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Topology of evolving networks: local events and universality
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Abstract

Networks grow and evolve by local events, such as the addition of new nodes

and links, or rewiring of links from one node to another. We show that

depending on the frequency of these processes two topologically different net-

works can emerge, the connectivity distribution following either a generalized

power-law or an exponential. We propose a continuum theory that predicts

these two regimes as well as the scaling function and the exponents, in good

agreement with the numerical results. Finally, we use the obtained predictions

to fit the connectivity distribution of the network describing the professional

links between movie actors.
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The complexity of numerous social, biological or communication systems is rooted in

the rather interwoven web defined by the system’s components and their interactions. For

example, cell functioning is guaranteed by a complex metabolic network, whose nodes are

substrates and enzymes, and edges represent chemical interactions [1]. Similarly, the society

is characterized by a huge social network whose nodes are individuals or organizations,

connected by social interactions [2], but equally complex networks appear in the business

world, where nodes are companies and edges represent diverse trade relationships, or describe

the world-wide web (www), whose nodes are HTML documents connected by links pointing

from one page to another [3–5].

The study of random networks, a much investigated topic in the mathematical literature,

has been dominated by the model of Erdős and Rényi (ER) [6] that views the network

as a set of nodes, each pair of nodes being connected with equal probability. Recently

Watts and Strogatz (WS) [7] found that local clustering is an important characteristic of

random networks, offering the first indication that real networks could be more complex

than predicted by the ER model. A common feature of the ER and WS models is that

the probability P (k) that a node in the network is connected to k other nodes is bounded,

decaying exponentially for large k. In contrast, exploring several large databases describing

the topology of large networks, recently we found [8] that independently of the nature

of the system and the identity of its constituents, P (k) decays as a power-law, following

P (k) ∼ k−γ . The generic nature of this result was supported by measurements on the

www connectivity [3–5], actor networks [7,8], citation network of scientists [9], and recent

results on the Internet topology [10]. These results offered the first evidence that some

large networks can self-organize into a scale-free state, a feature unexpected by all previous

network models [6,7]. The origin of this scale-free behavior has been traced back to two

mechanisms that are present in many systems, and have a strong impact on the final topology

[8]. First, networks develop by the addition of new nodes that are connected to those already

present in the system. Second, there is a higher probability that a new node is linked to

a node that already has a large number of connections. These two ingredients led to the
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formulation of the scale-free model that generates a network for which P (k) follows a power-

law with γ = 3. While this model correctly predicts the emergence of power-law scaling,

the agreement between the measured and predicted exponents is less than satisfactory: for

real systems γ is scattered between 2.1 and 4 [8], raising important questions about the

universality of network formation.

In this paper we take an important step towards understanding the effect of various local

events on the large scale topology of a network. We introduce and investigate an extended

model of network evolution that gives a more realistic description of the local processes,

incorporating the addition of new nodes, new links, and the rewiring of links. Using a con-

tinuum theory we show that, depending on the relative frequency of these local processes,

networks can develop two fundamentally different topologies. In the first regime P (k) has a

power-law tail, but the exponent γ depends continuously on the relative frequency of the lo-

cal events. In the second regime the power-law scaling breaks down, and P (k) approaches an

exponential. We derive a phase diagram that predicts the transition between these two topo-

logically distinct regimes, and support the analytical predictions with numerical simulations.

Finally, we use the obtained prediction to successfully fit the connectivity distribution of the

actor network, allowing us to determine the frequency of the local reorganization events.

Extended model: In the scale-free model introduced in Ref. [8], the only process affecting

the network’s topology was the addition of new nodes. The extended model described below

offers a more realistic description of network formation by incorporating additional local

events that are known to appear in real networks. We start with m0 isolated nodes, and at

each timestep we perform one of the following three operations (see Fig. 1a):

(i) With probability p we add m(m ≤ m0) new links. For this we randomly select a node

as the starting point of the new link, describing, for example, that a web developer decides

to add a new URL link to a page. The other end of the link, however, is selected with

probability

Π(ki) =
ki + 1

∑

j(kj + 1)
, (1)
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incorporating the fact that new links preferentially point to popular nodes, with a high

number of connections [8]. This process is repeated m times.

(ii) With probability q we rewire m links. For this we randomly select a node i and a link

lij connected to it. Next we remove this link and replace it with a new link lij′ that connects

i with node j′ chosen with probability Π(k′

j) given by (1). This process is repeated m times.

(iii) With probability 1 − p − q we add a new node. The new node has m new links that

with probability Π(ki) are connected to nodes i already present in the system.

Since our goal is to investigate the generic mechanisms of network evolution, we use

bidirectional links. However, our results can be easily generalized to directed networks as

well. In the model, the probabilities p and q can be varied in the interval 0 ≤ p < 1 and

0 ≤ q < 1− p. Note that we choose the probability Π(ki) to be proportional to ki + 1, such

that there is a nonzero probability that isolated nodes (ki = 0) acquire new links. Finally,

in the p = q = 0 limit the model reduces to the scale-free model investigated in Ref. [8].

Continuum Theory: In the model the probability that a node i increases its connectivity

ki depends only on ki and quantities characterizing the whole network (the parameters p, q,

m, the number of nodes and links). To predict the topology and the dynamics of the network,

we assume that ki changes continuously, and thus the probability Π(ki) can be interpreted

as the rate at which ki changes [11]. Consequently, the processes (i-iii) all contribute to ki,

each being incorporated in the continuum theory as follows:

(i) Addition of m new links with probability p:

(

∂ki

∂t

)

(i)

= pA
1

N
+ pA

ki + 1
∑

j(kj + 1)
, (2)

where N is the size of the system. The first term on the r.h.s. corresponds to the random

selection of one end of the new link, while the second term reflects the preferential attachment

(1) used to select the other end of the link. Since the total change in connectivity is ∆k = 2m,

we have A = m.

(ii) Rewiring of m links with probability q:
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(

∂ki

∂t

)

(ii)

= −qB
1

N
+ qB

ki + 1
∑

j(kj + 1)
. (3)

The first term incorporates the decreasing connectivity of the node from which the link was

removed, and the second term represents the increasing connectivity of the node the link is

reconnected to. The total connectivity does not change during the rewiring process, but B

can be calculated by separating the two processes, obtaining B = m.

(iii) Addition of a new node with probability 1 − p − q:

(

∂ki

∂t

)

(iii)

= (1 − p − q)C
ki + 1

∑

j(kj + 1)
. (4)

The number of links connecting the new node to the nodes in the system is m, thus we have

C = m.

Since these three processes take place simultaneously, we have to sum up their contribu-

tions, obtaining the continuum theory describing the change in ki for the extended model

∂ki

∂t
= (p − q)m

1

N
+ m

ki + 1
∑

j(kj + 1)
. (5)

In (5) the system size N and the total number of links
∑

j kj vary with time as N(t) =

m0 +(1− p− q)t and
∑

j kj = (1− q)2mt−m, indicating that for large t we can neglect the

constants m0 and m compared to the terms linearly increasing with time. Using as initial

condition the connectivity of a node added at time ti, ki(ti) = m, the solution of (5) for ki(t)

has the form

ki(t) = (A(p, q, m) + m + 1)
(

t

ti

)

1
B(p,q,m)

− A(p, q, m) − 1, (6)

where

A(p, q, m) = (p − q)

(

2m(1 − q)

1 − p − q
+ 1

)

,

B(p, q, m) =
2m(1 − q) + 1 − p − q

m
. (7)

The probability that a node has a connectivity ki(t) smaller than k, P (ki(t) < k), can be

written as P (ki(t) < k) = P (ti > C(p, q, m)t), where
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C(p, q, m) =

(

m + A(p, q, m) + 1

k + A(p, q, m) + 1

)B(p,q,m)

. (8)

Since ti must satisfy the condition 0 ≤ ti ≤ t, we can distinguish three cases:

(a) If C(p, q, m) > 1, then P (ki(t) < k) = 0. Thus the condition that P (k) is nonzero is

that k > m.

(b) If C(p, q, m) is not real, then P (ki(t) < k) is not well-defined. Thus to be able to

calculate P (k) we must have m+A(p,q,m)+1
k+A(p,q,m)+1

> 0 for all k > m, satisfied if A(p, q, m)+m+1 > 0.

(c) Finally, if 0 < C(p, q, m) < 1, the connectivity distribution P (k) can be determined

analytically. Defining the unit of time in the model as one growth/rewire/new link attempt,

the probability density of ti is Pi(ti) = 1/(m0 + t), thus

P (ki(t) < k) = 1 − C(p, q, m)
t

m0 + t
(9)

from which, using P (k) = ∂P (ki(t)<k)
∂k

, we obtain

P (k) =
t

m0 + t
D(p, q, m) (k + A(p, q, m) + 1)−1−B(p,q,m) , (10)

where D(p, q, m) = (m + A(p, q, m) + 1)B(p,q,m)B(p, q, m).

Thus the connectivity distribution, the main result provided by the continuum theory,

has a generalized power-law form

P (k) ∝ (k + κ(p, q, m))−γ(p,q,m), (11)

where κ(p, q, m) = A(p, q, m) + 1 and γ(p, q, m) = B(p, q, m) + 1.

Phase diagram and scaling: Eqs. (10) and (11) are valid only when A(p, q, m)+m+1 > 0

(see (a) and (b)), which, for fixed p and m, translates into q < qmax = min{1 − p, (1 − p +

m)/(1 + 2m)}. The (p, q) phase diagram, shown in Fig. 1b, indicates the existence of two

regions in the parameter space: For q < qmax P (k) is given by (11), thus the connectivity

distribution is scale-free. For q > qmax, however, Eq.(11) is not valid, the continuum theory

failing to predict the behavior of the system. We will demonstrate that in this regime P (k)

crosses over to an exponential. The boundary between the scale-free and the exponential
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regimes depends on the parameter m. In the limit m → 0 for any p+q < 1 P (k) is scale-free,

while in the limit m → ∞ we have qmax = 0.5, the boundary approaching a horizontal line.

For finite m the phase boundary is a line with slope −m/(1 + 2m) (Fig. 1b).

Scale-free regime: While a power-law tail is present in any point of this regime, the scaling

is different from that predicted by the simpler scale-free model [8]. First, according to (10),

for small k the probability saturates at P (κ(p, q, m)). This feature reproduces the results

obtained for real networks: P (k) obtained for the actor network or the citation network of

scientists saturate at small k [8]. Second, the exponent γ(p, q, m) characterizing the tail of

P (k) for k >> κ(p, q) changes continuously with p, q and m, predicting a range of exponents

between 2 and ∞. This allows us to account for the wide variations seen in real networks, for

which γ varies from 2 to 4. To demonstrate the predictive power of the continuum theory,

we have studied the extended discrete model numerically, as defined in (i-iii). As Fig. 2a

shows, Eq. (10) offers an excellent, parameter free fit to the numerical results.

Exponential regime: For q > qmax the continuum theory is no longer valid, but we can

investigate P (k) using numerical simulations. As Fig. 2b shows, in this regime, as q → 1,

P (k) develops an exponential tail. This transition to an exponential can be understood in

the terms of Model B discussed in Refs [8,11], demonstrating that growth is an essential

condition for power-law scaling. However, in the limit q → 1 growth is suppressed, the

frequent rewiring process acting on a network with an almost constant number of nodes.

The convergence of P (k) to an exponential in this regime indicates that for this choice of

parameters the model belongs to the class of networks defined by the ER [6] and WS [7]

models [12].

Application to real networks: To illustrate the predictive power of the obtained results,

we choose to investigate the collaboration graph of movie actors [7], which is a non-directed

network, thus our results should directly apply. In this network each actor is a node, and

two actors are connected if they were cast in the same movie during their career. This

network grows continuously by the addition of new actors (nodes). However, an important

contribution to the network connectivity comes from another frequent event: a veteran
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actor plays in a new movie, establishing new internal links (process (i)) with actors (nodes)

with whom he/she did not play before. Since links are never eliminated, rewiring is absent

(q = 0), thus the evolution of this network can be described by a two parameter model

(p, m): with probability p a new actor is introduced, playing with m other actors, and

with probability 1 − p, m new internal links are generated by established actors playing

in new movies. Naturally, in reality the number of actors cast in a movie varies from one

movie to another. It can be shown, however, that fluctuations in m do not change the

exponent γ [13]. To obtain p and m, we fit the connectivity distribution P (k) obtained

for this network with Eq. (10), obtaining an excellent overlap for p = 0.937 and m = 1

(Fig. 3). The corresponding parameters of Eq. (10) are κ(p, q) = 31.68 and γ(p, q, m) = 3.07.

This indicates that 93.7% of new links connect existing nodes, and only 6.3% of links come

from new actors joining the movie industry. Also, m = 1 indicates that in average only

one new link is formed with every new movie, supporting the high interconnectivity of the

movie industry: although many actors collaborate in a movie, most of them already played

together in previous movies, and thus links already exist between them.

Discussion: While in critical phenomena power-law scaling is typically associated with

universality, implying that the exponents are independent of the microscopic details of the

model, here we demonstrated that no such universality exists for scale-free networks, the

scaling exponents depending continuously on the network’s parameters. On the other hand,

our results indicate the existence of a different criterium for universality based on the func-

tional form of P (k): Our model predicts the existence of two regimes, the scale-free and

the exponential regime. Some of the large networks investigated so far, such as the www

or the actor network, are described by scale-free networks [3,5,8,10]. However, a number of

fundamental network models [6,7,14] lead to P (k) that decays exponentially, indicating the

robustness of the exponential regime as well [12].

We find that the elementary processes and their frequencies uniquely determine the

topology of the system and the form of P (k). This suggests that by monitoring their rate

we can predict the large scale topology of real networks. Furthermore, our results can be used
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to achieve inverse engineering as well: by fitting P (k) obtained for the actor network, we are

able to determine the frequency of the elementary processes. We believe that these results

will help us better understand the topology, dynamics and evolution of various complex

networks, with potential applications ranging from biological to social and communication

networks.

We wish to acknowledge useful discussions with Y. Tu, H. Jeong, S. Yook and thank

B. Tjaden for providing us the data on the actor collaborations. This work was partially

supported by the NSF Career Award DMR-9710998.
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FIG. 1. (a) Illustration of the possible elementary processes in the extended model for m0 = 3
and m = 2. At time t = 2 there are five nodes in the system, connected by four links (upper panel).
In the next timestep, one of the three possible events can take place: (i) Add m = 2 links with
probability p. One end of the new link is selected randomly, the other is selected using preferential
attachment (Eq. (1)). The new links are drawn with dashed lines; (ii) Rewire m = 2 links with
probability 1 − q. The AD link is disconnected from its A end and connected preferentially to the
highly connected node E; (iii) Add a new node (F) and connect it with m = 2 links to the nodes
in the system with probability 1− p− q, using preferential attachment. (b) Phase diagram for the
extended model. The scale-free regime (SF) for m = 1 is shaded, the remaining of the p + q < 1
domain corresponding to the exponential regime (E). The boundary between E and SF is shown
as a dotted line when m → 0, or as a dashed line when m → ∞.
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FIG. 2. (a) Comparison between the numerical simulations and the prediction of the continuum
theory in the scale-free regime. In the simulations we used t = 100, 000, m0 = m = 2. Circles:
p = 0.3, q = 0; squares: p = 0.6, q = 0.1; diamonds: p = 0.8, q = 0. The data were logarithmically
binned. The parameter free predictions of Eq. (10) are shown as dashed lines [17]. (b) The numer-
ically obtained P (k) in the exponential regime, shown on a semi-logarithmic plot, indicating the
convergence of P (k) to an exponential in the q → 1 limit. Circles: p = 0, q = 0.8; squares: p = 0,
q = 0.95; diamonds: p = 0, q = 0.99.
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FIG. 3. The connectivity distribution of movie actors (circles) based on the IMDB database
containing 212, 250 actors and 61, 085, 555 links. The data were logarithmically binned. The dashed
line corresponds to the two parameter fit offered by Eq. (10) with p = 0.937 and m = 1 [17].
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