 0 and is therefore open. Furthermore
pip; i {r e R oy =12, A0} — {o e R™ iy = 1,25 # 0}
1s ]

V= —v
X

which is smooth with smooth inverse. We therefore have an atlas for RP".



2.2 The definition of a manifold

All the examples above are actually manifolds, and the existence of an atlas is suf-
ficient to establish that, but there is a minor subtlety in the actual definition of a
manifold due to the fact that there are lots of choices of atlases. If we had used a
different basis for R?, our charts on the space X of straight lines would be different,
but we would like to think of X as an object independent of the choice of atlas. That’s
why we make the following definitions:

Definition 3 Two atlases {(Ua, va)}, {(Vi, i)} are compatible if their union is an
atlas.

What this definition means is that all the extra maps 1;¢," must be smooth. Com-
patibility is clearly an equivalence relation, and we then say that:

Definition 4 A differentiable structure on X is an equivalence class of atlases.

Finally we come to the definition of a manifold:

Definition 5 An n-dimensional differentiable manifold is a space X with a differen-
tiable structure.

The upshot is this: to prove something is a manifold, all you need is to find one atlas.
The definition of a manifold takes into account the existence of many more atlases.

Many books give a slightly different definition — they start with a topological space,
and insist that the coordinate charts are homeomorphisms. This is fine if you see the
world as a hierarchy of more and more sophisticated structures but it suggests that
in order to prove something is a manifold you first have to define a topology. As we’ll
see now, the atlas does that for us.

First recall what a topological space is: a set X with a distinguished collection of
subsets V' called open sets such that

1. § and X are open
2. an arbitrary union of open sets is open

3. a finite intersection of open sets is open



Now suppose M is a manifold. We shall say that a subset V' C M is open if, for each
a, po(V NU,) is an open set in R”. One thing which is immediate is that V' = Up is
open, from Definition 2.

We need to check that this gives a topology. Condition 1 holds because ¢, () = ()
and @, (M NU,) = ¢a(U,) which is open by Definition 1. For the other two, if V; is
a collection of open sets then because ¢, is bijective

@a((u‘/;) N Uoz) - USOa(V; N Ua)
@a((mvi) N Ua) = ﬂ‘:pa(‘/; N Ua)

and then the right hand side is a union or intersection of open sets. Slightly less
obvious is the following:

Proposition 2.1 With the topology above ¢, : Uy — @©u(Us) is a homeomorphism.

Proof: If V C U, is open in the induced topology on U, then since U, itself is open,
V is open in M. Then ¢, (V) = ¢,(V NU,) is open by the definition of the topology,
so ¢, ! is certainly continuous.

Now let W C ¢4 (U,) be open, then ¢ '(W) C U, so we need to prove that ¢ (W)
is open in M. But

ws(en (W) NUs) = s, (W N @a(Us N Up)) (1)

From Definition 2 the set ¢,(U, N Us) is open and hence its intersection with the
open set W is open. Now @gp, ! is C* with C* inverse and so certainly a homeo-
morphism, and it follows that the right hand side of (1) is open. Thus the left hand
side (¢, W NUpg) is open and by the definition of the topology this means that
0 1(W) is open, i.e. @, is continuous. O

To make any reasonable further progress, we have to make two assumptions about
this topology which will hold for the rest of these notes:

e the manifold topology is Hausdorff

e in this topology we have a countable basis of open sets

Without these assumptions, manifolds are not even metric spaces, and there is not
much analysis that can reasonably be done on them.

10



2.3 Further examples of manifolds

We need better ways of recognizing manifolds than struggling to find explicit coordi-
nate charts. For example, the sphere is a manifold

and although we can use stereographic projection to get an atlas:

11.0.0)

¥z

0.5

there are other ways. Here is one.
Theorem 2.2 Let F : U — R™ be a C™ function on an open set U C R™™ and
take c € R™. Assume that for each a € F~1(c), the derivative

DFE,:R"™™ — R™

is surjective. Then F~'(c) has the structure of an n-dimensional manifold which is
Hausdorff and has a countable basis of open sets.

Proof: Recall that the derivative of F' at a is the linear map DF, : R"™™ — R™
such that
F(a+h) = F(a)+ DF,(h) + R(a,h)

11



where R(a,h)/||h|| — 0 as h — 0.

If we write F(z1,...,Zpem) = (F1, ..., Fy,) the derivative is the Jacobian matrix
0F; . .
(a) 1<i<m,1<j<n+m
ax]’
Now we are given that this is surjective, so the matrix has rank m. Therefore by
reordering the coordinates x1, ..., x,,, We may assume that the square matrix
OF;
a 1<i<m,1<73<m
5 xj( ) <i<m,1<j<
is invertible.
Now define
G:U— R"™™
by
G(x1, oy Tngm) = (F1, oo Foy Tt 1y« + 5 T - (2)

Then DG, is invertible.

We now apply the inverse function theorem to G, a proof of which is given in the
Appendix. It tells us that there is a neighbourhood V of a, and W of G(a) such
that G : V. — W is invertible with smooth inverse. Moreover, the formula (2) shows
that G maps V N F~'(c) to the intersection of W with the copy of R™ given by
{r € R"™: x; = ¢;,1 <i < m}. This is therefore a coordinate chart .

If we take two such charts ¢,, g, then goawgl is a map from an open set in {z €
R™™ : x; = ¢1,1 <i < m} to another one which is the restriction of the map GQGE1
of (an open set in) R™™ to itself. But this is an invertible C*° map and so we have
the requisite conditions for an atlas.

Finally, in the induced topology from R"*™ @G, is a homeomorphism, so open sets
in the manifold topology are the same as open sets in the induced topology. Since
R™™ is Hausdorff with a countable basis of open sets, so is F~1(c).

Effectively, (2) gives a coordinate chart on R"™™ such that F~!(c) is a linear subspace
there: we are treating R"*™ as a manifold in its own right. ]

We can now give further examples of manifolds:

Examples: 1. Let
n+1

S”:{xGR”H:Z:ﬁzl}
1

12



be the unit n-sphere. Define F': R*™* — R by

n+1

F(z)=> .

This is a C'"*° map and
DF,(h) =2 a;h;

is non-zero (and hence surjective in the 1-dimensional case) so long as a is not iden-

tically zero. If F'(a) = 1, then
n+1

Zale;ﬁ()
1

so a # 0 and we can apply Theorem 2.2 and deduce that the sphere is a manifold.

2. Let O(n) be the space of n x n orthogonal matrices: AAT = I. Take the vector
space M,, of dimension n? of all real n x n matrices and define the function

F(A) = AAT

to the vector space of symmetric n X n matrices. This has dimension n(n + 1)/2.
Then O(n) = F~1(I).

Differentiating F' we have
DF (H) = HAT + AH"
and putting H = K A this is
KAA" + AATK" = K + K"
if AAT =1 ie. if A€ F7'(I). But given any symmetric matrix S, taking K = S/2

shows that DF} is surjective and so, applying Theorem 2.2 we find that O(n) is a
manifold. Its dimension is

n? —nn+1)/2=n(n—1)/2.

2.4 Maps between manifolds

We need to know what a smooth map between manifolds is. Here is the definition:

13



Definition 6 A map F' : M — N of manifolds is a smooth map if for each point
x € M and chart (Uy, ) in M with x € U, and chart (Vi, ;) of N with F(x) € V;,
the set F~Y(V;) is open and the composite function

ViFey!

on po(F~1(V;)NU,) is a C* function.

Note that it is enough to check that the above holds for one atlas — it will follow from
the fact that goagogl is C'*° that it then holds for all compatible atlases.

Exercise 2.3 Show that a smooth map is continuous in the manifold topology.

The natural notion of equivalence between manifolds is the following:

Definition 7 A diffeomorphism F : M — N is a smooth map with smooth inverse.

Example: Take two of our examples above — the quotient group R/Z and the
1-sphere, the circle, S'. We shall show that these are diffeomorphic. First we define
a map
G:R/Z— S*

by

G(z) = (cos 2wz, sin 27x).
This is clearly a bijection. Take z € Uy C R/Z then we can represent the point by
x € (0,1). Within the range (0,1/2), sin27x # 0, so with F = z? + 22, we have
OF/0xz4 # 0. The use of the inverse function theorem in Theorem 2.2 then says that
7 is a local coordinate for S', and in fact on the whole of (0,1/2) cos 27z is smooth
and invertible. We proceed by taking the other similar open sets to check fully that
(G is a smooth, bijective map. To prove that its inverse is smooth, we can rely on the
inverse function theorem, since sin 27z # 0 in the interval.

3 Tangent vectors and cotangent vectors

3.1 Existence of smooth functions

The most fundamental type of map between manifolds is a smooth map

f:M— R.

14



We can add these and multiply by constants so they form a vector space C*°(M), the
space of C* functions on M. In fact, under multiplication it is also a commutative
ring. So far, all we can assert is that the constant functions lie in this space, so let’s
see why there are lots and lots of global C'* functions. We shall use bump functions
and the Hausdorff property.

First note that the following function of one variable is C'*°:
f@t) = et >0
=0 t<0

Now form )
g(t) =
f)+f1—1)
so that ¢ is identically 1 when ¢ > 1 and vanishes if t < 0. Next write
h(t) = g(t +2)g(2 —1).

This function vanishes if [t| > 2 and is 1 where |t| < 1: it is completely flat on top.

Finally make an n-dimensional version
k(xy,...,zn) = h(z1)h(xe) ... h(2y).

In the sup norm, this is 1 if |x| < 1, so k(r~'z) is identically 1 in a ball of radius r
and 0 outside a ball of radius 2r.

We shall use this construction several times later on. For the moment, let M be
any manifold and (U, ¢y) a coordinate chart. Choose a function k of the type above
whose support (remember supp f = {z : f(z) # 0}) lies in ¢y (U) and define

f:M >R

by

fx) = kogy(x) zeU
=0 x € M\U.

15



Is this a smooth function? The answer is yes: by definition f is smooth for points
in the coordinate neighbourhood U. But supp k is closed and bounded in R™ and so
compact and since ¢y is a homeomorphism, f is zero on the complement of a compact
set in M. But a compact set in a Hausdorff space is closed, so its complement is open.
If y # U then there is a neighbourhood of y on which f is identically zero, in which
case clearly f is smooth at y.

3.2 The derivative of a function

Smooth functions exist in abundance. The question now is: we know what a differ-
entiable function is — so what is its derivative? We need to give some coordinate-
independent definition of derivative and this will involve some new concepts. The
derivative at a point a € M will lie in a vector space T}, called the cotangent space.

First let’s address a simpler question — what does it mean for the derivative to vanish?
This is more obviously a coordinate-invariant notion because on a compact manifold
any function has a maximum, and in any coordinate system in a neighbourhood of
that point, its derivative must vanish. We can check that: if f : M — R is smooth
then the composition

9= re!
is a C*° function of z1, ..., x,. Suppose its derivative vanishes at ¢, (a) = (z1(a), ..., z,(a))
and now take a different chart pg with h = f gpgl. Then
9= fea' = fez'vsea’ = hpsed!.

But from the definition of an atlas, pge,! is smooth with smooth inverse, so

g(x1, ... xn) = Ry (), ..., yn(x))

and by the chain rule

(9y]
(93(:Z Z 8yj 831:z 9, %)

Since y(z) is invertible, its J acob1an matrix is invertible, so that Dg,) = 0 if and
only if Dhy) = 0. We have checked then that the vanishing of the derivative at a
point a is independent of the coordinate chart. We let Z, C C*°(M) be the subset of
functions whose derivative vanishes at a. Since Df, is linear in f the subset Z, is a
vector subspace.

Definition 8 The cotangent space T, at a € M 1is the quotient space
Tr =C*(M)/Z,.

16



The derivative of a function f at a is its image in this space and is denoted (df),.

Here we have simply defined the derivative as all functions modulo those whose deriva-
tive vanishes. It’s almost a tautology, so to get anywhere we have to prove something
about 7). First note that if ¢ is a smooth function on a neighbourhood of x, we
can multiply it by a bump function to extend it to M and then look at its image in
T = C>(M)/Z,. But its derivative in a coordinate chart around a is independent of
the bump function, because all such functions are identically 1 in a neighbourhood
of a. Hence we can actually define the derivative at a of smooth functions which
are only defined in a neighbourhood of a. In particular we could take the coordinate
functions 1, ...,z,. We then have

Proposition 3.1 Let M be an n-dimensional manifold, then

e the cotangent space T at a € M s an n-dimensional vector space

e if (U,p) is a coordinate chart around x with coordinates xq,...,x,, then the
elements (dz1)g, . .. (dx,), form a basis for T

o if f € C®(M) and in the coordinate chart, fo= = ¢(x1,...,x,) then

(@) = 3 52 (Pl ), ®)

Proof: If f € C®(M), with fo=' = ¢(zy,...,z,) then

is a (locally defined) smooth function whose derivative vanishes at a, so

(@)a = 3 2 (6l0) @)

and (dz1)g,. .. (dz,), span T

If Y . Ai(dz;)q = 0 then ). A\;z; has vanishing derivative at a and so A; = 0 for all .
O

17



Remark: It is rather heavy handed to give two symbols f, ¢ for a function and its
representation in a given coordinate system, so often in what follows we shall use just
f. Then we can write (3) as

9¢
With a change of coordinates (z1,...,2,) = (y1(x),...,yn(x)) the formalism gives
of af y;
df =Y ——dy; =Y ——ldux;.

Definition 9 The tangent space T, at a € M 1is the dual space of the cotangent space
T

This is admittedly a roundabout way of defining T,, but since the double dual (V*)*
of a finite dimensional vector space is naturally isomorphic to V' the notation is
consistent. If xy,...,x, is a local coordinate system at a and (dxy),, ..., (dz,), the
basis of T defined in (3.1) then the dual basis for the tangent space T, is denoted

(o) (@),

This definition at first sight seems far away from our intuition about the tangent
space to a surface in R3:

The problem arises because our manifold M does not necessarily sit in Euclidean
space and we have to define a tangent space intrinsically. There are two ways around
this: one would be to consider functions f : R — M and equivalence classes of these,
instead of functions the other way f : M — R. Another, perhaps more useful, one is
provided by the notion of directional derivative. If f is a function on a surface in R?,
then for every tangent direction u at a we can define the derivative of f at a in the
direction u, which is a real number: u-V f(a) or Df,(u). Imitating this gives the
following;:

18



Definition 10 A tangent vector at a point a € M is a linear map X, : C*°(M) - R
such that

Xa(fg) = f(a)Xag + g(a) X.f.

This is the formal version of the Leibnitz rule for differentiating a product.

Now if € € T,, it lies in the dual space of T = C*°(M)/Z, and so
f = &((df)a)
is a linear map from C'*(M) to R. Moreover from (3),

d(fg)a = f(a)(dg)a + g<a)(df)a

and so
Xa(f) = &((df)a)

is a tangent vector at a. In fact, any tangent vector is of this form, but the price paid
for the nice algebraic definition in (10) which is the usual one in textbooks is that we
need a lemma to prove it.

Lemma 3.2 Let X, be a tangent vector at a and f a smooth function whose derivative
at a vanishes. Then X,f = 0.

Proof: Use a coordinate system near a. By the fundamental theorem of calculus,
)
f@) = f@) = [ Giftastlo—a)ds
0
1
= ;(acl — a;) /0 gi (a+t(x —a))dt.

If (df ), = 0 then

() :/0 gg‘i (a+t(x — a))dt

vanishes at © = a, as does h;(x) = z; — a;. Now although these functions are defined
locally, using a bump function we can extend them to M, so that

f=fla)+ Zgihi (4)
where g;(a) = h;(a) = 0.

19



By the Leibnitz rule
Xa(1) = Xo(L1) = 2X,(1)

which shows that X, annihilates constant functions. Applying the rule to (4)
Xa(f) = Xa(D_ gih) = > _(g:(@)Xahi + hi(a) Xag) = 0.

%

This means that X, : C*°(M) — R annihilates Z,. O

Now if V' C W are vector spaces then the annihilator of V' in the dual space W* is
naturally the dual of W/V. So a tangent vector, which lies in the dual of C*(M) is
naturally a subspace of (C*(M)/Z,)* which is, by our definition, the tangent space
T,.

The vectors in the tangent space are therefore the tangent vectors as defined by (10).
Locally, in coordinates, we can write

- 0
Xe=2a (3),

and then

3.3 Derivatives of smooth maps

Suppose F' : M — N is a smooth map and f € C(N). Then f o F is a smooth
function on M.

Definition 11 The derwative at a € M of the smooth map F' : M — N is the
homomorphism of tangent spaces

DF, : T,M — Tr(g)N

defined by
DFa(Xa)(f> = Xa(f © F)

This is an abstract, coordinate-free definition. Concretely, we can use (5) to see that

DF, (a%) (f) = aii(fOF)(“)
OF;, 0 O 0y (2

20




Thus the derivative of F' is an invariant way of defining the Jacobian matrix.

With this definition we can give a generalization of Theorem 2.2 — the proof is virtually
the same and is omitted.

Theorem 3.3 Let F' : M — N be a smooth map and ¢ € N be such that at each
point a € F~Y(c) the derivative DF, is surjective. Then F~(c) is a smooth manifold
of dimension dim M — dim N.

In the course of the proof, it is easy to see that the manifold structure on F~1(c)

makes the inclusion
L F ey M

a smooth map, whose derivative is injective and maps isomorphically to the kernel of
DF'. So when we construct a manifold like this, its tangent space at a is

T, = Ker DF,.

This helps to understand tangent spaces for the case where F' is defined on R™:

Examples:

1. The sphere S™ is F~1(1) where F : R"*' — R is given by

So here

DF,(x) =2) xa;

and the kernel of DF, consists of the vectors orthogonal to a, which is our usual
vision of the tangent space to a sphere.

2. The orthogonal matrices O(n) are given by F~!(I) where F(A) = AAT. At A=1,
the derivative is
DF(H)=H + H"

so the tangent space to O(n) at the identity matrix is Ker DFy, the space of skew-
symmetric matrices H = —H7T.

The examples above are of manifolds F~!(c) sitting inside M and are examples of
submanifolds. Here we shall adopt the following definition of a submanifold, which is
often called an embedded submanifold:
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Definition 12 A manifold M is a submanifold of N if there is an inclusion map
t: M — N
such that

® ( is smooth
e Dy, is injective for each x € M

e the manifold topology of M is the induced topology from N

Remark: The topological assumption avoids a situation like this:
u(t) = (2 = 1,t(t* — 1)) € R?

for t € (—1,00). This is smooth and injective with injective derivative: it is the part
of the singular cubic y? = 2?(x + 1) consisting of the left hand loop and the part in
the first quadrant. Any open set in R? containing 0 intersects the curve in a t-interval
(—1,—1+0) and an interval (1 —¢’,1 4 ¢'). Thus (1 —¢',1 + ¢’) on its own is not
open in the induced topology.

Y

a
\/

-1+

4 Vector fields

4.1 The tangent bundle

Think of the wind velocity at each point of the earth.
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This is an example of a vector field on the 2-sphere S2. Since the sphere sits inside
R3, this is just a smooth map X : S? — R? such that X (z) is tangential to the sphere
at x.

Our problem now is to define a vector field intrinsically on a general manifold M,
without reference to any ambient space. We know what a tangent vector at a € M
is — a vector in T, — but we want to describe a smoothly varying family of these. To
do this we need to fit together all the tangent spaces as a ranges over M into a single
manifold called the tangent bundle. We have n degrees of freedom for a € M and n
for each tangent space T, so we expect to have a 2n-dimensional manifold. So the set
to consider is
T™ = | T,
xeEM
the disjoint union of all the tangent spaces.

First let (U, pu) be a coordinate chart for M. Then for x € U the tangent vectors

o 0
6%1 m’“., (9xn -

provide a basis for each T,. So we have a bijection

YuUxR" = | T,

zelU

defined by

" 0
o > (o

Thus
Oy = (pu,id) otby' : | ) T = u(U) x R”

zelU
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is a coordinate chart for

V:UTI.

zeU

Given U,, U coordinate charts on M, clearly
D, (Vo NV3) = pa(Us NUz) x R"

which is open in R*. Also, if (z1,...,,) are coordinates on U, and (Zy,...,T,) on

Ug then
0\ =08 (0
(33%‘ >x B ; d; (3@' ):c

the dual of (3). It follows that

- 8‘%1 &Un
Pp® (1, Ty Y1y Yn) = (T, - xmzﬁx-yi’” Z@ Yi).

and since the Jacobian matrix is smooth in z, linear in y and invertible, 5P, is
smooth with smooth inverse and so (V,,, ®,) defines an atlas on T'M.

Definition 13 The tangent bundle of a manifold M s the 2n-dimensional differen-
tiable structure on T'M defined by the above atlas.

The construction brings out a number of properties. First of all the projection map
p:TM — M

which assigns to X, € T, M the point a is smooth with surjective derivative, because
in our local coordinates it is defined by

P(T1, o Ty Yty Yn) = (21,0 Ty,

The inverse image p~!(a) is the vector space T, and is called a fibre of the projection.
Finally, TM is Hausdorff because if X,, X lie in different fibres, since M is Hausdorff
we can separate a,b € M by open sets U, U’ and then the open sets p~'(U), p~}(U")
separate X,, X in TM. If X, Y, are in the same tangent space then they lie in a
coordinate neighbourhood which is homeomorphic to an open set of R?" and so can
be separated there. Since M has a countable basis of open sets and R" does, it is
easy to see that T'M also has a countable basis.

We can now define a vector field:
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Definition 14 A vector field on a manifold is a smooth map
X:M—TM

such that
po X =idyy.

This is a clear global definition. What does it mean? We just have to spell things
out in local coordinates. Since p o X = idyy,

X(x1, .o oyp) = (T1,. -y, y1(2), .o yn()

where y;(z) are smooth functions. Thus the tangent vector X () is given by

X =3 u (5)

which is a smoothly varying field of tangent vectors.

Remark: We shall meet other manifolds ) with projections p : @ — M and the
general terminology is that a smooth map s : M — @) for which pos = id, is called a
section. When ) = T'M is the tangent bundle we always have the zero section given
by the vector field X = 0. Using a bump function ¢ we can easily construct other
vector fields by taking a coordinate system, some locally defined smooth functions

yi(2) and writing
X = u) (5)-

Multiplying by v and extending gives a global vector field.

Remark: Clearly we can do a similar construction using the cotangent spaces 7T},
instead of the tangent spaces T,, and using the basis

(dx1) gy, (d2y),

9 9
oxy ).\ oy ),

This way we form the cotangent bundle T* M. The derivative of a function f is then
amap df : M — T*M satisfying p o df = id,;, though not every such map of this
form is a derivative.

instead of the dual basis
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Perhaps we should say here that the tangent bundle and cotangent bundle are exam-
ples of vector bundles. Here is the general definition:

Definition 15 A real vector bundle of rank m on a manifold M is a manifold E with
a smooth projection p : E — M such that

e cach fibre p~'(x) has the structure of an m-dimensional real vector space
e cach point x € M has a neighbourhood U and a diffeomorphism
Yo p HU) = U x R™

such that 1y is a linear isomorphism from the vector space p~'(x) to the vector
space {x} x R™

e on the intersection U NV
Yptby UNV xR™ = UNV xR™

1s of the form

(x,v) — (2, guv(z)v)
where guv () is a smooth function on UNV with values in the space of invertible
m X m matrices.

For the tangent bundle gy is the Jacobian matrix of a change of coordinates and for
the cotangent bundle, its inverse transpose.

4.2 Vector fields as derivations

The algebraic definition of tangent vector in Definition 10 shows that a vector field
X maps a C* function to a function on M:

X(f)(x) = Xa(f)

and the local expression for X means that

Z vile (ax,) Z vile 8%

Since the y;(z) are smooth, X (f) is again smooth and satisfies the Leibnitz property
X(f9) = [(Xg) +9(X]).

In fact, any linear transformation with this property (called a derivation of the algebra
C>*(M)) is a vector field:
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Proposition 4.1 Let X : C*®°(M) — C*°(M) be a linear map which satisfies

X(fg) = f(Xg)+g(X[f).

Then X is a vector field.

Proof: For each a € M, X,(f) = X(f)(a) satisfies the conditions for a tangent
vector at a, so X defines a map X : M — T'M with po X = idy;, and so locally can

be written as 5
X, = ' .
' Zz: w() (axz)

We just need to check that the y;(z) are smooth, and for this it suffices to apply
X to a coordinate function z; extended by using a bump function in a coordinate
neighbourhood. We get

Xx; = y;(x)

and since by assumption X maps smooth functions to smooth functions, this is
smooth. O

The characterization of vector fields given by Proposition 4.1 immediately leads to a
way of combining two vector fields X, Y to get another. Consider both X and Y as
linear maps from C*°(M) to itself and compose them. Then

XY(fg) = X(f(Yg)+g(Y[f)) = (X )Yg) + f(XYg)+(Xg)(Yf)+g(XY[)
YX(fg) = Y(f(Xg)+9(X[f)) = [f)(Xg)+ f(YXg)+ (Yg)(X[f)+9(YX[)

and subtracting and writing [X,Y] = XY — Y X we have

(X, Y](fg) = F(IX, Y]g) + 9([X, Y]S)

which from Proposition 4.1 means that [X,Y] is a vector field.

Definition 16 The Lie bracket of two vector fields X, Y is the vector field [X,Y].
Example: If M =R then X = fd/dx,Y = gd/dz and so
X,Y] = (fg — of )
’ dx’
We shall later see that there is a geometrical origin for the Lie bracket.
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4.3 One-parameter groups of diffeomorphisms

Think of wind velocity (assuming it is constant in time) on the surface of the earth
as a vector field on the sphere S?. There is another interpretation we can make. A
particle at position x € S% moves after time ¢ seconds to a position ¢;(z) € S?. After
a further s seconds it is at

Prys(1) = s(pt(2)).
What we get this way is a homomorphism of groups: from the additive group R to

the group of diffeomorphisms of S? under the operation of composition. The technical
definition is the following:

Definition 17 A one-parameter group of diffeomorphisms of a manifold M is a
smooth map
p:MxR—->M

such that (writing ¢i(x) = @(x,t))

o v, : M — M is a diffeomorphism
® Py = Zd

® Pstt = Ps © Py

We shall show that vector fields generate one-parameter groups of diffeomorphisms,
but only under certain hypotheses. If instead of the whole surface of the earth our
manifold is just the interior of the UK and the wind is blowing East-West, clearly after
however short a time, some particles will be blown offshore, so we cannot hope for
() that works for all x and ¢. The fact that the earth is compact is one reason why it
works there, and this is one of the results below. The idea, nevertheless, works locally
and is a useful way of understanding vector fields as “infinitesimal diffeomorphisms”
rather than as abstract derivations of functions.

To make the link with vector fields, suppose @, is a one-parameter group of diffeo-
morphisms and f a smooth function. Then

f(ei(a))

is a smooth function of ¢ and we write

0

o (¢e(a))i=0 = Xa(f)-
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It is straightforward to see that, since po(a) = a the Leibnitz rule holds and this is a
tangent vector at a, and so as a = x varies we have a vector field. In local coordinates
we have

o1, ) = (yi(z,t), . yn(z, 1))

and

0 0 yi
il ) = 350G e

which yields the vector field

We now want to reverse this: go from the vector field to the diffeomorphism. The
first point is to track that “trajectory” of a single particle.

Definition 18 An integral curve of a vector field X is a smooth map ¢ : (a, ) C

R — M such that p
Dy (@) = Xo()-

Example: Suppose M = R? with coordinates (x,y) and X = 9/dz. The derivative
Dy of the smooth function ¢(t) = (z(t),y(t)) is

d dv 0 dy 0
Dol 2 ) =Y 899
7 (dt) dt 0z | dt oy

so the equation for an integral curve of X is

dx
= =1
dt
dy
—~ =0
dt

which gives
p(t) = (t+ a1, a2).

In our wind analogy, the particle at (a;, aq) is transported to (¢ + ay, as).
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In general we have:

Theorem 4.2 Given a vector field X on a manifold M and a € M there exists a
mazimal integral curve of X through a.

By “maximal” we mean that the interval («, ) is maximal — as we saw above it may
not be the whole of the real numbers.

Proof: First consider a coordinate chart (U,, ) around a then if

0
X = ch(x)ﬂ

d
D, <E) = Xy

can be written as the system of ordinary differential equations

the equation

=ci(z1,...,2,).

dt

The existence and uniqueness theorem for ODE’s (see Appendix) asserts that there
is some interval on which there is a unique solution with initial condition

(@1(0), -+, 20 (0)) = ().

Suppose ¢ : (o, ) — M is any integral curve with ¢(0) = a. For each x € («, )
the subset ([0,z]) C M is compact, so it can be covered by a finite number of
coordinate charts, in each of which we can apply the existence and uniqueness theorem
to intervals [0, aq], [aq, asl, .. ., [, 2]. Uniqueness implies that these local solutions
agree with ¢ on any subinterval containing 0.

We then take the maximal open interval on which we can define ¢. O

To find the one-parameter group of diffeomorphisms we now let a € M vary. In the
example above, the integral curve through (ay, az) was t — (t+aq, az) and this defines
the group of diffeomorphisms

@i(r1,22) = (t + 11, 72).

Theorem 4.3 Let X be a vector field on a manifold M and for (t,x) € R x M, let
o(t,z) = pi(x) be the maximal integral curve of X through x. Then
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o the map (t,x) — @i(x) is smooth
® 0, = @i wherever the maps are defined

e if M is compact, then p(z) is defined on R X M and gives a one-parameter
group of diffeomorphisms.

Proof: The previous theorem tells us that for each a € M we have an open interval
(a(a), f(a)) on which the maximal integral curve is defined. The local existence
theorem also gives us that there is a solution for initial conditions in a neighbourhood
of a so the set

{(t,z) e R x M : t € (a(x),5(z))}

is open. This is the set on which ¢;(x) is maximally defined.

The theorem (see Appendix) on smooth dependence on initial conditions tells us that
(t,x) — @(z) is smooth.

Consider @; 0 ps(z). If we fix s and vary ¢, then this is the unique integral curve of X
through ¢s(x). But ¢ s(2) is an integral curve which at ¢ = 0 passes through ¢4(x).
By uniqueness they must agree so that ¢, 0 ps = @445. (Note that ¢;0p_; = id shows
that we have a diffeomorphism wherever it is defined).

Now consider the case where M is compact. For each x € M, we have an open
interval (a(z), 8(x)) containing 0 and an open set U, C M on which ¢;(x) is defined.
Cover M by {U,}.enm and take a finite subcovering U,,, ..., U,,, and set

N

I =(\(a(x), B(z:)

1

which is an open interval containing 0. By construction, for t € I we get
o I xXM—>M

which defines an integral curve (though not necessarily maximal) through each point
x € M and with po(z) = x. We need to extend to all real values of t.

If s,t € R, choose n such that (|s| + |t|)/n € I and define (where multiplication is
composition)

Pt = (th/n)nv Ps = (905/71)”'
Now because t/n,s/n and (s +t)/n lie in I we have

Pt/nPs/n = P(s+t)/n = Ps/nPt/n
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and so because ¢/, and ¢,/, commute, we also have

PtPs = (Sot/n)n<908/n>n
= (P(sttym)”

Ps+t

which completes the proof. O

4.4 The Lie bracket revisited

All the objects we shall consider will have the property that they can be transformed
naturally by a diffeomorphism, and the link between vector fields and diffeomorphisms
we have just observed provides an “infinitesimal’ version of this.

Given a diffeomorphism F': M — M and a smooth function f we get the transformed
function fo F. When F' = ¢, generated according to the theorems above by a vector

field X, we then saw that

0
Ef(@t)’tzo = X(f)

So: the natural action of diffeomorphisms on functions specializes through one-parameter
groups to the derivation of a function by a vector field.

Now suppose Y is a vector field, considered as a map Y : M — TM. With a
diffeomorphism F': M — M, its derivative DF, : T, — Tp(,) gives

DFZ(}@) - TF(x)‘
This defines a new vector field Y by

Yi@) = DE,(Yz) (6)
Thus for a function f, .
Y)(foF)=(f)oF (7)
Now if F' = ¢, for a one-parameter group, we have Y; and we can differentiate to get
v- 2%
ot |,

From (7) this gives ‘
Vit Y(Xf)=XYf

so that Y = XY — Y X is the natural derivative defined above. Thus the natural
action of diffeomorphisms on vector fields specializes through one-parameter groups
to the Lie bracket [X,Y].
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5 Tensor products

We have so far encountered vector fields and the derivatives of smooth functions as
analytical objects on manifolds. These are examples of a general class of objects
called tensors which we shall encounter in more generality. The starting point is pure
linear algebra.

Let V., W be two finite-dimensional vector spaces over R. We are going to define a
new vector space V ® W with two properties:

e if v € V and w € W then there is a product v@w € Vo W
e the product is bilinear:
(A 4+ pvy) @w = Ay @ w + pvg @ w
v® (Awy 4+ pwe) = A ® wy + pv ® wy

In fact, it is the properties of the vector space V ® W which are more important
than what it is (and after all what is a real number? Do we always think of it as an
equivalence class of Cauchy sequences of rationals?).

Proposition 5.1 The tensor product V& W has the universal property that if B :
V xW — U is a bilinear map to a vector space U then there is a unique linear map

B:VOW —=U
such that B(v,w) = (v ® w).

There are various ways to define V' @ W. In the finite-dimensional case we can say
that V @ W is the dual space of the space of bilinear forms on V x W: ie. maps
B:V xW — R such that

B(A\vy 4+ pvg,w) = AB(vy,w) + uB(vg, w)
B(v, \wy 4+ pwy) = AB(v,w) + puB(v, ws)

Given v,w € V, W we then define v ® w € V @ W as the map
(v & w)(B) = B(v,w).
This satisfies the universal property because given B : VxW — U and £ € U*, (0 B

is a bilinear form on V' x W and defines a linear map from U* to the space of bilinear
forms. The dual map is the required homomorphism g from V @ W to (U*)* = U.
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A bilinear form B is uniquely determined by its values B(v;,w;) on basis vectors
v1,...,0, for V and wy,...w, for W which means the dimension of the vector space
of bilinear forms is mn, as is its dual space V ® W. In fact, we can easily see that
the mn vectors

U; ® U)j
form a basis for V ® W. It is important to remember though that a typical element
of V.® W can only be written as a sum

E a,»jvi & U)j

]

and not as a pure product v ® w.

Taking W =V we can form multiple tensor products
VeV, VeVeV =gV,
We can think of ®PV as the dual space of the space of p-fold multilinear formson V.

Mixing degrees we can even form the tensor algebra:
T(V) = ®p2(@"V).
An element of T'(V') is a finite sum
)\1+v0+2v1®vj+...+z% ® Uiy ... DU,

of products of vectors v; € V. The obvious multiplication process is based on extend-
ing by linearity the product

(M ®...0)(ME®..0U) =11 ®...0 V0, U & ...Q U,

It is associative, but noncommutative.

For the most part we shall be interested in only a quotient of this algebra, called the
exterior algebra.

5.1 The exterior algebra

Let T (V) be the tensor algebra of a real vector space V' and let I(V') be the ideal
generated by elements of the form
VRV

where v € V. So I(V') consists of all sums of multiples by 7'(V') on the left and right
of these generators.
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Definition 19 The exterior algebra of V' s the quotient
ANV =T(V)/I(V).

If 7: T (V) — A*V is the quotient projection then we set
APV =7(&PV)

and call this the p-fold exterior power of V. We can think of this as the dual space of
the space of multilinear forms M (vy,...,v,) on V which vanish if any two arguments
coincide — the so-called alternating multilinear forms. If a € ®PV b € ®V then
a®be PV and taking the quotient we get a product called the exterior product:

Definition 20 The exterior product of o = w(a) € APV and f = w(b) € A1V is
aNfB=n(a®Db).

Remark: Ifv;,...,v, € V then we define an element of the dual space of the space
of alternating multilinear forms by

Vi AV A AU(M) = M(vy, ..., 0).
The key properties of the exterior algebra follow:

Proposition 5.2 If a € APV, 3 € AV then
aNf= (1P Aa.

Proof: Because forve V, v®wv € I(V), it follows that v A v = 0 and hence
0= (v1+v2) A(v1+v3) =0+v1 Avg +v2 Avg + 0.
So interchanging any two entries from V' in an expression like
v AN\
changes the sign.

Write o as a linear combination of terms v; A ... A v, and 3 as a linear combination
of wy A ... ANw, and then, applying this rule to bring w; to the front we see that

(Vi A AU) A(wr Ao Awy) = (—1)Pwp Avp A ooy Awg A A wy.
For each of the ¢ w;’s we get another factor (—1)? so that in the end

(i Ao A wg) (v Ao A ) = (=D)P (o Ao A ) (wr A A wyg).
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Proposition 5.3 IfdimV =n then dim A"V = 1.

Proof: Let w,...,w, be n vectors in V' and relative to some basis let M be the
square matrix whose columns are wy, ..., w,. then

B(wy,...,w,) =det M

is a non-zero n-fold multilinear form on V. Moreover, if any two of the w; coincide,
the determinant is zero, so this is a non-zero alternating n-linear form — an element
in the dual space of A"V

On the other hand, choose a basis vy, ..., v, for V, then anything in ®"V is a linear
combination of terms like v;; ® ... ® v;, and so anything in A"V is, after using
Proposition 5.2, a linear combination of v; A ... A v,.

Thus A™V is non-zero and at most one-dimensional hence is one-dimensional. O

Proposition 5.4 letvy,..., v, be a basis for V', then the (;) elements vy, ANvi, A. . . A\v;,
foriy < iy < ... <1, form a basis for APV.

Proof: By reordering and changing the sign we can get any exterior product of the
v;’s so these elements clearly span APV. Suppose then that

Z a/il..‘ipvil /\ Uig /\ e /\ Uip e 0

Because i; < ip < ... < ip, each term is uniquely indexed by the subset {i1, i, ...,i,} =
I C{1,2,...,n}, and we can write

Za;v[ =0 (8)

If I and J have a number in common, then v; A v; = 0, so if J has n — p elements,
vy Avy = 0 unless J is the complementary subset I’ in which case the product is a
multiple of v; Avs ... Awv, and by Proposition 5.3 this is non-zero. Thus, multiplying
(8) by each term vy we deduce that each coefficient a; = 0 and so we have linear
independence. 0

Proposition 5.5 The vector v is linearly dependent on the linearly independent vec-
tors vy, ..., v, if and only if vi Ava A... ANv, Av=0.
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Proof: If v is linearly dependent on vy,...,v, then v =) a;v; and expanding
p
vl/\vg/\.../\vp/\v:vl/\vg/\.../\vp/\(Zaivi)
1

gives terms with repeated v;, which therefore vanish. If not, then vy, vs...,v,,v can
be extended to a basis and Proposition 5.4 tells us that the product is non-zero. 0O

Proposition 5.6 If A:V — W 1is a linear transformation, then there is an induced

linear transformation
ANA - APV — APW

such that
ANA(vy Ao AN vy) = Aug A Avg AL A Aw,,.

Proof: From Proposition 5.4 the formula
AA(vy A Awy) = Avg AN Avg AL A Av,

actually defines what AA is on basis vectors but doesn’t prove it is independent of
the choice of basis. But the universal property of tensor products gives us

QN : QPV — QPW

and ®PA maps the ideal I(V') to I(W) so defines A”A invariantly. O

Proposition 5.7 Ifdim V' = n, then the linear transformation A" : A"V — A"V is
given by det A.

Proof: From Proposition 5.3, A"V is one-dimensional and so A" is multiplication
by a real number A\(A). So with a basis vy, ..., v,,

ANA(vi Ao Avy) = Avg A Avg AL Avy = MA)v AL A oy,
But
AU,L' = Z Ajﬂ)j
J
and so
AUl A\ AUQ VANPRIAN AUn = Z Ajl,lvjl VAN AjQ’Q/UjQ VANPIRAN Ajmnvjn

= E Aol,lvol A Ao2,2va2 JARIRVAN Aan,nvan
O’GSn
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where the sum runs over all permutations . But if o is a transposition then the term
Vg1 A VUga . .. N\ Vg, changes sign, so

Avy NAvg A ... N\ Av, = Z sgnoAs114529 .. Aenni AL AUy
oESy

which is the definition of (det A)vy A ... A vy,. O

6 Differential forms

6.1 The bundle of p-forms

Now let M be an n-dimensional manifold and 7' the cotangent space at x. We form

the p-fold exterior power
APTY

and, just as we did for the tangent bundle and cotangent bundle, we shall make

NPT M = | ] NPT

zeM

into a vector bundle and hence a manifold.

If x1,...,x, are coordinates for a chart (U, py) then for z € U, the elements
dZ’il A da% VANRAN d.ﬁlfip

for i1 < iy < ... <1, form a basis for APT. The (;) coefficients of a € APT then
give a coordinate chart Wy mapping to the open set

ou(U) x AR C R" x R().
When p = 1 this is just the coordinate chart we used for the cotangent bundle:
Oy (z, Zyld:cl) = (1, oy Ty Y1y -5 Yn)

and on two overlapping coordinate charts we there had

0T; 0T;
@(bflx,...,xn, -'-7n:i‘7'-->~n7 —zi,..., _7,2
B8Py (71 Y Yn) = (T1 T 8x1y : 8xny)
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For the p-th exterior power we need to replace the Jacobian matrix

0,

J p—
6.Tj

by its induced linear map

APJ : APR™ — APR™.
It’s a long and complicated expression if we write it down in a basis but it is invertible
and each entry is a polynomial in C'*° functions and hence gives a smooth map with
smooth inverse. In other words,

(PN
satisfies the conditions for a manifold of dimension n + (Z)

Definition 21 The bundle of p-forms of a manifold M is the differentiable structure
on APT*M defined by the above atlas. There is a natural projection p : APT*M — M
and a section is called a differential p-form

Examples:
1. A zero-form is a section of A°T™* which by convention is just a smooth function f.

2. A 1-form is a section of the cotangent bundle 7%. From our definition of the
derivative of a function, it is clear that df is an example of a 1-form. We can write
in a coordinate system

By using a bump function we can extend a locally-defined p-form like dzy A dxy A
... ANdx, to the whole of M, so sections always exist. In fact, it will be convenient
at various points to show that any function, form, or vector field can be written as a
sum of these local ones. This involves the concept of partition of unity.

6.2 Partitions of unity

Definition 22 A partition of unity on M is a collection {¢;}icr of smooth functions
such that

e ;>0
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o {suppp; :i € I} is locally finite
> ipi=1

Here locally finite means that for each « € M there is a neighbourhood U which
intersects only finitely many supports supp ;.

In the appendix, the following general theorem is proved:

Theorem 6.1 Given any open covering {V,} of a manifold M there exists a partition
of unity {¢;} on M such that supp ¢; C V) for some a(i).

We say that such a partition of unity is subordinate to the given covering.

Here let us just note that in the case when M is compact, life is much easier: for each
point x € {V,,} we take a coordinate neighbourhood U, C {V,} and a bump function
which is 1 on a neighbourhood V,, of x and whose support lies in U,. Compactness says
we can extract a finite subcovering of the {V,}.ex and so we get smooth functions
;> 0fori=1,...,N and equal to 1 on V,,. In particular the sum is positive, and

defining
Vi

Ny

Pi
gives the partition of unity.

Now, not only can we create global p-forms by taking local ones, multiplying by ¢;
and extending by zero, but conversely if « is any p-form, we can write it as

Q= (Z pi)o = Z(%‘a)

which is a sum of extensions of locally defined ones.

At this point, it may not be clear why we insist on introducing these complicated
exterior algebra objects, but there are two motivations. One is that the algebraic
theory of determinants is, as we have seen, part of exterior algebra, and multiple
integrals involve determinants. We shall later be able to integrate p-forms over p-
dimensional manifolds.

The other is the appearance of the skew-symmetric cross product in ordinary three-
dimensional calculus, giving rise to the curl differential operator taking vector fields
to vector fields. As we shall see, to do this in a coordinate-free way, and in all
dimensions, we have to dispense with vector fields and work with differential forms
instead.
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6.3 Working with differential forms

We defined a differential form in Definition 21 as a section of a vector bundle. In a
local coordinate system it looks like this:

o = Z ailig...ip (QJ)dQ}'” AN dl’h AN dxip (9)

11 <12 <...<ip

where the coefficients are smooth functions. If z(y) is a different coordinate system,
then we write the derivatives

8:17i
dr;, = Z ay; dyj
J

and substitute in (9) to get

o= Z Wjyjo...jp (y)dyj, Ndyj, .. A\ dy;, -

J1<j2<...<Jp

Example: Let M = R? and consider the 2-form w = dx; A dz,. Now change to
polar coordinates on the open set (xy,z3) # (0,0):

x1 =rcost, xo=rsinf.
We have

dry = cosfdr — rsinfdb
dre = sinfdr + rcos8do

so that
w = (cos @dr — rsin0df) A (sin@dr + r cos 0df) = rdr A d6.

We shall often write
QP (M)

as the infinite-dimensional vector space of all p-forms on M.
Although we first introduced vector fields as a means of starting to do analysis on

manifolds, in many ways differential forms are better behaved. For example, suppose

we have a smooth map
F:M— N.
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The derivative of this gives at each point x € M a linear map
DF, : T,M — TpN

but if we have a section of the tangent bundle TM — a vector field X — then DF,(X,)
doesn’t in general define a vector field on N — it doesn’t tell us what to choose in
T,N if a € N is not in the image of F.

On the other hand suppose « is a section of APT*N — a p-form on N. Then the dual
map
DF : rayN — T, M

defines
Ap(DF;) : APT}(x)N — NPT M

and then
A(DF;)(ap@))

is defined for all = and is a section of APT*M — a p-form on M.

Definition 23 The pull-back of a p-form a € QP(N) by a smooth map F : M — N
is the p-form F*a € QP(M) defined by

(F*a), = M(DF,)(ap())-

Examples:
1. The pull-back of a O-form f € C*°(N) is just the composition f o F'.

2. By the definition of the dual map DF, we have DF,()(X,) = ap@)(DF.(X,)),
so if a = df, DF,(df)(X.) = df pe)(DF(X:)) = Xo(f o F) by the definition of DF;.
This means that F*(df) = d(f o F).

3. Let F': R® — R? be given by
F(x1, 20, 23) = (2129, T2 + 13) = (7, ¥)

and take
a = zdxr A dy.
Then, using the definition of AN DF)) and the previous example,
Fra = (zxoF)d(zoF)ANd(yoF)
= xymed(xi2) A d(xe + x3)
= xixo(r1dry + xodxy) A d(29 + 23)

= x%xgdxg A dzs + xlx%dxl A dze + mlmgdxl A dxs
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From the algebraic properties of the maps
AA - APV — APV

we have the following straightforward properties of the pull-back:

e (FoGya=G(Fa)
o '*(a+ p) = F*a+ F*
o F*(a A B) = F*a N F*j

6.4 The exterior derivative

We now come to the construction of the basic differential operator on forms — the
exterior derivative which generalizes the grads, divs and curls of three-dimensional
calculus. The key feature it has is that it is defined naturally by the manifold structure
without any further assumptions.

Theorem 6.2 On any manifold M there is a natural linear map
d: QP (M) — QPYH(M)
called the exterior deriwative such that

1. if f € QM), then df € QY (M) is the derivative of f
2. d>=0
3. dlaNB)=danp+(—1Pandp if a € QP(M)

Examples: Before proving the theorem, let’s look at M = R?, following the rules
of the theorem, to see d in all cases p =0, 1, 2.

p = 0: by definition

_of of of
df = axl dﬂl’l + 8513'2 dl‘g + axgd.%g

which we normally would write as grad f.

p = 1: take a 1-form
a = a1dxy + asdzy + azdrs
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then applying the rules we have

d(aldlj + CLQd.’L’Q + agdl‘g) = dCLl VAN dl’l + d(lg VAN dl‘g + da3 VAN d$3

daq day Oa,
= —d —d —d Ad o
(8:1:1 1+ Oy To + 0 xg,) X1+
. 8&1 8a3 aag 80,1 aag (9(12
= (61:3 8:61) dxs N\ dry + (891;1 8952) dxy N dze + (83:2 891:3) dxoy N dxs.

The coefficients of this define what we would call the curl of the vector field a but
a has now become a l-form « and not a vector field and da is a 2-form, not a
vector field. The geometrical interpretation has changed. Note nevertheless that the
invariant statement d* = 0 is equivalent to curl grad f = 0.

p = 2: now we have a 2-form
B = bldl‘g N deg + defL’?, VAN dl’l + bgdl‘l AN dIL‘Q

and

b b b
dB = Z—Lday Ades Ades + —day Adas A das + —day A das A das
81’1 (91’2 81’3
B ((%1 Oby  Obs

8x1 + 8x2 + 8[)33

) dl’l VAN dl‘Q VAN dl‘g

which would be the divergence of a vector field b but in our case is applied to a 2-form
B. Again d? = 0 is equivalent to div curlb = 0.

Here we see familiar formulas, but acting on unfamiliar objects. The fact that we can
pull differential forms around by smooth maps will give us a lot more power, even in
three dimensions, than if we always considered these things as vector fields.

Let us return to the Theorem 6.2 now and give its proof.

Proof: We shall define da by first breaking up « as a sum of terms with support in
a local coordinate system (using a partition of unity), define a local d operator using
a coordinate system, and then show that the result is independent of the choice.

So, to begin with, write a p-form locally as

o = Z aimmip (l’)dl‘ll AN dl’iQ VANRWAN dl’ip

11 <i2<...<ip
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and define
do = Z dailbmip N dﬂi’il A dl’i2 VANRAN d.ﬁl?ip.

11 <t2<...<ip

When p = 0, this is just the derivative, so the first property of the theorem holds.

For the second part, we expand

0a;,i,..i
da= 3T TS Adw Nde A,

7,01 <i2<...<ip

and then calculate

O%ai... -
To = — 2 e Ada A dwg, Adxg, ... A do
jk’zl; <i awjaﬂfk J i1 ia .
"y .o D
The term 2
O iriz. iy

is symmetric in 7, k£ but it multiplies dxy Adx; in the formula which is skew-symmetric
in j and k, so the expression vanishes identically and d?a = 0 as required.

For the third part, we check on decomposable forms

a = fdry N...Ndx;,, = fdr;
f = gdrj N\...Ndx;, = gdv,

and extend by linearity. So

dlaNp) = d(fgdxr Ndzy)

d(fg) Ndxr Ndx,

(fdg + gdf) Ndzy N\ dxy

= (=DPfdx; Ndg Ndzxy+df Ndxp A gdzy
(—D)PaANdB+daNS

So, using one coordinate system we have defined an operation d which satisfies the
three conditions of the theorem. Now represent « in coordinates ¥, ..., Yn:

o= Z bilig...ipdyil VAN dy22 VAN dyzp

11 <12 <...<ip
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and define in the same way

do = Z dbiliz...ip A dyil N dyi2 VANPIRIAN dyip.

11 <12<...<ip

We shall show that d = d’ by using the three conditions.
From (1) and (3),

do = d(> iy dys, Ndys, . N dy;,) =
> dbiyyiy Ay, Adysy A A dyi, + > by, d(dys, Adys, A A dys,)
and from (3)
d(dyi, Ndys, N ... Ndy;,) = d(dyi,) A dyi, Ao N dy;, — dy;, Ad(dyi, AN dy;).

From (1) and (2) d*y;, = 0 and continuing similarly with the right hand term, we get
zero in all terms.

Thus on each coordinate neighbourhood U da = Zi1<i2<...<ip dbiyiy..i, N dys, N dyi, N
... Ndy;, = d'a and do is thus globally well-defined. ]

One important property of the exterior derivative is the following:

Proposition 6.3 Let F': M — N be a smooth map and o € QP(N). then
d(F*a) = F*(do).
Proof: Recall that the derivative DF, : T,M — Tp)N was defined in (11) by
DF(X2)(f) = Xo(f o F)
so that the dual map DF} : TN — T M satisfies
DFE,(df )p(z) = d(f o F),.
From the definition of pull-back this means that

Fr(df) = d(f o F) = d(F" f) (10)
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Now if
o= Z ailig...ip (x)dle VAN dw’ig VAR dl'ip’
11 <i2<...<ip
Fa= 3ty (F@)Fde, AFdeg A A Fd,
11 <ig<...<ip

by the multiplicative property of pull-back and then using the properties of d and
(10)

d(F*Oé) = Z d(CLHZQzP(F(JI))) VAN F*dﬂ?“ VAN F*dl’w VAP F*dIiP
11 <12 <...<ip
= Z F*daili%ip VAN F*dl'zl VAN F*dl'm VANPIRIAN F*dllfip
11 <i2<...<ip
= F*(da).

6.5 The Lie derivative of a differential form

Suppose ¢; is the one-parameter (locally defined) group of diffeomorphisms defined
by a vector field X. Then there is a naturally defined Lie derivative

0
Lxo= 2o
A TA e

of a p-form o by X. It is again a p-form. We shall give a useful formula for this
involving the exterior derivative.

Proposition 6.4 Given a vector field X on a manifold M, there is a linear map
ix 1 QP(M) — QP (M)
(called the interior product) such that

o ixdf = X(f)
o ix(aNB)=ixa AL+ (—1PaNixf if a € QP(M)
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The proposition tells us exactly how to work out an interior product: if
0
X = Qi —=—,
2.0
and a = dxy Adxy A ... Ndx, is a basic p-form then
ixoe = ardxs A ... Adxy, — asdry Ndzs N N dx, 4+ (11)

In particular

ix(ixa) = ajasdxs A ... Ndx, — agardzs A ... Ndx, + ... = 0.

Example: Suppose

0 0
=dr ANd X=x— —
Qo T A ay, x5$+y8y

then
ixa = xdy — ydx.

The interior product is just a linear algebra construction. Above we have seen how
to work it out when we write down a form as a sum of basis vectors. We just need to
prove that it is well-defined and independent of the way we do that, which motivates
the following more abstract proof:

Proof: In Remark 5.1 we defined APV as the dual space of the space of alternating
p-multilinear forms on V. If M is an alternating (p — 1)-multilinear form on V' and
¢ a linear form on V' then

(EM)(vy,...,vp) = E(v1) M (vg, ..., v,) — E(ve) M (v, v, ..., 0p) + ... (12)
is an alternating p-multilinear form. So if & € APV we can define icae € AP~V by
(iga)(M) = a(EM).

Taking V =T* and £ = X € V* = (T*)* = T gives the interior product. Equation
(12) gives us the rule (11) for working out interior products. O

Here then is the formula for the Lie derivative:

Proposition 6.5 The Lie derivative Lxa of a p-form « is given by

EXOé == d(zXa) + ixda.
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Proof: Consider the right hand side
Rx(a) = d(ixa) + ixdo.

Now ix reduces the degree p by 1 but d increases it by 1, so Rx maps p-forms to
p-forms. Also,
d(d(lx()é) + ’idez> = dixd()é = (dZX + ixd>d06

because d?> = 0, so Rx commutes with d. Finally, because

ix(Oé/\ﬂ) = Z'XOé/\6+(—l)pOé/\ixﬁ
dlanpB) = daNp+ (—1D)Pands

we have

Rx(aNp)=(Rxa)\NB+aARx(f).

On the other hand
¢i(da) = d(pi)

so differentiating at ¢t = 0, we get
,CXdOZ = d([,on)

and
pi(a N B) =gia ;B

and differentiating this, we have
ﬁX(Oé/\B> :ExOéAﬂ+C¥Aﬁxﬁ.

Thus both L£x and Rx preserve degree, commute with d and satisfy the same Leibnitz
identity. Hence, if we write a p-form as

o = Z aimmip (x)dxll VAN dIiQ VAN dxip

11 <12 <...<ip
Lx and Ry will agree so long as they agree on functions. But

0

Rxf =ixdf = X(f) = ot (SOt) =Lxf
t=0

so they do agree. O
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6.6 de Rham cohomology

In textbooks on vector calculus, you may read not only that curl grad f = 0, but also
that if a vector field a satisfies curla = 0, then it can be written as a = grad f for
some function f. Sometimes the statement is given with the proviso that the open
set of R3 on which a is defined satisfies the topological condition that it is simply
connected (any closed path can be contracted to a point).

In the language of differential forms on a manifold, the analogue of the above state-
ment would say that if a 1-form « satisfies da = 0, and M is simply-connected, there
is a function f such that df = a.

While this is true, the criterion of simply connectedness is far too strong. We want
to know when the kernel of

d: QY M) — Q*(M)

is equal to the image of
d: QM) — QY (M).

Since d?f = 0, the second vector space is contained in the first and what we shall do
is simply to study the quotient, which becomes a topological object in its own right,
with an algebraic structure which can be used to say many things about the global
topology of a manifold.

Definition 24 The p-th de Rham cohomology group of a manifold M 1is the quotient
vector space:

~ Kerd: QP(M) — QPFY(M)

~ Imd: (M) — Qp(M)

HP(M)

Remark:

1. Although we call it the cohomology group, it is simply a real vector space. There
are analogous structures in algebraic topology where the additive group structure is
more interesting.

2. Since there are no forms of degree —1, the group H°(M) is the space of functions
f such that df = 0. Now each connected component M; of M is an open set of M
and hence a manifold. The mean value theorem tells us that on any open ball in a
coordinate neighbourhood of M;, df = 0 implies that f is equal to a constant ¢, and
the subset of M; on which f = ¢ is open and closed and hence equal to M,;.

Thus if M is connected, the de Rham cohomology group H®(M) is naturally isomor-
phic to R: the constant value ¢ of the function f. In general H°(M) is the vector
space of real valued functions on the set of components. Our assumption that M
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has a countable basis of open sets means that there are at most countably many
components. When M is compact, there are only finitely many, since components
provide an open covering. In fact, the cohomology groups of a compact manifold are
finite-dimensional vector spaces for all p, though we shall not prove that here.

It is convenient in discussing the exterior derivative to introduce the following termi-
nology:

Definition 25 A form o € QP(M) is closed if do = 0.
Definition 26 A form « € QP(M) is exact if a = dB for some 3 € QP~1(M).

The de Rham cohomology group H?(M) is by definition the quotient of the space of
closed p-forms by the subspace of exact p-forms. Under the quotient map, a closed
p-form « defines a cohomology class [a] € HP(M), and [o/] = [a] if and only if
o —a = df for some £5.

Here are some basic features of the de Rham cohomology groups:

Proposition 6.6 The de Rham cohomology groups of a manifold M of dimension n
have the following properties:

o HY(M)=01ifp>n

e fora € HP(M),b € HI(M) there is a bilinear product ab € HPT(M) which
satisfies
ab = (—1)"ba

o if ': M — N is a smooth map, it defines a natural linear map
F*: H’(N) — H?(M)
which commutes with the product.
Proof: The first part is clear since APT™* = 0 for p > n.

For the product, this comes directly from the exterior product of forms. If a = [a],b =
(8] we define
ab = [a A f]
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but we need to check that this really does define a cohomology class. Firstly, since
a, B are closed,
dlaNp)=daNp+(—1)PaNdB =0

so there is a class defined by o A 5. Suppose we now choose a different representative
o = a+ dvy for a. Then

dANB=(a+dy)ANB=aAB+dvAPB)

using df = 0, so d(y A B) = dy A B. Thus o A and a A g differ by an exact form
and define the same cohomology class. Changing f gives the same result.

The last part is just the pull-back operation on forms. Since
dFa = Frda
F* defines a map of cohomology groups. And since
F*(anp)=FaNFS

it respects the product. O

Perhaps the most important property of the de Rham cohomology, certainly the
one that links it to algebraic topology, is the deformation invariance of the induced
maps F. We show that if F} is a smooth family of smooth maps, then the effect on
cohomology is independent of . As a matter of terminology (because we have only
defined smooth maps of manifolds) we shall say that a map

F: M xla,bl - N

is smooth if it is the restriction of a smooth map on the product with some slightly
bigger open interval M X (a — €,b+ €).

Theorem 6.7 Let F': M x [0,1] — N be a smooth map. Set Fy(x) = F(z,t) and
consider the induced map on de Rham cohomology F} : HP(N) — HP(M). Then

Fy = F}.

Proof: Represent a € HP(N) by a closed p-form « and consider the pull-back form
F*a on M x [0,1]. We can decompose this uniquely in the form

Fra=p0+dt Ny (13)
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where (3 is a p-form on M (also depending on t) and v is a (p—1)-form on M, depending
on t. In a coordinate system it is clear how to do this, but more invariantly, the form
B is just Fya. To get 7 in an invariant manner, we can think of

(,8) — (x,s+t)

as a local one-parameter group of diffeomorphisms of M x (a,b) which generates a
vector field X = 0/0t. Then

v =1ixF a.
Now « is closed, so from (13),

0
Oszﬂ—l—dt/\a—f—dt/\de

where d,; is the exterior derivative in the variables of M. It follows that

op B
E = dn.

Now integrating with respect to the parameter ¢, and using

o . 0B
alte= g

we obtain
1 8 1
Fl*oz—F(;"oz:/ —Ft*ocdt:d/’ydt.
o Ot 0

So the closed forms F}'a and Fija differ by an exact form and

F(a) = Fy(a).

Here is an immediate corollary:
Proposition 6.8 The de Rham cohomology groups of M = R"™ are zero for p > 0.
Proof: Define F': R" x [0,1] = R" by
F(z,t) = tx.
Then Fi(z) = x which is the identity map, and so
Fy: HP(R") — H?(R")
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is the identity.

But Fy(z) = 0 which is a constant map. In particular the derivative vanishes, so the
pull-back of any p-form of degree greater than zero is the zero map. So for p > 0

F;: HP(R") — HP(R")

vanishes.
From Theorem 6.7 Fj = F} and we deduce that HP?(R") vanishes for p > 0. Of
course R" is connected so H°(R") = R. O

Exercise 6.9 Show that the previous proposition holds for a star shaped region in
R": an open set U with a point a € U such that for each x € U the straight-line
segment ax C U. This is usually called the Poincaré lemma.

The same argument above can be used for the map Fy : M x R™ — M x R" given by
Fi(a,x) = (a,tzx) to show that H?(M x R™) = HP(M).

We are in no position yet to calculate many other de Rham cohomology groups, but
here is a first non-trivial example. Consider the case of R/Z, diffeomorphic to the
circle. In the atlas given earlier, we had @19, () = o or 19, (x) = 2 — 1 so the
1-form dz = d(x — 1) is well-defined, and nowhere zero. It is not the derivative of
a function, however, since R/Z is compact and any function must have a minimum
where df = 0. We deduce that

H'(R/Z) # 0.

On the other hand, suppose that o = g(x)dx is any 1-form (necessarily closed because
it is the top degree). Then g is a periodic function: g(z + 1) = g(z). To solve df = «
means solving f’(x) = g(z) which is easily done on R by:

But we want f(z + 1) = f(x) which will only be true if
1
/ g(x)dx = 0.
0

o = g(x)dr = (/01 g(s)ds) de + df

and any 1-form is of the form cdz + df. Thus H'(R/Z) = R.

Thus in general
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We can use this in fact to start an inductive calculation of the de Rham cohomology
of the n-sphere.

Theorem 6.10 Forn >0, H?(S™) = R if p=0 or p=n and is zero otherwise.

Proof: We have already calculated the case of n = 1 so suppose that n > 1.

Clearly the group vanishes when p > n, the dimension of S, and for n > 0, S™ is
connected and so H°(S™") = R.

Decompose S™ into open sets U, V', the complement of closed balls around the North
and South poles respectively. By stereographic projection these are diffeomorphic to
open balls in R". If « is a closed p-form for 1 < p < n, then by the Poincaré lemma
a=duon U and a = dv on V for some (p—1) forms u,v. On the intersection U NV,

du—v)=a—a=0

so (u —v) is closed. But

UNnV 5"« R

SO
H" (UNV) = 5P (5"

and by induction this vanishes, so on U NV, u —v = dw.

Now look at U NV as a product with a finite open interval: S"~! x (—2,2). We can
find a bump function ¢(s) which is 1 for s € (—1,1) and has support in (—2,2). Take
slightly smaller sets U’ C U, V' C V such that U’ NV’ = S"~! x (=1,1). Then pw
extends by zero to define a form on S™ and we have u on U’ and v + d(pw) on V'
with u = v + dw = v + d(pw) on U' NV’. Thus we have defined a (p — 1) form g
on S™ such that f = u on U’ and v + d(¢w) on V' and a = dfg on U’" and V' and so
globally o = df. Thus the cohomology class of « is zero.

This shows that we have vanishing of HP(S™) for 1 < p < n.

When p = 1, in the argument above u—wv is a function on UNV and since d(u—v) = 0
it is a constant ¢ if U NV is connected, which it is for n > 1. Then d(v + ¢) = «
and the pair of functions v on U and v 4 ¢ on V agree on the overlap and define a
function f such that df = a.

When p = n the form u — v defines a class in H"~1(UNV) = A" 1(S"1) 2 R. So let
w be an (n — 1) form on S™~! whose cohomology class is non-trivial and pull it back
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to S~ x (=2,2) by the projection onto the first factor. Then H"}(S" ! x (-2,2))
is generated by [w] and we have

U—v = I+ dw

for some A € R. If A = 0 we repeat the process above, so H"(S™) is at most one-
dimensional. Note that A is linear in « and is independent of the choice of v and v
— if we change u by a closed form then it is exact since H?~'(U) = 0 and we can
incorporate it into w.

All we need now is to find a class in H™(S™) for which A # 0. To do this consider
pdt N\ w

extended by zero outside U N'V. Then

([ w)-

vanishes for t < —2 and so extends by zero to define a form u on U such that du = a.
When ¢ > 2 this is non-zero but we can change this to

= ([ oo ([0

which does extend by zero to V' and still satisfies dv = . Thus taking the difference,
A above is the positive number

To get more information on de Rham cohomology we need to study the other aspect
of differential forms: integration.
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7 Integration of forms

7.1 Orientation

Recall the change of variables formula in a multiple integral:

/f(yl,...,yn)dyldyg...dyn:/f(yl(x),...,yn(x))\det@yi/axj]dxldxg...dxn

and compare to the change of coordinates for an n-form on an n-dimensional manifold:

0 = f(yl,---,yn)dylAdyz/\ N dy,
OYn
) ) G
= flyi(x),... ,yn(x))(det 0y;/0xj)dxy N dacg A de’n

The only difference is the absolute value, so that if we can sort out a consistent sign,
then we should be able to assign a coordinate-independent value to the integral of an
n-form over an n-dimensional manifold. The sign question is one of orientation.

Definition 27 An n-dimensional manifold is said to be orientable if it has an ev-
erywhere non-vanishing n-form w.

Definition 28 Let M be an n-dimensional orientable manifold. An orientation on
M is an equivalence class of non-vanishing n-forms w where w ~ W' if W' = fw with
f>0.

Clearly a connected orientable manifold has two orientations: the equivalence classes
of +w.

Example:
1. Let M C R™" be defined by f(z) = ¢, with df(a) # 0 if f(a) = c¢. By Theorem
2.2, M is a manifold and moreover, if df/0z; # 0, x1,...,2;1,Ti11, Tny1 are local

coordinates. Consider, on such a coordinate patch,

w=(-1)

1
del VAP dIZ',1 VAN dxiJrl RVAN d$n+1 (14)
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This is non-vanishing.

Now M is defined by f(x) = ¢ so that on M

and if 0f/0x; # 0
(Of J0xsdx; + . ..).

dl‘j:—

Of/0x;
Substituting in (14) we get

|
W = (—1)]Wd$1 VANPIRIAN dlL‘j_l VAN dmj—l—l AN dl‘n—&—l-

The formula (14) therefore defines for all coordinate charts a non-vanishing n-form,
so M is orientable.

The obvious example is the sphere 5™ with

1
W = (-1)1x—d£€1 VAP dl‘ifl VAN d&?iJrl AN d$n+1.

2. Consider real projective space RP™ and the smooth map

p:S"— RP"
which maps a unit vector in R™*! to the one-dimensional subspace it spans. Con-
cretely, if ;1 # 0, we use z = (x9,...,2,41) as coordinates on S™ and the usual
coordinates (xo/x1, ..., Tpy1/21) on RP™ then
1
p(a) = —F——== (15)

VI=Tz*

This is smooth with smooth inverse

1
9(y) = —=——==y
V1l
so we can use (zg,...,%,4+1) as local coordinates on RP™.

Let o : S™ — S™ be the diffeomorphism o(z) = —z. Then
o1

1 d(_.T1> VAR d(_SC1;71) AN d(—&?prl) VAN d(—xn+1) — (_1)n71w.
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Suppose RP" is orientable, then it has a non-vanishing n-form . Since the map
(15) has a local smooth inverse, the derivative of p is invertible, so that p*f is a
non-vanishing n-form on S™ and so

Pl = fw
for some non-vanishing smooth function f. But p oo = p so that
fw=p0=0"p0=(foo)(-1)""w.

Thus, if n is even,
foo=—f
and if f(a) > 0, f(—a) < 0. But RP" = p(S™) and S™ is connected so RP" is

connected. This means that f must vanish somewhere, which is a contradiction.

Hence RP?™ is not orientable.

There is a more sophisticated way of seeing the non-vanishing form on S™ which gives
many more examples. First note that a non-vanishing n-form on an n-dimensional
manifold is a non-vanishing section of the rank 1 vector bundle A"T*M. The top
exterior power has a special property: suppose U C V is an m-dimensional vector
subspace of an n-dimensional space V', then V/U has dimension n —m. There is then
a natural isomorphism

AU @ A"™(V/U) = A"V. (16)
To see this let ug,...,u, be a basis of U and wvy,...,v,_,, vectors in V/U. By
definition there exist vectors o1, ..., U,_., such that v; = v; + U. Consider

UlAUQ...AUmAﬁlA...A@n_m.

This is independent of the choice of ¥; since any two choices differ by a linear combi-
nation of w;, which is annihilated by u; A ...u,,. This map defines the isomorphism.
Because it is natural it extends to the case of vector bundles.

Suppose now that M of dimension n is defined as the subset f~!(c) of R™ where
f : R" — R™ has surjective derivative on M. This means that the 1-forms dfy, . .. df.,
are linearly independent at the points of M C R"™. We saw that in this situation, the
tangent space T,M of M at a is the subspace of T,R" annihilated by the derivative
of f, or equivalently the 1-forms df;. Another way of saying this is that the cotangent
space 17" M is the quotient of T R"™ by the subspace U spanned by dfi, ..., df,,. From
(16) we have an isomorphism

AU @ AV™(T*M) = A"T*R”,
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Now df; Adfs A ... Adf,, is a non-vanishing section of AU, and dzq A ... Adx, is a
non-vanishing section of A"T*R" so the isomorphism defines a non-vanishing section
w of A"=™T*M.

All such manifolds, and not just the sphere, are therefore orientable. In the case
m = 1, where M is defined by a single real-valued function f, we have

df N\w=dxy Ndxy...N\dx,.

If 0f/Ox, # 0, then xy,..., 2,1 are local coordinates and so from this formula we
see that

w=(=1)"" dey A ... Ndx,—1

1 1
af o,

as above.

Remark: Any compact manifold M™ can be embedded in R for some N, but
the argument above shows that M is not always cut out by N — m globally defined
functions with linearly independent derivatives, because it would then have to be
orientable.

Orientability helps in integration through the following:

Proposition 7.1 A manifold is orientable if and only if it has a covering by coordi-

nate charts such that 5
det ( yi) >0
al'j

Proof: Assume M is orientable, and let w be a non-vanishing n-form. In a coordinate
chart

on the intersection.

w= f(x1,...,z)dxy A ...dxp,.

After possibly making a coordinate change x; — ¢ — z1, we have coordinates such
that f > 0.

Look at two such overlapping sets of coordinates. Then

g (x), ..., yu(2))(det Oy; /0 ;)dzy N dxs ... A dxy,
= flxy,...,zp)dxy A .. dxy,
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Since f > 0 and ¢g > 0, the determinant det dy;/Jz; is also positive.

Conversely, suppose we have such coordinates. Take a partition of unity {p,} subor-
dinate to the coordinate covering and put

W= pady} Ndys A ... NdyL.
Then on a coordinate neighbourhood Us with coordinates z1, ..., z, we have
w|Uﬁ = Z Pa det(ay?/axj)dxl A...dx,.

Since ¢, > 0 and det(0yf*/dz;) is positive, this is non-vanishing. O

Now suppose M is orientable and we have chosen an orientation. We shall define the

/
M

of any n-form 6 of compact support on M.

We first choose a coordinate covering as in Proposition 7.1. On each coordinate
neighbourhood U, we have

Olu, = falx1, ... xn)dxy A ... Adxy,.
Take a partition of unity ¢; subordinate to this covering. Then
willv, = gi(x1, ..., xp)dzy A ... Ndxy,

where g; is a smooth function of compact support on the whole of R™. We then define

/922/ %’9:2/ gi(z1, ..., x,)dr1dey . . . dx,.
M . JIM p n

Note that since 6 has compact support, its support is covered by finitely many open
sets on which ¢; # 0, so the above is a finite sum.

The integral is well-defined precisely because of the change of variables formula in
integration, and the consistent choice of sign from the orientation.
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7.2 Stokes’ theorem

The theorems of Stokes and Green in vector calculus are special cases of a single result
in the theory of differential forms, which by convention is called Stokes’ theorem. We
begin with a simple version of it:

Theorem 7.2 Let M be an oriented n-dimensional manifold and w € Q"1 (M) be
of compact support. Then
/ dw = 0.
M

Proof: Use a partition of unity subordinate to a coordinate covering to write

W = Zapiw.

Then on a coordinate neighbourhood
Yiw = aydrs N\ ... Ndx, —asdry Ndxs A ... Ndz, + ...

and 5 5
a ay,
d(piw) = (a—xi—i—...—l— 8%) dxi Ndxe A ... N dx,.

From the definition of the integral, we need to sum each

8@1 8an
— ... dxidzy . .. dz,.
/Rn (8x1 Tt axn) T2 v

%dl’ldl’g .oodx,.
R” (91‘1

Consider

By Fubini’s theorem we evaluate this as a repeated integral

/ / (/ %dm) dredxs . .. dx,,.
R/R 8.%'1

But a; has compact support, so vanishes if |z1| > N and thus

oa
o a—xid.rl = [ale = 0.

The other terms vanish in a similar way. O
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Theorem 7.2 has an immediate payoff for de Rham cohomology:

Proposition 7.3 Let M be a compact orientable n-dimensional manifold. Then the
de Rham cohomology group H"(M) is non-zero.

Proof: Since M is orientable, it has a non-vanishing n-form 6. Because there are
no n + 1-forms, it is closed, and defines a cohomology class [0] € H™(M).

Choose the orientation defined by 6 and integrate: we get

0= /fidzv dxy . ..dx,
[ 0= [ iz,

which is positive since each f; > 0 and is positive somewhere.

Now if the cohomology class [] = 0, § = dw, but then Theorem 7.2 gives

/9:/ dw =20
M M

a contradiction. O

Here is a topological result which follows directly from the proof of the above fact:

Theorem 7.4 Ewvery vector field on an even-dimensional sphere S*™ vanishes some-
where.

Proof: Suppose for a contradiction that there is a non-vanishing vector field. For
the sphere, sitting inside R*"*!, we can think of a vector field as a smooth map

v SQm SN R2m+1

such that (x,v(x)) = 0 and if v is non-vanishing we can normalize it to be a unit
vector. So assume (v(z),v(z)) = 1.

Now define F} : $?™ — R*™*! by
Fy(z) = costx + sintv(z).
Since (z,v(x)) = 0, we have

(costx +sintwv(z),costx +sintv(z)) =1
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so that F; maps the unit sphere to itself. Moreover,
Fy(z) =z, Fr(x) = —x.
Now let w be the standard orientation form on S™:
w=dry Ndxs A ... NdTom/Tomy1-

We see that
Fiw=w, Fw=-w.

But by Theorem 6.7, the maps Fy, F* on H*™(5?™) are equal. We deduce that the
de Rham cohomology class of w is equal to its negative and so must be zero, but this
contradicts that fact that its integral is positive. Thus the vector field must have a
Z€T0. g

Green’s theorem relates a surface integral to a volume integral, and the full version of
Stokes’ theorem does something similar for manifolds. The manifolds we have defined
are analogues of a surface — the sphere for example. We now need to find analogues
of the solid ball that the sphere bounds. These are still called manifolds, but with a
boundary.

Definition 29 An n-dimensional manifold with boundary s a set M with a collec-
tion of subsets U, and maps

Vo Uy — R ={(21,...,2,) ER" : 1, > 0}
such that
o M =U,U,

o ¢, : Uy — pa(Uy) is a bijection onto an open set of (R™)* and po(Us NUp) is
open for all o, 3,

o 0.t 1 0a(Ua NUs) — (U, N Ug) is the restriction of a C*° map from a
neighbourhood of v,(U, NUz) C (R")* C R"™ to R".

The boundary OM of M is defined as
OM ={x e M:p.(z) € {(z1,...,2,-1,0) € R"}

and these charts define the structure of an (n — 1)-manifold on OM .
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Example:
1. The model space (R")* is a manifold with boundary z,, = 0.
2. The unit ball {x € R™: ||z|| < 1} is a manifold with boundary S™~!.

3. The Mobius band is a 2-dimensional manifold with boundary the circle:

4. The cylinder I x S* is a 2-dimensional manifold with boundary the union of two
circles — a manifold with two components.

We can define differential forms etc. on manifolds with boundary in a straightforward
way. Locally, they are just the restrictions of smooth forms on some open set in R"
to (R™)". A form on M restricts to a form on its boundary.

Proposition 7.5 If a manifold M with boundary is oriented, there is an induced
orientation on its boundary.

Proof: We choose local coordinate systems such that M is defined by x,, = 0 and
det(Qy;/0z;) > 0. So, on overlapping neighbourhoods,

vi = vi(T1, .., x0),  Yn(T1,...,2,-1,0) = 0.
Then the Jacobian matrix has the form

Oy1/0x1  Oyy/0xs 0y /0y,
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From the definition of manifold with boundary, ¢z, " maps z,, > 0 to y, > 0, so y,
has the property that if x,, = 0,y,, = 0 and if x,, > 0,y,, > 0. It follows that

> 0.

=0

ox,,

From (17) the determinant of the Jacobian for M is given by

so if det(Jys) > 0 so is det(Janr).
a

Remark: The boundary of an oriented manifold has an induced orientation, but
there is a convention about which one to choose: for a surface in R? this is the choice
of an “inward” or “outward” normal. Our choice will be that if dz; A ... Adz,, defines
the orientation on M with x, > 0 defining M locally, then (—1)"dxzy A...Adx,_1 (the
“outward” normal) is the induced orientation on M. The boundary of the cylinder
gives opposite orientations on the two circles. The Mobius band is not orientable,
though its boundary the circle of course is.

We can now state the full version of Stokes’ theorem:

Theorem 7.6 (Stokes’ theorem) Let M be an n-dimensional oriented manifold with
boundary OM and let w € Q" (M) be a form of compact support. Then, using the

induced orientation
/ dw = / w.
M oM

w:Zgoiw
/de:Z/Md(goiw).

We work as in the previous version of the theorem, with

Proof: We write again

and then

piw = ardro .. . Ndx, —agdzy AdrsA. . ANdz,+. .+ (=1)"adry Adag A Adx, o
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(7.2), but now there are two types of open sets. For those which do not intersect M
the integral is zero by Theorem 7.2. For those which do, we have

daq da,
/M dlpiw) = /xnzo (8_561 +...+ 6:1:n> dxidxsy ... dx,

- / [an)0dxy .. day—y
Rnfl

/ an (1,29, ..., Tp_1,0)dxy ... dr,_q
Rnfl

oo
oM

where the last line follows since
viwlorr = (=) tapdry Adxg AL A drg,_y

and we use the induced orientation (—1)"dzy A ... Adz,_1.

An immediate corollary is the following classical result, called the Brouwer fized point
theorem.

Theorem 7.7 Let B be the unit ball {x € R™ : ||z|| < 1} and let F : B — B be a
smooth map from B to itself. Then F has a fixed point.

Proof: Suppose there is no fixed point, so that F(z) # z for all x € B. For each
x € B, extend the straight line segment F'(z)x until it meets the boundary sphere of
B in the point f(z). Then we have a smooth function

f:B—0B

such that if z € 0B, f(z) = .
Let w be the standard non-vanishing (n — 1)-form on S"~! = 9B, with

/wzl.

OB

:/ w = ffw
OB OB
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since f is the identity on S™!. But by Stokes’ theorem,

[ pu= [ara = [ ras-o

since dw = 0 as w is in the top dimension on S™~!.

The contradiction 1 = 0 means that there must be a fixed point. O

8 The degree of a smooth map

By using integration of forms we have seen that for a compact orientable manifold of
dimension n the de Rham cohomology group H"(M) is non-zero, and that this fact
enabled us to prove some global topological results about such manifolds. We shall
now refine this result, and show that the group is (for a compact, connected, orientable
manifold) just one-dimensional. This gives us a concrete method of determining the
cohomology class of an n-form: it is exact if and only if its integral is zero.

8.1 de Rham cohomology in the top dimension

First a lemmas:

Lemma 8.1 Let U" = {z € R" : |;] < 1} and let w € Q"(R") be a form with
support in U™ such that
/ w=0.

Then there exists 8 € Q" Y(R™) with support in U™ such that w = df.

Proof: We prove the result by induction on the dimension n, but we make the
inductive assumption that w and  depend smoothly on a parameter A € R™, and
also that if w vanishes identically for some A, so does £3.

Consider the case n =1, so w = f(x, A)dz. Clearly taking
BN = [ udu (18)
-1

gives us a function with df = w. But also, since f has support in U, there is a § > 0
such that f vanishes for x >1—9 or x < —1 4+ 4. Thus

/93 fu, N)du = 1 flu, N)du =0
-1 -1
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for x > 1 — ¢ and similarly for z < —1 + ¢ which means that [ itself has support in
U. If f(x,\) =0 for all z, then from the integration (18) so does B(zx, \).

Now assume the result for dimensions less than n and let
w=f(x1,...,zp, Ndry A ... Ndzy,
be the given form. Fix xz, =t and consider
flay, .o g, 6, ) dzy AL AN dx,

as a form on R™!, depending smoothly on ¢ and . Its integral is no longer zero,
but if ¢ is a bump function on U™~ ! such that the integral of odxy A ... Adz,_1 is 1,
then putting

g(t,\) = flzr, o g, t, N)dey AL Ady
Un—l

we have a form
flzr, o xp_g, t, N)daey Ao ANdzp—y — g(t, Nodzy Ao A dxy,

with support in U"~! and zero integral. Apply induction to this and we can write it
as dy where ~ has support in U""L.

Now put t = z,, and consider d(vy A dz,). The x,-derivative of v doesn’t contribute
because of the dz, factor, and o is independent of z,,, so we get

d(y Ndzy) = f(x1,. . Tpet, Tny, A)dzy A oo Adxy — g(2p, Nodxy A ... A dxy,.

Putting

Tn

E(xy, ..y, N) = (—1)"_1(/ g(t, \)dt)odxy A ... \Ndx, 4

-1
also gives
d¢ = g(xp, Nodxy A ... Ndxy,.

We can therefore write
flzy, . o 2 g, xp, N)dzy A Lo Adzy, = d(y Adx, + &) = dp.
Now by construction 5 has support in |z;| < 1 for 1 < ¢ < n — 1, but what about

the z,, direction? Since f(z1,...,2,_1,t, A) vanishes for t > 1 —0 or t < —14 6, the
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inductive assumption tells us that v does also for x,, > 1 —9. As for £, if t > 1 — 9,

¢ ¢
/ g(s,Nds = / ( flzr, . e, t, N)dzy AL A dmn_l) dt
Un—l

-1 -1

1
= / < f(xl’u-;xn_l,t,/\)dl'l/\.../\dl’n_l) dt
— yUn—1

1

= [y, g, N dey AL A dy,
Un

=0

by assumption. Thus the support of ¢ is in U™. Again, examining the integrals, if
f(z, A) is identically zero for some A, so is f3.

a

Using the lemma, we prove:

Theorem 8.2 If M is a compact, connected orientable n-dimensional manifold, then

H"(M) = R.

Proof: Take a covering by coordinate neighbourhoods which map to U™ = {z €
R" : |z;| < 1} and a corresponding partition of unity {¢;}. By compactness, we can
assume we have a finite number Uy, ..., Uy of open sets. Using a bump function, fix
an n-form oy with support in U; and

/060:1.
M

Thus, by Theorem 7.3 the cohomology class [«] is non-zero. To prove the theorem
we want to show that for any n-form «,

[a] = clov]
i.e. that a = cag + dry.
Given « use the partition of unity to write

a:ngia

then by linearity it is sufficient to prove the result for each ¢;a, so we may assume
that the support of « lies in a coordinate neighbourhood U,,,. Because M is connected
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we can connect p € U; and ¢ € U, by a path and by the connectedeness of open
intervals we can assume that the path is covered by a sequence of U;’s, each of which
intersects the next: i.e. renumbering, we have

p € Ula Uz N U’i+1 7é (Da q S Um

Now for 1 <7 < m — 1 choose an n-form «; with support in U; N U;;; and integral 1.

On U; we have
/(Oéo — al) =0

and so applying Lemma 8.1, there is a form [y with support in U; such that
Qp — 1 = dﬁl
Continuing, we get altogether

Oy —p = dﬁl

dfs

a1 — Q2

= dﬂm—l

Qmp—2 — Op—1

and adding, we find

Qo — Omp—1 = d(z ﬂz) (19)

/a:c:/cam_1

and applying the Lemma again, we get a — ca,,_1 = df and so from (19)

Q= CQy_1+dp = C&o+d(5—02@')

On U,,, we have

as required.

Theorem 8.2 tells us that for a compact connected oriented n-dimensional manifold,
H"(M) is one-dimensional. Take a form wy; whose integral over M is 1, then [wy] is
a natural basis element for H"(M). Suppose

F:M—N
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is a smooth map of compact connected oriented manifolds of the same dimension n.
Then we have the induced map

F*: H"(N) = H™(M)

and relative to our bases
Frlwy] = klwa] (20)

for some real number k. We now show that k is an integer.

Theorem 8.3 Let M, N be oriented, compact, connected manifolds of the same di-
mension n, and F': M — N a smooth map. There exists an integer, called the degree

of F' such that
/F*w:degF/w
M N

e if a is a reqular value of F' then

deg F' = Z sgn(det DF,)

z€F~1(a)

e ifw e Q"(N) then

Remark:

1. A regular value for a smooth map F': M — N is a point a € N such that for each
x € F~(a), the derivative DF, is surjective. When dim M = dim N this means that
DF, is invertible. Sard’s theorem (a proof of which is in the Appendix) shows that
for any smooth map most points in /N are regular values.

2. The expression sgn(det DF,) in the theorem can be interpreted in two ways, but
depends crucially on the notion of orientation — consistently associating the right
sign for all the points € F~!(a). The straightforward approach uses Proposition
7.1 to associate to an orientation a class of coordinates whose Jacobians have positive
determinant. If det DF,, is written as a Jacobian matrix in such a set of coordinates
for M and N, then sgn(det DF}) is just the sign of the determinant. More invariantly,
DF, : T, M — T,N defines a linear map

A"(DF.) : AT*N, — AT} M.
Orientations on M and N are defined by non-vanishing forms wj;, wy and
A"(DF))(wy) = Awa.
Then sgn(det DF}) is the sign of \.

3. Note the immediate corollary of the theorem: if Fis not surjective, then deg F' = 0.
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Proof: For the first part of the theorem, the cohomology class of w is [w] = clwy]
and so integrating (and using Proposition 7.2),

/w:c/wN:c.
N N

F*lw] = cF*wy] = ck[w]

/F*w:ck/ wM:ck:k/w.
M M N

For the second part, since DF, is an isomorphism at all points in F~'(a), from
Theorem 3.3, F~*(a) is a zero-dimensional manifold. Since it is compact (closed
inside a compact space M) it is a finite set of points. The inverse function theorem
applied to these m points shows that there is a coordinate neighbourhood U of a € N
such that F'~1(U) is a disjoint union of m open sets U; such that

Using the number k in (20),

and integrating,

is a diffeomorphism.

Let o be an n-form supported in U with |, ~ 0 = 1 and consider the diffeomorphism
F : U; — U. Then by the coordinate invariance of integration of forms, and using
the orientations on M and NV,

/ F*o =sgn DF,, /a =sgn DF,..
Ui U

Hence, summing

/MF o= ;sgnDFmi

k‘:k‘/a:/F*o
N M

k= Z sgn DF,..

i

and this is from the first part

which gives
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Example: Let M be the extended complex plane: M = C U {oco}. This is a
compact, connected, orientable 2-manifold. In fact it is the 2-sphere. Consider the
map F': M — M defined by

F(z) = Z"4+a' 4+ +tap, 2z+#c
F(oo) = o0

This is smooth because in coordinates near z = oo, F' is defined (for w = 1/z) by

wk

— .
14+ aw+...a,wk

w

To find the degree of F', consider
Fi(z) = 2" +t(a 25+ ayg).

This is a smooth map for all ¢ and by Theorem 6.7 the action on cohomology is
independent of ¢, so
deg F' = deg Fy

where Fy(z) = 2.

We can calculate this degree by taking a 2-form, with |z| = r and z = = + iy
f(r)ydx Ndy = f(r)rdr A dO

with f(r) of compact support. Then the degree is given by
degFy [ f(r)yrdrndd = [ fOrF)yr*d(r®)kdd =k | f(r)rdr A d6.
R2 R2 R2

Thus deg F' = k. If £ > 0 this means in particular that F' is surjective and therefore
takes the value 0 somewhere, so that

a4+ 4+a=0

has a solution. This is the fundamental theorem of algebra.

Example: Take two smooth maps fi, f> : S* — R3. These give two circles in R? —
suppose they are disjoint. Define

F:S8'x St — 52
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. fi(s) — fo()
1(s) — gt
P8 = The = hol

The degree of this map is called the linking number.

Example: Let M C R? be a compact surface and n its unit normal. The Gauss
map is the map

F:M— S?

defined by F(x) = n(z). If we work out the degree by integration, we take the
standard 2-form w on S2. Then one finds that

/F*w:/ KvVEG — F2dudv
M M

where K is the Gaussian curvature. The Gauss-Bonnet theorem tells us that the
degree is half the Euler characteristic of M.
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9 Riemannian metrics

Differential forms and the exterior derivative provide one piece of analysis on mani-
folds which, as we have seen, links in with global topological questions. There is much
more one can do when one introduces a Riemannian metric. Since the whole subject
of Riemannian geometry is a huge one, we shall here look at only two aspects which
relate to the use of differential forms: the study of harmonic forms and of geodesics.
In particular, we ignore completely here questions related to curvature.

9.1 The metric tensor

In informal terms, a Riemannian metric on a manifold M is a smoothly varying
positive definite inner product on the tangent spaces T,. To make global sense of
this, note that an inner product is a bilinear form, so at each point x we want a

vector in the tensor product
TmeT;).

We can put, just as we did for the exterior forms, a vector bundle structure on

T"MeT'M=|]T; 0T

zeM

The conditions we need to satisfy for a vector bundle are provided by two facts we
used for the bundle of p-forms:

e each coordinate system x4, ..., z, defines a basis dz1, ..., dx, for each T in the
coordinate neighbourhood and the n? elements

dr; ®dx;, 1<i,7<mn
give a corresponding basis for T @ 1%

e the Jacobian of a change of coordinates defines an invertible linear transforma-
tion J : T — Tr and we have a corresponding invertible linear transformation
JRJ: T Ty =T T;.

Given this, we define:

Definition 30 A Riemannian metric on a manifold M is a section g of T* @ T*
which at each point is symmetric and positive definite.
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In a local coordinate system we can write
2%

where g;;(z) = g;;(x) and is a smooth function, with g;;(z) positive definite. Often
the tensor product symbol is omitted and one simply writes

1,7

Example:

1. The Euclidean metric on R" is defined by

g= Z dr; ® dx;.
So
g 0

g( ) = 0ij-

2. A submanifold of R” has an induced Riemannian metric: the tangent space at x
can be thought of as a subspace of R" and we take the Euclidean inner product on
R".

Given a smooth map F' : M — N and a metric g on N, we can pull back ¢ to a
section F*g of T"M & T*M:

(F*g)m(X7 Y) = gF(x)(DFa:(X>7 ‘DF$(Y))

If DF, is invertible, this will again be positive definite, so in particular if F' is a
diffeomorphism.

Definition 31 A diffeomorphism F : M — N between two Riemannian manifolds is
an isometry if F*gn = g

Example: Let M = {(z,y) € R*:y > 0} and

dz? + dy?
g=——.

If z=2x+ iy and




with a, b, ¢, d real and ad — bc > 0, then

dz
F*dz = (ad — bc) —————
2=(a C)(cz—i-d)2
and 1 b b d—2b
az + az + ad — bc
F* pr— F:— — pr— .
y=ue i(cz+d CZ+d) \cz+d|2y
Then

o dr® +dy* ez +d* dat4dy*

((cz + d)?)? (ad — be)2y2 — y2 g
So these Mobius transformations are isometries of a Riemannian metric on the upper
half-plane.

F*g = (ad — bc)

We have learned in Section 4.3 that a one-parameter group ¢, of diffeomorphisms
defines a vector field X. Then we can define the Lie derivative of a Riemannian
metric by

d

Lxg= aﬁgh:o-

If this is a group of isometries then since ¢jg = g, we have Lxg = 0. Such a vector
field is called a Killing vector field or an infinitesimal isometry.

The Lie derivative obeys the usual derivation rules, and commutes with d. Since
Lxf = X[ we have

(2

Example: Take the Euclidean metric g = ), dz; ® dx;, and a vector field of the

form 5

where A;; is a constant matrix.

This is a Killing vector field if and only if

ki ki

In other words if A is skew-symmetric.

With a Riemannian metric one can define the length of a curve:
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Definition 32 Let M be a Riemannian manifold and v : [0,1] — M a smooth map
(i.e. a smooth curve in M ). The length of the curve is

ly) = /0 V(Y )dt
where ~'(t) = D~,(d/dt).

With this definition, any Riemannian manifold is a metric space: define

d(z,y) = inf{{(y) € R:v(0) = 2,7(1) = y}.

In fact a metric defines an inner product on 7% as well as on T, for the map

defines an isomorphism from 7" to T™. In concrete terms, if ¢* is the inner product

on 7%, then
g ( E gijdx;, E grd) = ik
j 2

which means that
g"(dx;, duy) = g™
where ¢g7* denotes the inverse matrix to g;p.
We can also define an inner product on the exterior product spaces APT™.
(g Nag Ao ANay, Br AP AN A By) =det g™ (ay, B;) (21)
In particular, on an n-manifold there is an inner product on each fibre of the bundle

A™T*. Since each fibre is one-dimensional there are only two unit vectors +u.

Definition 33 Let M be an oriented Riemannian manifold, then the volume form is
the unique n-form w of unit length in the equivalence class defined by the orientation.

In local coordinates,the definition of the inner product (21) gives
(dxy N ... Ndxy,dzy A ... Adx,) = det 95 = (det gij)_l
Thus if dx; A ... A dx, defines the orientation,

w = y/det g;jdzy A ... A dxy,.

On a compact manifold we can integrate this to obtain the total volume — so a metric
defines not only lengths but also volumes.

Are Riemannian manifolds special? No, because:
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Proposition 9.1 Any manifold admits a Riemannian metric.

Proof: Take a covering by coordinate neighbourhoods and a partition of unity
subordinate to the covering. On each open set U, we have a metric

Jo = de?

in the local coordinates. Define

g = Z PiGa(i)-

This sum is well-defined because the supports of ¢; are locally finite. Since ¢; > 0
at each point every term in the sum is positive definite or zero, but at least one is
positive definite so the sum is positive definite. O

9.2 The geodesic flow

Consider any manifold M and its cotangent bundle 7% M, with projection to the base
p:T*M — M. Let X be tangent vector to T*M at the point §, € T)". Then

Dpe,(X) € ToM

SO
0(X) = &(Dpe, (X))
defines a canonical 1-form § on 7*M. In coordinates (x,y) — ). y;dx;, the projection
pis
plz,y) =
d 0
D tigy + D by

i

so if
then
0(X) = Z yidz;(Dpe, X) = Z Yiai
which gives
We now take the exterior derivative

w=—df = dr; \dy,
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which is the canonical 2-form on the cotangent bundle. It is non-degenerate, so that
the map
X =1 xXw

from the tangent bundle of T*M to its cotangent bundle is an isomorphism.

Now suppose f is a smooth function on T*M. Its derivative is a 1-form df. Because
of the isomorphism above, there is a unique vector field X on T*M such that

1 XW = df
If g is another function with vector field Y, then

On a Riemannian manifold there is a natural function on 7*M given by the induced
inner product: we consider the function on 7*M defined by

H(Sa) = g*(ga’ Sa)

In local coordinates this is

H(z,y) = Zgij (=)yiy;.

Definition 34 The vector field X on T*M given by ixw = dH is called the geodesic
flow of the metric g.

Definition 35 If v : (a,b) — T*M is an integral curve of the geodesic flow, then the
curve p(7y) in M is called a geodesic.

In local coordinates, if the geodesic flow is

0 0

then

- Oag¥ i
ixw=Y (ardye — bday) =dH =3 aixkdxkyiyj +2) " gYyidy;.
ij

k ij
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Thus the integral curves are solutions of
dCEk ;
5 2 > gy (23)
J
dys 9g"
Wk _ N9 24

Before we explain why this is a geodesic, just note the qualitative behaviour of these
curves. For each point a € M, choose a point § € T and consider the unique
integral curve starting at £,. Equation (23) tells us that the projection of the integral
curve is parallel at a to the tangent vector X, such that g(X,, —) = &,. Thus these
curves have the property that through each point and in each direction there passes
one geodesic.

Geodesics are normally thought of as curves of shortest length, so next we shall link
up this idea with the definition above. Consider the variational problem of looking
for critical points of the length functional

U(y) = /O VoY, v)dt

for curves with fixed end-points 7(0) = a,~(1) = b. For simplicity assume a, b are in
the same coordinate neighbourhood. If

F(z,z) = Z i ()22

then the first variation of the length is

1 .
o 1 _1/2 @F . aF dl’l
ol = /0 2F (axixz—i-a% o dt

1
= /lp—lﬂa_Fi. d (lp—l/2ai> @dt.
0

on integrating by parts with #;(0) = #;(1) = 0. Thus a critical point of the functional

is given by
Lp1p0F 4

1 OF
F —(zF122 ) =

If we parametrize this critical curve by arc length:

s:/otmdt
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then F' = 1, and the equation simplifies to
oF d (OF\ 0
Or; ds\9dz /)

0gji dz; dzy, d dre\
> e ds ds a5 \ gy ) =0 (25)

But this is

But now define y; by
w2 Zj 97y

as in the first equation for the geodesic flow (23) and substitute in (25) and we get
ik d
4 _]]aakb __4ikaa:0
Zaxig vag" " — - (4919""Y)

and using

> 9795 =0

J
this yields .

dg’* P dy;
which is the second equation for the geodesic flow. (Here we have used the formula

for the derivative of the inverse of a matrix G: D(G™!) = —-G"'DGG™).

The formalism above helps to solve the geodesic equations when there are isometries
of the metric. If ' : M — M is a diffeomorphism of M then its natural action on
1-forms induces a diffeomorphism of 7M. Similarly with a one-parameter group ;.
Differentiating at ¢ = 0 this means that a vector field X on M induces a vector field X
on T*M. Moreover, the 1-form 6 on T*M is canonically defined and hence invariant
under the induced action of any diffeomorphism. This means that

L:0=0
and therefore, using (6.5) that
igdf+d(izd) =0

so since w = —d#f
in = df

where f =i30.
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Proposition 9.2 The function f above is f(&;) = £.(Xy).

Proof: Write in coordinates
~ 0 0
X = i— b;—
Sol eyl

where § = ). y;dx;. Since X projects to the vector field X on M, then

and

by the definition of 6. O

Now let M be a Riemannian manifold and H the function on 7*M defined by the
metric as above. If ¢, is a one-parameter group of isometries, then the induced
diffeomorphisms of T*M will preserve the function H and so the vector field Y will
satisfy

Y (H) = 0.

But from (22) this means that X(f) = 0 where X is the geodesic flow and f the
function ¢36. This function is constant along the geodesic flow, and is therefore a
constant of integration of the geodesic equations.

To see what this constant is, we note that Y is the natural lift of a Killing vector field

0

so the function fis f =), a;y;.

The first geodesic equation is

SO
Sangy =
- g]k dt - y]



¢ 1 d 1
Tl ’
— E A —— X).
f 9 - gjkaj It 29(77 )

Sometimes this observation enables us to avoid solving any differential equations as
in this example:

Example: Consider the metric
dx? + da3
g=——5—
D)
on the upper half plane and its geodesic flow X.

The map (z1,x2) — (x1 + t,x2) is clearly a one-parameter group of isometries (the
Mobius transformations z — z 4 t) and defines the vector field

0

Y = —.
8351

On the cotangent bundle this gives the function

f (.%’ ) y) =Y
which is constant on the integral curve.
The map 2 — €'z is also an isometry with vector field

0 0
7 = N N
T 8(131 t 81'2

so that
9(7,y) = T1y1 + T2y

1s constant.

We also have automatically that H = x3(y? + y3) is constant since
X(H) = ’ixixw =0.
We therefore have three equations for the integral curves of the geodesic flow:

no= G
T1Y1 + 22y = o

(i +ys) = e
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Eliminating v, y2 gives the geodesics:
(171 — )* + cla5 = cs.
If ¢; # 0, this is a semicircle with centre at (x1,22) = (¢2/¢1,0). If g =0 theny; =0

and the geodesic equation gives x; = const. Together, these are the straight lines of
non-Buclidean geometry.
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10 APPENDIX: Technical results

10.1 The inverse function theorem

Lemma 10.1 (Contraction mapping principle) Let M be a complete metric space
and suppose T : M — M is a map such that

d(Tz,Ty) < kd(z,y)

where k < 1. Then T has a unique fized point.

Proof: Choose any point x(, then

d(T"xg, T"xg) < k"d(xo,T" ™x0) for n>m
S km(d(l'o, T.l’o) + d(TCC(), TQZE()) + ...+ d(Tn_m_ll’(), Tn_m.l’o))
< E"(14+Ek+. .+ E"Nd(2g, Tag)
k.m
S md(l’o, T.To)

This is a Cauchy sequence, so completeness of M implies that it converges to x. Thus
x = limT"xq and so by continuity of T,

Te =lmT" ey =2
For uniqueness, if Tx = z and Ty = y, then
d(z,y) = d(Tz,Ty) < kd(z,y)

and so k < 1 implies d(z,y) = 0. O

Theorem 10.2 (Inverse function theorem) Let U C R™ be an open set and f :
U — R"™ a C* function such that Df, is invertible at a € U. Then there exist
neighbourhoods VW of a and f(a) respectively such that f(V) =W and f has a C*
wnverse on W.

Proof: By an affine transformation z — Ax + b we can assume that a = 0 and
Df, = 1. Now consider g(x) = x — f(x). By construction Dgg = 0 so by continuity
there exists r > 0 such that if ||z|| < 2r,

1
Dg.|| < =
IDgell < 5
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It follows from the mean value theorem that
1
lo@|l < 3l
and so g maps the closed ball B(0,7) to B(0,r/2). Now consider

gy(x) =y +z— f(z)
(The choice of g, is made so that a fixed point g,(x) = z solves f(z) = y).

If now ||y|| <r/2 and ||z|| < r, then

1 11
lgy(@)ll < 57+ lg(@)ll < 5r+ 5r=r

so g, maps the complete metric space M = B(0,7) to itself. Moreover

oy (1) — ()]l = llg(es) — g2l < 5les o]

if 21,9 € B(0,7), and so g, is a contraction mapping. Applying Lemma 1 we have a
unique fixed point and hence an inverse ¢ = 1.

We need to show first that ¢ is continuous and secondly that it has derivatives of all
orders. From the definition of g and the mean value theorem,

|21 — 22|l < |If(z1) = f(@2)]| + [lg(w1) — g(z2)]|

< 7@~ f@)l + gller — o
SO
21 — @] < 2[[f (21) — f(z2)]

which is continuity for . It follows also from this inequality that if y; = f (1) and
y2 = f(x2) where y1,y, € B(0,7/2) then x1,29 € B(0,r), and so
lo(yr) = o(y2) = (Dfen) ™ (y1 = 2) loy = 22 — (D fa,) 7 (f (1) = fla2))]

< (Do) D foa (21 = 2) = fla1) + fla2)]

< Allzy — x9||R
where A is a bound on |[(Df,,)~'|| and the function ||z; — z»||R is the remainder

term in the definition of differentiability of f. But ||z1 — za| < 2||y1 — y2]| so as
Y1 — Y2, £1 — T2 and hence R — 0, so ¢ is differentiable and moreover its derivative

is (Df)~L

Now we know the derivative of ¢:
Dy = (Df)™

so we see that it is continuous and has as many derivatives as f itself, so ¢ is C*°. O
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10.2 Existence of solutions of ordinary differential equations

Lemma 10.3 Let M be a complete metric space and T : M — M a map. If T" is
a contraction mapping, then T has a unique fixed point.

Proof: By the contraction mapping principle, 7" has a unique fixed point z. We

also have
T"(Tz) =T""'2 = T(T"x) = Tx

so T'x is also a fixed point of T™. By uniqueness T'r = z. |

Theorem 10.4 Let f(t,z) be a continuous function on |t —to| < a, ||z —xo|| < b and
suppose f satisfies a Lipschitz condition

(1) = f(E za)l] < oy — 2.

If M =sup|f(t,z)| and h = min(a,b/M), then the differential equation

C;—f = f(t,x), x(to) = xo

has a unique solution for |t — to| < h.

Proof: Let .
(Tz)(t) = o + /t f(s,z(s))ds

Then Tz is differentiable since f and x are continuous and if Tx = x, x satisfies the
differential equation (differentiate the definition). We use the metric space

X ={x e C([to — h,to + h],R") : ||x(t) — xo|| < Mh}
with the uniform metric

d(r1, ) = sup |z1(t) — 2o(t)]]
[t—to|<h

which makes it complete. If x € M, then Tx € M and we claim

Ck

[TH1 (1) — Traa(t)]| < alt = tol“d(w1, z2)
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For k = 0 this is clear, and in general we use induction to establish:
t

1T 1 (t) = Tr22(t)|| < 1f (s, T 1 (s) — f(s, T "o (s) |1 ds

AN
o
=

el

Loy (s) = T ay(s)||ds

(e /(k — 1)!)/t s — to|Fds d(zy, z)

< (Ck/k")’t — tolkd(l’l, LCQ)

IA

So T™ is a contraction mapping for large enough NV, and the result follows. o

Theorem 10.5 The solution above depends continuously on the initial data xg.

Proof: Take hy < h and § > 0 such that Mh + 6 < b, and let
Y = {y € C([to — ha,to + h1] x B(xo,0); R" : ||y(t, x) — x|| < Mh,y(to, x) = x}

which is a complete metric space as before. Now set

(Ty)(t,2) = = + / £(s,y(s, 2))ds

Since Mhy 4+ 6 < b, T'maps Y to Y and just as before T™ is a contraction mapping
with a unique fixed point which satisfies

dy
= t7 s t ’_Z' =
5 = [ (ty), yltex)
Since y is continuous in ¢ and x this is what we need. O

If f(t,z) is smooth then we need more work to prove that the solution to the equation
is smooth and smoothly dependent on parameters.

10.3 Smooth dependence

Lemma 10.6 Let A(t,z), B(t,x) be continuous matriz-valued functions and take
M > sup,, ||Bl|. The solutions of the linear differential equations

% = A(t,z)é(t, x), §(to, v) = a(x)
dn(;t’x) = B(t,z)n(t, z), n(to, z) = b(x)
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satisfy
M|t—t0| _ 1

M

+ fla— bl

e
sup [[£(t, z) — n(t, z)|| < Cl|A - B
where C' is a constant depending only on A and a.

Proof: By the existence theorem we know how to find solutions as limits of &,,n,
where

t
& = a+ / A 1ds

to

t
Me = b+/ Bny_1ds

to
Let gu(t) = sup, |e(t, 2) — e(t, )] and C = supg, ]l Then
n(0) < lla = bl + CllA = Bt =t + M [ 50163
0
Now define f,, by fo(t) = |ja — || and then inductively by
ol®) = la =+ ClA = Blle =t 401 [ o)
0

Comparing these two we see that f, > g,. This is a contraction mapping, so that
fn — f with
t
£(6) = lla = bl + CllA = Blllt = to + 21 | f)ds
to
and solving the corresponding differential equation we get
M|t—t0| _ 1

— Ml plloMlt—tol €
F(8) = lla = bl ! 4 L - B

As gn(t) < fn(t)’
SUp [|8n (£, ) = na(t, 2)| < fult)

and the theorem follows by letting n — oo. a
Theorem 10.7 If f is C* and

d

%a<t7 l’) = f<t7 Oé(t, x))? CK(O, iL‘) =T

then « is also C*.

91



Proof: The hardest bit is & = 1. Assume f is C' so that 0f/dt and 9 f/Ox; exist
and are continuous. We must show that o is C! in all variables. If that were true,
then the matrix valued function A where (\; = da/0x;) would be the solution of the

differential equation

d\
B = Dast0)n (26)
so we shall solve this equation by the existence theorem and prove that the solution

is the derivative of . Let F(s) = f(t,a + s(b—a)). Then

Ccll_i =D,f(t,a+ s(b—a))(b—a)
f(t,b) — f(t,a) = /0 D.f(t,a+ s(b—a))(b—a)ds
But then
%(Oé(t, r+y)—altz) = f(talt,z+y)— f(t, ot 2))

_ /0 Duf(t, alt, ) + s(a(t,z + 1) — at,2)(alt,  + y) — alt, z))ds

Let A(t,z) = D, f(t,a(t,z)) and £(t, ) = A(t,x)y and

1

By(t7$> = / Dxf(t,a(t,x)+s(a(t,x+y)—a(t,x)))ds, Uy(t7x> = oz(t,x—l—y)—oz(t,x)
0

The mean value theorem for a function g gives

lg(x + h) — g(z) — Dg(x)h|| < K|[A]| sup | 1Dg(x +y) — Dy(x)]|

lyll<[ln]

Use this estimate for g(x) = f(t,a(t,z)), apply the previous lemma and use the
continuity of the derivative of f and we get

up IAGE 2)y = (alt,z +y) — a(@))] = olllyll)
and so D,a = A, which is continuous in (¢, x). Since also da/dt = f(t,a) this means
that a is C'! in all variables.

To continue, suppose inductively that the theorem is true for £k — 1, and f is C*.
Then A(t,z) = D, f(t,a(t,x)) is C*~! but since

dA

— = A\

dt
we have X\ is C*~1. Now D,a = ) so the z;-derivatives of o are C*~!. But also
da/dt = f(t,a) is C*~! too, so a is C*. O
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10.4 Partitions of unity on general manifolds

Definition 36 A partition of unity on M is a collection {@;}icr of smooth functions
such that

o ¢, >0

o {suppy; :i € I} is locally finite

> ipi=1

Here locally finite means that for each « € M there is a neighbourhood U which
intersects only finitely many supports supp ;.

Theorem 10.8 Given any open covering {V,} of M there exists a partition of unity
{wi} on M such that supp @; C V) for some afi).

Proof: (by exhaustion —!)

1. M is locally compact since each x € M has a neighbourhood homeomorphic to,
say, the open unit ball in R". So take U homeomorphic to a smaller ball, then U
is compact. Since M is Hausdorff, U is closed (compact implies closed in Hausdorff
spaces).

2. M has a countable basis of open sets {Uj}jen, so z € U; C U and Uy cUis
compact so M has a countable basis of open sets with U; compact.

3. Put G1 = Ul. Then
Gl C U Uj

=1

so by compactness there is £ > 1 such that

k
élCUUj:GQ

j=1

Now take the closure of (G5 and do the same. We get compact sets C_¥j with

Gj - Gj—i—l M = U Uj
j=1
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4. By construction we have
G\Gj-1 C Gj\Gjs

and the set on the left is compact and the one on the right open. Now take the given
open covering {V,}. The sets V, N (Gj11\G;_2) cover G;\G;_;. This latter set is
compact so take a finite subcovering, and then proceed replacing 5 with j 4+ 1. This
process gives a countable locally finite refinement of {V,}, i.e. each V,N(G,41\Gj_2)
is an open subset of V,,. It is locally finite because

Gi11\Gj2aNGj1a\Gj1 =0

5. For each z € M let j be the largest natural number such that = € M\G;. Then
x € Vo N (Gj42\Gj_1). Take a coordinate system within this open set and a bump
function f which is identically 1 in a neighbourhood W, of x.

6. The W, cover G;11\G; and so as z ranges over the points of G;,2\G,_1 we get
an open covering and so by compactness can extract a finite subcovering. Do this
for each j and we get a countable collection of smooth functions ¢; such that ¢; > 0
and, since the set of supports is locally finite,

Y = Z Vi
is well-defined as a smooth function on M. Moreover
supp ¥; C Viy N (G \Gm—3) C Vy

so each support is contained in a V,. Finally define

bt
o

then this is the required partition of unity. O

10.5 Sard’s theorem (special case)

Theorem 10.9 Let M and N be differentiable manifolds of the same dimension n
and suppose F': M — N is a smooth map. Then the set of critical values of F' has
measure zero in N. In particular, every smooth surjective map F' has at least one
reqular value.
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Proof: Since a countable union of null sets (=sets of measure zero) is null, and M
and N have a countable basis of open sets, it suffices to consider the local case of
F : U — R". Moreover since U is a countable union of compact cubes we need only
prove that the image of the set of critical points in the compact cube K = {x € R":
|z;| < 1} is of measure zero.

Now suppose a € K is a critical point, so that the image of DF, is contained in a
proper subspace of R"™, and so is annihilated by a linear form f. Let H C R" be the
hyperplane f(z — F(a)) = 0. Then

d(F(x), H) < |[F(z) = (F(a) + DFy(z — a))| (27)

On the other hand since F'is C*°, from Taylor’s theorem we have a constant C' such
that
|F(x) = F(y) — DF(z — y)|| < Cllz — y|?

for all z,y € K, since K is compact. Substituting in (27) this yields
d(F (), H) < Clz — af?

If |z — a|| < n, then d(F(x), H) < Cn?. Let M = sup{||DF,|| : x € K}, then by the
mean value theorem

[1F(z) = F(a)|| < M|z —af

for z,a € K and so d(F(z), F(a)) < Mn. Thus F(z) lies in the intersection of a slab
of thickness 2Cn? around H and a ball of radius M7 centred on F(a). Putting the
ball in a cube of side 2Mn, the volume of this intersection is less than

20772(2M77>n71 — 2nCMn71,r]n+1

Now subdivide the cube into N™ cubes of side 1/N, and repeat the argument for each
cube. Since now ||z — y|| < /n/N, critical points in this cube lie in a volume less

than -
27’L Mn—l @
o ()

Since there are at most N™ such volumes, the total is less than
(2nMn_IOn(n+1)/2) N—l
which tends to zero as N — oo.

Thus the set of critical values is of measure zero. O
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