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ABSTRACT
To step beyond the first-generation deployments of attacker-defender
security games – for LAX Police, US FAMS and others – it is criti-
cal that we relax the assumption of perfect rationality of the human
adversary. Indeed, this assumption is a well-accepted limitation of
classical game theory and modeling human adversaries’ bounded
rationality is critical. To this end, quantal response (QR) has pro-
vided very promising results to model human bounded rationality.
However, in computing optimal defender strategies in real-world
security games against a QR model of attackers, we face difficulties
including (1) solving a nonlinear non-convex optimization problem
efficiently for massive real-world security games; and (2) address-
ing constraints on assigning security resources, which adds to the
complexity of computing the optimal defender strategy.

This paper presents two new algorithms to address these diffi-
culties: GOSAQ can compute the globally optimal defender strat-
egy against a QR model of attackers when there are no resource
constraints and gives an efficient heuristic otherwise; PASAQ in
turn provides an efficient approximation of the optimal defend-
er strategy with or without resource constraints. These two nov-
el algorithms are based on three key ideas: (i) use of a binary
search method to solve the fractional optimization problem effi-
ciently, (ii) construction of a convex optimization problem through
a non-linear transformation, (iii) building a piecewise linear ap-
proximation of the non-linear terms in the problem. Additional
contributions of this paper include proofs of approximation bound-
s, detailed experimental results showing the advantages of GOSAQ
and PASAQ in solution quality over the benchmark algorithm (BRQR)
and the efficiency of PASAQ. Given these results, PASAQ is at the
heart of the PROTECT system, which is deployed for the US Coast
Guard in the port of Boston, and is now headed to other ports.
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1. INTRODUCTION
The recent real-world applications of attacker-defender Stackel-

berg security games, ARMOR, IRIS [7] and GUARDS [12], pro-
vide software assistants that help security agencies optimize alloca-
tions of their limited security resources. These applications require
efficient algorithms that derive mixed (randomized) strategies for
the defender (security agencies), taking into account an attacker’s
surveillance and best response. The algorithms underlying these
applications [7] or most others in the literature [1, 10] have as-
sumed perfect rationality of the human attacker, who strictly max-
imizes his expected utility. While this is a standard game-theoretic
assumption and appropriate as an approximation in first generation
applications, it is a well-accepted limitation of classical game theo-
ry [4]. Indeed, algorithmic solutions based on this assumption may
not be robust to the boundedly rational decision making of a human
adversary (leading to reduced expected defender reward), and may
also be limited in exploiting human biases.

To address this limitation, several models have been proposed
to capture human bounded rationality in game-theoretic settings
[14, 5, 11]. Among these, the quantal response (QR) model [11]
is an important solution concept. QR assumes errors in human
decision making and suggests that instead of strictly maximizing
utility, individuals respond stochastically in games: the chance of
selecting a non-optimal strategy increases as the associated cost
decreases. The QR model has received widespread support in the
literature in terms of its superior ability to model human behavior
in games [6, 14], including in recent multi-agent systems literature
[17]. An even more relevant study in the context of security games
showed that defender security allocations assuming a quantal re-
sponse model of adversary behavior outperformed several compet-
ing models in experiments with human subjects [18]. QR is among
the best-performing current models (with significant support in the
literature) and one that allows tuning of the ‘adversary rationali-
ty level’ as explained later. Hence this model is one that can be
practically used by security agencies desiring to not be locked into
adversary models of perfect rationality.

Unfortunately, in computing optimal defender strategies in se-
curity games assuming an adversary with quantal response (QR-
adversary), we face two major difficulties: (1) solving a nonlin-
ear non-convex optimization problem efficiently for massive real-
world security games; and (2) addressing resource assignment con-
straints in security games, which adds to the complexity of com-
puting the optimal defender strategy. Yet, scaling-up to massive se-
curity problems and handling constraints on resource assignments
are essential to address real-world problems such as computing s-
trategies for Federal Air Marshals Service (FAMS) [7] and the US
Coast Guard (USCG) [13].

Yang et al. [18] introduced the algorithm BRQR to solve a Stack-



elberg security game with a QR-adversary. BRQR however was not
guaranteed to converge to the optimal solution, as it used a non-
linear solver with multi-starts to obtain an efficient solution to a
non-convex optimization problem. Furthermore, that work did not
consider resource assignment constraints that are included in this
paper. Nevertheless we compare the performance of the proposed
algorithms against BRQR, since it is the benchmark algorithm. An-
other existing algorithm that efficiently computes the Quantal Re-
sponse Equilibrium [15] only applies to cases where all the players
have the same level of errors in their quantal response, a condition
not satisfied in security games. In particular, in security games, the
defender’s strategy is based on a computer-aided decision-making
tool, and therefore it is a best response. Adversaries, on the oth-
er hand, are human beings who may have biases and preferences in
their decision making, so they are modeled with a quantal response.
Therefore, new algorithms need to be developed to compute the op-
timal defender strategy when facing a QR-adversary in real-world
security problems.

In this paper, we provide the following five contributions. First,
we provide an algorithm called GOSAQ to compute the defender
optimal strategy against a QR-adversary. GOSAQ uses a binary
search method to iteratively estimate the global optimal solution
rather than searching for it directly, which would require solving a
nonlinear and non-convex fractional problem. It also uses a non-
linear variable transformation to convert the problem into a con-
vex problem. GOSAQ leads to a ε-optimal solution, where ε can
be arbitrarily small. Second, we provide another algorithm called
PASAQ to approximate the optimal defender strategy. PASAQ is
also based on binary search. It then converts the problem into a
Mixed-Integer Linear Programming problem by using a piecewise
linear approximation. PASAQ leads to an efficient approximation
of the global optimal defender strategy and provides an arbitrari-
ly near-optimal solution with a sufficiently accurate linear approx-
imation. Third, we show that both GOSAQ and PASAQ can not
only solve problems without resource assignment constraints, such
as for the LAX police[7], but also problems with resource assign-
ment constraints, such as problems for FAMS [7] and USCG [13].
Fourth, we provide the correctness/approximation-bound proof of
GOSAQ and PASAQ. Fifth, we provide detailed experimental anal-
ysis on the solution quality and computational efficiency of GOSAQ
and PASAQ, illustrating that both GOSAQ and PASAQ achieve bet-
ter solution quality and runtime scalability than the previous bench-
mark algorithm BRQR [18]. Indeed, PASAQ can potentially be ap-
plied to most of the real-world deployments of the Stackelberg Se-
curity Game, including ARMOR and IRIS [7] that are based on
a perfect rationality model of the adversary. This should improve
the performances of such systems when dealing with human adver-
saries. In fact, PASAQ is at the heart of the PROTECT system [13]
deployed by the US Coast Guard at the port of Boston and that is
now headed to other ports in the US.

2. PROBLEM STATEMENT
We consider a Stackelberg Security Game [7, 18, 9] (SSG) with

a single leader and at least one follower, where the defender plays
the role of the leader and the adversary plays the role of the fol-
lower. The defender and attacker may represent organizations and
need not be single individuals. We use the following notation to
describe a SSG, also listed in Table 1: the defender has a total of
M resources to protect a set of targets T = {1, . . . , |T |}. The
outcomes of the SSG depend only on whether or not the attack is
successful. So given a target i, the defender receives reward Rdi
if the adversary attacks a target that is covered by the defender;
otherwise, the defender receives penalty P di . Correspondingly, the

Table 1: Notations used in this paper
T Set of targets; i ∈ T denotes target i
xi Probability that target i is covered by a resource
Rdi Defender reward for covering i if it’s attacked
P di Defender penalty on not covering i if it’s attack
Rai Attacker reward for attacking i if it’s not covered
P ai Attacker penalty on attacking i if it’s covered
A Set of defender strategies; Aj ∈ A denotes jth strategy
aj Probability for defender to choose strategy Aj
M Total number of resources

attacker receives penalty P ai in the former case; and reward Rai in
the latter case. Note that a key property of SSG is that while the
games may be non-zero-sum, Rdi > P di and Rai > P ai , ∀i [9]. In
other words, adding resources to cover a target helps the defender
and hurts the attacker.

We denote the jth individual defender strategy asAj , which is an
assignment of all the security resources. Generally, we could rep-
resent Aj as a column vector Aj = 〈Aij〉T , where Aij indicates
whether or not target i is covered by assignment j. Let A = {Aj}
be the set of feasible assignments of resources and let aj be the
probability of selecting strategy j. Given this probability of select-
ing defender strategies we can compute the likelihood of protect-
ing any specific target i as the marginal xi =

∑
Aj∈A ajAij . The

marginals xi clearly sum to M , the total number of resources [8,
18]. Previous work [7] has shown that defender strategies in SS-
Gs can be represented in terms of these marginals, leading to more
concise equivalent representations. In particular, the defender’s ex-
pected utility if the adversary attacks target i can be written as:

Udi (xi) = xiR
d
i + (1− xi)P di

and the adversary’s expected utility on attacking target i is

Uai (xi) = xiP
a
i + (1− xi)Rai

These marginal coverage vectors can be converted to a mixed s-
trategy over actual defender strategies when there are no resource
constraints [8], such as in ARMOR [7].

In the presence of constraints on assignments of resources, we
may end up with marginals that cannot be converted to probabili-
ties over individual strategies [8]. However, as Section 2.2 shows,
we can address this difficulty if we have a complete description of
defender strategies set A. In this case we can add constraints en-
forcing that the marginals are obtained from a convex combination
of these feasible defender strategies.

In SSGs, our goal is to compute a mixed strategy for the leader
to commit to based on her knowledge of the adversary’s response.
More specifically, given that the defender has limited resources
(e.g., she may need to protect 8 targets with 3 guards), she must
design her strategy to optimize against the adversary’s response to
maximize effectiveness.

2.1 Optimal Strategy against Quantal Response
In this work, we assume a QR-adversary, i.e. with a quantal

response 〈qi, i ∈ T 〉 [11] to the defender’s mixed strategy x =
〈xi, i ∈ T 〉. The value qi is the probability that adversary attacks
target i, computed as

qi(x) =
eλU

a
i (xi)∑

k∈T e
λUa

k
(xk)

(1)

where λ ≥ 0 is the parameter of the quantal response model [11],
which represents the error level in adversary’s quantal response. Si-



multaneously, the defender maximizes her utility (given her computer-
aided decision making tool):

Ud(x) =
∑
i∈T

qi(x)Udi (xi)

Therefore, in domains without constraints on assigning the resources,
the problem of computing the optimal defender strategy against a
QR-adversary can be written in terms of marginals as:

P1:


max

x

∑
i∈T e

λRa
i e−λ(R

a
i−P

a
i )xi((Rdi − P di )xi + P di )∑

i∈T e
λRa

i e−λ(R
a
i−P

a
i )xi

s.t.
∑
i∈T

xi ≤M

0 ≤ xi ≤ 1, ∀i ∈ T

Problem P1 has a polyhedral feasible region and is a non-convex
fractional objective function.

2.2 Resource Assignment Constraint
In many real world security problems, there are constraints on

assigning the resources. For example, in the FAMS problem [7], an
air marshal is scheduled to protect 2 flights (targets) out of M total
flights. The total number of possible schedule is

(
M
2

)
. However,

not all of the schedules are feasible, since the flights scheduled for
an air marshal have to be connected, e.g. an air marshal cannot be
on a flight from A to B and then on a flight C to D. A resource
assignment constraint implies that the feasible assignment set A is
restricted; not all combinatorial assignment of resources to targets
are allowed. Hence, the marginals on targets, x, are also restricted.

Definition 1. We consider a marginal coverage x to be feasible if
and only if there exists aj ≥ 0, Aj ∈ A such that

∑
Aj∈A aj = 1

and for all i ∈ T , xi =
∑
Aj∈A ajAij .

In fact, 〈aj〉 is the mixed strategy over all the feasible assign-
ments of the resources. In order to compute the defender’s opti-
mal strategies against a QR-adversary in the presence of resource-
assignment constraints, we need to solve P2. The constraints in P1
are modified to enforce feasibility of the marginal coverage.

P2:



max
x,a

∑
i∈T e

λRa
i e−λ(R

a
i−P

a
i )xi((Rdi − P di )xi + P di )∑

i∈T e
λRa

i e−λ(R
a
i−P

a
i )xi

s.t.
∑
i∈T

xi ≤M

xi =
∑
Aj∈A

ajAij , ∀i ∈ T

∑
Aj∈A

aj = 1

0 ≤ aj ≤ 1, ∀Aj ∈ A

3. BINARY SEARCH METHOD
We need to solve P1 and P2 to compute the optimal defender

strategy, which requires optimally solving a non-convex problem
which is in general an NP-hard problem [16]. In this section, we
describe the basic structure of using a binary search method to solve
the two problems. However, further efforts are required to convert
this skeleton into actual efficiently runnable algorithms. We will
fill in the additional details in the next two sections.

For notational simplicity, we first define the symbols ∀ i ∈ T
in Table 2. We then denote the numerator and denominator of the
objective function in P1 and P2 by N(x) and D(x):

Table 2: Symbols for Targets in SSG
θi := eλR

a
i > 0 βi := λ(Rai − P ai ) > 0 αi := Rdi − P di > 0

• N(x) =
∑
i∈T θiαixie

−βixi +
∑
i∈T θiP

d
i e
−βixi

• D(x) =
∑
i∈T θie

−βixi > 0

The key idea of the binary search method is to iteratively esti-
mate the global optimal value (p∗) of the fractional objective func-
tion of P1, instead of searching for it directly. Let Xf be the fea-
sible region of P1 (or P2). Given a real value r, we can know
whether or not r ≤ p∗ by checking

∃x ∈ Xf , s.t. rD(x)−N(x) ≤ 0 (2)

We now justify the correctness of the binary search method to
solve any generic fractional programming problem maxx∈Xf N(x)/D(x)
for any functions N(x) and D(x) > 0.

Lemma 1. For any real value r ∈ R, one of the following two
conditions holds.

(a) r ≤ p∗⇐⇒ ∃x ∈ Xf , s.t., rD(x)−N(x) ≤ 0

(b) r > p∗⇐⇒ ∀x ∈ Xf , rD(x)−N(x) > 0

PROOF. We only prove (a) as (b) is proven similarly. ‘⇐’: since
∃x such that rD(x) ≤ N(x), this means that r ≤ N(x)

D(x) ≤ p
∗;

‘⇒’: Since P1 optimizes a continuous objective over a closed
convex set, then there exists an optimal solution x∗ such that p∗ =
N(x∗)
D(x∗) ≥ r which rearranging gives the result. 2

Algorithm 1 describes the basic structure of the binary search
method. Given the payoff matrix (PM ) and the total number of se-

Algorithm 1: Binary Search

1 Input: ε, PM and numRes;
2 (U0, L0)← EstimateBounds(PM , numRes);
3 (U,L)← (U0, L0);
4 while U − L ≥ ε do
5 r ← U+L

2
;

6 (feasible, xr)← CheckFeasibility(r);
7 if feasible then
8 L← r

9 else
10 U ← r

11 return L, xL;

curity resources (numRes), Algorithm 1 first initializes the upper
bound (U0) and lower bound (L0) of the defender expected utility
on Line 2. Then, in each iteration, r is set to be the mean of U and
L. Line 6 checks whether the current r satisfies Equation (2). If
so, p∗ ≥ r, the lower-bound of the binary search needs to be in-
creased; in this case, it also returns a valid strategy xr . Otherwise,
p∗ < r, the upper-bound of the binary search should be decreased.
The search continues until the upper-bound and lower-bound are
sufficiently close, i.e. U − L < ε. The number of iterations in
Algorithm 1 is bounded byO(log(U0−L0

ε
)). Specifically for SSGs

we can estimate the upper and lower bounds as follows:
Lower bound: Let su be any feasible defender strategy. The

defender utility based on using su against a adversary’s quantal
response is a lower bound of the optimal solution of P1. A simple
example of su is the uniform strategy.



Upper bound: SinceP di ≤ Udi ≤ Rdi we haveUdi ≤ maxi∈T R
d
i .

The defender’s utility is computed as
∑
i∈T qiU

d
i , where Udi is the

defender utility on target i and qi is the probability that the adver-
sary attacks target i. Thus, the maximum Rdi serves as an upper
bound of Udi .

We now turn to feasibility checking, which is performed in Step
6 in Algorithm 1. Given a real number r ∈ R, in order to check
whether Equation (2) is satisfied, we introduce CF-OPT.

CF-OPT: min
x∈Xf

rD(x)−N(x)

Let δ∗ be the optimal objective function of the above optimiza-
tion problem. If δ∗ ≤ 0, Equation (2) must be true. Therefore, by
solving the new optimization problem and checking if δ∗ ≤ 0, we
can answer if a given r is larger or smaller than the global max-
imum. However, the objective function in CF-OPT is still non-
convex, therefore, solving it directly is still a hard problem. We
introduce two methods to address this in the next two sections.

4. GOSAQ: ALGORITHM 1 + VARIABLE
SUBSTITUTION

We now present Global Optimal Strategy Against Quantal re-
sponse (GOSAQ), which adapts Algorithm 1 to efficiently solve
problems P1 and P2. It does so through the following nonlinear
invertible change of variables:

yi = e−βixi ,∀i ∈ T (3)

4.1 GOSAQ with No Assignment Constraint
We first focus on applying GOSAQ to solve P1 for problems with

no resource assignment constraints. Here, GOSAQ uses Algorithm
1, but with a rewritten CF-OPT as follows given the above variable
substitution:

min
y

r
∑
i∈T

θiyi −
∑
i∈T

θiP
d
i yi +

∑
i∈T

αiθi
βi

yi ln(yi)

s.t.
∑
i∈T

−1
βi

ln(yi) ≤M (4)

e−βi ≤ yi ≤ 1, ∀i (5)

Let’s refer to the above optimization problem as GOSAQ-CP.

Lemma 2. Let ObjCF (x) and ObjGC(y) be the objective function
of CF-OPT and GOSAQ-CP respectively; Xf and Yf denote the
feasible domain of CF-OPT and GOSAQ-CP respectively:

min
x∈Xf

ObjCF (x) = min
y∈Yf

ObjGC(y) (6)

The proof, omitted for brevity, follows from the variable substi-
tution in equation 6. Lemma 2 indicates that solving GOSAQ-CP
is equivalent to solving CF-OPT. We now show that GOSAQ-CP is
actually a convex optimization problem.

Lemma 3. GOSAQ-CP is a convex optimization problem with a
unique optimal solution.

PROOF. We can show that both the objective function and the
nonlinear constraint function (4) in GOSAQ-CP are strictly convex
by taking second derivatives and showing that the Hessian matrices
are positive definite. The fact that the objective is strictly convex
implies that it can have only one optimal solution. 2

In theory, convex optimization problems like the one above, can
be solved in polynomial time through the ellipsoid method or inte-
rior point method with the volumetric barrier function [2] (in prac-
tice there are a number of nonlinear solvers capable of finding the

only KKT point efficiently). Hence, GOSAQ entails running Algo-
rithm 1, performing Step 6 with O(log(U0−L0

ε
)) times, and each

time solving GOSAQ-CP which is polynomial solvable. Therefore,
GOSAQ is a polynomial time algorithm.

We now show the bound of GOSAQ’s solution quality.

Lemma 4. Let L∗ and U∗ be the lower and upper bounds of
GOSAQ when the algorithm stops, and x∗ is the defender strate-
gy returned by GOSAQ. Then,

L∗ ≤ ObjP1(x∗) ≤ U∗

where ObjP1(x) denotes the objective function of P1.

PROOF. Given r, Let δ∗(r) be the minimum value of the objec-
tive function in GOSAQ-CP. When GOSAQ stops, we have δ∗(L∗) ≤
0, because from Lines 6-8 of Algorithm 1, updating the lower bound
requires it. Hence, from Lemma 2, L∗D(x∗) − N(x∗) ≤ 0 ⇒
L∗ ≤ N(x∗)

D(x∗) . Similarly, δ∗(U∗) ≥ 0⇒ U∗ > N(x∗)
D(x∗) 2

Theorem 1. Let x∗ be the defender strategy computed by GOSAQ,

0 ≤ p∗ −ObjP1(x∗) ≤ ε (7)

PROOF. p∗ is the global maximum of P1, so p∗ ≥ ObjP1(x∗).
Let L∗ and U∗ be the lower and upper bound when GOSAQ stops.
Based on Lemma 4, L∗ ≤ ObjP1(x∗) ≤ U∗. Simultaneously,
Algorithm 1 indicates that L∗ ≤ p∗ ≤ U∗.

Therefore, 0 ≤ p∗ −ObjP1(x∗) ≤ U∗ − L∗ ≤ ε 2

Theorem 1 indicates that the solution obtained by GOSAQ is an
ε-optimal solution.

4.2 GOSAQ with Assignment Constraints
In order to address the assignment constraints, we need to solve

P2. Note that the objective function of P2 is the same as that of
P1. The difference lies in the extra constraints which enforce the
marginal coverage to be feasible. Therefore we once again use Al-
gorithm 1 with variable substitution given in Equation 3, but mod-
ify GOSAQ-CP as follows (which is referred as GOSAQ-CP-C) to
incorporate the extra constraints:

min
y,a

r
∑
i∈T

θiyi −
∑
i∈T

θiP
d
i yi +

∑
i∈T

αiθi
βi

yi ln(yi)

s.t. Constraint (4), (5)

−1
βi

ln(yi) =
∑
Aj∈A

ajAij , ∀i ∈ T (8)

∑
Aj∈A

aj = 1 (9)

0 ≤ aj ≤ 1, Aj ∈ A (10)

Equation (8) is a nonlinear equality constraint that makes this op-
timization problem non-convex. There are no known polynomi-
al time algorithms for generic non-convex optimization problems,
which can have multiple local minima. We can attempt to solve
such non-convex problems using one of the efficient nonlinear solver-
s but we would obtain a KKT point which can be only locally opti-
mal. There are a few research grade global solvers for non-convex
programs, however they are limited to solving specific problems
or small instances. Therefore, in the presence of assignment con-
straints, GOSAQ is no longer guaranteed to return the optimal solu-
tion as we might be left with locally optimal solutions when solving
the subproblems GOSAQ-CP-C.



5. PASAQ: ALGORITHM 1 + LINEAR AP-
PROXIMATION

Since GOSAQ may be unable to provide a quality bound in the
presence of assignment constraints (and as shown later, may turn
out to be inefficient in such cases), we propose the Piecewise lin-
ear Approximation of optimal Strategy Against Quantal response
(PASAQ). PASAQ is an algorithm to compute the approximate opti-
mal defender strategy. PASAQ has the same structure as Algorithm
1. The key idea in PASAQ is to use a piecewise linear function
to approximate the nonlinear objective function in CF-OPT, and
thus convert it into a Mixed-Integer Linear Programming (MILP)
problem. Such a problem can easily include assignment constraints
giving an approximate solution for a SSG against a QR-adversary
with assignment constraints.

In order to demonstrate the piecewise approximation in PASAQ,
we first rewrite the nonlinear objective function of CF-OPT as:∑

i∈T

θi(r − P di )e−βixi −
∑
i∈T

θiαixie
−βixi

The goal is to approximate the two nonlinear function f (1)
i (xi) =

e−βixi and f (2)
i (xi) = xie

−βixi as two piecewise linear functions
in the range xi ∈ [0, 1], for each i = 1..|T |. We first uniformly
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Figure 1: Piecewise Linear Approximation

divide the range [0, 1] into K pieces (segments). Simultaneously,
we introduce a set of new variables {xik, k = 1..K} to represent
the portion of xi in each of the K pieces, {[ k−1

K
, k
K
], k = 1..K}.

Therefore, xik ∈ [0, 1
K
], ∀k = 1..K and xi =

∑K
k=1 xik. In order

to ensure that {xik} is a valid partition of xi, all xik must satisfy:
xik > 0 only if xik′ = 1

K
,∀k′ < k. In other words, xik can be

non-zero only when all the previous pieces are completely filled.
Figures 1(a) and 1(b) display two examples of such a partition.

Thus, we can represent the two nonlinear functions as piecewise
linear functions using {xik}. Let {( k

K
, f

(1)
i ( k

K
)), k = 0..K} be

the K + 1 cut-points of the linear segments of function f (1)
i (xi),

and {γik, k = 1..K} be the slopes of each of the linear segments.
Starting from f

(1)
i (0), the piecewise linear approximation of f (1)

i (xi),
denoted as L(1)

i (xi):

L
(1)
i (xi) = f

(1)
i (0) +

K∑
k=1

γikxik = 1 +

K∑
k=1

γikxik

Similarly, we can obtain the piecewise linear approximation of f (2)
i (xi),

denoted as L(2)
i (xi):

L
(2)
i (xi) = f

(2)
i (0) +

K∑
k=1

µikxik =

K∑
k=1

µikxik

where, {µik, k = 1..K} is the slope of each linear segment.

Table 3: Notations for Error Bound Proof

θ := min
i∈T

θi Rd := max
i∈T
|Rdi | β := max

i∈T
βi

θ := max
i∈T

θi P d := max
i∈T
|P di | α := max

i∈T
αi

5.1 PASAQ with No Assignment Constraint
In domains without assignment constraints, PASAQ consists of

Algorithm 1, but with CF-OPT rewritten as follows:

min
x,z

∑
i∈T

θi(r − P di )(1 +
K∑
k=1

γikxik)−
∑
i∈T

θiαi

K∑
k=1

µikxik

s.t.
∑
i∈T

K∑
k=1

xik ≤M (11)

0 ≤ xik ≤
1

K
, ∀i, k = 1 . . .K (12)

zik
1

K
≤ xik, ∀i, k = 1 . . .K − 1 (13)

xi(k+1) ≤ zik, ∀i, k = 1 . . .K − 1 (14)
zik ∈ {0, 1}, ∀i, k = 1 . . .K − 1 (15)

Let’s refer to the above MILP formulation as PASAQ-MILP.

Lemma 5. The feasible region for x = 〈xi =
∑K
k=1 xik, i ∈ T 〉

of PASAQ-MILP is equivalent to that of P1

JUSTIFICATION. The auxiliary integer variable zik indicates whether
or not xik = 1

K
. Equation (13) enforces that zik = 0 only when

xik <
1
K

. Simultaneously, Equation (14) enforces that xi(k+1) is
positive only if zik = 1. Hence,{xik, k = 1..K} is a valid par-
tition of xi and xi =

∑K
k=1 xik and that xi ∈ [0, 1]. Thus, the

feasible region of PASAQ-MILP is equivalent to P1
Lemma 5 shows that the solution provided by PASAQ is in the

feasible region of P1. However, PASAQ approximates the mini-
mum value of CF-OPT by using PASAQ-MILP, and furthermore
solves P1 approximately using binary search. Hence, we need to
show an error bound on the solution quality of PASAQ.

We first show Lemma 6, 7 and 8 on the way to build the proof for
the error bound. Due to space constraints, many proofs are abbre-
viated; full proofs are available in an on-line appendix1. Further,
we define two constants which are decided by the game payoffs:
C1 = (θ/θ)eβ{(Rd + P d)β + α} and C2 = 1 + (θ/θ)eβ . The
notation used is defined in Table 3. In the following, we are inter-
ested in obtaining a bound on the difference between p∗ (the global
optimal obtained from P1) andObjP1(x̃∗), where x̃∗ is the strategy
obtained from PASAQ. However, along the way, we have to obtain a
bound for the difference betweenObjP1(x̃∗) and its corresponding
piecewise linear approximation ÕbjP1(x̃

∗).

Lemma 6. Let Ñ(x) =
∑
i∈T θiαiL

(2)
i (xi)+

∑
i∈T θiP

d
i L

(1)
i (xi)

and D̃(x) =
∑
i∈T θiL

(1)
i (xi) > 0 be the piecewise linear ap-

proximation of N(x) and D(x) respectively. Then, ∀x ∈ Xf

|N(x)− Ñ(x)| ≤ (θα+ P dθβ)
|T |
K

|D(x)− D̃(x)| ≤ θβ |T |
K

1http://anon-aamas2012.webs.com/FullProof.pdf



Lemma 7. The difference between the objective funciton of P1,
ObjP1(x), and its corresponding piecewise linear approximation,
ÕbjP1(x), is less than C1

1
K

PROOF.

|ObjP1(x)− ÕbjP1(x)| = |
N(x)
D(x)

− Ñ(x)
D̃(x)

|

= |N(x)
D(x)

− N(x)
D̃(x)

+
N(x)
D̃(x)

− Ñ(x)
D̃(x)

|

≤ 1

D̃(x)
(|ObjP1(x)||D(x)− D̃(x)|+ |N(x)− Ñ(x)|)

Based on Lemma 6, |ObjP1(x)| ≤ Rd, and D̃(x) ≥ |T |θe−β .

|ObjP1(x)− ÕbjP1(x)| ≤ C1
1

K
2

Lemma 8. Let L̃∗ and L∗ be final lower bound of PASAQ and
GOSAQ,

L∗ − L̃∗ ≤ C1
1

K
+ C2ε

Lemma 9. Let L̃∗ and Ũ∗ be the final lower and upper bounds of
PASAQ, and x̃∗ is the defender strategy returned by PASAQ. Then,

L̃∗ ≤ ÕbjP1(x̃
∗) ≤ Ũ∗

Theorem 2. Let x̃∗ be the defender strategy computed by PASAQ,
p∗ is the global optimal defender expected utility,

0 ≤ p∗ −ObjP1(x̃
∗) ≤ 2C1

1

K
+ (C2 + 1)ε

PROOF. The first inequality is implied since x̃∗ is a feasible so-
lution. Furthermore,

p∗ −ObjP1(x̃
∗) =(p∗ − L∗) + (L∗ − L̃∗) + (L̃∗ − ÕbjP1(x̃

∗))

+ (ÕbjP1(x̃
∗)−ObjP1(x̃

∗))

Algorithm 1 indicates that L∗ ≤ p∗ ≤ U∗, hence p∗ − L∗ ≤
ε. Additionally, Lemma 7, 8 and 9 provide an upper bound on
ÕbjP1(x̃

∗)−ObjP1(x̃
∗), L∗−L̃∗ and L̃∗−ÕbjP1(x̃

∗), therefore

p∗−ObjP1(x̃
∗) ≤ ε+C1

1

K
+C2ε+C1

1

K
≤ 2C1

1

K
+(C2+1)ε 2

Theorem 2 suggests that, given a game instance, the solution
quality of PASAQ is bounded linearly by the binary search thresh-
old ε and the piecewise linear accuracy 1

K
. Therefore the PASAQ

solution can be made arbitrarily close to the optimal solution with
sufficiently small ε and sufficiently large K.

5.2 PASAQ With Assignment Constraints
In order to extend PASAQ to handle the assignment constraints,

we need to modify PASAQ-MILP as the follows, referred to as
PASAQ-MILP-C,

min
x,z,a

∑
i∈T

θi(r − P di )(1 +
K∑
k=1

γikxik)−
∑
i∈T

θiαi

K∑
k=1

µikxik

s.t. Constraint (11)− (15)

K∑
k=1

xik =
∑
Aj∈A

ajAij , ∀i ∈ T (16)

∑
Aj∈A

aj = 1 (17)

0 ≤ aj ≤ 1, Aj ∈ A (18)

PASAQ-MILP-C is an MILP so it can be solved optimally with
any MILP solver (e.g. CPLEX). We can prove, similarly as we
did for Lemma 5, that the above MILP formulation has the same
feasible region as P2. Hence, it leads to a feasible solution of P2.
Furthermore, the error bound of PASAQ relies on the approximation
accuracy of the objective function by the piecewise linear function
and the fact that the subproblem PASAQ-MILP-C can be solved
optimally. Both conditions have not changed from the cases with-
out assignment constraints to the cases with assignment constraints.
Hence, the error bound is the same as that shown in Theorem 2.

6. EXPERIMENTS
We separate our experiments into two sets: the first set focuses

on the cases where there is no constraint on assigning the resources;
the second set focuses on cases with assignment constraints. In
both sets, we compare the solution quality and runtime of the t-
wo new algorithms, GOSAQ and PASAQ, with the previous bench-
mark algorithm BRQR. The results were obtained using CPLEX to
solve the MILP for PASAQ. For both BRQR and GOSAQ, we use
the MATLAB toolbox function fmincon to solve nonlinear opti-
mization problems2. All experiments were conducted on a standard
2.00GHz machine with 4GB main memory. For each setting of the
experiment parameters (i.e. number of targets, amount of resources
and number of assignment constraints), we tried 50 different game
instances. In each game instance, payoffs Rdi and Rai are chosen
uniformly randomly from 1 to 10, while P di and P ai are chosen
uniformly randomly from -10 to -1; feasible assignments Aj are
generated by randomly setting each element Aij to 0 or 1. For the
parameter λ of the quantal response in Equation (1), we used the
same value (λ = 0.76) as reported in [18].

6.1 No Assignment Constraints
We first present experimental results comparing the solution qual-

ity and runtime of the three algorithms (GOSAQ,PASAQ and BRQR)
in cases without assignment constraints.

Solution Quality: For each game instance, GOSAQ provides the
ε-optimal defender expected utility, BRQR presents the best local
optimal solution among all the local optimum it finds, and PASAQ
leads to an approximated global optimal solution. We measure the
solution quality of different algorithms using average defender’s
expected utility over all the 50 game instances.

Figures 2(a), 2(c) and 2(e) show the solution quality results of
different algorithms under different conditions. In all three figures,
the average defender expected utility is displayed on the y-axis.
On the x-axis, Figure 2(a) changes the numbers of targets (|T |)
keeping the ratio of resources (M ) to targets and ε fixed as shown
in the caption; Figure 2(c) changes the ratio of resources to targets
fixing targets and ε as shown; and Figure 2(e) changes the value
of the binary search threshold ε. Given a setting of the parameters
(|T |, M and ε), the solution qualities of different algorithms are
displayed in a group of bars. For example, in Figure 2(a), |T | is set
to 50 for the leftmost group of bars, M is 5 and ε = 0.01. From
left to right, the bars show the solution quality of BRQR (with 20
and 100 iterations), PASAQ (with 5,10 and 20 pieces) and GOSAQ.

Key observations from Figures 2(a), 2(c) and 2(e) include: (i) The
solution quality of BRQR drops quickly as the number of targets in-
creases; increasing the number of iterations in BRQR improves the
solution quality, but the improvement is very small. (ii) The solu-
tion quality of PASAQ improves as the number of pieces increases;

2We also tried the KNITRO [3] solver. While it gave the same
solution quality as fmincon, it was three-times slower than
fmincon; as a result we report results with fmincon
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Figure 2: Solution Quality and Runtime Comparison, without
assignment constraints (better in color)

and it converges to the GOSAQ solution as the number of pieces
becomes larger than 10. (iii) As the number of resources increas-
es, the defender expected utility also increases; and the resource
count does not impact the relationship of solution quality between
different algorithms. (iv) As ε becomes smaller, the solution qual-
ity of both GOSAQ and PASAQ improves. However, after epsilon
becomes sufficiently small (≤ 0.1), no substantial improvement is
achieved by further decreasing the value of ε. In other words, the
solution quality of both GOSAQ and PASAQ converges.

In general, BRQR has the worst solution quality; GOSAQ has the
best solution quality. PASAQ achieves almost the same solution
quality as GOSAQ when it uses more than 10 pieces.

Runtime: We present the runtime results in Figures 2(b), 2(d)
and 2(f). In all three figures, the y-axis display the runtime, the x-
axis displays the variables which we vary to measure their impact
on the runtime of the algorithms. For BRQR run time is the sum of
the run-time across all its iterations.

Figure 2(b) shows the change in runtime as the number of targets
increases. The number of resources and the value of ε are shown
in the caption. BRQR with 100 iterations is seen to run significant-
ly slower than GOSAQ and PASAQ. Figure 2(d) shows the impact
of the ratio of resource to targets on the runtime. The figure indi-
cates that the runtime of the three algorithms is independent of the
change in the number of resources. Figure 2(f) shows how runtime
of GOSAQ and PASAQ is affected by the value of ε. On the x-axis,

the value for ε decreases from left to right. The runtime increases
linearly as ε decreases exponentially. In both Figures 2(d) and 2(f),
the number of targets and resources are displayed in the caption.

Overall, the results suggest that GOSAQ is the algorithm of choice
when the domain has no assignment constraints. Clearly, BRQR
has the worst solution quality, and it is the slowest of the set of
algorithms. PASAQ has a solution quality that approaches that of
GOSAQ when the number of pieces is sufficiently large (≥ 10),
and GOSAQ and PASAQ also achieve comparable runtime efficien-
cy. Thus, in cases with no assignment constraints, PASAQ offers no
advantages over GOSAQ.
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(c) Runtime v.s. |T | (|A| = 60|T |)
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(d) Runtime v.s. |A| (|T | = 60)
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Figure 3: Solution Quality and Runtime Comparison, with as-
signment constraint (better in color)

6.2 With Assignment Constraint
In the second set, we introduce assignment constraints into the

problem. The feasible assignments are randomly generated. We
present experimental results on both solution quality and runtime.

Solution Quality: Figures 3(a) and 3(b) display the solution
quality of the three algorithms with varying number of targets (|T |)
and varying number of feasible assignments (|A|). In both figures,
the average defender expected utility is displayed on the y-axis. In
Figure 3(a) the number of targets is displayed on the x-axis, and the
ratio of |A| to |T | is set to 60. BRQR is seen to have very poor per-
formance. Furthermore, there is very little gain in solution quality
from increasing its number of iterations. While GOSAQ provides
the best solution quality, PASAQ achieves almost identical solution
quality when the number of pieces is sufficiently large (> 10). Fig-
ure 3(b) shows how solution quality is impacted by the number of



feasible assignments, which is displayed on the x-axis. Specifical-
ly, the x-axis shows numbers of assignment constraints A to be 20
times, 60 times and 100 times the number of targets. The number
of targets is set to 60. Once again, BRQR has significantly lower
solution quality, and it drops as the number of assignments increas-
es; and PASAQ again achieves almost the same solution quality as
GOSAQ, as the number the number of pieces is larger than 10.

Runtime: We present the runtime results in Figures 3(c), 3(e),
3(d) and 3(f). In all experiments, we set 80 minutes as the cut-
off. Figure 3(c) displays the runtime on the y-axis and the number
of targets on the x-axis. It is clear that GOSAQ runs significantly
slower than both PASAQ and BRQR, and slows down exponential-
ly as the number of targets increases. Figure 3(e) shows extended
runtime result of BRQR and PASAQ as the number of targets in-
creases. PASAQ runs in less than 4 minutes with 200 targets and
12000 feasible assignments. BRQR runs significantly slower with
higher number of iterations.

Overall, the results suggest that PASAQ is the algorithm of choice
when the domain has assignment constraints. Clearly, BRQR has
significantly lower solution quality than PASAQ. PASAQ not on-
ly has a solution quality that approaches that of GOSAQ when the
number of pieces is sufficiently large (≥ 10), PASAQ is significant-
ly faster than GOSAQ (which suffers exponential slowdown with
scale-up in the domain).

7. CONCLUSION
This paper marks an advance over the state-of-the-art in security

games. It goes beyond the assumption of perfect rationality of hu-
man adversaries embedded in deployed applications [7] and most
of the current algorithms [1, 10] for Stackelberg security games;
instead, it models the human adversaries’ bounded rationality us-
ing the quantal response (QR) model. This work overcomes the
difficulties in developing efficient methods to solve the massive se-
curity games in real applications, including solving a nonlinear and
non-convex optimization problem and handling constraints on as-
signing security resources in designing defender strategies. In ad-
dressing these difficulties, key contributions in this paper include:
(i) a new algorithm, GOSAQ, which guarantees the global opti-
mal solution in computing the defender strategy against an adver-
sary’s quantal response; (ii) an efficient approximation algorithm,
PASAQ, which provides more efficient computation of the defender
strategy with nearly-optimal solution quality; (iii) algorithms solv-
ing problems with resource assignment constraint; (iv) proof of
correctness/approximation-error of the algorithms; (v) detailed ex-
perimental results which show that both GOSAQ and PASAQ achieve
much better solution quality than the benchmark algorithm (BRQR),
and that PASAQ achieves much better computational efficiency than
both GOSAQ and BRQR. Given these results, PASAQ is at the heart
of the PROTECT system which is currently being used for the US
Coast Guard in the port of Boston, and is currently being deployed
in the port of New York.
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