
Orthogonality and Algebraic Lambda-Calculus
(Extended Abstract)

Benoı̂t Valiron∗

Université Joseph Fourier, Grenoble, France

Abstract

Directly encoding lambda-terms on quantum strings while keeping a quantum in-
terpretation is a hard task. As shown by van Tonder (2004), requiring a unitary re-
duction forces the lambda-terms in superposition to be mostly equivalent. Following
instead (Arrighi and Dı́az-Caro, 2009), we show in this note how one can conceive a
lambda-calculus with algebraic features and that admits a general notion of orthogo-
nality among lambda-terms, by providing a compiler of the system into unitary maps.

1 Introduction

In the literature, there have been two canonical ways for building a lambda-calculus for
quantum computation. One can either consider the program outside of the quantum store:
this is known as “classical control”, and it has been studied in detail in various publications
(Selinger and Valiron, 2006; Valiron, 2008). One can also adopt the “quantum control”
approach (Altenkirch and Grattage, 2005; van Tonder, 2004; Arrighi and Dowek, 2008).
In this setting, the lambda-terms are written directly on the quantum array. In his famous
paper, van Tonder (2004) considers a lambda-calculus featuring constants for booleans and
unitary gates, where terms are encoded directly on quantum bits. He shows that to be able
to have a unitary beta-reduction, all terms in superpositions need to be equal up to the
booleans. This morally states that the resulting lambda-calculus is classical.

Other attempts have been proposed. First, if one does not look for a beta-reduction but
merely an interpreter, a functional approach is still possible, and a language together with
a compiler was proposed with QML (Grattage, 2007). One can also forget altogether the
requirement that the beta-reduction be realizable, leaving it for later. This is the approach
taken by Arrighi and Dowek (2008).

In this note, we conciliate these two approaches by showing how to write a (strictly
linear) lambda-calculus capturing a notion of orthogonality and (non-trivial) superposition
of terms. The superposition is validated by interpreting the language in a typed version of
lineal, and the orthogonality is validated by providing a compilation in quantum circuit, in
a QML style.

∗benoit.valiron@monoidal.net

170 Valiron

x : A B x : A
(x)

B ∗ : > (>I)
B c : I ⊕ I (I ⊕ I

(c)

∆, x : A B M : C

∆ B λxA.M : A (C
(λ) ∆ B M : A (B Γ B N : A

∆, Γ B MN : B
(ε)

∆ B M : A Γ B N : B
∆, Γ B M ⊗ N : A ⊗ B

(⊗I)
∆ B M : A ⊗ B Γ, x : A, y : B B N : C

∆, Γ B let xA⊗yB = M in N : C
(⊗E)

∆ B M : > Γ B N : C
∆, Γ B let ∗ = M in N : C

(>E)
∆ B M : A ∆ B N : B |α|2 + |β|2 = 1

∆ B 〈α · M, β · N〉 : A ⊕ B
(Σ)

∆ B P : A ⊕ B Γ, x : A B M : C Γ, y : B B N : D

∆, Γ B match P in (xA 7→ M | yB 7→ N) : C ⊕ D
(⊕)

Table 1: Typing rules for the orthogonal lambda-calculus

The resulting language, although quite simple, is powerful enough for encoding regular
quantum circuits consisting of a given set of gates. To the knowledge of the author, this
is the first mention of a truly “purely quantum” language with higher-order features and
non-trivial superposition of terms.

2 A lambda-calculus

Consider the following call-by-value, linear, simply-typed lambda-calculus. The constant c
stands for a unitary gate, say the Hadamard. We call this language the orthogonal lambda-
calculus.

Type A, B ::= > | A (B | A ⊕ B | A ⊗ B,

Value U, V ::= xA | ∗ | c | λxA.M | UV | U ⊗ V | 〈α · U, β · V 〉,
Term M, N ::= U | MN | M ⊗ N | 〈α · M, β · N〉 | let xA⊗yB = M in N |

let ∗ = M in N | match P in (xA 7→ M | yB 7→ N).

Typing rules are given in Table 2. Note that the match-term can be simulated by a product
in the type system; this product would be different from the type operator ⊕. The reduction
steps are

(λx.M)U → M [U/x],

let x⊗y = U ⊗ V in M → M [U/x, V/y],

let ∗ = ∗ in M → M,

match 〈α · M ′, β · N ′〉 in (x 7→ M | y 7→ N) → 〈α · (λx.M)M ′, β · (λy.N)N ′〉,

c 〈α · ∗, β · ∗〉 → 〈 1√
2
(α + β) · ∗, 1√

2
(α − β) · ∗〉,

plus the usual call-by-value ξ-reductions.

Orthogonality and algebraic lambda-calculus 171

Theorem 2.1. The language features the usual safety properties: if a closed term M is
well-typed of type A, then either it reduces to some other term, or it is a value. Next, any
term N to which M reduces to is also of type A. Finally, the language features confluence
and strong normalization.

3 Embedding in an algebraic System F

Consider lineal with a system-F-like type system, in the style of (Arrighi and Dı́az-Caro,
2009).

Type A, B ::= X | A → B | ∀X · A,

Term M, N ::= xA | λxA.M | MN | α · M | M + N | M [A] | ΠX.M.

One can encode types of Section 1 as

A → B 7→ A → B,

A ⊕ B 7→ ∀X · (A → X) → (B → X) → X,

A ⊗ B 7→ ∀X · (A → B → X) → X,

> 7→ ∀X · X → X.

A base term of type A ⊕ B is constructed using two terms, one of type A and one of
type B. As it should be, there are only two possible base elements of type A ⊕ B.

A term M from the orthogonal lambda-calculus is encoded to a term M from lineal
inductively as follows.

∗ 7→ ΠX.λxX .x,

M ⊗ N 7→ ΠX.λf.fMN,

let x⊗y = M in N : C 7→ M [C](λxy.N),

let ∗ = M in N : C 7→ M [C]N,

〈α · M, β · N〉 7→ ΠX.λfg.(α · fM + β · gN)

match P in (x 7→ M | y 7→ N) 7→ ΠX.λfg.P [X](λx.fM)(λy.gN).

The constant term c is represented by

λx.ΠX.λfg.x[X](λy.(
1√
2
· fy +

1√
2
· gy))(λy.(

1√
2
· fy − 1√

2
· gy)).

This encoding is sound with respect to the calculus of Section 1.

Theorem 3.1. Given M a term in the orthogonal lambda-calculus, if M → N then M →∗

N in the algebraic system F.

Theorem 3.2. If M is well-typed in the orthogonal calculus, so is M in the algebraic
system F.

172 Valiron

4 Embedding into quantum circuits

Theorems 3.1 and 3.2 capture the fact that the orthogonal lambda-calculus is in a sense
an algebraic lambda-calculus. We now want to show that this language is also capturing
a “correct” notion of orthogonality. For this purpose we show that the language can be
compiled into a quantum circuit.

4.1 An interpreter

The main difficulty resides in encoding the lambda-abstraction. For this purpose, we use
a trick already sketched in (Preskill, 1999) and show that one can build an interpreter of
a quantum circuit as a quantum circuit. This interpreter takes two sets of wires, one for
a code describing a quantum circuit using a given set of gates, and the other one for the
desired input of the encoded circuit.

Consider an alphabet A. This alphabet contains: symbols for each gate in U; the natural
numbers; tuples of symbols of the form xn, where n are positive integers; the booleans tt
and ff . One consider a Hilbert space H freely generated by the space A. The assembly
language consists of instructions of the form U (x1, . . . , xn), where U is a gate in U. The
integer n is the number of entries to the gate U and x1, . . . xn are indexes referencing
quantum data on a quantum array.

A program of k instructions is in a base vector of H
⊗(2·k) of the form |I1 . . . Ik〉.

An emulator step εl is a unitary gate of the space H
⊗(2+l). The 2 first elements corre-

spond to an instruction and the last l corresponds to the processed data. For a given base
vector input, the emulator step behaves as follows.

• If the input is of the form

|φ〉 = |U (x1, . . . , xk)〉 ⊗ |s1 . . . sl〉,

where U is a gate accepting k input and where for all j, xj 6 l, then εl|φ〉 is

|U k (x1, . . . , xk)〉 ⊗ V |s1 . . . sl〉

where V is the action U on the selected entries.

• Otherwise, it acts as the identity on the input.

An emulator εk,l taking k instructions and performing the whole program is simply the
concatenation of k emulator steps.

Provided that the set of gates U is closed under controlled operation (that is, if U is in
U, so is C−U), it is possible to encode the gate εl in the assembly language: this is the key
for what is following. Note however that one will need emulator steps with larger memory
to be able to run it. For simplification we overlook this subtlety: since the language is
strictly linear, it is possible to know in advance the size of the various emulators that will
be needed.

Orthogonality and algebraic lambda-calculus 173

x : A1 B x : A1
(x)

B ∗ : >1
(>I)

B c : I1 ⊕2 I1 (3 I1 ⊕2 I1
(c)

∆1, x : A2 B M : C3

∆1 B λx.M : A2 (4 C3
(λ)

∆1 B M : A4 (5 B3 Γ2 B N : A4

∆1, Γ2 B MN : B3
(ε)

∆ B M : A2 ∆ B N : A2 |α|2 + |β|2 = 1

∆1 B 〈α · M, β · N〉 : A2 ⊕3 A2
(Σ)

∆1 B P : A3 ⊕2 A3 Γ2, x : A3 B M : C4 Γ2, y : A3 B N : C4

∆1, Γ2 B match P in (x 7→ M | y 7→ N) : C4 ⊕2 C4
(⊕)

Table 2: Indexed typing rules

4.2 Compilation of a typing derivation

In this section we show how to encode the orthogonal lambda-calculus on a quantum cir-
cuit. To simplify, we only consider sum types of the form A ⊕ A.

We consider quantum circuit with sorted wires: each wire will either be of sort boolean,
of sort program, or of sort unit (i.e. the wire corresponding to the zero-dimensional vector
space). To each type we assign a list of wires, possibly identified, attached to the structure
of the type, as follows: >1 (1 is of sort unit), A1 ⊗ B2, A1 ⊕2 A3 (2 is of sort boolean),
A1 (2 B3 (2 is of sort program). The bold numbers corresponds to the list of numbers
inside the corresponding type. The identification of wires is done as in Table 4.2. We
only show a subset of the rules. When bold numbers are identified, this means that all
numbers inside the type are identified one-to-one. We call indexed typing derivation a
typing derivation with such numbers.

Lemma 4.1. If ∆1 B M : A2 has typing derivation π and if M → N then ∆1 B N : A2

and it comes with a typing derivation π′ with a set of indices included in the one of π.

The quantum circuit corresponding to a given indexed typing derivation has wires of
two kinds: the ones assigned with values (called closed wires), and the others (called open
wires). The circuit consists of three successive groups of gates: The first one, called initial-
izer, initializes the closed wires of sort program (setting them in some state); the last one,
called closing, that does the opposite process, and the middle one, called computational
circuit, which is the actual computation. The whole circuit is built inductively as follows.

(x). A bunch of open wires, with no gates.

(>I). A closed wire 1 of type unit with no gate.

(c). Two open wires 1 and 2 and one closed wire 3. 2 is of sort boolean, and 3 is of sort
program, initialized with value |H(2)〉, the program applying the Hadamard gates on
the wire 2.

(λ). Takes the circuit coming from ∆1, x : A2 B M : C3. Return the wires 1, 2 and 3
with no gates on it, and initialize a closed wire 4 to the program corresponding to M .

(ε). Place the circuit corresponding to N , then connect an emulator evaluating the wire 5.

174 Valiron

(Σ). Create a closed wire 3 with value α|0〉 + β|1〉. Consider the computational circuit
coming from N . It is written in terms of elementary quantum gates (Hadamard gates
and controlled Hadamard, controlled-controlled Hadamard,. . .). Transform this cir-
cuit by controlling over the wire 3 each elementary gate so that N is applied on the
subspace directed by |0〉. Do the same thing for M but for the subspace directed by
|1〉. Build the resulting computational circuit by plugging the circuits next to each
other. The last step consists in entangling the closed wires of sort program appearing
both in the typing derivation of N and in the typing derivation of M with the boolean
wire 3. The entangling process is done in the initializer and the unentangling process
in the closing circuit.

(⊕). First write the circuit for P . It generates a wire 2. Use the same trick as above to
control M and N over it.

Thanks to the strict linearity of the calculus, we can formalize the following result.

Theorem 4.2. In the context of Lemma 4.1, the quantum circuit corresponding to M is the
same as the one corresponding to N .

4.3 Encoding quantum circuits in the orthogonal lambda-calculus

The encoding of two quantum bits in the orthogonal lambda-calculus is as follows :

α0|0〉 ⊗ (α00|0〉 + α01|1〉) + α1|1〉 ⊗ (α10|0〉 + α11|1〉)
= 〈α0 · 〈α00 · ∗, α01 · ∗〉, α1 · 〈α10 · ∗, α11 · ∗〉〉

of type (>⊕>)⊕ (>⊕>) We write [[qbit⊗2]] for this type. The type [[qbit⊗n]] is generated
on the same principle.

Remark 4.3. One could have been tempted to write it as (>⊕>) ⊗ (> ⊕>). This does
not have the expected result: such a type encodes non-entangled quantum bits.

To be able to encode quantum circuits in the orthogonal lambda-calculus, we are miss-
ing something: in a two quantum bit system (>1 ⊕2 >1)⊕3 (>1 ⊕2 >1), one cannot apply
an Hadamard gate on the qubit labeled 3, said to be at the top of the stack. One can only
apply an Hadamard gate to the qubit 2, at the bottom of the stack.

To solve the problem, one term constructor sw is needed, to exchange the role of two
adjacent qubits, i.e. moving them along the stack of qubits. This term constructor is typed
as follows:

x : (>1 ⊕2 >1) ⊕3 (>1 ⊕2 >1) B sw(x) : (>1 ⊕3 >1) ⊕2 (>1 ⊕3 >1)

and comes with the reduction rule

sw〈α0 · 〈α00 · ∗, α01 · ∗〉, α1 · 〈α10 · ∗, α11 · ∗〉〉 →
〈β0 · 〈

α0α00

β0
· ∗, α1α10

β0
· ∗〉, β1 · 〈

α0α01

β1
· ∗, α1α11

β1
· ∗〉〉

where β0 and β1 are renormalization coefficients. The swap operation does not add any-
thing in the compilation. It is only allowing two exchange the role of two “qubit” wires.
We are now ready to state the theorem:

Orthogonality and algebraic lambda-calculus 175

Theorem 4.4. Consider the set of gates closed under controlled operation and generated
by the gate Hadamard alone. Consider a quantum circuit on n qubits built upon this set
of gates and denote by F the unitary map described by this circuit. There exists a typing
judgment x : [[qbit⊗n]] B M : [[qbit⊗n]] whose compiled circuit precisely denote the
map F .

Proof. To apply an Hadamard gate on some quantum bit, send the quantum bit at the bot-
tom of the stack and uses a sequence of match operator and the term operator c at the very
end. Controlled operations are done similarly, using the possibilities offered by the match

operator.

5 Conclusion

In this note we sketched a possible merge between the QML approach of compilation into
quantum circuits and a algebraic lambda-calculus.

This raises several questions. First, is it possible to extend the compilation to a calculus
allowing duplication ? And recursion ? Then, about the encoding into lineal, the superpo-
sition of terms is still quite restrictive. It would be interesting to know if it is possible to
loosen it.

References
Thorsten Altenkirch and Jonathan Grattage. A functional quantum programming language.

In Proceedings of the 20th Symposium on Logic in Computer Science, LICS’05, pages
249–258, 2005.

Pablo Arrighi and Alejandro Dı́az-Caro. A system F accounting for scalars. To ap-
pear in Proceedings of the 6th International Workshop on Quantum Physics and Logic
(QPL’09). Preprint: arXiv:0903.3741, July 2009.

Pablo Arrighi and Gilles Dowek. Linear-algebraic lambda-calculus: higher-order, encod-
ings, and confluence. In Proceedings of the 19th international conference on Rewriting
Techniques and Applications (RTA’08), volume 5117 of Lecture Notes in Computer Sci-
ence, pages 17–31, 2008.

Jonathan Grattage. QML: A functional quantum programming language. PhD thesis, Uni-
versity of Nottingham, 2007.

John Preskill. Plug-in quantum software. Nature, 402:357–358, 1999.

Peter Selinger and Benoı̂t Valiron. A lambda calculus for quantum computation with clas-
sical control. Mathematical Structures in Computer Science, 16:527–552, 2006.

Benoı̂t Valiron. Semantics for a Higher Order Functional Programming Language for
Quantum Computation. PhD thesis, University of Ottawa, 2008.

André van Tonder. A lambda calculus for quantum computation. SIAM Journal of Com-
puting, 33:1109–1135, 2004.

