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Abstract

One of the fundamental tenets of ecology is the Competitive Exclusion Prin-
ciple. According to this principle too much interspecific competition between
two species results in the exclusion of one species. This Principle is supported
by a wide variety of theoretical models, of which the Lotka/Volterra model based
on differential equations is the most familiar. It is perhaps less well known that
difference equations also played an important role in the historical development
of the Competitive Exclusion Principle. The Leslie/Gower model was used in
conjunction with influential competition experiments using species of Tribolium
(flour beetles) carried out in the first half of the last century. This difference
equation model exhibits the same dynamic scenarios as does the Lotka/Volterra
model and also supports the Competitive Exclusion Principle. A recently de-
veloped competition for Tribolium species, however, exhibits a larger variety of
dynamic scenarios and competitive outcomes, some of which seemingly stand in
contradiction to the Principle. We discuss features of this model that differenti-
ate it from the Leslie/Gower model. We give a simpler, lower dimensional “toy”
model that illustrates some non-Lotka/Volterra dynamics.
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1 INTRODUCTION

Mathematical models of competition play a central role in theoretical ecology. Histor-
ically, the famous Lotka/Volterra competition model (and many other similar models)
focused the study of interspecific competition on the notions of competitive exclusion,
limiting similarity and ecological niche (notions that in fact had been around at least
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since Charles Darwin). The overwhelming majority of competition models supports
the Principle of Competitive Exclusion, which asserts that “too much” interspecific
competition results in the elimination of a species [10], [34], [50]. According to this
principle, coexistence is not possible when one species in some way dominates a com-
petitive interaction by direct confrontation and interference or by more efficiently
utilizing one or more limited resources (e. g., see [2], [3], [4], [29], [30], [32], [40],
[41], [48], [49], [57], [59], [62], [63], [65]). Put another way, to survive a species must
find ways to avoid interspecific competition [1], [51]. Despite early criticism of this
principle (e.g. see, [5], [6], [8]), it underlies (not always so explicitly) most thinking
about the structure of ecosystems.

The prototypical competition model is, of course, the Lotka/Volterra system of
two differential equations that describes the dynamics of two competing species. That
model shows — as do virtually all existing theoretical models of interference competi-
tion — that coexistence is not possible (i.e., one species asymptotically goes extinct)
when the intensity of interspecific competition is high, as measured by the magni-
tude of competition coefficients in the equations. From the 1930’s to 1960’s several
biologists addressed this competitive exclusion principle by means of laboratory ex-
periments involving pairs of species. Perhaps the most notable of these competition
experiments were those of G. F. Gause [33], using yeast and protozoa, and T. Park
[52], [53], [54] using insects with a more complicated life cycle (flour beetles of the
genus Tribolium). The experimental results, which are today considered classic and
still appear in most ecology textbooks, are interpreted as supporting the principle of
competitive exclusion. One of Park’s later experimental studies, however, yielded a
“difficult to interpret” result that caught his attention and that of his renown collab-
orator P. H. Leslie [55], [46]. This result was seemingly at odds with the competitive
exclusion principle in that neither species was eliminated during the course of the
experiment (over 32 generations). Furthermore, the experimental results imply a
dynamic scenario not permitted by Lotka/Volterra theory (nor, for that matter, by
any competition model known to us), namely, a scenario with three attractors, two
of which imply competitive exclusion and one of which implies competitive coexis-
tence. Park and his collaborators addressed this anomalous “coexistence case” (as
Park referred to it) with both experimental and model studies, but in the end they
offered no theoretical or biological explanation [28], [46].

Park and Leslie did not use the Lotka/Volterra model in their competition stud-
ies. Instead they used a system of difference equations that predict the population
abundance from one census to the next. Their model is based on the discrete logistic
equation [45], [56]

xt+1 = b
1

1 + xt
xt, b > 0 (1)

This difference equation defines a monotone map and therefore implies all solutions
monotonically equilibrate. (The difference equation (1) is related to the logistic dif-
ferential equations as follows. If a solution of the logistic differential equation is
evaluated at equally spaced time intervals, the resulting sequence of population den-
sities will satisfy a difference equation of this form.) If b < 1 then x(t)→ 0; if b > 1
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then x(t)→ b− 1. The Leslie/Gower competition model used by Park and Leslie in
their studies [47] is given by the difference equations

xt+1 = b1
1

1 + xt + c1yt
xt (2)

yt+1 = b2
1

1 + c2xt + yt
yt.

This model couples two discrete logistic populations by means of the interspecific
competition terms c1yt and c2xt, which serve to decrease the recruitment of each
species (at the next time step) due to the presence of the other species.

The system of difference equations (2) defines a monotone (semi) flow and has
exactly the same set of possible dynamic scenarios as the Lotka/Volterra model [20],
[60], [61]. If there exists no positive equilibrium then all orbits in the positive cone
tend to an exclusion equilibrium lying on one of the positive coordinate axes. If
there is a positive equilibrium, then it is either globally asymptotically stable in
the positive cone (competitive coexistence) or it is a saddle. In the latter so-called
“saddle” case all orbits in the positive cone not lying on the stable manifold tend to
an exclusion equilibrium. (Thus, the Leslie/Gower model is the appropriate discrete
analog of the Lotka/Volterra competition model.) The coexistence case occurs only
if the competition coefficients c1 and c2 are sufficiently small (this is the competitive
exclusion principle). Moreover, if both coefficients c1 and c2 are sufficiently large,
then the saddle (competitive exclusion) case occurs.

The anomalous result in Park’s experiment arose in a study of the saddle case
when one culture did not result in competitive exclusion. Edmunds et al. [28] put
forth an hypothesis that explains this result. Their hypothesis is based on an in-
terference competition model different from (2). Their model can exhibit complex,
dynamic scenarios that are considerably different from the four scenarios implied by
the classic Lotka/Volterra theory.

The competition model studied in [28] is built on a dynamic model for stage
structured species (also see [27]). The state variables in the model are the numbers
of individuals in each of three distinct life cycle stages: a growth (larval) stage, a
quiescent (pupal) stage, and a reproductive (adult) stage. The “LPA model”

Lt+1 = bAt exp(−cELLt − cEAAt)

Pt+1 = (1− µL)Lt (3)

At+1 = Pt exp(−cPAAt) + (1− µA)At

has exponential nonlinearities common to many population dynamics models. In
the case of the Tribolium species used by Park in his experiments, these exponential
nonliearities can be derived from an important mechanism that drives their dynamics,
namely cannibalism [14], [19], [22]. The fact that movable stages of each species
(larvae and adults) cannibalize both their own immovable stages (pupae and eggs)
and those of the other species leads to an interference competitive interaction modeled
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by the equations

Lt+1 = b1At exp(−cELLt − cEAAt) exp(−cEllt − cEaat)

Pt+1 = (1− µL)Lt

At+1 = Pt exp(−cPAAt) exp(−cPaat) + (1− µA)At (4)

lt+1 = b2at exp(−cellt − ceaat) exp(−ceLLt − ceAAt)

pt+1 = (1− µl)lt

at+1 = pt exp(−cpaat) exp(−cpAAt) + (1− µa)at.

The LPA model (3) has a considerable track record of successes in describing the
dynamics of Tribolium (and in particular the same species used by Park) [9], [11],
[12], [13], [17], [18], [19], [22], [23], [24], [25], [26], [36], [37], [38], [39], [44]. Because of
this record, we anticipate that one could successfully use the competition LPA model
(4) to account for the results of Park’s classic competition experiments and, perhaps,
the anomalous result described above.

Edmunds [27] gives some fundamental analysis of (4). That analysis, together
with computer explorations, shows that the competition model can exhibit the clas-
sic Lotka/Volterra dynamic scenarios for certain parameter ranges. However, the
model can also exhibit many other dynamic scenarios unlike those of Lotka/Volterra.
Edmunds et al. [28] use one such non-Lotka/Volterra scenario to offer a possible
explanation of Park’s anomalous result.

Using parameter values consistent with those estimated for Tribolium casteneum
in many previous studies, Edmunds et al. found that coexistence was possible with
increases in certain interspecific competition coefficients in the model (4), seemingly
contrary to the competitive exclusion principle. (One intriguing finding of Park was
that cannibalism rates for the anomalous “coexistence” culture had increased during
the course of his experiment.) Specifically, as the interspecific competition coefficients
ceL and cEl increase, the equilibrium configuration in the model assumes that of
the saddle case, as is typical in classic Lotka/Volterra theory. However, as these
competition coefficients continue to increase, a critical point is reached where a sudden
onset of stable coexistence 2-cycles occurs (by means of a saddle-node bifurcation).
This dynamic scenario possesses three attractors: two exclusion equilibria and a
coexistence 2-cycle. This configuration is robust against further increases in the
competition coefficients, and the basins of attraction of the coexistence 2-cycles are
significantly large. This bifurcation scenario has several interesting features that we
would like to understand better (not only with regard to the Tribolium experiments,
but with regard to the fact that (4) is a rather general model of competition between
two species with a commonly occurring, three stage life cycle).

We would like to know what mechanisms, mathematical and biological, cause the
following (non-Lotka/Volterra) phenomena to occur in a competition model:

(a) coexistence of two species is promoted by increasing the interspecific
coefficients;
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(b) multiple attractor scenarios in which competitive coexistence and ex-
clusion attractors (not necessarily equilibria) appear together, with as-
ymptotic outcomes dependent on initial conditions.

Property (a) stands out because it is seemingly at odds with a fundamental tenet
underlying virtually all ecological studies involving competition and ecological niche.
For example, a recent review of current theoretical and empirical thinking about com-
petitive coexistence states that coexistence requires “that intraspecific competition is
stronger than interspecific competition”. In addition, coexistence necessitates “some
form of niche difference or partitioning between species that increases the strength of
intraspecific competition relative to that of interspecific competition” [1].

One approach to addressing phenomena (a) and (b) is to consider the differences
between the Leslie/Gower competition model (discrete Lotka/Volterra model) and
the competition LPA model and to investigate these differences individually (and in
various combinations) in order to determine which promote (a) and/or (b). The three
main differences between the two competition models are: the LPA model contains
life cycle stages (time delays, to a mathematician); the LPA model has a “stronger”
nonlinearity (an exponential or Ricker type nonlinearity); and in the LPA model there
is explicit iteroparity (reproducing adults can live longer than one unit of time). We
can ask: which of these properties when incorporated into the Leslie/Gower model
will promote phenomena (a) and/or (b) and why?

We have only begun an investigation of these questions and we are far from having
complete answers. However, in the next section we give an example that demonstrates
how the addition of a life cycle stage (time delay) to the Leslie/Gower competition
model can give rise to phenomena (a) and (b). In this example these phenomena are
not as robust as they are in the competition LPA model. Nonetheless, the example
demonstrates that the introduction of a single life cycle stage into one of the species
in a competitive system is capable of producing both (a) and (b).

2 A STAGE STRUCTURED COMPETITIONMODEL

The system of difference equations

Jt+1 = b1
1

1 +At + c1yt
At

At+1 = (1− µ)Jt (5)

yt+1 = b2
1

1 + c2Jt + yt
yt

is a modification of the Leslie/Gower competition model (2) in which species x has
been given two life cycle stages, a juvenile (non-reproducing) stage J and an adult
(reproducing) stage A. According to the first equation, juvenile recruits at time t+1
are produced by the adult stage with an inherent, per capita recruitment rate b1
that is discounted by a fraction dependent on the adult population numbers and
the number of species y. The second equation simply states that a fraction µ of
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juveniles die and do not become adults in one unit of time. The final equation is the
discrete logistic equation for species y in which there are competitive effects from the
juvenile class J of the competing species. Clearly other types of life cycle histories
and interspecific couplings could be used to modify the unstructured Leslie/Gower
model, but here we will restrict attention to model (5). (See Section 3.)

In (5) species y is governed by the discrete logistic equation in the absence of
the J,A species. Thus, when the species J,A is absent, species y will equilibrate
(going extinct if b2 < 1 and surviving if b2 > 1). In the absence of the y species, the
dynamics of the J,A species are described by the difference equations

Jt+1 = b1
1

1 +At
At (6)

At+1 = (1− µ)Jt.

This “delayed logistic” model has two equilibria

(Je, Ae) = (0, 0) and
µ
n− 1
1− µ

, n− 1
¶

(7)

where we have defined
n , b1(1− µ).

Biologically n is the inherent net reproductive number, i.e., n is the expected number
of juveniles produced by one adult during the course of its lifetime [16], [14], [66]. As
functions of n these two equilibrium branches cross at n = 1 where a transcritical
bifurcation occurs. Clearly positive initial conditions J0 > 0, A0 > 0 yield positive
solutions Jt > 0, At > 0. Similarly, non-negative initial conditions J0 ≥ 0, A0 ≥ 0
yield non-negative solutions Jt ≥ 0, At ≥ 0. Furthermore, the union of the non-
negative coordinate axes in the J,A plane is forward invariant.

For non-negative initial conditions we have

0 ≤ Jt+1 ≤ b1At (8)

0 ≤ At+1 = (1− µ)Jt

and a straightforward induction argument shows that n < 1 implies limt→∞ (Jt, At) =
(0, 0) . (If each adult does not at least replace itself over its lifetime, the population
will go extinct.)

On the other hand, if n > 1 then the trivial equilibrium (J,A) = (0, 0) is unstable
and the positive equilibrium in (7) is globally asymptotically stable (GAS) in the
positive cone. To see this, we calculate the JacobianÃ

0 b1
(A+1)2

1− µ 0

!

and evaluate it at the two equilibria. For the trivial equilibrium the Jacobian has
eigenvalues ±√n. For the positive equilibrium the Jacobian has eigenvalues ±1/√n.
These eigenvalues imply an exchange of local asymptotic stability (LAS) between the
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two equilibrium branches as n increases through the bifurcation value n = 1. To see
that the positive equilibrium globally attracts positive initial conditions when n > 1,
we note that the composite map

Jt+2 = n
1

1 + (1− µ)Jt
Jt (9)

At+2 = n
1

1 +At
At

consists of two uncoupled, discrete logistic equations. It follows that

lim
t→∞ (J2t, A2t) =

µ
n− 1
1− µ

, n− 1
¶

and from (6) that

lim
t→∞ (J2t+1, A2t+1) = lim

t→∞

µ
b1

1

1 +A2t
A2t, (1− µ)J2t

¶
=

µ
n− 1
1− µ

, n− 1
¶
.

The positive equilibrium is not, however, a global attractor for non-negative initial
conditions. (The coordinate axes are invariant.) Using the composite equations we
find that an initial condition J0 = 0, A0 > 0 (or J0 > 0, A0 = 0) produces a solution
that tends to a 2-cycleµ

0
n− 1

¶
→
µ n−1

1−µ
0

¶
→
µ

0
n− 1

¶
→ · · · (10)

In this cycle the juvenile and adult classes are temporally separated and, for this
reason, we refer to the cycle as a synchronous 2-cycle [15], [21]. This synchronous
2-cycle is GAS within the invariant coordinate axes. It is, however, unstable within
the two dimensional J,A plane. Nonetheless, this 2-cycle will play an important role
in the dynamics of the competition model (5).

Next we turn our attention to the two species competition system (5). We begin
with an investigation of equilibria. The system (5) has the following equilibrium
points (J,A, y):

E0 : (0, 0, 0), E1 : (0, 0, b2 − 1), E2 :

µ
n− 1
1− µ

, n− 1, 0
¶

E3 :

µ
(b2 − 1) c1 − (n− 1)

c1c2 − (1− µ)
, (1− µ)

(b2 − 1) c1 − (n− 1)
c1c2 − (1− µ)

,
(n− 1) c2 − (b2 − 1) (1− µ)

c1c2 − (1− µ)

¶
.

The inequalities (8) and 0 ≤ yt+1 ≤ b2yt hold for solutions of the competition model
(5) with non-negative initial conditions. It follows that the J,A species goes extinct
if n < 1 and the y species goes extinct if b2 < 1. Therefore, we assume

n > 1, b2 > 1.

This assumption implies both equilibria E1 and E2 are non-negative. It also implies
that the extinction equilibrium E0 is unstable, since eigenvalues of the Jacobian
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evaluated at the equilibrium are b2, ±√n. Therefore, the isolated invariant point E0
is a repellor and no orbit can approach it as t → +∞; that is to say, E0 is equal
to its own stable set (it is clear from equations (5) that no orbit can reach E0 in
finitely many steps). It follows that the competition model is uniformly persistence
with respect to E0 [43].

The Jacobian

M(J,A, y) =

 0 b1
yc1+1

(A+yc1+1)
2 − c1b1A

(A+yc1+1)
2

1− µ 0 0

− c2b2y

(y+Jc1+1)
2 0 b2

Jc2+1
(y+Jc2+1)

2


evaluated at the competitive exclusion equilibria E1 and E2 has eigenvalues

1

b2
, ±

r
n

(b2 − 1) c1 + 1
and

±
r
1

n
,

(1− µ) b2
(n− 1) c2 + 1− µ

respectively. The stability properties summarized in Table 1 follow from these calcula-
tions. The local stability analysis using the Jacobian evaluated at E3 was performed,
using the Jury conditions and the help of a computer algebra program, by Professor
Lih-Ing Roeger1.

The local stability properties of the equilibria in Table 1 are exactly the same as
those in classical Lotka/Volterra theory. Equilibrium coexistence is possible if and
only if the interspecific coefficients c1 and c2 are sufficiently small. However, unlike
the Lotka/Volterra equilibrium scenarios, the stability properties in Table 1 are local
and are not necessarily global. To see this, we turn our attention to 2-cycle solutions
of the competition model (5).

In this paper we will not present a complete study of the existence and stability
of 2-cycle solutions of the competition model. Instead we will focus on a particular
branch of synchronous 2-cycles. The inherent synchronous 2-cycle (10) gives the
exclusion synchronous 2-cycle 0

n− 1
0

→
 n−1

1−µ
0
0

→
 0

n− 1
0

→ · · · (11)

for the competition model (5) (in which species y is absent). The (local asymptotic)
stability of this 2-cycle can be determined from the eigenvalues of the Jacobian of the
composite map, which is the product

M(0, n− 1, 0)M
µ
n− 1
1− µ

, 0, 0

¶
=


1
n 0 −n−1

n
b2c1

c2(n−1)+1−µ
0 n 0

0 0
(1−µ)b22

c2(n−1)+1−µ

 (12)

1Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409
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whose eigenvalues appear along the diagonal. This 2-cycle is unstable since n > 1.
If we consider stability of the cycle (11) within the invariant, non-negative coor-

dinate planes J = 0 or A = 0 of the J,A, y phase space, then the 2-cycle (11) is LAS
provided the eigenvalue in the lower right corner is less than 1. We say equilibria or
cycles that lie in these invariant coordinate planes are synchronously LAS (or sLAS)
if they are LAS within the invariant J = 0 or A = 0 coordinate planes (i.e., with
respect to solutions whose J,A components are synchronous). If they are unstable in
these invariant planes, then we say they are synchronously unstable (or s-unstable).

Thus, the exclusion 2-cycle (11) is sLAS if competition is sufficiently intense in
the sense that

c2 > c∗ , (1− µ)
b22 − 1
n− 1 ,

and it is s-unstable if competition is weak: c2 < c∗. (Note c∗ > c∗2 in Table 1.)
This loss of synchronous stability occurs because an eigenvalue of the Jacobian (12)
passes through +1, which suggests a transcritical bifurcation with another branch
of 2-cycles. To find this bifurcating branch of synchronous 2-cycles, we examine the
fixed points of the composite map 0

A
y

→
 n

1−µ
1

1+A+c12y
A

0
b2

1
1+yy

→
 0

n 1
1+A+c1y

A

b22
1

1+(1+b2)y+c2
n

1−µ
1+y

1+A+c1y
A
y

 ,

which yields the equations

A = n− 1− c1y
c1c2y

2 − ((1 + b2) (1− µ) + c2 (n− c1 − 1)) y +
¡
b22 − 1

¢
(1− µ)− c2 (n− 1) = 0

(13)
for A and y. A positive solution y > 0 of the uncoupled second equation in (13)
yields a non-negative, coexistence synchronous 2-cycle provided 0 < y < (n − 1)/c1
(so that A > 0).

We are interested in the case when there is strong competition between the species,
i.e., when c1 and c2 are both large. We can facilitate a study of this case by introducing
a single parameter that measures the intensity of interspecific competition as follows.
We fix the ratio

r , c1
c2

between the competition coefficients and define

c , c2.

In terms of r and c the 2-cycle equations (13) become

A = n− 1− rcy

rc2y2 − ((1 + b2) (1− µ) + c (n− rc− 1)) y + ¡b22 − 1¢ (1− µ)− c (n− 1) = 0. (14)
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The second (quadratic) equation has a solution y = y(c) that satisfies y(c∗) = 0 and,
consequently, bifurcates from the exclusion synchronous 2-cycle (11) at c = c∗. The
direction of bifurcation is determined by the sign of y0(c∗), which can be calculated
by an implicit differentiation of (14):

y0 (c∗) < 0 if r < r∗

y0 (c∗) > 0 if r > r∗

r∗ , 1

1− µ

µ
n− 1
b2 − 1

¶2 b2
b2 + 1

.

By the exchange of stability principle, the bifurcating coexistence synchronous 2-
cycles are sLAS near the bifurcation point if r < r∗ and s-unstable if r > r∗. See
Figure 1. (This can also be proved using a Liapunov-Schmidt analysis near the
bifurcation point.) The coexistence 2-cycles are not LAS, however, with respect to
nonsynchronous solutions near the bifurcation point (i.e., in the three dimensional
J,A, y space).

FIGURE 1

FIGURE 2

When r < r∗ the branch of coexistence synchronous 2-cycles globally extends
in one of two ways as shown in Figure 2. One possibility (Figure 2b) is that the
bifurcating coexistence 2-cycle branch “turns around” and a saddle-node bifurcation
of synchronous 2-cycles occurs. Numerical explorations indicate that s-LAS is lost
along the branch when this occurs (i.e., the upper branch is s-unstable). The saddle-
node bifurcation of 2-cycles occurs in a parameter region in which the equilibrium
configuration is that of the competitive exclusion saddle case of Lotka/Volterra theory.
The result is an interval of parameter values for which there are three attractors, two
of which are exclusion equilibria and one of which is a coexistence 2-cycle. A numerical
example is shown in Figure 3. This is the same scenario observed in the competition
LPA model by Edmunds et al. [28].

It is interesting to note that it is possible for the synchronous coexistence 2-cycles
to be LAS in the three dimensional J,A, y phase space. This occurs in the case shown
in Figure 2b and 2c near each of the two saddle-node bifurcations. (Also see Figure
3b.)

FIGURE 3

3 CONCLUSIONS

In theoretical models of interference competition between two biological species, large
values of interspecific competition coefficients (relative to intraspecific competition
coefficients) typically imply that one species will go extinct. This is the basis of
the principle of competitive exclusion, which states that in order for two species to
coexist they must find a way to decrease their competitive interactions (i.e., find
their own “niche”). A large number of mechanisms utilized by species to avoid
competition has been identified (for a list of 120 such mechanisms see [51]), most of
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which involve spatial, temporal, or resource separation). None of these mechanisms
are applicable to the coexistence case observed in Park’s experiment with Tribolium or
to the explanation based on the competition LPA model given in [28]. In the latter
explanation, coexistence was promoted by an increase in interspecific competition
coefficients and the onset of non-equilibrium coexistence attractors (properties (a)
and (b)). In this paper we used the “toy” model example (5) to illustrate these
phenomena.

The models we examined do not, however, exhibit the phenomena (a) and (b)
in as robust a way as does the competition LPA model. A multiple attractor sce-
nario of mixed coexistence and exclusion attractors can arise from the model (5)
on an interval of sufficiently large values of the interspecific competition coefficients.
However, unlike for the LPA model, this parameter interval is of finite length, and
the coexistence 2-cycles are only synchronous stability (except on a small subinterval
where they are LAS). Moreover, simulations show that the basins of attraction of
the coexistence cycles of (5) are restricted to an open region close to the invariant
coordinate planes. The coexistence cycles in the LPA model, on the other hand, have
basins of attraction that are significantly large in phase space.

Nonetheless, example (5) does at least illustrate that the introduction of a life
cycle stage into (even only one species in) a model that predicts the principle of
competitive exclusion (i.e., that asymptotically has only the Lotka/Volterra scenarios)
can exhibit the properties (a) and (b).

Properties (a) and (b) can appear more robustly in models that include other
nonlinear interactions among the life cycle stages J and A and the competing species
y :

Jt+1 = b1
1

1 + c11Jt + c12At + c13yt
At

At+1 = (1− µ)
1

1 + c21Jt + c22At + c23yt
Jt (15)

yt+1 = b2
1

1 + c31Jt + c32At + c33yt
yt.

We presented the special case (5) in Section 2 because of its analytic tractability.
For example, a modification of (5) that includes a juvenile density effect in adult

reproduction, namely the equations

Jt+1 = b1
1

1 + c11Jt +At + rcyt
At

At+1 = (1− µ)Jt

yt+1 = b2
1

1 + cJt + yt
yt

with c11 > 0, exhibits the same bifurcation diagrams as appear in Figure 2. However,
the interval for the interspecific competition coefficient c on which the coexistence
synchronous 2-cycles are three dimensionally LAS is lengthened and the basins of
attraction of the 2-cycles are considerably increased in size.
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These examples demonstrate how life history characteristics can play an important
role in the dynamics of interacting populations and, in particular, how they can
promote competitive coexistence and hence ecological diversity (see [64], [7] and the
references cited therein). An interesting open question is whether the phenomena (a)
and (b) that arise in the competition LPA model, and in simpler competition models
of the form (15), are in contradiction to the principle of competitive exclusion or
whether they might, in some way, be reconciled with that principle.
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TABLES AND FIGURES

Equilibrium Unstable Locally asymptotically stable

E1 c1 < c∗1 c∗1 < c1
E2 c2 < c∗2 c∗2 < c2
E3 c∗1 < c1, c

∗
2 < c2 c1 < c∗1, c2 < c∗2

TABLE 1. The local stability properties of the three nontrivial equilib-
ria of competition model (5) are expressed in terms of the interspecific
competition coefficients c1 and c2. The critical values of c1 and c2 in this
table are c∗1 , (n− 1) / (b2 − 1) , c∗2 , (1− µ) (b2 − 1) / (n− 1).

s-stables-unstable

s-stable

s-unstable

y

c
c*

r > r*

s-stables-unstable

s-stable

s-unstable

y

0
c*

r < r*

FIGURE 1. A branch y = y(c) of solutions of equation (14) transcrit-
ically bifurcates with the trivial solution y = 0 at c = c∗. The positive
solution branch yields coexistence synchronous 2-cycles of the competition
model (5). In the “subcritical” bifurcation case r < r∗, the coexistence
2-cycles are synchronously LAS. They are unstable, however, with respect
to non-synchronous solutions.jpb
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c

(c)
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FIGURE 2. In (a) and (b) appear two examples of the subcritical
bifurcation case (r < r∗) that illustrate the possible global geometry of
the coexistence synchronous 2-cycle branch that bifurcates from y = 0
at c = c∗. Also shown is another branch of coexistence synchronous 2-
cycles. Parameter values are µ = 0.2, b2 = 5, and r = 1. The broken line
indicates the curve A = n− 1− rcy = 0 below which A > 0. For c > c∗1
the equilibrium configuration is the saddle competitive exclusion case of
Lotka/Volterra theory (the exclusion equilibria E1 and E2 are LAS and
the coexistence equilibrium E3 is unstable).

In (a) n = 6.5 (b1 = 8.125), c∗2 = 0.5818, c∗1 = 1.375, and c∗ = 3.491.
The bifurcating branch extends to the vertical axis where c = 0. Nu-
merical simulations indicate that the 2-cycles from the other branch are
s-unstable.

In (b) n = 6.3 (b1 = 7.875), c∗2 = 0.6038, c∗1 = 1.325, and c∗ = 3.623.
The bifurcating branch “turns around” to form a saddle-node bifurcation
of 2-cycles at c = 2.758. Numerical simulations indicate that the 2-cycles
from the upper branch are s-unstable. A similar, but reverse saddle-node
bifurcation also occurs at c = 1.741.
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(c) Numerical simulations show that the synchronous 2-cycles are fully
LAS in J,A, y phase space near the both saddle-node bifurcation points
in (b). The parameter intervals of LAS are small, however: 2.758 < c <
2.835 for the saddle-node bifurcation at c = 2.758 (shown) and 1.693 <
c < 1.741 for the saddle-node bifurcation at c = 1.741 (not shown).
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FIGURE 3. Three initial conditions produce solutions of the compe-
tition model (5) with three different attractors. (a) The solution with
initial conditions (J0, A0, y0) = (6.362, 0.8290, 0.3819) tends to the exclu-
sion equilibrium E2 = (6.625, 5.3, 0). (b) The solution with initial con-
ditions (J0, A0, y0) = (3.881, 0.07095, 3.371) tends to a coexistence syn-
chronous 2-cycle. (c) The solution with initial conditions (J0, A0, y0) =
(3.173, 0.02234, 3.912) tends to the exclusion equilibrium E1 = (0, 0, 4).
Parameter values are µ = 0.2, b2 = 5, n = 6.3. (b1 = 7.875), r = 1,
c = 2.8 (c1 = c2 = 2.8).
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