Scaling Up Coordinate Descent Algorithms
for Large /; Regularization Problems

Chad Scherrer
Pacific Northwest National Laboratory

Mahantesh Halappanavar
Pacific Northwest National Laboratory

Ambuj Tewari
University of Texas at Austin

David Haglin
Pacific Northwest National Laboratory

Abstract

We present a generic framework for par-
allel coordinate descent (CD) algorithms
that includes, as special cases, the orig-
inal sequential algorithms Cyclic CD and
Stochastic CD, as well as the recent paral-
lel Shotgun algorithm. We introduce two
novel parallel algorithms that are also spe-
cial cases—Thread-Greedy CD and Coloring-
Based CD—and give performance measure-
ments for an OpenMP implementation of
these.

1. Introduction

Consider the ¢;-regularized loss minimization problem

min -3 ey (Xw)) 4wl (1)

i=1

where X € R™¥* is the design matrix, w € R” is
a weight vector to be estimated, and the loss func-
tion ¢ is such that {(y,-) is a convex differentiable
function for each y. This formulation includes Lasso
((y,t) = 3(y — t)?) and (1-regularized logistic regres-
sion (£(y,t) = log(1 + exp(—yt))).

In this context, we consider a coordinate descent (CD)
algorithm to be one in which each iteration performs

Appearing in Proceedings of the 29" International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

CHAD.SCHERRER@PNNL.GOV

MAHANTESH.HALAPPANAVARQPNNL.GOV

AMBUJQCS.UTEXAS.EDU

DAVID.HAGLIN@QPNNL.GOV

updates to some number of coordinates of w, and each
such update requires traversal of only one column of
X.

The goal of the current work is to identify and exploit
the available parallelism in this class of algorithms,
and to provide an abstract framework that helps to
structure the design space.

Our approach focuses on shared-memory architec-
tures, and in particular our experiments use the
OpenMP programming model.

This paper makes several contributions to this field.
First, we present GenCD, a Generic Coordinate
Descent framework for expressing parallel coordinate
descent algorithms, and we explore how each step
should be performed in order to maximize parallelism.

In addition, we introduce two novel special cases of
this framework: Thread-Greedy Coordinate Descent
and Coloring-Based coordinate descent, and compare
their performance to that of a reimplementation of the
recent Shotgun algorithm of Bradley et al. (2011), in
the context of logistic loss.

A word about notation: We use bold to indicate vec-
tors, and uppercase bold to indicate matrices. We de-
note the jth column of X by X; and the ith row of X
by x7. We use e’ to denote the vector in R¥ consist-
ing of all zeros except for a one in coordinate j. We
assume the problem at hand consists of n samples and
k features.



Scaling Up Coordinate Descent

Table 1. Arrays stored by GenCD

| Name | Dim | Description [ Step |
4] k proposed increment | Propose
7 k proxy Propose
w k weight estimate Update
Z n fitted value Update

2. GenCD: A Generic Framework for
Parallel Coordinate Descent

We now present GenCD, a generic coordinate descent
framework. Each iteration computes proposed incre-
ments to the weights for some subset of the coordi-
nates, and then accepts a subset of these proposals,
and modifies the weights accordingly. Algorithm 1
gives a high-level description of GenCD.

Algorithm 1 GenCD
while not converged do
Select a set of coordinates J
Propose increment 6;,j € J // parallel
Accept some subset J' C J of the proposals
Update weight w; for all j € J* // parallel

In the description of GenCD, we refer to a number
of different arrays. These are summarized in Table 1.
For some algorithms, there is no need to maintain a
physical array in memory for each of these. For ex-
ample, it might be enough for each thread to have a
representation of the proposed increment §; for the
column j it is currently considering. In such cases the
array-oriented presentation serves only to benefit the
uniformity of the exposition.

2.1. Step One: Select

We begin by selecting J coordinates for considera-
tion during this major step in an iteration of GenCD.
The selection criteria differs for variations of CD tech-
niques.

There are some special cases at the extremes of this
selection step. Sequential algorithms like cyclic CD
(CCD) and stochastic CD (SCD) correspond to se-
lection of a singleton, while parallel “full greedy” CD
corresponds to J = {1,--- , k}.

Between these extremes, Shotgun (Bradley et al.,
2011) selects a random subset of a given size. Other
obvious choices include selection of a random block of
coordinates from some predetermined set of blocks.

Though proposals can be computed in parallel, the
number of features is typically far greater than the

number of available threads. Thus in general, we
would like to have a mechanism for scaling the number
of proposals according to the degree of available paral-
lelism. As the first step of each iteration, we therefore
select a subset J of the coordinates for which proposals
will be computed.

2.2. Step Two: Propose

Given the set J of selected coordinates, the second
step computes a proposed increment 8; for each j €
J. Note that this step does not actually change the
weights; &, is simply the increment to w; if it were
to be updated. This is critical, as it allows evaluation
over all selected coordinates to be performed in parallel
without concern for conflicts.

Some algorithms such as Greedy CD require a way
of choosing a strict subset of the proposals to accept.
Such cases require computation of a value on which
to base this decision. Though it would be natural to
compute the objective function for each proposal, we
present the more general case where we have a prozy
for the objective, on which we can base this decision.
This allows for cases where the objective function is
relatively expensive but can be quickly approximated.

We therefore maintain a vector ¢ € R¥, where ¢; is a
proxy for the objective function evaluated at w+d;€”,
and update ¢; whenever a new proposal is calculated
for 7.

Algorithm 2 shows a generic Propose step.

Algorithm 2 Propose step
for each j € J do
Update proposed increment 6,
Update proxy ¢;

// parallel

2.3. Step Three: Accept

Ideally, we would like to accept as many proposals as
possible in order to avoid throwing away work done
in the proposal step. Unfortunately, as Bradley et al.
(2011) show, correlations among features can lead to
divergence if too many coordinates are updated at
once. So in general, we must restrict to some sub-
set J' C J. We have not yet explored conditions of
convergence for our new Thread-Greedy algorithm (see
Section 7) but find robust convergence experimentally.

In some algorithms (CCD, SCD, and Shotgun), fea-
tures are selected in a way that allows all proposals
to be accepted. In this case, an implementation can
simply bypass the Accept step.



Scaling Up Coordinate Descent

2.4. Step Four: Update

After determining which proposals have been ac-
cepted, we must update according to the set J' of
proposed increments that have been accepted.

In some cases, the proposals might have been com-
puted using an approximation, in which case we might
like to perform a more precise calculation for those
that are accepted.

As shown in Algorithm 3, this step updates the
weights, the fitted values, and also the derivative of
the loss.

Algorithm 3 Update step
for each j € J' do
Improve d;
W, «— W; + 5j
7 <— 7+ (5ij

// parallel

// atomic

Note that each iteration of the for loop can be done
in parallel. The w; updates depend only upon the
improved 6;. While the updates to z have the po-
tential for collisions if X;;, = X,;;, for some distinct
j1,7J2 € J', this is easily avoided by using atomic mem-
ory updates available in OpenMP and other shared
memory platforms.

3. Approximate Minimization

As described above, the Propose step calculates a pro-
posed increment d; for each j € J. For a given j, we
would ideally like to calculate

6 = argmin F(w + de’) + Alw; + 4| , (2)
5

where F' is the smooth part of the objective function,
1 n

F(w) = -3 Uyi (Xw);) (3)
i=1

Unfortunately, for a general loss function, there is
no closed-form solution for full minimization along a
given coordinate. Therefore, one often resorts to one-
dimensional numerical optimization.

Alternatively, approximate minimization along a given
coordinate can avoid an expensive line search. We
present one such approach that follows Shalev-Shwartz
& Tewari (2011).

First, note that the gradient and Hessian of F' are
1
VE(w) ==Y (yi,(Xw);)x;
() = 5 e OXwx

H(w) = %Zﬁ”(yi, (Xw);)x;x! .

3
Here ¢/ and ¢” denote differentiation with respect to
the first variable.
3.1. Minimization for squared loss

For the special case of squared loss, the exact mini-
mizer along a coordinate can be computed in closed
from. In this case, ¢’(y,t) = 1, the Hessian H is con-
stant, and we have the second-order expansion

F(w+38)=F(w)+ (VF(w),d) + %5TH6 .
Along coordinate j, this reduces to

F(w+6e’) = F(w) + V,F(w)5 + %52 .

As is well known (see, for example, (Yuan & Lin,
2010)), the minimizer of (2) is then given by

o VI F(w) A VF(w) £ A
5__¢<Wj’ ] H;; : H;; ) @)

where 1 is the clipping function

a fr<a
Y(x;a,b)=¢ b fz>b
x otherwise .

Note that this is equivalent to

R V,F(w
0 = sx/H,, (WJ' - JH()> — Wi,

JJ
where s is the “soft threshold” function
sr(z) = sign(x) - (|z| = 7)4 ,

as described by Shalev-Shwartz & Tewari (2011).

3.2. Bounded-convexity loss

More generally, suppose there is some 3 such that
9 0(y,z) < 8 for all y,z € R. This condition holds

2
822
for squared loss (8 = 1) and logistic loss (8 = 1/4).
Then, let

- g

Fy(w+6)=F(w)+ (VF(w),d) + §6T5 .



Scaling Up Coordinate Descent

In particular, along any given coordinate j, we have

B
S )

> F(w 4+ 6e’) . (6)

Fy(w +de’) = F(w) + V,; F(w)d +

By (4), this upper bound is minimized at

(7)

5 —y (Wj;VjF(w)—A VjF(w)+/\) |

g ’ B

Because the quadratic approximation is an upper
bound for the function, updating d; « J is guaran-
teed to never increase the objective function.

3.3. A proxy for the objective

In cases where J’ is a strict subset of .J, there must
be some basis for the choice of which proposals to ac-
cept. The quadratic approximation provides a way of
quickly approximating the potential effect of updating
a single coordinate. For a given weight vector w and
coordinate j, we can approximate the decrease in the
objective function by

¢l = ~W(W + Sej) - FW(W) (8)
= 252 + ViF(w)d + A(|jwj + 6] — [w;]) . (9)

4. Experiments
4.1. Algorithms

At this point we discuss a number of algorithms that
are special cases of the GenCD framework. Our intent
is to demonstrate some of the many possible instanti-
ations of this approach. We perform convergence and
scalability tests for these cases, but do not favor any
of these algorithms over the others.

For current purposes, we focus on the problem of clas-
sification, and compare performance across algorithms
using logistic loss. All of the algorithms we tested ben-
efited from the addition of a line search to improve the
weight increments in the Update step. Our approach
to this was very simple: For each accepted proposal
increment, we perform an additional 500 steps using
the quadratic approximation.

SHOTGUN is a simple approach to parallel CD intro-
duced by Bradley et al. (2011). In terms of GenCD, the
Select step of Shotgun chooses a random subset of the
columns, and the Accept step accepts every proposal.
This makes implementation very simple, because it
eliminates the need for computation of a proxy, and
allows for fusion of the Propose and Update loops.

Algorithm 4 Proposal via approximation
for each j € J do // parallel
g (U'(yi,zi),X;) /n // thread-local
—X g+
6 ——v (Wj? 5 %)
©; — 282+ gd; + N(|lw; + 85 — [w;])

Bradley et al. (2011) show that convergence of Shot-
gun is guaranteed only if the number of coordinates
selected is at most P* = Q—kp, where k is the number
of columns of X, and p is the spectral radius (= max-
imal eigenvalue) of XTX. For our experiments, we

therefore use P* columns for this algorithm.

Bradley et al. (2011) suggest beginning with a large
regularization parameter, and decreasing gradually
through time. Since we do not implement this, our
results do not apply to Shotgun variations that use
this approach.

In our novel THREAD-GREEDY algorithm, the Select
step chooses a random set of coordinates. Propos-
als are calculated in parallel using the approximation
described in Equation (7) of Section 3.2, with each
thread generating proposals for some subset of the co-
ordinates. Each thread then accepts the best of the
proposals it has generated.

We have not yet determined conditions under which
this approach can be proven to converge, but our em-
pirical results are encouraging.

Similarly, GREEDY selects all coordinates, and uses
the computed proxy values to find the best for each
thread. However, rather than accept one proposal for
each thread, proxy values are compared across threads,
and only the single best is chosen in the Accept step.
Dhillon et al. (2011) provide an analysis of convergence
for greedy coordinate descent.

COLORING is a novel algorithm introduced in this pa-
per. The main idea here is to determine sets of struc-
turally independent features, in order to allow safe
concurrent updates without requiring any synchro-
nization between parallel processes (threads). Color-
ing begins with the preprocessing step, where struc-
turally independent features are identified via partial
distance-2 coloring of a bipartite graph representation
of the feature matrix. In the Select step, a random
color (or a random feature) is selected. All the fea-
tures that have been assigned this color are updated
concurrently. Based on the colors, a different number
of features could get selected at each iteration.

In contrast to Shotgun, conflicting updates are not
lost. However, we note that Coloring is suitable only



Scaling Up Coordinate Descent

Table 2. Specific cases of the GenCD framework.

’ Algorithm \ Select \ Accept ‘
SHOTGUN Rand subset All
THREAD-GREEDY All Greedy/thread
GREEDY All Greedy
COLORING Rand color All

for sparse matrices with sufficient independence in the
structure. Details of this algorithm are provided in
Appendix A.

Since COLORING only allows parallel updates for fea-
tures with disjoint support, updating a single color is
equivalent to updating each feature of that color in se-
quence. Thus convergence propoerties for COLORING
should be very similar to those of cyclic/stochastic co-
ordinate descent.

Table 2 provides a summary of the algorithms we con-
sider.

4.2. Implementation

We provide a brief overview of software implementa-
tions in this section. All the four algorithms are im-
plemented in C language using OpenMP as the par-
allel programming model Chapman et al. (2007). We
use GNU C/C++ compilers with -03 -fopenmp flags.
Work to be done in parallel is distributed among a
team of threads using OpenMP parallel for con-
struct. We use static scheduling of threads where
each thread gets a contiguous block of iterations of
the for loop. Given n iterations and p threads, each
thread gets a block of % iterations.

Threads running in parallel need to synchronize for
certain operations. While all the algorithms need to
synchronize in the Update step, Algorithm GREEDY
also needs to synchronize during the Select step to de-
termine the best update. We use different mechanisms
to synchronize in our implementations. Concurrent
updates to vector z are made using atomic memory
operations. We use OpenMP atomic directive for up-
dating real numbers and use the x86 hardware opera-
tor __sync_fetch_and_add for incrementing integers.
We use OpenMP critical sections to synchronize
threads in the Propose step of GREEDY algorithm. In
order to preserve all the updates, we synchronize in the
Update step of SHOTGUN. Note that this is different
from the SHOTGUN algorithm as proposed in Bradley
et al. (2011). Since structurally independent features
are updated at a given point of time in the COLORING
algorithm, there is no need for synchronization in the
Update step.

4.3. Platform

Our experimental platform is an AMD Opteron
(Magny-Cours) based system with 48 cores (4 sockets
with 12 core processors) and 256 GB of globally ad-
dressable memory. Each 12-core processor is a multi-
chip module consisting of two 6-core dies with separate
memory controllers. Each processor has three levels of
caches: 64 KB of L1 (data), 512 KB of L2, and 12 MB
of L3. While L1 and L2 are private to each core, L3
is shared between the six cores of a die. Each socket
has 64 GB of memory that is globally addressable by
all four sockets. The sockets are interconnected using
the AMD HyperTransport-3 technology!.

We conduct scaling experiments on this system in pow-
ers of two (1, 2, 4, ..., 32). Convergence results pro-
vided in Figure 1 are on 32 processors for each input
and algorithm.

4.4. Datasets

We performed tests on two sets of data. For each, we
normalized columns of the feature matrix in order to
be consistent with algorithmic assumptions.

DOROTHEA is the drug discovery data described by
Guyon et al. (2004). Here, each example corresponds
to a chemical compound, and each feature corresponds
to a structural molecular feature.

The feature matrix is binary, indicating presence or
absence of a given molecular feature. There are 800
examples and 100,000 features, with 7.3 nonzeros per
feature on average. We estimate P* to be about 23.
Our coloring resulted in a mean color size of 16.

As a response, we are given an indicator of whether
a given compound binds to thrombin. There are 78
examples for which this response is positive.

For the DOROTHEA data set, we used a regularization
parameter of A = 10~%.

REUTERS is the RCV1-v2/LYRL2004 Reuters text
data described by Lewis et al. (2004). In this data,
each example corresponds to a training document, and
each feature corresponds to a term. Values in the
training data correspond to term frequencies, trans-
formed using a standard tf-idf normalization.

The feature matrix consists of 23865 examples and
47237 features. It has 1.7 million nonzeros, or 37.2
nonzeros per feature on average. We estimate P* to
be about 800. Our coloring resulted in a mean color

'Further details on Opteron can be found at http:
//www.amd.com/us/products/embedded/processors/
opteron/Pages/opteron-6100-series.aspx.



Scaling Up Coordinate Descent

Table 3. A summary of data sets.

DOROTHEA | REUTERS

Samples 800 23865
Features 100000 47237
Nonzeros/feature 7.3 37.2
P* 23 800
Features/color 16 22
Time to color 0.7 sec 1.6 sec
Our chosen A 1072 107°
min F(w) + A|wl: | 0.279512 | 0.165044
Best-fit NNZ 14182 1903

size of 22.

Each document in this data is labeled as belonging
to some set of “topics”. The most common of these
(matching 10786 documents) is CCAT, corresponding
to “ALL Corporate-Industrial”. Based on this, we
used membership in the CCAT topic as a response.

For the REUTERS data set, using a regularization pa-
rameter of A = 10™* led to an optimal solution of 0,
so we reduced it to A = 1075,

5. Results And Discussion

5.1. Convergence rates

The results of our convergence experiments are sum-
marized in Figure 1.

First, consider DOROTHEA. Here, Figure 1(a) shows
that all four algorithms were very close to convergence
by the end of 10 minutes. In particular, for THREAD-
GREEDY after the first 224 seconds, both the Objective
function and the number of nonzeros (NNZ) were sta-
ble.

As expected, GREEDY added nonzeros very slowly,
while SHOTGUN and COLORING began by greatly in-
creasing NNZ. Interestingly, though this initially put
GREEDY far behind the other algorithms, but by the
end of the first ten seconds, it is back on track with
SHOTGUN and Coloring.

At around 200 seconds, there is a sudden increase in
NNZ for GREEDY. We are uncertain of the source of
this phenomenon.

Perhaps most striking is that both SHOTGUN and CoOL-
ORING tend to begin by greatly increasing the number
of nonzeros (NNZ). In the case of a very sparse op-
timum like that of DOROTHEA with A = 10~%, this
initial effect is difficult to overcome, and both algo-
rithms are at a disadvantage compared with GREEDY

7

10 x Regularized expected loss
4 5
10 x Regularized expected loss
3 4 5 6
| ) | L

3
2

ot

=

2 163
Time (s)

(b) REUTERS, A = 107°

=
5

10

[

1 10 10°
Time (s)

(a) DOROTHEA, A = 107*

50000
10° 10*
)

Number of Nonzeros
2000 10000
Number of Nonzeros
10 10%
! . .

2 10° o

Time (s)

(d) REUTERS, A = 107"

[

1 10 10°
Time (s)

10

=
o
=

(c) DOROTHEA, A = 1074

Figure 1. Convergence results for SHOTGUN, THREAD-

GREEDY, GREEDY, and COLORING.

and THREAD-GREEDY. This effect is less dramatic for
REUTERS, where the optimal solution has more nonze-
ros, and we suspect it would disappear entirely for
problems with near-dense optima.

Overall, performance of COLORING and SHOTGUN were
remarkably similar for both data sets.

5.2. Scalability

Figure 2 shows scalability across algorthims, in terms
of the number of updates per second. GREEDY makes
updates relatively slowly, due to the large amount of
work preceding an update in a given iteration. While
the proposals can be computed in parallel, the threads
must synchronize in order to identify the single best
coordinate to update. This synchronization, and the
subsequent update in serial, reduces parallel efficiency.

The THREAD-GREEDY has no such synchronization,
and allows the number of updates to increase with the
number of threads. The only concern we foresee is
potential divergence if the number of threads is too
large.

On DOROTHEA, COLORING and SHOTGUN have similar
scalability. REUTERS has a similar number of feau-
tures per color, but P* is much higher (800 vs 23 for



Scaling Up Coordinate Descent

qgi / i /
$ g
g g
g, g, |
£ £%
=] o
/ ol
o N J——————
2 4 8 16 32 2 4 8 16 32
Processors Processors
(a) DOROTHEA (b) REUTERS
Figure 2. Scalability for SHOTGUN, THREAD-GREEDY,

GREEDY, and COLORING.

DOROTHEA). This leads to greater scalability for SHOT-
GUN in this case, but not for COLORING.

6. Related work

The importance of coordinate descent methods for
{1 regularized problems was highlighted by Friedman
et al. (2007) and Wu & Lange (2008). Their insights
led to a renewed interest in coordinate descent meth-
ods for such problems. Convergence analysis of and
numerical experiments with randomized coordinate or
block coordinate descent methods can be found in the
work of Shalev-Shwartz & Tewari (2011), Nesterov
(2010) and Richtérik & Takac (2011a). Greedy coordi-
nate descent is related to boosting, sparse approxima-
tion, and computational geometry. Clarkson (2010)
presents a fascinating overview of these connections.
Li & Olsher (2009) and Dhillon et al. (2011) apply
greedy coordinate descent to ¢; regularized problems.
Recently, a number of authors have looked at par-
allel implementations of coordinate descent methods.
Bradley et al. (2011) consider the approach of ignoring
dependencies, and updating a randomly-chosen sub-
set of coordinates at each iteration. They show that
convergence is guaranteed up to a number of coordi-
nates that depends on the spectral radius of XTX.
Richtarik & Taka¢ (2011b) present an approach us-
ing GPU-accelerated parallel version of greedy and
randomized coordinate descent. Yuan & Lin (2010)
present an empirical comparison of several methods,
including coordinate descent, for solving large scale ¢
regularized problems. However, the focus is on serial
algorithms only. A corresponding empirical study for
parallel methods does not exist yet partly because the
landscape is still actively being explored. Finally, we
note that the idea of using graph coloring to ensure
consistency of parallel updates has appeared before
(see, for example, (Bertsekas & Tsitsiklis, 1997; Low

et al., 2010; Gonzalez et al., 2011)).

7. Conclusion

We presented GenCD, a generic framework for ex-
pressing parallel coordinate descent algorithms, and
described four variations of algorithms that follow this
framework. This framework provides a unified ap-
proach to parallel CD, and gives a convenient mech-
anism for domain researchers to tailor parallel imple-
mentations to the application or data at hand. Still,
there are clearly many questions that need to be ad-
dressed in future work.

Our THREAD-GREEDY approach can easily be extended
to one that accepts the best |J'| proposals, indepen-
dently of which thread proposed to update a given
coordinate. This would have additional synchroniza-
tion overhead, and it is an open question whether this
overhead could be overcome by the improved Accept
step.

Another open question is conditions for convergence of
the THREAD-GREEDY algorithm. A priori, one might
suspect is would have the same convergence criteria as
SHOTGUN. But for DOROTHEA, P* = 23, yet updating
a coordinate for each of 32 threads results in excellent
convergence.

It is natural to consider extending SHOTGUN by parti-
tioning the columns of the feature matrix into blocks,
and then computing a P, for each block b. Intuitively,
this can be considered a kind of “soft” coloring. It
remains to be seen what further connections between
these approaches will bring.

Our COLORING algorithm relies on a preprocessing
step to color the bipartite graph corresponding to the
adjacency matrix. Like most coloring heuristics, ours
attempts to minimize the total number of colors. But
in the current context, fewer colors does not necessar-
ily correspond with greater parallelism. Better would
be to have a more balanced color distribution, even if
this would require a greater number of colors.

References

Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Dis-
tributed Computation: Numerical Methods. Athena
Scientific, 1997.

Bradley, J. K., Kyrola, A., Bickson, D., and Guestrin,
C. Parallel Coordinate Descent for L1-Regularized
Loss Minimization. In International Conference on
Machine Learning, 2011.

Catalyurek, U., Feo, J., Gebremedhin, A., Halap-



Scaling Up Coordinate Descent

panavar, M., and Pothen, A. Graph Coloring Algo-
rithms for Multi-core and Massively Multithreaded
Architectures. Accepted for publication by Journal
on Parallel Computing Systems and Applications,
2011.

Chapman, Barbara, Jost, Gabriele, and Pas, Ruud
van der. Using OpenMP: Portable Shared Mem-
ory Parallel Programming (Scientific and Engineer-
ing Computation). The MIT Press, 2007. ISBN
0262533022, 9780262533027.

Chung, F. R. K. Spectral Graph Theory. American
Mathematical Society, 1997.

Clarkson, K. L. Coresets, sparse greedy approxima-
tion, and the Frank-Wolfe algorithm. ACM Trans-
actions on Algorithms, 6(4):1-30, August 2010.

Dhillon, I. S., Ravikumar, P., and Tewari, A. Near-
est neighbor based greedy coordinate descent. In
Advances in Neural Information Processing Systems
24, 2011.

Friedman, J., Hastie, T., Hofling, H., and Tibshirani,
R. Pathwise coordinate optimization. Annals of
Applied Statistics, 1(2):302-332, 2007.

Gonzalez, J., Low, Y., Gretton, A., and Guestrin, C.
Parallel gibbs sampling: From colored fields to thin
junction trees. Journal of Machine Learning Re-
search - Proceedings Track, 15:324-332, 2011.

Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G. Re-
sult analysis of the NIPS 2003 feature selection chal-
lenge. Advances in Neural Information Processing
Systems, 17:545-552, 2004.

Lewis, D., Yang, Y., Rose, T., and Li, F. RCV1: A
New Benchmark Collection for Text Categorization
Research. Journal of Machine Learning Research, 5:
361-397, 2004.

Li, Y. and Olsher, S. Coordinate Descent Optimization
for £; Minimization with Application to Compressed
Sensing ; a Greedy Algorithm Solving the Uncon-
strained Problem. Inverse Problems and Imaging,
3:487-503, 2009.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D.,
Guestrin, C., and Hellerstein, J. M. Graphlab:
A new framework for parallel machine learning.
In Proceedings of the Twenty-Sizth Conference on
Uncertainty in Artificial Intelligence, pp. 340-349,
2010.

Nesterov, Y. Efficiency of coordinate descent methods
on huge-scale optimization problems. Technical Re-
port CORE Discussion Paper #2010/2, Université
Catholique de Louvain, 2010.

Nikiforov, V. Chromatic number and spectral radius.
Linear Algebra and its Applications, 426(2-3):810—
814, October 2007.

Richtarik, P. and Tak&¢, M. Iteration complexity of
randomized block-coordinate descent methods for
minimizing a composite function. Arziv preprint

arXw:1107.2848, 2011a.

Richtarik, P. and Taka¢, M. Efficient Serial and Par-
allel Coordinate Descent Methods for Huge-Scale
Truss Topology Design. In Operations Research Pro-
ceedings, pp. 1-6, 2011b.

Shalev-Shwartz, S. and Tewari, A. Stochastic meth-
ods for [j-regularized loss minimization. Journal of
Machine Learning Research, 12:1865-1892, 2011.

Wu, T. and Lange, K. Coordinate descent algorithms
for lasso penalized regression. Annals of Applied
Statistics, 2:224-244, 2008.

Yuan, G. and Lin, C. A Comparison of Opti-
mization Methods and Software for Large-scale L1-

regularized Linear Classification. Journal of Ma-
chine Learning Research, 11:3183-3234, 2010.

Zuckerman, D. Linear Degree Extractors and the Inap-
proximability of Max Clique and Chromatic Num-
ber. Theory of Computing, 3:103-128, 2007.



Scaling Up Coordinate Descent

A. Coloring-based CD

We now introduce the concept of graph coloring. Let
G = (V, E) be a graph with a vertex set V" and edge set
E. A distance-k coloring of a graph is an assignment of
colors (unique identities) to each vertex such that no
two vertices that are distance-k apart (connected by
a path of length k edges) receive the same color. The
objective of coloring is to minimize the total number
of colors used to color a graph.

Consider a sparse feature matrix M. In a bipartite
graph representation of this matrix, G = (X UY, E),
each row of M is represented by a vertex in X, each
column is represented by a vertex in Y. The nonzero
elements of M form an edge in E. The vertex set
V = X UY is formed such that X NY = @, and an
edge e, € E is formed such that one of its endpoints
is in X and the other is in Y. A partial distance-2
coloring of G is an assignment of colors to every ver-
tex in Y (columns of M) such that no two Y-vertices
adjacent to the same X-vertex receive the same color.
The vertices in X remain uncolored. The result of
such a coloring of Y is a partitioning of the feature
matrix into structurally independent submatrices such
that no two columns in a partition (a group of columns
with the same color) have a nonzero on the same row.
Thus, a partial distance-2 coloring of a feature matrix
reveals sets of features with disjoint support that can
be updated concurrently without a need to synchronize
among different threads running in parallel.

Since the features of a given color have disjoint sup-
port, there is no possibility of collision during the up-
date of z as described in 3. This allows for an imple-
mentation in which z is updated without any mecha-
nism for locking. Therefore, coloring-based algorithm
is suitable for implementation on platforms where lock-
ing is expensive. On distributed-memory platforms,
such an algorithm would avoid a need to pass mes-
sages for synchronization.

The minimum number of colors needed to color a
graph using a distance-1 coloring scheme is called the
chromatic number of a graph. Computing (or even
closely approximating) the chromatic number is known
to be an NP-hard problem (Zuckerman, 2007). How-
ever, simple heuristics work well in practice. They are
also amenable to parallel implementation. In our im-
plementation, we adapt the iterative distance-1 color-
ing algorithm of Catalyurek et al. (2011) for comput-
ing a partial distance-2 coloring of M as illustrated in
Algorithm 5. In order to find a minimal color for a
given vertex y; € Y (a feature), we search all distance-
2 paths from y; to other Y-vertices and track the colors
that have already been used. These colors are marked

as Forbidden and are stored in a vector (Line 8 in Al-
gorithm 5). The minimum color available is then as-
signed to y; (Lines 9 and 10). In a parallel context,
the algorithm assigns colors speculatively and could
lead to conflicts (vertices colored incorrectly). There-
fore, after each phase of coloring (Phase-1), we detect
(Phase-2) all the conflicts and speculatively color them
again (Lines 12-16). Given a pair of conflicting ver-
tices, only one of them needs to be recolored. This
choice (Line 15) can be made using vertex identities
or can be determined using random numbers assigned
to vertices. Conflicting vertices are added to a new
queue, R (Line 16), which is then assigned to @ (Line
17). In a parallel context, threads need to synchronize
for adding vertices to R. We use atomic memory oper-
ations to the tail of the queue so that each thread can
receive a unique position to add in the queue. The
algorithm iterates until all the Y-vertices have been
colored correctly. The computational time of a (se-
rial) partial distance-2 coloring heuristic is given by
O(n - d2), where n = |Y| represents the number of
vertices in Y, and ds is a generalization of the vertex
degree denoting the average number of distinct paths
of length 2 starting at a vertex in G. The scalability
of this algorithm on several classes of inputs and dif-
ferent architectures is documented in Catalyurek et al.
(2011).

While we strive to exploit parallelism from structural
independence through coloring, the approach in Shot-
gun exploits parallelism that is implicitly provided in
the structural and numerical properties of a feature
matrix through the computation of eigenvalues (spec-
tral radius). While we do not attempt to derive a for-
mal relationship between the two approaches, we note
that such a connection might be possible based on the
pioneering work of Fiedler (algebraic connectivity of a
graph (Chung, 1997)) and Nikiforov (2007) (relation-
ship of the chromatic number of a graph to its spectral
radius).



Scaling Up Coordinate Descent

Algorithm 5 Iterative parallel algorithms for partial distance-2 coloring.

Input: A bipartite graph G = (X UY, E).

Output: A vector color representing the color of each vertex in Y.

Data structures: Two queue data structures, Q and R; a thread-private vector to store colors being used by
neighbors, ForbiddenColors.

1: Initialize data structures

2 Q<Y // Color vertices only in Y

3: while Q # 0 do

4: for each u € Q) in parallel do // Phase 1: tentative coloring

5 for each v € adj(u) do // Vertices in X

6: for each w € adj(v) do // Vertices in Y

T ForbiddenColors[color{w]] « u

8: ¢ < min{i > 0 : ForbiddenColors[i] # u}

9: colorfu] «— ¢

10: R+ 0 // Vertices that need to be recolored
11:  for each u € ) in parallel do // Phase 2: conflict detection

12: for each v € adj(u) do // Vertices in X

13: for each w € adj(v) do // Vertices in Y

14: if color[u] = color[w] and v > w then

15: R — RU {u} // Uses atomic memory operations

16: Q<R // Swap the two queues




