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Abstract

Donoho and Johnstone (1992a) proposed a method for reconstruct-

ing an unknown function f on [0; 1] from noisy data di = f(ti) + �zi,

i = 0; : : : ; n � 1, ti = i=n, zi
iid
� N(0; 1). The reconstruction f̂�n is

de�ned in the wavelet domain by translating all the empirical wavelet

coe�cients of d towards 0 by an amount
p
2 log(n) � �=

p
n. We prove

two results about that estimator. [Smooth]: With high probability f̂�n
is at least as smooth as f , in any of a wide variety of smoothness mea-

sures. [Adapt]: The estimator comes nearly as close in mean square

to f as any measurable estimator can come, uniformly over balls in

each of two broad scales of smoothness classes. These two properties

are unprecedented in several ways. Our proof of these results develops

new facts about abstract statistical inference and its connection with

an optimal recovery model.
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1 Introduction

In the recent wavelets literature one often encounters the term De-Noising,

describing in an informal way various schemes which attempt to reject noise

by damping or thresholding in the wavelet domain. For example, in the spe-

cial \Wavelets" issue of IEEE Trans. Information Theory, articles by Mallat

and Hwang (1992), and by Simoncelli, Freeman, Adelson, and Heeger (1992)

use this term; at the Toulouse Conference on Wavelets and Applications,

June 1992, it was used in oral communications by Coifman, by Mallat, and

by Wickerhauser. The more prosaic term \noise reduction" has been used

by Lu et al. (1992).
We propose here a formal interpretation of the term \De-Noising" and

show how wavelet transforms may be used to optimally \De-Noise" in this
interpretation. Moreover, this \De-Noising" property signals near-complete
success in an area where many previous non-wavelets methods have met only
partial success.

Suppose we wish to recover an unknown function f on [0; 1] from noisy
data

di = f(ti) + �zi i = 0; : : : ; n� 1 (1.1)

where ti = i=n, zi
iid� N(0; 1) is a Gaussian white noise, and � is a noise level.

Our interpretation of the term \De-Noising"is that one's goal is to optimize
the mean-squared error

n�1Ekf̂ � fk2`2n = n�1
n�1X
i=0

E(f̂ (i=n)� f(i=n))2: (1.2)

subject to the side condition that

with high probability; f̂ is at least as smooth as f: (1.3)

Our rationale for the side condition (1.3) is this: many statistical tech-

niques simply optimize the mean-squared error. This demands a tradeo�

between bias and variance which keeps the two terms of about the same
order of magnitude. As a result, estimates which are optimal from a mean-

squared error point of view exhibit considerable, undesirable, noise-induced
structures { \ripples", \blips", and oscillations. Such noise-induced oscilla-

tions may give rise to interpretational di�culties. Geophysical studies of the
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Core-Mantle Boundary and Astronomical studies of the Cosmic Microwave

Background are two examples where one is tempted to interpret blips and

bumps in reconstructed functions as scienti�cally signi�cant structure (Stark,

1992). Reconstruction methods should therefore be carefully designed to

avoid spurious oscillations. Demanding that the reconstruction not oscillate

essentially more than the true underlying function leads directly to (1.3).

Is it possible to satisfy the two criteria (1.2)-(1.3)?

Donoho and Johnstone (1992a) have proposed a very simple thresholding

procedure for recovering functions from noisy data. In the present context it

has three steps:

(1) Apply the interval-adapted pyramidal �ltering algorithm of Cohen,
Daubechies, Jawerth and Vial (1992) ([CDJV]) to the measured data
(di=

p
n), obtaining empirical wavelet coe�cients (eI).

(2) Apply the soft thresholding nonlinearity �t(y) = sgn(y)(jyj � t)+ co-
ordinatewise to the empirical wavelet coe�cients with specially-chosen

threshold tn =
q
2 log(n) � 
1 � �=

p
n, 
1 a constant de�ned in section

6.2 below.

(3) Invert the pyramid �ltering, recovering (f̂�n)(ti), i = 0; : : : ; n� 1.

[DJ92a] gave examples showing that this approach provides better visual
quality than procedures based on mean-squared error alone; they called the
method VisuShrink in reference to the good visual quality of reconstruction
obtained by the simple \shrinkage" of wavelet coe�cients. In [DJ92b] they
proved that, in addition to the good visual quality, the estimator has an opti-

mality property with respect to mean squared error for estimating functions

of unknown smoothness at a point.
In this article, we will show that two phenomena hold in considerable

generality:

[Smooth] With high probability, f̂�n is at least as smooth as f , with smoothness

measured by any of a wide range of smoothness measures.

[Adapt] f̂�n achieves almost the minimax mean square error over every one of a
wide range of smoothness classes, including many classes where tradi-

tional linear estimators do not achieve the minimax rate.
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In short, we have a De-Noising method, in a more precise interpretation

of the term De-Noising than we gave above.

To state our results precisely, recall that the pyramidal �ltering of [CDJV]

corresponds to an orthogonal basis of L2[0; 1]. Such a basis has elements

which are in CR and have, at high resolutions, D vanishing moments. It acts

as an unconditional basis for a very wide range of smoothness spaces: all the

Besov classes B�
p;q[0; 1] and Triebel classes F �

p;q[0; 1] in a certain range 0 <

� < min(R;D) [25, 29, 18, 16, 17]. Each of these classes has a norm k � kB�
p;q

or k � kF�
p;q

which measures smoothness. Special cases include the traditional

H�older (-Zygmund) classes C� = B�
1;1 and Sobolev Classes W �

p = F �
p;2.

De�nition. S is the scale of all spaces B�
p;q and all spaces F �

p;q which embed
continuously in C[0; 1], so that � > 1=p, and for which the wavelet basis is
an unconditional basis, so that � < min(R;D).

We now give a precise result concerning [Smooth].

Theorem 1.1 (Smoothing) Let (f̂�n(ti))
n�1
i=0 be the vector of estimated func-

tion values produced by the algorithm (1)-(3). There exists a special smooth

interpolation of these values producing a function f̂�n(t) on [0; 1]. This func-
tion is, with probability tending to 1, at least as smooth as f , in the following

sense. There are universal constants (�n) with �n ! 1 as n = 2j1 !1, and

constants C1(F;  ) depending on the function space F[0; 1] 2 S and on the

wavelet basis, but not on n or f , so that

Prob
n
kf̂�nkF � C1 � kfkF 8F 2 S

o
� �n: (1.4)

In words, f̂�n is, with overwhelming probability, simultaneously as smooth as

f in every smoothness space F taken from the scale S.
Property (1.4) is a strong way of saying that the reconstruction is noise-

free. Indeed, as k0kF = 0, the theorem requires that if f is the zero function

f(t) � 0 8t 2 [0; 1] then, with probability at least �n, f̂
�
n is also the zero func-

tion . In contrast, other methods of reconstruction have the character that
if the true function is 0, the reconstruction is (however slightly) oscillating

and bumpy as a consequence of the noise in the observations. De-Noising,
with high probability, rejects pure noise completely.

This \noise-free" property is not usual even for wavelet estimators. Our

experience with wavelet estimators designed only for mean-squared error op-
timality is that even when reconstructing a very smooth function they exhibit
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annoying \blips"; see pictures in [DJ92d]. In fact no result like Theorem 1.1

holds for those estimators; and we view Theorem 1.1 as a mathematical state-

ment of the visual superiority of f̂�n. For scienti�c purposes like those referred

to in connection with the Core Mantle Boundary and the Cosmic Microwave

background, this freedom from artifacts may be important.

We now consider phenomenon [Adapt]. In general the error Ekf̂ � fk2`2n
depends on f . It is traditional to summarize this by considering its maximum

over various smoothness classes. Let F [0; 1] be a function space (for example

one of the Triebel or Besov spaces) and let FC denote the ball of functions

ff : kfkF � Cg. The worst behavior of our estimator is

sup
FC

n�1Ekf̂�n � fk2`2n ; (1.5)

and for no measurable estimator can this be better than the minimax mse:

inf
f̂

sup
FC

n�1Ekf̂ � fk2`2n (1.6)

all measurable procedures being allowed in the in�mum.

Theorem 1.2 (Near-Minimaxity) For each ball FC arising from an F 2 S,
there is a constant C2(FC ;  ) which does not depend on n, such that for all

n = 2j1 , j1 > j0,

sup
f2FC

Ekf̂�n � fk2`2n � C2 � log(n) � inf
f̂

sup
FC

Ekf̂ � fk2`2n : (1.7)

In words, f̂�n is simultaneously within a logarithmic factor of minimax over

every Besov, H�older, Sobolev, and Triebel class that is contained in C[0; 1]

and satis�es 1
p
< � < min(R;D).

No currently known approach to adaptive smoothing (besides wavelet

thresholding) is able to give anything nearly as successful, in terms of being
nearly minimax over such a wide range of smoothness classes. In the discus-
sion section below, we describe the considerable e�orts of many researchers

to obtain adaptive minimaxity, and describe the limitations of known non-

wavelet methods. In general, existing non-wavelet methods achieve success
over a limited range of the balls FC arising in the scale S (basically L2
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Sobolev balls only), by relatively complicated means. In contrast, f̂�n is very

simple to construct and to analyze, and is within logarithmic factors of op-

timal, for every ball FC arising in the scale S. At the same time, because

of [Smooth] f̂�n does not exhibit the annoying blips and ripples exhibited by

existing attempts at adaptive minimaxity.

This paper therefore gives strong theoretical support to the empirical

claims for wavelet De-Noising cited in the �rst paragraph. Moreover, the

theoretical advantages are really due to the wavelet basis. No similarly broad

adaptivity is possible by using thresholding or other nonlinearities in the

Fourier basis [9]. Hence we have a success story for wavelets.
The paper to follow proves the above results by an abstract approach in

sections 2-6 below. The abstract approach sets up a problem of estimating
a sequence in white Gaussian noise and relates this to a problem of optimal
recovery in deterministic noise.

In the optimal recovery model, soft thresholding has a unique role to play
vis-a-vis abstract versions of properties [Smooth] and [Adapt]. Theorems 3.2
and 3.3 show that soft thresholding has a special optimality enjoyed by no

other nonlinearity. These simple, exact results in the optimal recovery model
furnish approximate results in the statistical estimation model in section 4,
because statistical estimation is in some sense approximately the same as an
optimal recovery model, after a recalibration of noise levels (Compare also
Donoho(1989), Donoho (1991)). In establishing rigorous results, we make

decisive use of the notions of Oracle in Donoho and Johnstone (1992a) and
their oracle inequality.

We use properties of wavelet expansions described in Sections 5 and 6
to transfer the solution to the abstract sequence problem to the problem of
estimating functions on the interval.

In Section 7, we give a re�nement of Theorem 1.2 which shows that the
logarithmic factor in (1.5) can be improved to log(n)r whenever the minimax
risk is of order n�r, 0 < r < 1.

In Section 8, we show how the abstract approach easily yields results for

noisy observations obtained by schemes di�erent than (1.1). For example,

the approach adapts easily to higher dimensions and to sampling operators
which compute area averages rather than point samples.

In Section 9 we describe other work on adaptive smoothing, and possible
re�nements.
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2 An Abstract De-Noising Model

Our proof of Theorems 1.1-1.2 has two components, one dealing with statisti-

cal decision theory, the other dealing with wavelet bases and their properties.

The statistical theory focuses on the following Abstract De-Noising Model.

We start with an index set In of cardinality n, and we observe

yI = �I + � � zI ; I 2 In; (2.1)

where zI
iid� N(0; 1) is a Gaussian white noise and � is the noise level. We

wish to �nd an estimate with small mean-squared error

Ek�̂ � �k2`2n (2.2)

and satisfying, with high probability,

j�̂I j � j�I j; 8I 2 In: (2.3)

As we will explain later, results for model (2.1)-(2.3) will imply Theorems 1.1
and 1.2 by suitable identi�cations. Thus we will want ultimately to interpret

[1] (�I) as the empirical wavelet coe�cients of (f(ti))
n�1
i=0 ;

[2] (�̂I) as the empirical wavelet coe�cients of an estimate f̂n

[3] (2.2) as a norm equivalent to n�1
P
E(f̂ (ti)� f(ti))

2; and

[4] (2.3) as a condition guaranteeing that f̂ is smoother than f .

We will explain such identi�cations further in sections 5-6 below.

3 Soft Thresholding and Optimal Recovery

Before tackling (2.1)-(2.3), we consider a simpler abstract model, in which
noise is deterministic (Compare [31, 41]). Suppose we have an index set I
(not necessarily �nite), an object (�I) of interest, and observations

yI = �I + � � uI ; I 2 I: (3.1)
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Here � > 0 is a known noise level and (uI) is a nuisance term known only

to satisfy juIj � 1 8I 2 I. We suppose that the nuisance is chosen by a

clever opponent to cause the most damage, and evaluate performance by the

worst-case error:

M�(�̂; �) = sup
juI j�1

k�̂(y)� �k2`2n : (3.2)

At the same time that we wish (3.2) to be small, we aim to ensure the uniform

shrinkage condition:

j�̂Ij � j�Ij; I 2 I: (3.3)

Consider a speci�c reconstruction formula based on the soft threshold
nonlinearity �t(y) = sgn(y)(jyj � t)+. Setting the threshold level t = �, we
de�ne

�̂I
(�)
(y) = �t(yI); I 2 I: (3.4)

This pulls each noisy coe�cient yI towards 0 by an amount t = �, and sets

�̂I
(�)

= 0 if jyI j � �.

Theorem 3.1 The soft thresholding estimator satis�es the uniform shrink-

age condition (3.3).

Proof. In each coordinate where �̂I
(�)
(y) = 0, (3.3) holds automatically. In

each coordinate where j�̂I (�)(y)j 6= 0, j�̂I(�)j = jyI j � �. As jyI � �Ij � � by

(3.1), j�I j � jyIj � � = j�̂I
(�)j. 2.

We now consider the performance of �̂(�) according to (3.2).

Observation.

M�(�̂
(�); �) =

X
I

min(�2I ; 4�
2): (3.5)

To see this, note that if �̂I
(�) 6= 0, then jyI j > �, j�I j 6= 0 by (3.1) and

sgn(�̂I
(�)
) = sgn(�I) by (3.4). Hence

0 � sgn(�I)�̂I
(�) � j�I j:

It follows that under noise model (3.1)

j�̂I
(�) � �I j � j�Ij: (3.6)
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In addition, the triangle inequality gives

j�̂I
(�) � �Ij � 2�: (3.7)

Hence under (3.1)

j�̂I
(�) � �I j � min(j�Ij; 2�): (3.8)

Squaring and summing across I 2 I gives (3.5).

The performance measureM�(�̂
(�); �) is near-optimal in the following min-

imax sense. Let � be a set of possible �'s (an abstract smoothness class) and
de�ne the minimax error

M�
� (�) = inf

�̂

sup
�
M�(�̂; �): (3.9)

This is the smallest the error can be for any estimator, uniformly over all
� 2 �.

It turns out that the error of �̂(�) approaches this minimum for a wide
class of �.

De�nition. � is solid and orthosymmetric if � 2 � implies (sI�I) 2 � for
all sequences (sI) with jsI j � 1 8I.
Theorem 3.2 Let � be solid and orthosymmetric. Then �̂(�) is near-minimax:

M�(�̂
(�); �) � 4M�

� (�); 8� 2 �: (3.10)

Proof. In a moment we will establish the lower bound

M�
� (�) � sup

�

X
I

min(�2I ; �
2); (3.11)

valid for any solid, orthosymmetric set �. Applying this, we get

M�(�̂
(�); �) =

X
I

min(�2I ; 4�
2)

� 4 �
X
I

min(�2I ; �
2)

� 4 �M�
� (�); 8� 2 �;

which is (3.10).
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To establish (3.11), we �rst consider a special problem, let �(1) 2 � and

consider the data vector

y0I = sgn(�
(1)
I )(j�(1)I j � �)+; I 2 I; (3.12)

which could arise under model (3.1). De�ne the parameter �(�1) by

�
(�1)
I = y0I � (�

(1)
I � y0I ); I 2 I: (3.13)

The same reasoning as at (3.6)-(3.8) yields

j�(�1)I j � j�(1)I j; I 2 I: (3.14)

As � is solid and orthosymmetric, �(�1) 2 �.

Now (y0I ) is the midpoint between �(1) and �(�1):

y0I = (�
(1)
I + �

(�1)
I )=2; I 2 I: (3.15)

Hence (y0I ) equally well could have arisen from either �(1) or �(�1) under noise

model (3.1). Now suppose we are informed that � 2 � takes only the two
possible values f�(1); �(�1)g. Once we have this information, the observation
of (y0I ) de�ned by (3.15) tells us nothing new, since by construction it is
the midpoint of the two known values �(1) and �(�1). Hence the problem
of estimating � reduces to picking a compromise (tI) between �

(1) and �(�1)

that is simultaneously close to both. Applying the midpoint property and
the identity jyI � �

(1)
I j = min(j�Ij; �),

min
t2R

max
i2f�1;1g

(�
(i)
I � t)2 = (yI � �

(i)
I )2

= min((�
(1)
I )2; �2): (3.16)

Summing across coordinates,

min
(tI)

max
i2f1;�1g

X
I

(�
(i)
I � tI)

2 =
X
I

min((�
(1)
I )2; �2): (3.17)

To apply this, note that the problem of recovering � when it could be any

element of � and (yI) any vector satisfying (3.1) is no easier that the special
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problem of recovering � when it is surely either �(1) or �(�1) and the data are

surely y0,

min
�̂

sup
�
M�(�̂; �) � min

�̂

max
i2f�1;1g

k�̂(y0)� �(i)k2`2

= min
(tI)

max
i2f�1;1g

kt� �(i)k2`2

=
X
I

min((�
(1)
I )2; �2):

As this is true for every vector �(1) 2 �, we have (3.11). 2

The soft threshold rule �(�) is uniquely optimal among rules satisfying the
uniform shrinkage property (3.3).

Theorem 3.3 If �̂ is any rule satisfying the uniform shrinkage condition

(3.3), then

M�(�̂; �) �M�(�̂
(�); �) 8�: (3.18)

If equality holds for all �, then �̂ = �̂(�).

Proof. (3.18) is only possible if

j�̂Ij � j�̂(�)I j 8I; 8�; (3.19)

for every observed (yI) which could possibly arise from (3.1). Indeed, if
j�̂I0(y0)j > j�̂I0(y0)j for some speci�c choice of I0 and y

0, then the sequence

(�
(0)
I ) de�ned by

�
(0)
I = sgn(y0I )(jy0I j+ �) 8I

could possibly have generated the data under (3.1), because jy0I � �
(0)
I j � �.

Now �̂(�)(y0) = �(0). Hence j�̂I0(y0)j > j�̂(�)I0
(y0)j implies j�̂I0(y0)j > j�(0)I0

j and
so the uniform shrinkage property (3.3) is violated.

On the other hand, for a rule satisfying (3.19), we must have M�(�̂; �) �
M�(�̂

(�); �) for some combination of y and � possible under the observation
model (3.1). Indeed, select nuisance uI = �sgn(�I) � min(j�I j; �), so that

yI � �I � 0 8I, and j�̂I
(�) � �I j = min(j�I j; 2�). Thus (as at (3.6)-(3.8)),

�̂I
(�) � �I � 0, and so 0 � sgn(�̂I)�̂I

(�) � j�Ij. But j�̂I j � j�̂I
(�)j implies

0 � sgn(�I)�̂I � sgn(�I)�̂I
(�) � j�I j (3.20)
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i.e.

j�̂I � �I j � j�̂I
(�) � �I j; I 2 I: (3.21)

Summing over coordinates gives the inequality (3.18).

Carefully reviewing the argument leading to (3.21), we have that when

the strict inequality j�̂I j < j�̂I
(�)j holds then (3.21) is strict. If strict inequality

never holds, then by (3.20)-(3.21), �̂I(y) = �̂I
(�)
(y) for all y, all I, and all �.

I.e. �̂ = �̂(�). 2.

4 Thresholding and Statistical Estimation

We now return to the random-noise abstract model (2.1)-(2.3). We will use
the following fact [21]: Let (zI) be i.i.d. N(0; 1). Then

�n � Prob

�
k(zI)k`1n �

q
2 log n

�
! 1; n!1: (4.1)

This motivates us to act as if (2.1) were an instance of the deterministic

model (3.1), with noise level �n =
p
2 log n � �. Accordingly, we de�ne

�̂I
(n)

= �tn(yI); I 2 In; (4.2)

where tn = �n. If the noise in (2.1) really were deterministic and of size
bounded by tn, the optimal recovery theory of section 3 would be the natural
estimator to apply. We now show that the rule is also a solution for the
problem of section 2.

Theorem 4.1 With �n de�ned by (4.1)

Prob

�
j�̂I

(n)j � j�I j 8I 2 In
�
� �n (4.3)

for all � 2 Rn.

Proof. Let En denote the event fkzk`1n �
q
2 log(n)g. Note that on the

event En, (2.1) is an instance of (3.1) with � = �n, and uI � zI , I 2 In.
Hence by Theorem 3.1,

En )
�
j�̂I(n)j � j�I j 8I 2 In

�
;

12



for all � 2 Rn. By de�nition P (En) = �n. 2.

We now turn to the performance criterion (2.2). We will study the size

of the mean-squared error Mn(�̂; �) = Ek�̂ � �k2`2n , from a minimax point of

view. Set

M�
n(�) = inf

�̂

sup
�
Mn(�̂; �):

Theorem 4.2 Let � be solid and orthosymmetric. Then �̂(n) is nearly min-

imax:

M(�̂n; �) � (2 log(n) + 1)(�2 + 2:22M�
n(�)) � 2 �: (4.4)

Hence �̂(n) is uniformly within the same factor 4:44 log(n) of minimax for
every solid orthosymmetric set.

The proof goes in two stages. In the �rst, we develop a lower bound on
the minimax risk. In the second, we show that the lower bound can be nearly

attained.
Consider the following \ideal" procedure (for more on the concept of ideal

procedures, see [DJ92a]). We consider the family of estimators f�̂S : S � Ing
indexed by subsets S of In and de�ned by

(�̂S(y))I =

8<
:
yI I 2 S
0 I 62 S

:

We suppose available to us an oracle which selects from among these estima-
tors the one with smallest mean-squared error:

�(�) = argmin
S
Ek�̂S � �k2`2n ;

T (y;�(�)) � �̂�(�)(y):

Note that T is not a statistic, because it depends on side information �(�)

provided by the oracle. Nevertheless, it is interesting to measure its perfor-
mance for comparative purposes. Now Ek�̂S � �k2`2n =

P
I2S �

2 +
P

I 62S �
2
I .

Hence

EkT � �k2`2n = argmin
S

X
I2S

�2 +
X
I 62S

�2I

=
X
I

min(�2I ; �
2): (4.5)
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It is reasonable to suppose that, because T (y;�(�)) makes use of the powerful

oracular information �(�), no function of (yI) alone can outperform it. HenceP
I min(�2I ; �

2) ought to be smaller than any mean squared error attainable

by reasonable estimators.

The following lower bound says exactly that:

Lemma 4.3 Let � be solid and orthosymmetric then

M�
n(�) �

1

2:22
sup
�

X
I

min(�2I ; �
2): (4.6)

Proof. Let �(� ) denote the hyperrectangle f� : j�Ij � j�I j 8Ig, if �(� ) � �

then M�
n(�) �M�

n(�(� )). Hence

M�
n(�) � supfM�

n(�(� )) : �(� ) � �g:
Now if � is solid and orthosymmetric, � � �, �(� ) � �. Finally, Donoho,

Liu, and MacGibbon (1990) show that

M�
n(�(� )) �

1

2:22

X
I

min(� 2I ; �
2):

Combining the last two displays gives (4.6). 2
We interpret (4.6), with the aid of (4.5), to say that no estimator can sig-

ni�cantly outperform the ideal, non-realizable procedure T (y;�(�)) uniformly

over any solid orthosymmetric set. Hence, it is a good idea to try to do as

well as T (y;�(�)).

Donoho and Johnstone (1992a) have shown that �̂(n) = (�tn(yI)) comes
surprisingly close to the performance of T (y;�(�)) equipped with an oracle.
They give the following bound: Suppose that the (yI) are jointly normally

distributed, with mean (�I) and marginal noise variance V ar(yI j(�I)) � �2,

8I 2 In. Then
Ek�̂(n) � �k2`2n � (2 log(n) + 1)(�2 +

X
I

min(�2I ; �
2)): (4.7)

Taking the supremum of the right hand side in � 2 � we recognize, by (4.6),

a quantity not larger than

(2 log(n) + 1)(�2 + 2:22 �M�
n(�))

which establishes Theorem 4.2. 2
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5 The Empirical Wavelet Transform

To relate the abstract results to the problem of the introduction, we study the

empirical wavelet transform. First, recall the pyramid �ltering algorithm for

obtaining theoretical wavelet coe�cients of functions in L2[0; 1], as described

in [CDJV]. Given n = 2j1 integrals �j1;k =
R 1
0 'j1;k(t)f(t)dt, k = 0; : : : ; 2j1�1,

\sampling" f near 2�j1k, one iteratively applies a sequence of decimating high

pass and low pass operators Hj ; Lj : R
2j ! R2j�1 via

(�j�1;�) = Lj � (�j;�)
(�j�1;�) = Hj � (�j;�)

for j = j1; j1 � 1; : : : ; j0 + 1, producing a sequence of n = 2j1 coe�cients

((�j0;�); (�j0;�); (�j0+1;�); : : : ; (�j1�1;�)):

The transformation Uj0;j1 mapping (�j1;�) into this sequence is a real orthog-
onal transformation.

For computational work, one does not have access to integrals (�j;k),
and so one can not calculate the theoretical wavelet transform. One notes
that (for k away from the boundary) 'j1;k has integral 2j1=2 and that it is

concentrated near k=2j1 . And one substitutes instead samples:

bj1;k = n�1=2f(k=n) k = 0; : : : ; n� 1:

One applies a preconditioning transformation PDb = (~�j1;�), a�ecting only

the D+1 values at each end of the segment (bj1;k)
2j1�1
k=0 . Then one applies the

algorithm of [CDJV], to ( ~�j1;�) in place of (�j1;�) producing not theoretical
wavelet coe�cients but what we call empirical wavelet coe�cients:

(( ~�j0;�); (~�j0;�); (~�j0+1;�); : : : ; (~�j1�1;�)):

Rather than worry about issues like \how closely do the empirical wavelet

coe�cients of samples (f(k=n)) approximate the corresponding theoretical
wavelet coe�cients of f", we prefer to regard these coe�cients as the exact
coe�cients of f in an expansion closely related to the orthonormal wavelets

expansion, but not identical to it.

In Donoho (1992) we go to some trouble to describe this non-orthogonal
transform and to prove the following result.
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Theorem 5.1 Let the pyramid transformation Uj0;j1 derive from an orthonor-

mal wavelet basis having compact support, D vanishing moments and regu-

larity R. For each n = 2j1 there exists a system of functions ( ~'j0;k), (
~ j;k),

0 � k < 2j , j � j0 with the following character.

(1) Every function f 2 C[0; 1] has an expansion

f �
2j0�1X
k=0

~�j0;k ~'j0;k +
X
j�j0

2j�1X
k=0

~�j;k ~ j;k:

The expansion is conditionally convergent over C[0; 1] (i.e. we have a

Schauder basis of C[0; 1]). The expansion is unconditionally convergent

over various spaces contained in C[0; 1], such as C�[0; 1] (see (5)).

(2) The �rst n coe�cients �(n) =
�
( ~�j0;�); (~�j0;�); : : : ; (~�j1�1;�)

�
result from

the pre-conditioned pyramid algorithm Uj1;j0 �PD applied to the samples

bj;k = n�1=2f(k=n).

(3) The basis functions ~'j0;k
~ j;k are CR functions of compact support:

jsupp( ~ j;k)j � C � 2�j .
(4) The �rst n basis functions are nearly orthogonal with respect to the

sampling measure: with hf; gin = n�1
Pn�1

k=0 f(k=n)g(k=n), and kf�gkn
the corresponding seminorm,


0k�(n)k`2n � kfkn � 
1k�(n)k`2n ;

the constants of equivalence do not depend on n or f .

(5) Each Besov space B�
p;q[0; 1] with 1=p < � < min(R;D) and 0 < p; q �

1 is characterized by the coe�cients in the sense that

k~�kb�p;q � k( ~�j0;k)kk`p + (
X
j�j0

(2js(
X
k

j~�j;kjp)1=p)q)1=q;

is an equivalent norm to the norm of B�
p;q[0; 1] if s = � + 1=2 � 1=p,

with constants of equivalence that do not depend on n, but which may

depend on p; q, j0 and the wavelet basis. Parallel statements hold for

Triebel-Lizorkin spaces F �
p;q with 1=p < � < min(R;D).
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In short, the empirical coe�cients are in fact the �rst n coe�cients of f in a

special expansion. The expansion is not a wavelet expansion, as the functions
~ j;k are not all dilates and translates of a �nite list of special functions. How-

ever, the functions have compact support andM -th order smoothness and so

borrowing terminology of Frazier & Jawerth they are \smooth molecules".

6 Main Results

We �rst give some notation. Let Wn denote the transform operator of The-
orem 5.1, so that � =Wnf is a vector of countable length containing (�j0;k),
(�j0+1;�) and so on:

� = ((�j0;�); (�j0;�); (�j0+1;�); : : : ; (�j1;�); : : :):

Let (Snf) = (n�1=2f(k=n))n�1k=0 be the sampling operator, and let Uj0;j1

and PD be the pyramid and pre-conditioning operators de�ned in [CDJV],

then the empirical wavelet transform of f is denoted W n
n f and results in a

vector �(n) = W n
n f of length n,

�(n) = ((�j0;�); (�j0;�); (�j0+1;�); : : : ; (�j1�1;�)):

Symbolically
W n

n f = (Uj0;j1 � PD � Sn)(f):
Let T n� denote the truncation operator, which generates a vector �(n)

with the �rst n entries of �. Theorem 5.1 claims that

(T n �Wn)f = W n
n f; f 2 C[0; 1]:

We now describe two key properties of W n
n .

6.1 Smoothing and Sampling

The �rst key property of W n
n is that it is a contraction of smoothness classes.

Let En�(n) denote the extension operator which pads an n-vector �(n) out to

a vector with countably many entries by appending zeros. We have, trivially,

that
kEn�(n)kb�p;q � k�kb�p;q (6.1)

17



and

kEn�(n)kf�p;q � k�kf�p;q : (6.2)

More generally, let ~�(n) be an n-vector which is elementwise smaller than

�(n) = W n
n f . Then

kEn~�(n)kb�p;q � kEn�(n)kb�p;q � k�kb�p;q (6.3)

and

kEn~�(n)kf�p;q � kEn�(n)kf�p;q � k�kf�p;q : (6.4)

This simple observation has the following consequence. Given ~�(n) which
is elementwise smaller than �(n), construct a function on [0; 1] by zero exten-
sion and inversion of the transform:

~fn = W�1
n � En � ~�(n):

In words ~fn is that object whose �rst n coe�cients agree with ~�(n), and all
other coe�cients are zero.

The function ~fn is in a natural sense at least as smooth as f . Indeed,

for � > 1=p, and for su�ciently regular wavelet bases, k � kb�p;q and k � kf�p;q
are equivalent to the appropriate Triebel and Besov norms. Hence the trivial
inequalities (6.3) and (6.4) imply the non-trivial

k ~fnkB�
p;q
� C(�; p; q) � kfkB�

p;q

and
k ~fnkF�

p;q
� C(�; p; q) � kfkF�

p;q
;

where C does not depend on n or f . Hence any method of shrinking the

coe�cients of f , producing a vector

j~�I j � j�Ij; I 2 In;

produces a function ~fn possessing whatever smoothness the original object

f possessed.
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6.2 Quasi-Orthogonality

The second key property of W n
n is quasi-orthogonality. The orthogonality of

the pyramid operator Uj0;j1 gives us immediately the quasi-parseval relation

k(PD � Sn)(f � g)k`2n = kW n
n f �W n

n gk`2n ; (6.5)

relating the sampling norm to an empirical wavelet coe�cient norm. The pre-

conditioning operator PD is block-diagonal with 3 blocks. The main block is

an identity operator acting on samples D < k < 2j �D � 1. The upper left

corner block is a D + 1�D + 1 invertible matrix which does not depend on
n; the same is true for the lower right corner block. Let 
0 and
1 denote the
smallest and largest singular values of these corner blocks. Then


0kW n
n (f � g)k`2n � kSn(f � g)k`2n � 
1kW n

n (f � g)k`2n: (6.6)

Hence, with constants of equivalence that do not depend on n,

kSnf � Sngk`2n � kW n
n f �W n

n gk`2n
This has the following stochastic counterpart. If (zi)

n�1
i=0 is a standard

Gaussian white noise (i.i.d. N(0; 1)), then ~zI = (Uj0;j1 � PD)(zi) is a quasi-
white noise, a zero mean Gaussian sequence with covariance � satisfying


20I � n � � � 
21I (6.7)

in the usual matrix ordering. It follows that there is a random vector (wI),
independent of (~zI), which in
ates (~zI) to a white noise

(~zI + wI) =D (
1zI): (6.8)

Similarly, there a white noise (zI) �iid N(0; 1), and a random Gaussian vector

(vI), independent of (zI), which in
ates (
0zI) to ~zI:

(
0zI + vI) =D (~zI): (6.9)

By these remarks, we can now show how to generate data (2:1) from data
(1:1), establishing the link between the abstract model and the concrete
model. Take data (di)

n�1
i=0 , calculate the empirical wavelet transform (eI) =

(Uj0;j1 � PD)(di); add noise (wI). De�ne

yI = eI + wI ; I 2 In; (6.10)
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yI = ((Uj0;j1 � PD)(Snf))I + ((Uj0;j1 � PD)(n�1=2(zi)))I + wI

= (W n
n f)I + ~zI + wI

= (W n
n f)I + � � zI; zI �iid N(0; 1)

Here � = 
1�=
p
n. Hence

yI = �I + � � zI I 2 In:
Hence, from the concrete observations (1.1) we can produce abstract obser-

vations (2.1) by adding noise to the empirical wavelet transform.
We may also go in the other direction: from abstract observations (2.1)

we can generate concrete observations (1.1) by adding noise. Simply set
� = 
0�=

p
n and de�ne

eI = yI + vI; I 2 In:
Then the concrete data

(di) = P�1
D � U�1

j0;j1
� (eI)

satisfy
di = f(ti) + �zi

where (zi) �iid N(0; 1).
Armed with these observations, we can prove our main results.

6.3 Proof of Theorem 1.1.

Let (
1zI) be the white noise gotten by in
ating (~zI) as described above. Let

An denote the subset of Rn de�ned by fx : kxk`1n < 
1 � � �
q
2 log(n)g. By

(4.1) the event
En = f(yI � (W n

n f)I)I 2 Ang;
has probability P (En) � �n.

(eI)I2In
be the n empirical wavelet coe�cients produced as described in

the introduction. Let �̂(n) be the soft threshold estimator applied to these

data with threshold tn =
q
2 log(n)
1 � �=

p
n. Then because (
1zI) arises by

in
ating (~zI), we have

P ((
1zI) 2 An) = P ((~zI + wI) 2 An):
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Now ~zI is a Gaussian random vector. An is a centrosymmetric convex set.

Hence by Anderson's Theorem (Anderson, 1956, Theorem 2)

P ((~zI + wI)I 2 An) � P ((~zI)I 2 An):

We conclude that the event

~En = f(eI � (W n
n f)I)I 2 Ang;

has probability

P ( ~En) = P ((~zI)I 2 An) � �n:

Let f̂�n be the smooth interpolant f̂�n = W�1
n En�̂(n). By Theorem 5.1,

part [5] kf̂�nkB�
p;q

is equivalent to the sequence-space norm kEn�̂(n)kb�p;q , with
constants of equivalence which do not depend on n; similarly for kfkB�

p;q
and

k�kb�p;q . Formally

c0(�; p; q)kfkB�
p;q
� k�kb�p;q � c1(�; p; q)kfkB�

p;q
: (6.11)

As in Theorem 4.1, when the event ~En occurs the coe�cients of �̂(n) are

all smaller than those of �(n), so

kEn�̂(n)kb�p;q � kEn�(n)kb�p;q on ~En: (6.12)

Hence, on the event ~En we have

kf̂�nkB�
p;q

� (1=c0(�; p; q)) � kEn�̂(n)kb�p;q by (6:11)

� (1=c0(�; p; q)) � kEn�(n)kb�p;q ; by (6:12)

� (1=c0(�; p; q)) � kWnfkb�p;q by (6:1)

� c1(�; p; q)=c0(�; p; q) � kfkB�
p;q

by (6:11):

So Theorem 1.1 holds, with �n = P (En) as in Theorem 4.1; and with

C1(F;  ) = c1(�; p; q)=c0(�; p; q). 2

6.4 Proof of Theorem 1.2

Apply �tn(�) to the empirical wavelet coe�cients (eI) and invert the wavelet

transform, giving (f̂�n(i=n))
n�1
i=0 . By the quasi-orthogonality (6.6):

n�1Ekf̂�n � fk2`2n � 
21Ek�̂(n) � �k2`2n :

21



With � = 
1
q
2 log(n)�=

p
n, we have that the marginal variance V ar(eI j(�I)I) �

�2 8I 2 In. Using (4.7) we have the upper bound
n�1Ekf̂�n � fk2`2n � 
21 (2 log(n) + 1)(�2 +

X
I

min(�I; �
2)): (6.13)

Now we turn to a lower bound. Let FC be a given functional ball taken

from the scales of spaces S. Let �n denote the collection of all � = Wnf

arising from an f 2 FC. By Theorem 5.1, there is a solid orthosymmetric

set �0 and �0; �1 independent of n so that

�0� � �n � �1�: (6.14)

Let M�
n(�; (yI)) stand for the minimax risk in estimating � with squared `2n

loss when � is known to lie in � and the observations are (yI). We remark
that this is setwise monotone, so that �0 � �1 implies

M�
n(�0; (yI)) �M�

n(�1; (yI)): (6.15)

It is also monotone under auxiliary randomization, so that if (yI) are pro-
duced from (~yI) by adding a noise (wI) independent of (~yI), then

M�
n(�; (~yI)) �M�

n(�; (yI)): (6.16)

As we have seen the empirical wavelet coe�cients have the form (eI) =

(�I) + �=
p
n(~zI), where the noise

~zI = 
0zI + vI

with (vI) independent of (zI) and (zI) i.i.d. N(0; 1). Hence (6.16) shows the
problem of recovering (�I) from data (eI) to be no easier than recovering it
from data ~yI = �I + �0 � zI, �0 = 
0�=

p
n.

Combining these facts:

M�
n(�n; (yI)) � M�

n(�n; (~yI)) by (6:16)

� M�
n(�0�; (~yI)) by (6:15)

� 1

2:22
sup
�2�0�

X
I

min(�2I ; �
2
0) by (4:6)

� 1

2:22
�20 sup

�2�

X
I

min(�2I ; �
2
0)

� 1

2:22
�20


2
0=


2
1 sup
�2�

X
I

min(�2I ; �
2):
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Comparing this display with the upper bound (6.13) gives the desired result

(1.7).

7 Asymptotic Re�nement

Under additional conditions, we can improve the inequality (1.5) asymp-

totically, replacing the log(n) factor by a factor of order log(n)r, for some

r 2 (0; 1).

Theorem 7.1 Let F 2 S be a Besov space B�
p;q[0; 1] or a Triebel space

F �
p;q[0; 1] and let r = (2�)=(2� + 1). There is a constant C2(FC ;  ) which

does not depend on n, so that for all n = 2j1 , j1 > j0,

sup
f2FC

Ekf̂�n � fk2`2n � C2 � log(n)r � inf
f̂

sup
FC

Ekf̂ � fk2`2n : (7.1)

The proof is based on a re�nement of the oracle inequality. Roughly the
idea is: if, equipped with an oracle, one can achieve the rate n�r, then using

simple thresholding, one can achieve the rate log(n)rn�r . Since with an

oracle we can achieve the minimax rate, simple thresholding gets us within
a log(n)r factor of minimaxity.

We �rst study the asymptotic behavior of the oracle function
P

I min(�2I ; �
2)

as �! 0. Let I be an index set, �nite or in�nite, and for r 2 (0; 1) de�ne

Nr(�) =

0
@sup

�>0
��2r

X
I2I

min(�2I ; �
2)

1
A
1=2

:

The statistical imnterpretation is the following. Let abstract observations

yI = �I + � � zI be given, where the (zI) make a standard white noise. Then,

with the aid of an oracle we get a risk

EkT � �k2`2 =
X
I

min(�2I ; �
2) � N2

r (�)�
2r; � > 0: (7.2)

Nr is a quasi-norm. In fact, if we de�ne the weak-`� quasi-norm (Bergh

and L�ofstrom, 1976)

k�kw`� = sup
t
t1=�#fI : j�I j > tg:
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and set � = � (r) = 2(1 � r) 2 (0; 2). Then

k�kw`� � Nr(�) 8�;
with constants independent of the dimensionality of the index set.

Let now n abstract observations (2.1) be given, where the (zI)I2In
make

a standard white noise, Then from (7.2) we know that we can attain �2r risk

behavior with the help of an oracle. Donoho and Johnstone (1992b) give a

re�nement of the oracle inequality (4.7) over weak `� balls. Suppose we have

a collection �n which embeds in a weak `� ball:

supfk�kw`� : � 2 �ng � B: (7.3)

They give a sequence of constants �n;r � 2 log(n) so that with abstract

observations (2.1) and soft threshold estimator �̂(n) de�ned as in section 4,

Ek�̂(n) � �k2`2n � (�n;r)
r � (�2 +B��2r) � 2 �: (7.4)

This inequality and the equivalence of Nr with weak `� says that, when
an oracle would achieve rate �2r, simple thresholding will attain, to within
log(n)r factors, the same performance as an oracle.

To apply these results, let (yI) be abstract observations produced from
empirical wavelet coe�cients by the in
ation trick of section 6.2, so that
� = 
1�=

p
n. Note that the collection FC of functions f with kfkB�

p;q
� C

has wavelet coe�cients � = Wnf satisfying k�kb�p;q � C 0 with C 0 = BC and B
independent of n. De�ne the Besov body ��

p;q(C
0) = f� : k�kb�p;q � C 0g. Then

simple calculations show that ��
p;q(C

0) embeds in w`� for � = 2=(2� + 1):

supfk�kw`� : � 2 ��
p;qg � A � C 0; (7.5)

for some constant A > 0. So if we take the sequence of �nite-dimensional

bodies �n de�ned by the �rst n-wavelet coe�cients �(n) of objects � 2 ��
p;q,

supfk�(n)kw`�n : �(n) 2 �ng � A �C 0; 8n: (7.6)

Combining the pieces,

n�1Ekf̂�n � fk2`2n � 
1 � Ek�̂(n) � �k2`2n
� 
1 � (�n;r)

r � (�2 + (A �B � C)��2r)
� C 00 � (log(n)=n)r; n � 2j0 :
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Hence,

n�1Ekf̂�n � fk2`2n � C 00 � (log(n)=n)r; n = 2j1 ; kfkB�
p;q
� C:

This is the upper bound we seek.

For a lower bound, we essentially want to show that there are sequences

in ��
p;q where even with an oracle we can not achieve faster than an n�r rate

of convergence. In detail we use the hypercube bound of Lemma 4.3. Let
~j(�; p; q; C) be the largest integer less than � � fj1=2+log2(C=(
0�))g. For all
su�ciently large n = 2j1 , j0 < ~j < j1. Let �~j(�) be the hypercube consisting

of those sequences � having, for nonzero coe�cients only the coe�cients �~j;k,
these coe�cients having size � � in absolute value. This hypercube embeds

in the set �n introduced above. Hence the problem of estimating �(n) from
data yI with �(n) known to lie in �n is at least as hard as the problem of
estimating �(n) known to lie in the hypercube. The risk of this hypercube is,
by (4.6), at least

1

2:22
sup

�2�~j(�)

X
I2In

min(�2I ; �
2) =

1

2:22
2
~j�2 � c � n�r:

Comparing the upper bound from earlier with the lower bound gives
Theorem 7.1.

8 Other Settings

The abstract approach easily gives results in other settings. One simply
constructs an appropriate Wn and shows that it has the properties required
of it in section 6, and then repeats the abstract logic of sections 6 and 7.

We make this explicit. To set up the abstract approach, we begin with

a sampling operator Sn, de�ned for all functions in a domain D (a function

space). We assume we have n noisy observations of the form (perhaps after
normalization)

bj;k = (Snf)k +
�p
n
zk

where k runs through an index set K, and (zk) is a white noise. We have an

empirical transform of these data, based on an orthogonal pyramid operator

and a pre-conditioning operator

(eI) = U � P � b:
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This corresponds to a transform of noiseless data

W n
n f = (U � P � Sn)f:

Finally, there is a theoretical transformWn such that the coe�cients � = Wnf

allow a reconstruction of f :

f =W�1
n �; f 2 D;

the sense in which equality holds depending on D.
(In the article so far, we have considered the above framework with point

sampling on the interval of continuous functions, so that Snf = (f(k=n)=
p
n)n�1k=0

and D = C[0; 1]. S is the segment of the Besov and Triebel scales belong to

C[0; 1]. Further below we will mention somewhat di�erent examples.)
To turn these abstract ingredients into a result about de-noising, we need

to establish three crucial facts about W n
n and Wn. First, that the two trans-

forms agree in the �rst n places:

(T n �Wn)f = W n
n f; f 2 D: (8.1)

Second, that with 
0 and 
1 independent of n,


0kW n
n (f � g)k`2n � kSn(f � g)k`2n � 
1kW n

n (f � g)k`2n f; g 2 D: (8.2)

Third, we set up a scale S of function spaces F , with each F a subset of D.
Each F must have a norm equivalent to a sequence space norm,

c0kfkF � kWnfkf � c1kfkF ; 8f 2 F : (8.3)

Here the corresponding sequence space norm k�kf must depend only on the
absolute values of the coe�cients in the argument (orthosymmetry), and the

constants of equivalence must be independent of n.

Whenever this abstract framework is established, we can abstractly De-
Noise, as follows

[A1] Apply the pyramid operator to preconditioned, normalized samples (bk)

giving n empirical wavelet coe�cients.

[A2] Using the constant 
1 from the (8.2), de�ne �1 = 
1 � �=
p
n. Apply a

soft-threshold with threshold level tn = �1
q
2 log(n), getting shrunken

coe�cients �̂(n).
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[A3] Extend these coe�cients by zeros, getting, �̂�n = En�̂(n) and invert the

wavelet transform, producing f̂�n =W�1
n �̂�n.

The net result is a De-Noising method. Indeed, (8.1), (8.2), and (8.3)

allow us to prove, by the logic of sections 6 and 7, Theorems paralleling

Theorems 1.1 and 1.2. In these parallel Theorems the text is changed to

refer to the appropriate sampling operator Sn, the appropriate domain D,
function scale S, and the measure of performance is EkSn(f̂ � f)k2`2n .

In some instances, setting up the abstract framework and the detailed

properties (8.1), (8.2) and (8.3) is very straightforward, or at least not very

di�erent from the interval case we have already discussed. In other cases,
setting up the abstract framework requires honest work. We mention brie
y
two examples where there is little work to be done, and, at greater length, a
third example, where work is required.

Data Observed on the Circle. Suppose that we have data at points eq-

uispaced on the circle T, at ti = 2�(i=n), i = 0; : : : ; n � 1. The sampling
operator is Snf = n�1=2(f(ti))

n�1
i=0 with domain D = C(T), and the function

space scale S is a collection of Besov and Triebel spaces B�
p;q(T) and F

�
p;q(T)

with � > 1=p. The pyramid operator is obtained by circular convolution with
appropriate wavelet �lters; the pre-conditioning operator is just the identity;

and, because the pyramid operator is orthogonal, 
0 = 
1 = 1. The key
identities (8.1), (8.2) and (8.3) all follow for this set-up by arguments en-
tirely parallel to those behind Theorem 5.1. Hence simple soft thresholding
of periodic wavelet coe�cients is both smoothing and nearly minimax.

Data Observed in [0; 1]d. For a higher dimensional setting, consider d-

dimensional observations indexed by i = (i1; :::; id) according to

di = f(ti) + � � zi; 0 � i1; ::::; id < m (8.4)

where ti = (i1=m; :::; id=m) and the zi are a Gaussian white noise. Suppose

that m = 2j1 and set n = md. De�ne Kj1 = fi : 0 � i1; ::::; id < mg.
The corresponding sampling operator is Sn = (f(ti)=

p
n)i2Kj1

, with domain

D = C([0; 1]d). The function space scale S is the collection of Besov and
Triebel spaces B�

p;q([0; 1]
d) and F �

p;q([0; 1]
d) with � > d=p. We consider the

d-dimensional pyramid �ltering operator Uj0;j1 based on a tensor product con-

struction, which requires only the repeated application, in various directions,
of the 1-d �lters developed by [CDJV]. The d-dimensional preconditioning
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operator is built by a tensor product construction starting from 1-d precondi-

tioners. This yields our operator W n
n . There is a result paralleling Theorem

5.1, which furnishes the operator Wn and the key identities (8.1), (8.2) and

(8.3).

Now process noisy multidimensional data (8.4) by the abstract prescrip-

tion [A1]-[A3]. Applying the abstract reasoning of sections 6 and 7, we im-

mediately get results for f̂�n exactly like Theorems 1.1 and 1.2, only adapted to

the multi-dimensional case. For example, the function space scalesB�
p;q([0; 1]

d)

start at � > d=p rather than 1=p. Conclusion: f̂�n is a De-Noiser.

Sampling by Area Averages. Bradley Lucier, of Purdue University, and

Albert Cohen, of Universit�e de Paris-Dauphine, have asked the author why
statisticians like myself consider models like (1.1) and (8.4) that use point

samples. Indeed, for some problems, like the restoration of noisy 2-d images
based on CCD digital camera imagery, area sampling is a better model than
point sampling.

From the abstract point of view, area sampling can be handled in an en-
tirely parallel fashion once we are equipped with the right analog of Theorem
5.1. So suppose we have 2-d observations

di = Aveff jQ(i)g+ � � zi; 0 � i1; i2 < m (8.5)

where Q(i) is the square

Q(i) = ft : i1=m � t1 < (i1 + 1)=m; i2=m � t2 < (i2 + 1)=mg;

and the (zi) are i.i.d. N(0; 1). Set m = 2j1 , n = m2, and Kj = fk : 0 �
k1; k2 < 2jg.

The sampling operator is Snf = (Aveff jQ(i)g=pn)i2Kj1
, with domain

D = L1[0; 1]. The 2-dimensional pyramid �ltering operator Uj0;j1 is again

based on a tensor product scheme, which requires only the repeated appli-
cation, in various directions, of the 1-d �lters developed by [CDJV]. The 2-d

pre-conditioner is also based on a tensor product scheme built out of the

[CDJV] 1-d pre-conditioner.
The operator W n

n results from applying preconditioned 2-d pyramid �l-

tering to area averages (Aveff jQ(i)g=pn)i. Just as in the case of point
sampling, we develop an interpretation of this procedure as taking the �rst

n coe�cients of a transform Wnf .
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Theorem 8.1 Let the 2-d pyramid transformation Uj0;j1 derive from an or-

thonormal wavelet basis having compact support, D vanishing moments and

regularity R. For each n = 4j1 there exists a system of functions ( ~'j0;k),

( ~ 
(�)
j;k ), k 2 Kj, j � j0, � 2 f1; 2; 3g with the following character.

(1) Every function f 2 L1[0; 1]2 has an expansion

f �
X

k2Kj0

~�j0;k ~'j0;k +
X
j�j0

X
�2f1;2;3g

X
k2Kj

~�
(�)
j;k

~ 
(�)
j;k :

The expansion is conditionally convergent over L1[0; 1]2 (i.e. we have

a Schauder basis of L1). The expansion is unconditionally convergent

over various spaces embedding in L1, such as L2 (see (5)).

(2) The �rst n coe�cients �(n) =
�
( ~�j0;�); (~�

(�)
j0;�
); : : : ; (~�

(�)
j1�1;�

)
�
result from a

pre-conditioned pyramid algorithm Uj0;j1�PD applied to the area samples

bj1;k = n�1=2Aveff jQ(k)g, k 2 Kj1 .

(3) The basis functions ~'j0;k
~ 
(�)
j;k are CR functions of compact support:

jsupp( ~ (�)
j;k )j � C � 2�j .

(4) The �rst n basis functions are nearly orthogonal with respect to the sam-

pling measure. With hf; gin = n�1
P

k2Kj1
Aveff jQ(k)gAvefgjQ(k)g,

and kf � gkn the corresponding seminorm,


0k�(n)k`2n � kfkn � 
1k�(n)k`2n ;

the constants of equivalence do not depend on n or f .

(5) Each Besov space B�
p;q[0; 1]

2 with 2(1=p � 1=2) � � < min(R;D) and

0 < p; q � 1 is characterized by the coe�cients in the sense that k�kbsp;q
is an equivalent norm to the norm of B�

p;q[0; 1] if s = �+2(1=2� 1=p),

with constants of equivalency that do not depend on n, but which may

depend on p; q, j0 and the wavelet basis. Parallel statements hold for

Triebel-Lizorkin spaces F �
p;q with 2(1=p � 1=2) < � < min(R;D).

The result furnishes us with the crucial facts (8.1), (8.2) and (8.3). The
proof is given in Donoho (1992c); it is based on a hybrid of the reasoning of

Cohen, Daubechies and Feauveau (1990) and Donoho (1992b).
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Apply now the 3-step abstract process for De-Noising area average data

(8.5). Analogs of Theorems 1.1 and 1.2 show that f̂�n is a De-Noiser, i.e. it

is smoother than f and also nearly minimax. We state all this formally.

De�nition 8.2 S is the collection of all Besov spaces for which 2(1=p �
1=2) � � < min(R;D) and all Triebel spaces 2(1=p� 1=2) < � < min(R;D)

and 1 < p; q;�1.

Here are the analogs of Theorems 1.1 and 1.2.

Theorem 8.3 Let f̂�n be the estimated function produced by the De-Noising

algorithm [A1]-[A3] adapted to 2-d area sampling. This function is, with

probability tending to 1, at least as smooth as f , in the following sense. There

are universal constants (�n) with �n ! 1 as n = 4j1 ! 1, and constants

C1(F;  ) depending on the function space F [0; 1] 2 S and on the wavelet

basis, but not on n or f , so that

Prob
n
kf̂�nkF � C1 � kfkF 8F 2 S

o
� �n: (8.6)

In words, f̂�n is simultaneously as smooth as f for every Besov, H�older,

Sobolev, and Triebel smoothness measure in a broad scale.

Theorem 8.4 For each ball FC arising from F 2 S, there is a constant

C2(FC ;  ) which does not depend on n, such that for all n = 4j1 , j1 > j0,

sup
f2FC

Ekf̂�n � fk2n � C2 � log(n) � inf
f̂
sup
FC

Ekf̂ � fk2n: (8.7)

In words, f̂�n is simultaneously within a logarithmic factor of minimax over

every Besov, H�older, Sobolev, and Triebel class in a broad scale. Also, the

logarithmic factor can be improved to log(n)r whenever the minimax risk is

of order n�r, 0 < r < 1.

The proofs? Theorem 8.1 gives us the three key conclusions (8.1), (8.2)

and (8.3). Once these have been given, everything that is said in the proofs

of sections 6 and 7 carries through line-by-line. 2
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9 Discussion

9.1 Improvements and Generalizations

For asymptotic purposes, we suspect that we may follow Donoho and John-

stone (1992a) and act as if the empirical wavelet transform is an `2 isometry,

and hence that we may set thresholds using 
1 = 1. However, to prove that

this simpler algorithm works would get us out of the nice abstract model,

so we stick with a more complicated algorithm about which the proofs are

natural.
In fact nothing requires that we use orthogonal wavelets of compact sup-

port. Biorthogonal systems were designed by Cohen, Daubechies, and Feau-
veau (1990), with pyramid �ltering operators obeying 
0I � UT

j0;j1
Uj0;j1 �


1I, the constants 
i independent of j1 > j0. The interval-adapted versions
of these operators will work just as well as orthogonal bases for everything
discussed in sections 6 and 7 above.

For solving inverse problems such as numerical di�erentiation and cir-
cular deconvolution, biorthogonal decomposition of the forward operator

as in Donoho (1992a) puts us exactly in the setting for thresholding with
biorthogonal systems { only with heteroscedastic noise. For such settings,
one employs a level-dependent threshold and gets minimaxity to within a
logarithmic term simultaneously over a broad scale of spaces.

Much of what we have said concerning the optimality of soft thresholding

with repect to `2n loss carries over to other loss functions, such as Lp, Besov,
and Triebel losses. All that is required is that wavelets provide unconditional
bases for the normed linear space associated with the norm. The treatment

is, however, much more involved. We hope to describe the general result
elsewhere.

We have proved an optimality of soft thresholding for the optimal recovery

model (Theorem 3.3). In view of the parallelism between Theorems 3.1 and

4.1, and between Theorems 3.2 and 4.2, it seems plausible that there might
be a result in the statistical estimation model parallelling Theorem 3.3.

9.2 Previous Adaptive Smoothing Work

A considerable literature has arisen in the last two decades describing proce-
dures which are nearly minimax, in the sense that the ratio of the worst-case
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risk like (1.5) to minimax risk (1.6) is not large. If all that we care about

is attaining the minimax bound for a single speci�c ball FC , a great deal is

known. For example, over certain L2 Sobolev balls, special spline smoothers,

with appropriate smoothness penalty terms chosen based on FC are asymp-

totically minimax [36, 35]; over certain H�older balls, Kernel methods with

appropriate bandwidth, chosen with knowledge of FC are nearly minimax

[40]; and it is known that no such linear methods can be nearly minimax

over certain Lp Sobolev balls, p < 2 [33, 12]. However, nonlinear methods,

such as the nonparametric method of maximumlikelihood, are able to behave

in a near-minimax way for Lp Sobolev balls [32, 19], but they require solution
of a general n-dimensional nonlinear programming problem in general. For
general Besov or Triebel balls, wavelet shrinkage estimators which are nearly
minimax may be constructed using thresholding of wavelet coe�cients with

resolution level-dependent thresholds [DJ92c].
If we want a single method which is nearly minimax over all balls in

a broad scale, the situation is more complicated. In all the results about
individual balls, the exact fashion in which kernels, bandwidths, spline pe-
nalizations, nonlinear programs, thresholds etc. depend on the assumed

function space ball FC is rather complicated. There exists a literature in
which these parameters are adjusted based on principles like cross-validation
[42, 43, 22, 26]. Such adjustment allows to attain near-minimax behavior
across restricted scales of functions. For example, special orthogonal series
procedures with adaptively chosen windows attain minimax behavior over

a scale of L2 Sobolev balls automatically [15, 20, 34]. Unfortunately, such
methods, based ultimately on linear procedures, are not able to attain near-
minimax behavior over Lp Sobolev balls; they exceed the minimax risk by

factors growing like n�(�;p), where �(�; p) > 0 whenever p < 2 ([DJ92d]).
The only method we are aware of which o�ers near-minimaxity over all

spaces F 2 S is a wavelet methods, with adaptively chosen thresholds based
on the use of Stein's Unbiased Risk Estimate. This attains performance

within a constant factor of minimax over every space F 2 S; see [DJ92d].
From a purely mean-squared error point of view, this is better than f̂�n by

logarithmic factors. However, the method lacks the smoothing property (1.1)
and the method of adaptation and the method of proof are both more tech-

nical than what we have seen here.
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9.3 Thresholding in Density Estimation

G�erard Kerkyacharian and Dominique Picard of Universit�e de Paris VII, have

used wavelet thresholding in the estimation of a probability density f from

observations X1 , : : : , Xn i.i.d. f . There are many parallels with regression

estimation. See [24, 23].

In a presentation at the Institute of Mathematical Statistics Annual meet-

ing in Boston, August 1992, discussed the use in density estimation of a hard

thresholding criterion based on thresholding the coe�cients at level j by

const � pj, and reported that this procedure was near minimax for a wide
range of density estimation problems. Owing to the connection of density
estimation with the white noise model of our sections 2 and 4, our results
may be viewed as providing a partial explanation of this phenomenon.

9.4 Which bumps are \true bumps"?

Bernard Silverman (1983) found that if one uses a kernel method for esti-
mating a density and smooths a \little more" than one would smooth for the

purposes of optimizing mean-squared error, (here \little more" means with a
bandwidth in
ated by a factor logarithmic in sample size), then the bumps
one sees are all \true" bumps rather \noise-induced" bumps. Our approach
may be viewed as an abstraction of this type of question. We �nd that in
order to avoid the presence of \false bumps" in the wavelet transform, which

could spoil the smoothness properties of the reconstructed object, one must
smooth a \little more" than what would be optimal from the point of view
of mean-squared error.
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