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Abstract. An incremental gradient method for minimizing a sum of continuously differentiable
functions is presented. The method requires a single gradient evaluation per iteration and uses a
constant step size. For the case that the gradient is bounded and Lipschitz continuous, we show that
the method visits regions in which the gradient is small infinitely often. Under certain unimodality
assumptions, global convergence is established. In the quadratic case, a global linear rate of con-
vergence is shown. The method is applied to distributed optimization problems arising in wireless
sensor networks, and numerical experiments compare the new method with the standard incremental
gradient method.
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1. Introduction. Consider the unconstrained optimization problem

minimize f(x) =

L
∑

l=1

fl(x), x ∈ R
p,(1.1)

where R
p is the p-dimensional Euclidean space, and fl : R

p → R are continuously
differentiable scalar functions on R

p. Our interest in this problem stems from op-
timization problems arising in wireless sensor networks (see e.g. [9, 29, 32, 33]), in
which fl(x) corresponds to the data collected by the lth sensor in the network. This
problem also arises in neural network training, in which fl(x) corresponds to the lth
training data set (see e.g. [7, 14, 15, 23, 24, 22]).

The iterative method proposed and analyzed in this paper for solving (1.1), which
we call the incremental aggregated gradient (IAG) method, generates a sequence
{xk}k≥1 as follows. Given arbitrary L initial points x1, x2, . . . , xL, an aggregated

gradient, denoted by dL, is defined as
∑L

l=1 ∇fl(x
l). Possible initializations are dis-

cussed in §3. For k ≥ L,

xk+1 = xk − µ
1

L
dk,(1.2)

dk+1 = dk −∇f(k+1)L
(xk+1−L) + ∇f(k+1)L

(xk+1),(1.3)

where µ is a positive constant step size chosen small enough to ensure convergence,
(k)L denotes k modulo L with representative class {1, 2, . . . , L}, and the factor 1/L
is explicitly included to make the approximate descent direction 1

Ldk comparable
in magnitude to the one used in the standard incremental gradient method to be
discussed below. Thus, at every iteration a new point xk+1 is generated according to
the direction of the aggregated gradient dk. Then, only one of the gradient summands
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∇f(k+1)L
(xk+1) is computed to replace the previously computed ∇f(k+1)L

(xk+1−L).
Note that for k ≥ L the IAG iteration (1.2)–(1.3) is equivalent to

xk+1 = xk − µ
1

L

L−1
∑

l=0

∇f(k−l)L
(xk−l).(1.4)

The IAG method is related to the large class of incremental gradient methods
that has been studied extensively in the literature [8, 14, 15, 16, 18, 21, 22, 24,
38] (see also [19, 28] and references therein for incremental subgradient methods for
nondifferentiable convex optimization). The standard incremental gradient method
updates xk according to

xk+1 = xk − µ(k)∇f(k)L
(xk),(1.5)

where µ(k) is a positive step size, possibly depending on k. Therefore, it is seen that
the principal difference between the two methods is that the standard incremental
gradient method uses only one of the components in order to generate an approximate
descent direction, whereby the IAG method uses the average of the L previously
computed gradients. This property leads to convergence of the IAG method for fixed
and sufficiently small positive step size µ. This is as contrasted to the standard
incremental gradient method, whose convergence requires that the step size sequence
µ(k) converge to zero.

Incremental gradient methods are based on the observation that when the iterates
are far from the eventual limit, the evaluation of a single gradient component is
sufficient for generating an approximate descent direction. Hence, these methods lead
to a significant reduction in the amount of required computations per iteration (see
e.g. [6] section 1.5.2 and the discussion in [5]). The drawback of these methods, when
using a constant step size, is that the iterates converge to a limit cycle and oscillate
around a stationary point [21], unless restrictions of the type ∇fl(x) = 0, l = 1, . . . , L
whenever ∇f(x) = 0 are imposed [38]. Convergence for a diminishing step size has
been established by a number of authors under different conditions [8, 14, 15, 18,
21, 22, 24, 38]. However, a diminishing step size usually leads to slow convergence
near the eventual limit and requires exhaustive experimentation to determine how
rapidly the step size must decrease in order to prevent scenarios in which the step size
becomes too small when the iterates are far from the eventual limit (e.g. determining
the constants a and b in step sizes of the form µ(k) = a/(k + b)).

A hybrid between the steepest descent method and the incremental gradient
method was studied in [5]. The hybrid method starts as an incremental gradient
method and gradually becomes the steepest descent. This method requires a tuning
parameter, which controls the transition between the two methods, to gradually in-
crease with k to ensure convergence. When the tuning parameter increases sufficiently
fast with the number of iterations, it is shown that the rate of convergence is linear.
However, the question of determining the rate of transition between the two methods
still remains. For any fixed value of the tuning parameter, the hybrid method con-
verges to a limit cycle, unless a diminishing step size is used, similar to the standard
incremental gradient method.

The choice of the aggregated gradient dk (1.3) for generating an approximate
descent direction was mentioned in [15] in the context of adaptive step size methods,
which require repeated evaluations of either the complete objective function f(x) or
its gradient. This requirement renders the methods proposed in [15] inapplicable to
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problems in sensor networks of interest to us or any other applications which require
decentralized implementation, as will be explained in §3. In addition, as noted in [40],
if ∇fl(x), l = 1, . . . , L, are not necessarily zero whenever ∇f(x) = 0, the step size
tends to zero, resulting in slow convergence.

The IAG method is closely related to Tseng’s incremental gradient with momen-
tum term [40], which is an incremental generalization of Polyak’s heavy-ball method
[30, p. 65] (also called the steepest descent with momentum term [7, p. 104]). Rewrit-
ing Tseng’s method’s update rule as

xk+1 = xk − µ(k)

k
∑

l=0

ζl∇f(k−l)L
(xk−l),

we see from (1.4) that the IAG method is a variation of this method with a truncated
sum, ζ = 1, and a constant step size. Similar to [15], the step size adaptation
rule that leads to convergence in [40] requires repeated evaluations of the complete
objective function f(x) and its gradient. Hence, this method cannot be implemented
in a distributed manner either. Furthermore, a linear convergence rate is established
only under a certain growth property on the functions’ gradients, which requires
∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) = 0.

In contrast to the available methods, the IAG method has all four of the following
properties: (a) it evaluates a single gradient per iteration, (b) it uses a constant step
size, (c) it is convergent (Proposition 2.7), and (d) it has global linear convergence
rate for quadratic objective f(x) (Proposition 2.8).

Finally, we note that the IAG method is reminiscent of other methods in various
optimization problems, such as the incremental version of the Gauss-Newton method
or the extended Kalman filter [2, 4, 13, 26], the distributed EM algorithm for maxi-
mum likelihood estimation [27, 29], the ordered subset and incremental optimization
transfer for image reconstruction [1, 3, 10], and the block iterative method for the
convex feasibility problem [11].

2. Convergence Analysis. In this section we present convergence proofs for
two different function classes: (I) restricted Lipschitz and (II) quadratic. Under a
Lipschitz condition and a bounded gradient assumption on fl(x), l = 1, . . . , L (As-
sumptions 1 and 2), we obtain an upper bound on the limit inferior of ||∇f(xk)||,
which depends linearly on the step size µ. By imposing additional restrictions on the
function f(x) (Assumptions 3 and 4), we prove pointwise convergence of the method.
There are many functions that satisfy Assumptions 1–4. However, one important
case does not satisfy these assumptions. This is the case when f(x) and fl(x) are
quadratic functions on R

p. For this important case we provide a completely different
convergence proof and show in addition that the convergence rate is globally linear.

For later reference, it will be useful to write (1.4) in a form known as the “gradient
method with errors” [8]:

xk+1 = xk − µ
1

L

[

L−1
∑

l=0

∇f(k−l)L
(xk) +

L−1
∑

l=0

∇f(k−l)L
(xk−l) −

L−1
∑

l=0

∇f(k−l)L
(xk)

]

= xk − µ
1

L

[

∇f(xk) + hk
]

,
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where

hk =

L−1
∑

l=1

[

∇f(k−l)L
(xk−l) −∇f(k−l)L

(xk)
]

is the error term in the calculation of the gradient at xk. Also note that for all k ≥ 2L
and 1 ≤ l ≤ L,

xk−l − xk = µ
1

L

(

dk−1 + dk−2 + . . . + dk−l
)

.

2.1. Case I. Assumption 1. ∇fl(x), l = 1, . . . , L, satisfy a Lipschitz condition
in R

p, i.e. there is a positive number M1 such that for all x, x ∈ R
p, ||∇fl(x) −

∇fl(x)|| ≤ M1||x − x||, l = 1, . . . , L.
Assumption 1 implies that ∇f(x) also satisfies a Lipschitz condition, that is, for

all x, x ∈ R
p, ||∇f(x) −∇f(x)|| ≤ M2||x − x||, where M2 = LM1.

Assumption 2. There exists a positive number M3 such that for all x ∈ R
p,

||∇fl(x)|| ≤ M3, l = 1, . . . , L.
Assumption 2 implies that for all x ∈ R

p, ||∇f(x)|| ≤ M4, where M4 = LM3.
Lemma 2.1. Let {sk}k≥1 be a sequence of non-negative real numbers satisfying

for some fixed integer L > 1 and all k ≥ L

sk ≤ cQ(sk−1, sk−2, . . . , sk−L+1) + M,

where 0 < c < 1, M is nonnegative, and Q(sk−1, sk−2, . . . , sk−L+1) is a linear form in
the variables sk−1, sk−2,. . .,sk−L+1, whose coefficients are non-negative and the sum
of the coefficients equals one. Then, lim supk→∞ sk ≤ M

1−c .
Proof. Define the sequence {wk}k≥1 by wk = sk for 1 ≤ k ≤ L − 1 and

wk = cQ(wk−1, wk−2, . . . , wk−L+1) + M,

for k ≥ L. Since sk ≤ wk for all k, if limk→∞ wk = M
1−c then

lim sup
k→∞

sk ≤ lim sup
k→∞

wk = lim
k→∞

wk =
M

1 − c
.

To show that limk→∞ wk = M
1−c , define the sequence {vk}k≥1 by vk = sk − M

1−c for
1 ≤ k ≤ L − 1 and

vk = cQ(vk−1, vk−2, . . . , vk−L+1),

for k ≥ L. By this construction,

wL = cQ(
M

1 − c
+ vL−1,

M

1 − c
+ vL−2, . . . ,

M

1 − c
+ v1) + M

= c
M

1 − c
+ cQ(vL−1, vL−2, . . . , v1) + M =

M

1 − c
+ vL,

and, by induction, wk = M
1−c + vk for all k > L. Therefore, if limk→∞ vk = 0 then

limk→∞ wk = M
1−c . To show that limk→∞ vk = 0, set A = max{|v1|, |v2|, . . . , |vL−1|}.

Hence,

|vL| = c|Q(vL−1, vL−2, . . . , v1)| ≤ cQ(|vL−1|, |vL−2|, . . . , |v1|) ≤ cA.
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Similarly, |vL+1| ≤ cA, and in general |vk| ≤ cA for all k ≥ L. Consider now v2L.
Since max{|v2L−1|, |v2L−2|, . . . , |vL+1|} ≤ cA, we have

|v2L| = c|Q(v2L−1, v2L−2, . . . , vL+1)| ≤ cQ(|v2L−1|, |v2L−2|, . . . , |vL+1|) ≤ c2A,

and in general |vk| ≤ c2A for all k ≥ 2L. Similarly, we obtain |vk| ≤ cnL for all
k ≥ nL. Since 0 < c < 1, we have limn→∞ cn = 0, and therefore limk→∞ vk = 0.

Remark 1. Lemma 2.1 can also be proven using concepts from dynamical sys-
tems. The sequence wk is the output of an autoregressive linear system

wk = c

L−1
∑

l=1

αkwk−l + Mu(k − L),

where u(k) is the unit step function which equals one when k ≥ 0 and zero otherwise,
with initial condition wk = sk for 1 ≤ k ≤ L − 1. Since the coefficients of the linear
form are all positive and sum to one, and 0 < c < 1, it is possible to show that
the system is stable (bounded input bounded output) and the steady state response is
M

1−c [31], i.e., limk→∞ wk = M
1−c .

Lemma 2.2. Under Assumption 1, if ||∇f(xk)|| > ||hk||
1−2µM1

, and 0 < 1− 2µM1 <

1, then f(xk) > f(xk+1).

Proof. Assume that ||∇f(xk)|| > ||hk||
1−2µM1

. Then

||dk||2 = ||∇f(xk) + hk||2 ≤ 2||∇f(xk)||2 + 2||hk||2

< 2||∇f(xk)||2 + 2
||hk||2

1 − 2µM1
< 4||∇f(xk)||2.

By [6, Prop. A.24], if Assumption 1 holds, then

f(x + y) − f(x) ≤ y′∇f(x) +
1

2
M2||y||

2.

Hence

f(xk) − f(xk+1) = f(xk) − f(xk − µ
1

L
dk)

≥ µ
1

L
dk′∇f(xk) −

1

2
M2µ

2 1

L2
||dk||2

> µ
1

L
(∇f(xk) + hk)′∇f(xk) −

1

2
M2µ

2 1

L2
4||∇f(xk)||2

= µ
1

L
||∇f(xk)||2 + µ

1

L
hk′∇f(xk) − 2M2µ

2 1

L2
||∇f(xk)||2

≥ µ
1

L
||∇f(xk)||2 − µ

1

L
||hk|| · ||∇f(xk)|| − 2M2µ

2 1

L2
||∇f(xk)||2

=
µ

L
||∇f(xk)||(1 − 2µM1)

(

||∇f(xk)|| −
||hk||

1 − 2µM1

)

> 0.

Set δ0 = µM2M3.
Lemma 2.3. Under Assumptions 1 and 2, if µM2 < 1, there exists K such that

for all k > K, ||hk|| < δ0.
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Proof.

||hk|| ≤

L−1
∑

l=1

||∇f(k−l)L
(xk−l) −∇f(k−l)L

(xk)||

≤ M1

L−1
∑

l=1

||xk−l − xk||

= µM1
1

L

L−1
∑

l=1

||dk−1 + dk−2 + . . . + dk−l||

≤ µM1
1

L

L−1
∑

l=1

(

||dk−1|| + ||dk−2|| + . . . + ||dk−l||
)

= µM1
1

L

[

(L − 1)||dk−1|| + (L − 2)||dk−2|| + . . . + ||dk−L+1||
]

= µM1
1

L

L(L − 1)

2

[

(L − 1)||dk−1|| + (L − 2)||dk−2|| + . . . + ||dk−L+1||

L(L − 1)/2

]

= µM1
L − 1

2
Q(||dk−1||, ||dk−2||, . . . , ||dk−L+1||),

where Q(||dk−1||, ||dk−2||, . . . , ||dk−L+1||) is a linear form in the variables ||dk−1||,
||dk−2||, . . . ,||dk−L+1|| whose coefficients, L−1

L(L−1)/2 , L−2
L(L−1)/2 , . . ., 1

L(L−1)/2 , sum to

one. Next we use ||dk|| = ||∇f(xk) + hk|| ≤ ||∇f(xk)|| + ||hk|| to obtain

||hk|| ≤ µM1
L − 1

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||)

+µM1
L − 1

2
Q(||∇f(xk−1)||, ||∇f(xk−2)||, . . . , ||∇f(xk−L+1)||)

≤ µM1
L − 1

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||) + µM1

L − 1

2
M3

< µ
M2

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||) + µ

M2

2
M3,

where Assumption 2 was used in the second to last inequality. Hence, by Lemma 2.1,

since 0 < µM2

2 < 1/2, lim supk→∞ ||hk|| ≤
µ

M2

2
M3

1−µ
M2

2

. By using µM2

2 < 1/2, we obtain

lim supk→∞ ||hk|| < µM2M3 and the lemma follows.
Proposition 2.4. Under Assumptions 1 and 2, if f is bounded from below and

µmax{2M1,M2} < 1 then,

lim inf
k→∞

||∇f(xk)|| ≤
2δ0

1 − 2µM1
.

Proof. Assume the contrary; that is lim infk→∞ ||∇f(xk)|| > 2δ0

1−2µM1

. Then there

exists K1 such that ||∇f(xk)|| > 2δ0

1−2µM1

for all k > K1. By Lemma 2.3, there

exists K2 such that ||hk|| < δ0 for all k > K2. Therefore, at all iterations for which

k > max{K1,K2}, ||∇f(xk)|| > 2||hk||
1−2µM1

≥ ||hk||
1−2µM1

. By Lemma 2.2, the sequence

{f(xk)}∞k=n1
is decreasing. Since it is bounded from below, there exists limk→∞ f(xk).

In the proof of Lemma 2.2 we showed that

f(xk) − f(xk+1) ≥
µ

L
(1 − 2µM1)||∇f(xk)||

[

||∇f(xk)|| −
||hk||

1 − 2µM1

]

.
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Taking limit when k → ∞ of both parts of this inequality, we obtain that

lim
k→∞

||∇f(xk)||

[

||∇f(xk)|| −
||hk||

1 − 2µM1

]

= 0.

But this is impossible since ||∇f(xk)|| > 2δ0

1−2µM1

and

||∇f(xk)|| −
||hk||

1 − 2µM1
>

2δ0

1 − 2µM1
−

δ0

1 − 2µM1
=

δ0

1 − 2µM1
,

for all k ≥ max{K1,K2}.
Proposition 2.4 asserts that when µ is sufficiently small, the method is guaranteed

to visit regions in which ||∇f(x)|| is small (proportional to µ) infinitely often. This
type of result has been established for the incremental gradient method with a step
size converging to a positive limit [38, Th. 2.1], and for the incremental subgradient
method with a constant step size, in the case were fl(x), l = 1, . . . , L, are not differen-
tiable but convex [28, Prop. 2.1(b)]. Next, by imposing two additional assumptions,
we prove that the IAG method converges with a constant step size to the minimum
point of f .

Assumption 3. f(x) has a unique global minimum at x∗. The Hessian ∇2f(x)
is continuous and positive definite at x∗.

Assumption 4. For any sequence {tk}∞k=1 in R
p, if limk→∞ f(tk) = f(x∗) or

limk→∞ ||∇f(tk)|| = 0, then limk→∞ tk = x∗.
There is an equivalent form of Assumption 4: For each neighborhood U of x∗

there exists η > 0 such that if f(x) − f(x∗) < η or ||∇f(x)|| < η, then x ∈ U .
Remark 2. Assumptions 3 and 4 are stronger than the assumptions usually

made on f(x) in the literature (see [8] for a summary of the available convergence
proofs and the assumptions they require). However, our results hold for a constant
step size and do not require that ∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) = 0. In
addition, note that there are non-convex functions that satisfy Assumption 4. How-
ever, if f is strictly convex, then Assumption 4 is automatically satisfied. In fact, the
implication limk→∞ f(tk) = f(x∗) ⇒ limk→∞ tk = x∗ is the statement of Corollary
27.2.2 from [36]. The implication limk→∞ ||∇f(tk)|| = 0 ⇒ limk→∞ tk = x∗ can be
obtained as follows: Consider the function ∇f : R

p → R
p. The derivative (∇f)′ of

this function is the Hessian ∇2f . Since f is strictly convex, det(∇f)′ 6= 0. Therefore,
by the Inverse Function Theorem, there are open neighborhoods V of x∗ ∈ R

p and
W of 0 ∈ R

p such that ∇f : V → W has a continuous inverse γ : W → V . Let
{t}∞k=1 be a sequence such that limk→∞ ||∇f(tk)|| = 0. Then there exists k0 such that
∇f(tk) ∈ W for all k ≥ k0. By Theorem B on page 99 in [35], since f is strictly
convex, ∇f is one-to-one, i.e. if x 6= y, then ∇f(x) 6= ∇f(y). It follows that tk ∈ V
for all k ≥ k0. Now we have

lim
k→∞

tk = lim
k→∞

γ
(

∇f(tk)
)

= γ

(

lim
k→∞

∇f(tk)

)

= γ (0) = x∗.

Lemma 2.5. Under Assumption 3, there exists a neighborhood U of x∗ and
positive constants A1, A2, B1, B2 such that for all x ∈ U ,

A1||x − x∗||2 ≤ f(x) − f(x∗) ≤ B1||x − x∗||2,(2.1)
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A2||x − x∗||2 ≤ ||∇f(x)||2 ≤ B2||x − x∗||2.(2.2)

Proof. Consider a Taylor expansion of f(x) around x∗. Since ∇f(x∗) = 0, we
obtain

f(x) = f(x∗) +
1

2
(x − x∗)

′
∇2f(x) (x − x∗) ,

where x depends on x. By the well known extremal property of eigenvalues,

λmin(x)||x − x∗||2 ≤ (x − x∗)
′
∇2f(x) (x − x∗) ≤ λmax(x)||x − x∗||2,

where λmin(x) and λmax(x) are the smallest and largest eigenvalues of ∇2f(x), which
depend on x through x. Therefore,

1

2
λmin(x)||x − x∗||2 ≤ f(x) − f(x∗) ≤

1

2
λmax(x)||x − x∗||2.

Since ∇2f(x∗) > 0, λmin(x∗) > 0 and λmax(x∗) > 0. Since λmin(x) and λmax(x) are
continuous, there is a neighborhood U1 of x∗ such that λmin(x) ≥ 1/2λmin(x∗) and
λmax(x) ≤ 2λmax(x∗) for x ∈ U1. Denoting 1/4λmin(x∗) by A1 and λmax(x∗) by B1,
we obtain inequality (2.1) for all x ∈ U1.

Similarly, considering a Taylor expansion of ∇f(x),

∇f(x) = ∇f(x∗) + ∇2f(x) (x − x∗) = ∇2f(x) (x − x∗) ,

where each row of ∇2f(x) depends on a different x, and by the fact that
[

∇2f(x∗)
]2

is also positive definite, we obtain inequality (2.2) for all x in some neighborhood U2

of x∗. Clearly both inequalities (2.1) and (2.2) are satisfied for all x ∈ U = U1

⋂

U2.

Let U be a neighborhood of x∗ for which inequalities (2.1) and (2.2) hold. By
assumption 4 there exists η > 0 such that x ∈ U if f(x)− f(x∗) < η or ||∇f(x)|| < η.

Set M5 = max{3
√

B1B2

A1A2

, 2
1−2µM1

} and λ = µM2M5.

Lemma 2.6. Under Assumptions 1, 3, and 4, if there exist positive numbers n1

and δ such that ||hk|| < δ for every k ≥ n1, 3δ < η, 9B1

A2

δ2 < η, and 9µM1 < 1, then

(i) there exists a number k1 such that ||∇f(xk)|| < M5δ and ||dk|| < 2M5δ for
every k ≥ k1, and

(ii) there exists a number n2 such that ||hk|| < λδ for every k ≥ n2.
Proof. First we show that there exists k such that k ≥ n1 and ||∇f(xk)|| <

2δ
1−2µM1

. In fact, if ||∇f(xk)|| ≥ 2δ
1−2µM1

for all k ≥ n1, then ||∇f(xk)|| > 2||hk||
1−2µM1

≥
||hk||

1−2µM1

for all k ≥ n1. By Lemma 2.2, the sequence {f(xk)}∞k=n1
is decreasing. Since

it is bounded from below by f(x∗), there exists limk→∞ f(xk). By replacing δ0 with
δ and max{K1,K2} with n1 at the last argument of the proof of Proposition 2.4, we
obtain a contradiction.

Let k1 be the smallest natural number such that k1 ≥ n1 and ||∇f(xk1)|| ≤
2δ

1−2µM1

. Let k2 be the smallest natural number such that k2 > k1 and ||∇f(xk2)|| >
2δ

1−2µM1

. (If k2 does not exist, i.e. if ||∇f(xk)|| ≤ 2δ
1−2µM1

for all k ≥ k1, the proof of

Lemma 2.6 still holds.) Let k3 be the smallest natural number such that k3 > k2 and
||∇f(xk3)|| ≤ 2δ

1−2µM1

. Let k4 be the smallest natural number such that k4 > k3 and

||∇f(xk4)|| > 2δ
1−2µM1

. We define k5, k6, . . . in a similar manner.
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For every natural m,

||dk2m−1|| ≤ ||∇f(xk2m−1)|| + ||hk2m−1|| ≤
2δ

1 − 2µM1
+ δ ≤

3δ

1 − 2µM1
,

||xk2m − xk2m−1|| = µ
1

L
||dk2m−1|| ≤

3µ/L

1 − 2µM1
δ,

and

||∇f(xk2m)|| ≤ ||∇f(xk2m) −∇f(xk2m−1)|| + ||∇f(xk2m−1)||

≤ M2||x
k2m − xk2m−1|| +

2δ

1 − 2µM1

≤ M2
3µ/L

1 − 2µM1
δ +

2

1 − 2µM1
δ

=
2 + 3µM1

1 − 2µM1
δ < 3δ,

where we used µ < 1
9M1

to obtain the last inequality.

Since ||∇f(xk2m)|| < 3δ < η, xk2m ∈ U and we can use Lemma 2.5. We obtain

f(xk2m) − f(x∗) ≤ B1||x
k2m − x∗|| ≤

B1

A2
||∇f(xk2m)||2 <

B1

A2
9δ2.

Let k be such that k2m ≤ k < k2m+1. Then, by Lemma 2.2,

f(xk) − f(x∗) < f(xk2m) − f(x∗) < 9
B1

A2
δ2.

Since f(xk) − f(x∗) < 9B1

A2

δ2 < η, xk ∈ U , and we can use Lemma 2.5. We obtain

||∇f(xk)||2 ≤ B2||x
k − x∗||2 ≤

B2

A1

[

f(xk) − f(x∗)
]

< 9
B1B2

A1A2
δ2.

Thus, if k satisfies k2m ≤ k < k2m+1, we have ||∇f(xk)|| < 3
√

B1B2

A1A2

δ. If k satisfies

k2m−1 ≤ k < k2m, we have ||∇f(xk)|| < 2
1−2µM1

δ. Therefore for each k ≥ k1,

||∇f(xk)|| < M5δ and therefore:

||dk|| ≤ ||∇f(xk)|| + ||hk|| ≤ M5δ + δ < 2M5δ.

Thus, if k ≥ k1, we have

||∇f(xk)|| < M5δ
(2.3)

||dk|| < 2M5δ.

This proves the first part of the Lemma.

To prove the second part, we take n2 = k1+L−1. If k ≥ n2, then not only xk but
also L − 1 previous terms of the sequence {xk} satisfy inequalities (2.3). Therefore,
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by following the steps in the proof of Proposition 2.4, we have for k ≥ n2

||hk|| ≤ µM1
1

L

L−1
∑

l=1

(

||dk−1|| + ||dk−2|| + . . . + ||dk−l||
)

< µM1
1

L
2M5δ

L−1
∑

l=1

l
∑

m=1

1 = µM1
1

L
2M5δ

L(L − 1)

2

< µM2M5δ = λδ.

Thus ||hk|| < λδ. This proves the second part of Lemma 2.6.
Proposition 2.7. Under Assumptions 1, 2, 3, and 4,

if µ < min{ 1
9M1

, 1
M2M5

, η
3M1M3

, 1
3M2M3

√

A2η
B1

}, then limk→∞ xk = x∗.

Proof. We prove Proposition 2.7 by repeated use of Lemma 2.6. We start with
δ = δ0. By applying Lemma 2.3, there exists K such that for all k > K, ||hk|| < δ0.
After applying Lemma 2.6 r times we get a number nr such that ||hk|| < δ0λ

r,
||∇f(xk)|| < M5δ0λ

r, and ||dk|| < 2M5δ0λ
r, for k ≥ nr. The inequality µ < 1

M2M5

is equivalent to 0 < λ < 1. Hence, limk→∞ ||hk|| = 0, limk→∞ ||dk|| = 0, and
limk→∞ ||∇f(xk)|| = 0, and by Assumption 4, limk→∞ xk = x∗.

Note that the inequality µ < 1
9M1

was used in the proof of Lemma 2.6, and

the inequalities µ < η
3M2M3

and µ < 1
3M2M3

√

A2η
B1

are equivalent to 3δ0 < η and
9B1

A2

δ2
0 < η, respectively.

2.2. Case II: Quadratic Case. Suppose that the functions fl, l = 1, . . . , L,
have the following form

fl(x) =
1

2
x′Qlx − c′lx, l = 1, . . . , L,(2.4)

where Ql are given symmetric matrices, cl are given vectors, and
∑L

l=1 Ql is positive

definite. Under this assumption, the function f(x) =
∑L

l=1 fl(x) is strictly convex,
has its minimum point at

x∗ = (

L
∑

l=1

Ql)
−1

L
∑

l=1

cl,(2.5)

and x∗ is the only stationary point of f(x).
Proposition 2.8. For sufficiently small µ, limk→∞ xk = x∗ and the rate of

convergence of the IAG method (1.4) is linear.
Proof. Plugging (2.4) in (1.4), the IAG method becomes

xk+1 = xk − µ

[

L−1
∑

l=0

Q(k−l)L
xk−l − c(k−l)L

]

= xk − µ

L−1
∑

l=0

Q(k−l)L
xk−l + µc,

where c =
∑L

l=1 cl, and the factor 1
L was absorbed into µ to simplify the notation.

Subtracting x∗ (2.5) from both sides and adding and subtracting x∗ inside the paren-
theses, we obtain

xk+1 − x∗ = xk − x∗ − µ
L−1
∑

l=0

Q(k−l)L
(xk−l − x∗ + x∗) + µc.
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Denoting the error at the kth iteration by ek = xk − x∗ and the substitution of (2.5)
for x∗ lead to the following error form

ek+1 = ek − µ
L−1
∑

l=0

Q(k−l)L
ek−l.

This relation between a new error and the previous errors can be seen as a periodically
time varying linear system. To analyze its stability, which will lead to the convergence
result, it is useful to consider L iterations as one iteration [25]. This can be seen as
down-sampling the original system by a factor of L, which leads to a time invariant
system of a lower sampling rate. Without loss of generality, consider the case where
k = NL for some integer N , i.e. k+1 corresponds to the first iteration of a new cycle.
In this case we have

ek+1 = ek − µ
L−1
∑

l=0

Q(k−l)L
ek−l = ek − µ

[

QL QL−1 QL−2 . . . Q1

]

ek

=
[

Ip − µQL −µQL−1 −µQL−2 . . . −µQ1

]

ek,

where Ip is the p × p identity matrix and

ek =











ek

ek−1

...
ek−L+1











.

Similarly,

ek+2 = ek+1 − µ

L−1
∑

l=0

Q(k+1−l)Lek+1−l

= ek+1 − µ
[

Q1 QL QL−1 . . . Q2

]

ek+1

=
[

Ip − µQ1 −µQL −µQL−1 . . . −µQ2

]

ek+1,

and finally

ek+L = ek+L−1 − µ
L−1
∑

l=0

Q(k+L−1−l)Lek+L−1−l

= ek+L−1 − µ
[

QL−1 QL−2 QL−3 . . . QL

]

ek+L−1

=
[

Ip − µQL−1 −µQL−2 −µQL−3 . . . −µQL

]

ek+L−1.

This leads to the relation

ek+L = MLek+L−1,

where

ML =















Ip − µQL−1 −µQL−2 . . . −µQ1 −µQL

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...
0p 0p . . . Ip 0p















,
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where 0p denotes the p × p zero matrix. Taking another step we have

ek+L = MLML−1e
k+L−2,

where

ML−1 =















Ip − µQL−2 −µQL−3 . . . −µQL −µQL−1

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...
0p 0p . . . Ip 0p















,

and finally, by induction,

ek+L = MLML−1 . . . M1e
k,

where

M1 =















Ip − µQL −µQL−1 . . . −µQ2 −µQ1

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...
0p 0p . . . Ip 0p















.

Denoting M = MLML−1 . . . M1, we have ek+L = Mek, and in general ek+nL = Mnek.
Therefore, if for sufficiently small µ > 0 the eigenvalues of M are inside the unit circle,
then limn→∞ ek+nL = 0pL×1, where 0pL×1 is a pL × 1 zero vector, i.e. the method
converges to the minimum of the function f(x) and the convergence rate is linear.

To prove that the eigenvalues of M are inside the unit circle, set

A =















Ip 0p . . . 0p 0p

Ip 0p . . . 0p 0p

0p Ip . . . 0p 0p

...
...

. . .
...

...
0p 0p . . . Ip 0p















,

and

Bk =















Q(k−1)L
Q(k−2)L

. . . Q(k+1)L
Qk

0p 0p . . . 0p 0p

0p 0p . . . 0p 0p

...
...

. . .
...

...
0p 0p . . . 0p 0p















, k = 1, . . . , L,

so that Mk = A − µBk and M = (A − µBL)(A − µBL−1) . . . (A − µB1). Hence,

M = AL − µ
(

BLAL−1 + ABL−1A
L−2 + A2BL−2A

L−3 + . . .

+AL−2B2A + AL−1B1

)

+ µ2C(µ),

where C(µ) is a Lp × Lp matrix whose elements are polynomials in µ.
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Note that pre-multiplying a matrix by A will duplicate the first row of p × p
matrices and will shift the rest of the rows down, discarding the last p rows. Post-
multiplying by A will add the second column of p × p matrices to the first one and
will shift the rest of the columns to the left, inserting a block of p × p zero matrices
to the last column. It follows that

AL =















Ip 0p . . . 0p 0p

Ip 0p . . . 0p 0p

Ip 0p . . . 0p 0p

...
...

. . .
...

...
Ip 0p . . . 0p 0p















,

and

AL−kBkAk−1 =

[

W1(k) 0(L−k+1)p×(k−1)p

0(k−1)p×(L−k+1)p 0(k−1)p×(k−1)p

]

,

where W1(k) is a (L − k + 1)p × (L − k + 1)p matrix whose elements are

W1(k) =







∑k−1
l=0 Q(l)L

QL−1 . . . Qk

...
...

...
∑k−1

l=0 Q(l)L
QL−1 . . . Qk






.

Therefore, the characteristic polynomial F (µ, λ) of M is

F (µ, λ) = det (M − λILp) = det

(

AL − µ

L
∑

k=1

AL−kBkAk−1 − λILp + µ2C(µ)

)

.

The first p columns of
(

AL − µ
∑L

k=1 AL−kBkAk−1 − λILp + µ2C(µ)
)

are



















(1 − λ)Ip − µ [LQL + (L − 1)Q1 + . . . + QL−1] + µ2C11

Ip − µ [(L − 1)QL + (L − 2)Q1 + . . . + QL−2] + µ2C21

Ip − µ [(L − 2)QL + (L − 3)Q1 + . . . + QL−3] + µ2C31

...
Ip − µ (2QL + Q1) + µ2CL−1 1

Ip − µQL + µ2CL1



















,

the second p columns are



















−(L − 1)µQL−1 + µ2C12

−(L − 1)µQL−1 − λIp + µ2C22

−(L − 2)µQL−1 + µ2C32

...
−2µQL−1 + µ2CL−1 2

−µQL−1 + µ2CL2



















,
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the next (L − 3)p columns are


















−(L − 2)µQL−2 + µ2C13 . . . −2µQ2 + µ2C1 L−1

−(L − 2)µQL−2 + µ2C23 . . . −2µQ2 + µ2C2 L−1

−(L − 2)µQL−2 − λIp + µ2C33 . . . −2µQ2 + µ2C3 L−1

...
...

−2µQL−2 + µ2CL−1 3 . . . −2µQ2 − λIp + µ2CL−1 L−1

−µQL−2 + µ2CL3 . . . −µQ2 + µ2CL L−1



















,

and the last p columns are


















−µQ1 + µ2C1L

−µQ1 + µ2C2L

−µQ1 + µ2C3L

...
−µQ1 + µ2CL−1 L

−µQ1 − λIp + µ2CLL



















,

where Cij , i, j = 1, . . . L are p × p matrices whose entrees are polynomials in µ.
It is easy to see that if µ = 0, then F (0, λ) = (−1)LpλLp−p(λ − 1)p. Hence,

if µ = 0, we have an eigenvalue 0 of multiplicity Lp − p and an eigenvalue 1 of
multiplicity p. If µ is close enough to zero, the 0-eigenvalues will be close to the
origin and therefore inside the unit circle. We need to prove that for sufficiently small
positive µ, all the 1-eigenvalues will be inside the unit circle. Let λ = λ(µ) be a
smooth function expressing the dependence of one of the 1-eigenvalues on µ. We will
prove that dλ

dµ (0+) < 0. It will be enough for our purposes since it will show that the

trajectory λ = λ(µ) is entering the unit circle, and hence λ(µ) is inside the unit circle
for sufficiently small positive µ.

By the definition of λ(µ), λ(0+) = 1 and F (µ, λ(µ)) = 0 for all µ. If follows that

dpF (µ, λ(µ))

dµp
= 0.(2.6)

To calculate the left side of (2.6), we use the formula for the derivative of a determi-
nant [20]. Note that substituting µ = 0 and λ = 1 into each of the first p rows of the
matrix M − λILp leads to a row in which all of the entrees are zeros and therefore

the determinant has a zero value. Therefore the only non-zero terms in dpF (µ,λ(µ))
dµp

after substituting µ = 0 and λ = 1 (more precisely, taking µ → 0+) are the terms
with the first derivatives in the first p rows (there are p! such terms). Hence taking
the pth derivative is reduced to taking the first derivative of each of the first p rows.
Substituting λ = 1 and µ → 0+ we obtain

dpF (µ, λ(µ))

dµp
= p! det

[

W2 W3

W4 −I(L−1)p×(L−1)p

]

= 0,

where W2 = −λ′(0+)Ip −
∑L−1

k=0 (L − k)Q(k)L
,

W3 =
[

−(L − 1)QL−1 −(L − 2)QL−2 . . . −2Q2 −Q1

]

,

and W4 = [Ip Ip . . . Ip]
T
. Add all columns of p × p matrices to the first column of

p × p matrices to obtain

det

[

W5 W3

0(L−1)p×p −I(L−1)p×(L−1)p

]

= 0,



A CONVERGENT INCREMENTAL GRADIENT METHOD 15

where W5 = −λ′(0+)Ip − L
∑L

k=1 Qk. Calculating the last determinant gives

det

[

L

L
∑

k=1

Qk + λ′(0+)Ip

]

= 0.

The last equation shows that −λ′(0+) is an eigenvalue of the matrix L
∑L

k=1 Qk. Since

L
∑L

k=1 Qk is positive definite, −λ′(0+) > 0 and therefore λ′(0+) < 0. This proves
that for sufficiently small µ > 0 the eigenvalues of the matrix M are strictly inside
the unit circle and hence the sequence xk converges to x∗ and the convergence rate is
linear.

3. Initialization and Distributed Implementation. As mentioned in §1,
the IAG method is initiated with L points, x1, x2, . . . , xL. Possible initialization
strategies include setting x1 = x2 = . . . = xL or generating the initial points using a
single cycle of the standard incremental gradient method (1.5). Another possibility is
the following. Given x1, compute d1 = ∇f1(x

1). Then, for 1 ≤ k ≤ L − 1,

xk+1 = xk − µ
1

k
dk,

(3.1)
dk+1 = dk + ∇f(k+1)L

(xk+1).

Therefore, after L − 1 iterations we obtain x1, . . . , xL and dL =
∑L

l=1 ∇fl(x
l).

The key feature of the IAG method that makes it suitable for wireless sensor
networks applications is that it can be implemented in a distributed manner. Consider
a distributed system of L processors enumerated over 1, 2, . . . , L, each of which has
access to one of the functions fl(x). The initialization (3.1) begins with x1 at processor
1. Then, processor 1 sets d1 = ∇f1(x

1) and transmits x1 and d1 to processor 2.
Upon receiving xk−1 and dk−1 from processor k− 1, processor k calculates xk and dk

according to (3.1) and transmits them to processor k + 1. The initialization phase is
completed when processor L, upon receiving xL−1 and dL−1 from processor L − 1,
computes xL and dL according to (3.1) and transmits them to processor 1.

Once the initialization phase is completed, the algorithm progresses in a cyclic
manner. Upon receiving xk−1 and dk−1 from processor (k − 1)L, processor (k)L

computes xk and dk according to (1.2) and (1.3), respectively, and transmits them to
processor (k + 1)L. Note that ∇f(k)L

(xk−L) in (1.3) is available at processor (k)L,
since it was the last gradient computed at that processor. Therefore, the only gradient
computation at processor (k)L is ∇f(k)L

(xk). At no phase of the algorithm do the
processors share information regarding the complete function f(x) or its gradient
∇f(x).

4. Application to Wireless Sensor Networks. There are two motivations
to use the IAG method: (a) reduced computational burden due to the evaluation of a
single gradient per iteration compared to L gradients required for the steepest descent
method; and (b) the possibility of a distributed implementation of the method in which
each component has access to one of the functions fl(x). The second item has been
shown to be very useful in the context of wireless sensor networks [32, 33]. Wireless
sensor networks provide means for efficient large scale monitoring of large areas [39].
Often the ultimate goal is to estimate certain parameters based on measurements
that the sensors collect, giving rise to an optimization problem. If measurements
from distinct sensors are modelled as statistically independent, the estimation problem
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takes the form of (1.1), where fl(x) is indexed by the measurements available at sensor
l (see e.g. [9, 29, 32, 33] and references therein). When transmitting the complete set
of data to a central processor is impractical due to bandwidth and power constraints,
the IAG method can be implemented in a distributed manner as described in §3. In
the following sections we consider two such estimation problems.

4.1. Robust Estimation. One of the benefits of a wireless sensor network is the
ability to deploy a large number of low cost sensors to densely monitor a certain area.
Because low cost sensors have limited reliability, the system must be designed to be
robust to the possibility of individual sensor failures. In estimation tasks, this means
that some of the sensors will contribute unreliable measurements, namely outliers.
In [32] the authors suggest the use of robust statistics to alleviate the influence of
outliers in the data (see [17] or, specifically in the context of optimization, see [30, p.
347]). The robust statistics framework uses objective functions that give less weight
to outliers. A common objective function used to this end is the function “Fair” [34,
p. 110], given by

g(x) = c2

[

|x|

c
− log

(

1 +
|x|

c

)]

.(4.1)

Following [32] we simulate a sensor network for measuring pollution levels and
assume that a certain percentage of the sensors are damaged and provide unreliable
measurements. Each sensor collects a single noisy measurement of the pollution level
and the estimate of the average pollution level is found by minimizing the objective
function defined by

f(x) =

L
∑

l=1

fl(x),(4.2)

where x ∈ R, and

fl(x) =
1

L
g(x − yl),

where yl is the measurement collected by sensor l. There were L = 50 sensors in
the simulation. To reflect the possibility of faulty sensors, half of the samples were
generated according to a Gaussian distribution with mean m1 = 10 and unit variance
(σ2

1 = 1) and the other half were generated according to a Gaussian distribution with
mean m2 = 10 and ten times higher variance (σ2

2 = 10). The coefficient c in (4.1) was
chosen to be 10.

The first derivative of g is x
1+|x|/c whose magnitude is bounded by c. The second

derivative of g is 1
(1+|x|/c)2 which is bounded by 1. Hence both Assumptions 1 and 2

hold. In addition, since 1
(1+|x|/c)2 is strictly positive, g is strictly convex, and therefore

Assumptions 3 and 4 hold as well.
Both the standard incremental gradient method (1.5) with a constant step size

µ(k) = µ (abbreviated as “IG” in the figures) and the IAG method with the initial-
ization (3.1) were implemented with several choices of step size µ. The initial point
x1 was set to 0. In Fig. 4.1 the trajectories of the two methods are presented. The
solid straight line corresponds to the minimum point x∗. It is seen that when the step
size is sufficiently small, IAG increases more rapidly towards x∗ than the standard
incremental gradient in the early iterations. Furthermore, as predicted by the theory,
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Fig. 4.1. Trajectories taken by the IG and IAG methods for the robust “Fair” estimation problem.

IAG converges to the true limit, whereas incremental gradient method converges to
a limit cycle. For a larger step size the IAG method overshots due to its heavy ball
characteristic (1.4). When the step size is too large, the IAG method no longer con-
verges but the incremental gradient method still converges to a limit cycle. We have
observed this behavior for other values of the parameters m1, m2, σ2

1 , σ2
2 , c as well.

4.2. Source Localization. This section presents a simulation of a sensor net-
work for localizing a source that emits acoustic waves. L sensors are distributed on
the perimeter of a field at known spatial locations, denoted rl, l = 1, . . . , L, where
rl ∈ R

2. Each sensor collects a noisy measurement of the acoustic signal transmitted
by the source, denoted yl, at an unknown location x. Based on a far-field assumption
and an isotropic acoustic wave propagation model [12, 32, 37], the problem of estima-
tion of source location can be formulated as a non-linear least squares problem. The
objective function is again of the form (4.2), but now

fl(x) =
(

yl − g(||rl − x||2)
)2

,(4.3)
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Fig. 4.2. Distance of IG and IAG iterates to the optimal solution x
∗ for source localization

problem.

x ∈ R
2, and

g(z) =

{

A/z : z ≥ A/ǫ
2ǫ − ǫ2z/A : z < A/ǫ

.(4.4)

In (4.3) g(·) models the received signal strength as a function of the squared distance.
In (4.4) A is a known constant characterizing the source’s signal strength. For z ≥ A/ǫ
(far-field source), the source’s signal strength has isotropic attenuation as an inverse
function of the squared distance, while for z < A/ǫ (near-field source), the attenuation
is linear in the squared distance. It is easy to see that Assumptions 1 and 2 are satisfied
and therefore, Proposition 2.4 holds. Clearly, since f(x) is multi-modal in this case,
Assumptions 3 and 4 cannot hold. However, it was observed in our experiments that
when the source is sufficiently distant from the sensors, the objective function has
a single minimum inside the observed field (See Fig. 4.3 for a contour plot of the
objective function) and, when initiated not too far from the minimum point, the IAG
method has good convergence properties. This suggests the possible application of
the IAG method under weaker assumptions than those considered in this paper, and
motivates further investigation into its properties.

In the numerical experiment, L = 32 sensors are distributed equidistantly on the
perimeter of a 100 × 100 field. The source is located at the point [60, 60] and emits
a signal with strength A = 1000. The sensors’ noisy measurements were generated
according to a Gaussian distribution with a mean equal to the true signal power and
unit variance. Both the incremental gradient method with a constant step size and
the IAG method with the initialization (3.1) were initiated at the point [40, 40]. The
error term ||xk − x∗|| as a function of the iteration number is presented in Fig. 4.2
for two choices of step size. The actual path taken by the methods for step size
µ = 10 is presented in Fig. 4.3, where the asterisk denotes the true minimum point
of the objective function. It is seen that, as the theory predicts, the incremental
gradient method exhibits oscillations near the eventual limit, whereas the IAG method
converges to the minimum. In this scenario, the IAG method outperforms the IG
method at early iterations as well.
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Fig. 4.3. Path taken by the IG and IAG methods for source localization problem.
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