ACM SIGPLAN 2006 Workshop on Partial Evaluation and
Program Manipulation (PEPM '06), pages 68-77

A Disciplined Approach to Aspect Composition

Roberto Lopez-Herrejon
Computing Laboratory
Oxford University
Oxford, England, OX1 3QD

rlopez@comlab.ox.ac.uk

Abstract

Aspect-oriented programming is a promising paradigm that
challenges traditional notions of program modularity.
Despite its increasing acceptance, aspects have been docu-
mented to suffer limited reuse, hard to predict behavior, and
difficult modular reasoning. We develop an algebraic model
that relates aspects to program transformations and uncovers
aspect composition as a significant source of the problems
mentioned. We propose an alternative model of composition
that eliminates these problems, preserves the power of
aspects, and lays an algebraic foundation on which to build
and understand AOP tools.

1 Introduction

Aspect-oriented programming (AOP) is a promising para-
digm that challenges and enhances traditional notions of pro-
gram modularity [20]. It has been widely applied to different
languages but the most influential implementation is Aspect]
[8][20][29]. Aspect] has sophisticated and powerful modu-
larization mechanisms that bring clear benefits over tradi-
tional modules but also has equally significant drawbacks.
Aspects have been documented to suffer limited reuse [22],
hard to predict behavior [35], and difficult modular reason-
ing [16][1]. All these factors hinder useful software engi-
neering practices such as step-wise development [46] and its
natural materialization in component-based software engi-
neering (CBSE) [44], where programs are developed incre-
mentally by composing components one at a time.

An aspect is a declaration of changes that are to be made to a
program; the process of making these changes is called
weaving. There have been several proposals to define aspect
semantics [19]. The most common uses an event-based
model [45]. There are many ways in which aspects and weav-
ing can be implemented. The historical roots of AOP are in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PEPM '06, January 9-10, 2006, Charleston, South Carolina, USA.
Copyright 2006 ACM 1-59593-196-1/06/0001...$5.00.

Don Batory
Department of Computer Sciences
University of Texas at Austin
Austin, Texas, 78712 U.S.A.

batory@cs.utexas.edu

Christian Lengauer
Fakultat fiir Mathematik und Informatik
Universitit Passau
Passau, Germany
lengauer@fmi.uni-passau.de

meta-object protocols (MOPs) [14]. A MOP transforms the
metaclasses that control the behavior of a program’s execu-
tion. On the other hand, aspect compilers perform static
weaving by producing woven binaries or woven source [5].
When a woven binary is run, its execution flow is indistin-
guishable from that of a MOP implementation. Aspect com-
pilers are popular today because, among other reasons, they
offer improved program run-time performance through static
optimizations that are too expensive to realize via MOPs [6].

If we want to understand the impact that aspects have on a
program’s structure, we need to study an implementation of
aspects that makes program structure explicit. This is where
transformations come in. A program transformation is a
function that maps programs to programs [36]. While there
are few aspect compilers [21] that explicitly use program
transformation tools [41], we claim that the effects of static
weaving can be understood in terms of transformations. This
connection enables us to raise aspects from code artifacts to
mathematical entities (functions from programs to programs)
and develop algebraic models of aspects and their composi-
tion. These models reveal aspect composition as a significant
source of the problems mentioned above. We have demon-
strated that functional composition is essential to the synthe-
sis of large-scale programs [10][11]. To the best of our
knowledge, large-scale program synthesis has not been tack-
led yet with AOP technology [3]. We propose an alternative
model of aspect composition, based on function composi-
tion, that eliminates the above problems while preserving the
power of Aspect]. We believe our model lays an algebraic
foundation on which to build and understand AOP tools.

2 AspectJ Overview

Aspect] [7] is an extension of Java whose goal is to modular-
ize aspects, concerns that crosscut traditional module bound-
aries such as classes and interfaces, that would otherwise be
scattered and tangled with the implementation of other con-
cerns [8]. Aspect] has two types of crosscuts, static and
dynamic, that we illustrate and interpret as transformations.

2.1 Static Crosscuts

Static crosscuts affect the static structure of a program
[8]1[29]. We focus on introductions, also known as inter-type
declarations, that add fields, methods, and constructors to

existing classes and interfaces. In Aspect], standard Java
classes and interfaces are referred to as base code. Consider
class point defined below:

class Point {
int x;
void setX(int v) { x = v; }
} (1)

The following aspect TwoD adds (introduces) a second coor-
dinate value to class point. It adds field y and method set¥y:

aspect TwoD {
int Point.y;
void Point.setY(int v) { y = v; }

}

When these two files are composed or woven by the
Aspect] compiler ajc using the command:

ajc Point.java TwoD.java

The result is a new class point’ with the introduced mem-
bers underlined below:

class Point’ {
int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { v = v; }
} (2)

Aspect] generally uses more sophisticated rewrites than
those shown in this paper. The composed code snippets we
present simplify illustration and are behaviorally equivalent
to those produced by ajc.

Static Crosscuts as Transformations. From the program
transformation perspective, base code such as point in (1)
represents a value to which a function (a program transfor-
mation) or aspect is applied. For instance, class point’ in
(2) can be written as the following expression:

Point’ = TwoD (Point)

That is, Point is a base program and TwoD is a function that
maps Point t0 Point’.

2.2 Dynamic Crosscuts

Dynamic crosscuts, in contrast, run additional code when
certain events occur during program execution. The seman-
tics of dynamic crosscuts are commonly understood and
defined in terms of an event-based model [30][45]. As a
program executes, different events fire. These events are
called join points. Examples of join points are: variable ref-
erence, variable assignment, execution of a method body,
method call, etc. A pointcut is a predicate that selects a set
of join points. Advice is code executed before, after, or
around each join point matched by a pointcut.

The following aspect is the familiar logging example. Its
interpretation is: run the advice code (underlined) after

(advice type) the execution of methods in class Point
whose name starts with ‘set’ (pointcut in italics).

aspect Logging {
after(): execution(* Point.set*(..))
{ println(“Logged”); }
} (3)

From a compiler perspective, an equivalent interpretation
is: insert the advice code after the body of any method in
class point whose name starts with ‘set’. For example, if
aspect Logging is woven into class point’ in (2) the result
is equivalent to:

class Point” {

int x;

void setX(int v) {x = v; println(“Logged”); }

int y;

void setY(int v){ y = v; println(“Logged”); }
} (4)

Dynamic Crosscuts as Transformations. Dynamic cross-
cuts can be implemented by transformations. For example,
class point” in (4) can be written as the expression:

Point” = Logging(Point’) = Logging (TwoD (Point))

That is, class point” is the result of applying two transfor-
mations, or from an AOP perspective the result of weaving
two aspects, into class Point.

Aspect] provides an array of sophisticated mechanisms to
define powerful pointcuts and to perform complex rewrites
when weaving aspects into programs. All dynamic cross-
cuts can be understood as transformations including point-
cut designators such as cflow, args, this, and target,
which expose context information of a join point [8].

Consider cflow(y) where Y is a pointcut. Suppose v cap-
tures a specific method execution or method call. c£low(Y)
is the set of join points that occur during the execution of v,
from the time that the method is called to the time of the
return [8]. An interesting question to ask is if a join point x
occurs within the control flow of v? The pointcut that
expresses this is concisely written in Aspect] as:

cflow(Y) && pointcut_for X

From a compiler’s perspective, control flow advice is a
transformation that is composed from four simple transfor-
mations: (i) introduce a control flow stack s, (ii) before
each v join point, push a marker m on s, and (iii) after each v
join point, pop M off s. For the duration that M is on s, any
join point that occurs does so within the control flow of v.
And finally, (iv) at each x join point, check to see if M is on
s; if so, execute the advice code.

Aspect compilers, such as ajc, demonstrate that aspects can
be implemented by transformations: ajc takes a base pro-
gram and aspects as input and produces a woven binary as
output. Even so, the connection of dynamic crosscuts, espe-

cially cf1ow, to transformations remains controversial [23].
However, when given proper consideration, optimization
and weaving techniques such as those presented in
[6][24][34] are examples of program transformations,
sophisticated indeed, but transformations nonetheless.

2.3 Advice Precedence

Recognizing that aspects can be realized as program trans-
formations is a key first step in understanding how aspects
impact program structure. The next step is to see how
aspects are composed.

Multiple pieces of advice can be applied to the same join
point. Advice precedence determines the order in which
advice is woven. Aspect] deals with precedence differently
depending on where the pieces of advice are defined, either
in the same aspect or in different aspects [8].

Ordering aspects. Aspect] programmers have the option
of declaring the order in which aspects are woven by a pre-
cedence statement such as:

declare precedence: Aspect,;, Aspect,, Aspectg;

In the above example, the advice of Aspect, is woven first,
then the advice of aspect,, and finally the advice of
Aspect3.1 If no precedence statement is declared, the prece-
dence of aspects is undefined in the semantics of Aspectl.
In such cases, the Aspect] compiler chooses an order in
which to weave aspects. In general, this order cannot be
inferred by programmers prior to weaving.

Unfortunately, different weaving orders can result in pro-
grams that behave differently. We need to know the weav-
ing order to be able to predict the result. If the weaving
order is undetermined, as in the absence of a precedence
declaration, the woven program will at the least be not por-
table (since different compilers can choose different weav-
ing orders). Moreover, programmers will not be informed
about the order the compiler chooses, i.e., they will find it
hard to predict the result of a weaving [4].

Ordering advice. Within an aspect, different pieces of
advice appear in a certain textual order. However, the pre-
cedence of advice is governed by the following rules copied
verbatim from [8]:

If two pieces of advice are defined in the same aspect,
then there are two cases:

+ If either are after advice, then the one that appears
later in the aspect has precedence over the one that
appears earlier.

1. The mathematical concept of precedence has the opposite meaning of
precedence in Aspect]. Higher precedence in Aspect] means apply later,
whereas mathematical precedence means apply earlier.

¢ Otherwise, then the one that appears earlier in the
aspect has precedence over the one that appears later.

These precedence rules lead to two problems: 1) they may
introduce a circularity such that the compiler cannot decide
with which piece of advice to start the weaving, and 2) they
cannot express all composition (weaving) orders.

The circularity problem is well-known [8], but the latter is
not. A single aspect with three pieces of advice (identified
by subscripts) illustrates both:

aspect Circular
void around, () :execution(void test.main(..))

{ println(“Al”); proceed(); println(“Al”); }
after; () : execution(void test.main(..))
{ println(*a3~); }
void around, () :execution(void test.main(..))
{ println(“A2”); proceed() ;println(“A2"); }
} (5)

First, when the rules are applied, 8 ,round, «—— after,
circular precedence is created, as
illustrated in the diagram to the
right. To resolve the problem, pro-
grammers must manually modify
the order in which the advice is listed in the program text,
ensure that the resulting weaving order eliminates circular-
ity, and produce a semantically appropriate weaving for the
task at hand, a non-trivial and lengthy process.

around,

has precedenceover | v

X = >

Second, some composition orders cannot be attained. Sup-
pose we want the following output sequence (a2, a1,
<mains, A1, A3, A2), which is achieved by weaving around;
first, then after,, and then around,. In what order should
advice around,, after;, and around, be listed in a single
aspect file to achieve this weaving order?

The above rules dictate that around, must be listed before
around; (because around; must be woven first). Advice
after, must also appear before around, (to weave after,
first). Thus, the ordering so far is: after, then around, then
around;. But after; must also appear after around, (for
around, to be woven before after,). It is impossible for
after, to be both before around, and after around,;. Thus,
no linear ordering of the advice around,, around,, and
after, can achieve the desired weaving order.

A way to realize such a weaving is to store each advice in a
separate aspect file and use declare precedence:

declare precedence: around,, after;, around,;

Another way might be to convert all after and before advice
into around advice, which can be easily ordered. But this
then begs the question of why after and before advice have
different ordering rules than around advice.

In summary, the current rules for precedence makes pro-
gram reasoning unnecessarily difficult. But precedence is

not the only problem with aspect composition. Fundamen-
tal software engineering practices such as step-wise devel-
opment are not satisfactorily supported by Aspect], as the
following section shows.

3 An Incremental Development Example

Incremental or step-wise development (SWD) is a funda-
mental programming practice [11][44][46]. It aims at build-
ing complex programs from simpler ones by progressively
adding programmatic details. SWD was not fully appreci-
ated by the software engineering community for years.
Today it is a centerpiece of core results in the synthesis of
programs in product-lines [11] and component-based soft-
ware engineering [44].

We illustrate a small but typical example of incremental
development. We use subscripts to denote a particular ver-
sion of our program at a given step and underline the code
that is added by each increment.

Base. Class roint, defines a 1-dimensional point with an x
coordinate and corresponding setx method:

class Point, {
int x;
void setX(int v) { x = v; }

} (6)

First increment. Adds coordinate y and its sety method to
point,. The result is:

class Point; {
int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y

[}
N

}

Second increment. Counts how many times the set meth-
ods are executed. Adding both increments to base yields:

class Point, {
int x;
void setX(int v) { x = v; counter++; |}
int y;
void setY(int v) { y = v; counter++; |}
int counter = 0;

}

Third increment. Adds a color field and its corresponding
set method to point,:

class Point; {

int x;

void setX(int v) { x = v; counter++; }
int y;

void setY(int v) { y = v; counter++; }
int counter = 0;

int color;
void setColor (int c) { color = c; }

}

Now here is an implementation in AspectlJ:

Base. Identical to (6) because classes are the base code of
Aspect] applications.

First increment. We define aspect TwoD that introduces
field y and method setY to class Point:

aspect TwoD {
int Point.y;
void Point.setY(int v) { y = v; }

}

The command that composes class Point(and aspect TwoD
and achieves a program equivalent to Point; is:

ajc Point,.java TwoD.java

Second increment. Aspect counter introduces field
counter to class point and advises the execution of all set
methods to increment this counter?:

aspect Counter ({
int Point.counter = 0;
after (Point p) : execution(* Point.set*(..))
&& target (p)
{ p.counter++; }

} (7)
A program that is equivalent to point, is produced by:
ajc Pointy.java TwoD.java Counter.java

Third increment. Aspect color adds a color field and a
setColor method:

aspect Color
int Point.color;
void Point.setColor (int c¢) { color = c; }

}
The composition of base with the three increments is:

ajc Point,.java TwoD.java Counter.java
Color.java

However, this time the result is not points, but instead:

class Pointy’ {
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int counter;
int color;
void setColor(int c){ color=c; counter++; }

}

That is, the setcolor method of point,’ increments
counter (underlined above) unlike Point,. This means that
developers face the problem that building a program incre-
mentally by hand may yield different results than using
Aspect]. To produce point, using Aspect], we should have
used a more constrained version of counter that captures
execution join points only of setx and sety methods:

2. In Aspect] there are other ways to define Counter. Shortly, we will
present the rationale behind this implementation decision.

aspect Counter {
int Point.counter = 0;
after (Point p) (execution (* Point.setX(..))
| | execution (* Point.setY(..)))
&& target (p)
{ p.counter++; }

} (8)

An obvious question is: why was counter not defined like
(8) in the first place? Doing that certainly would solve this
problem, but we must consider other properties of software
modules that are also desirable for aspects. Among them is
reusability, i.e., we want to treat aspects as components as
in CBSE and reuse them as is. For example, suppose
counter is redefined as (8), but now we want to build pro-
gram point,’ instead. We would have to revise counter
back to (7) as the version in (8) cannot be used. The ques-
tion is: why can we not reuse the same aspect for both
cases? The problem is that aspect weaving does not distin-
guish among development stages of a program. We show
how to solve this problem in the next section.

4 An Algebraic Model of Aspects

In this section, we develop an algebraic model that reveals
another source of complexity in Aspect] composition. We
then propose an alternative model of composition that
retains the power of Aspect], supports step-wise develop-
ment, simplifies advice precedence, and facilitates reason-
ing using aspects. Our model has three operations that build
upon the notions of introduction, advice, and weaving.

4.1 Preliminaries

Our model requires all method introductions to be explicit.
Advice in Aspect] implicitly introduces a method. Recall
the Logging aspect:

aspect Logging {
after(): execution(* Point.set*(..))
{ println(“Logged”); }

}

When woven into class roint, in (6), aspect Logging can
be regarded as the transformation that results in:

class Point {
int x;
void setX(int v) { x = v; printLog(); }
static void printLog(){ println(“Logged”) ;}

}

Method printLog is an explicit method that contains the
advice body (the log message) and it is called at the end of
the body of method setx (after the method execution).

To separate advice from introductions, pure advice is a
named advice that replaces the advice body with a method
call. To preserve Aspect] semantics, this call is not advis-
able, i.e., it has no join points. All join points of the original

advice body reside in the method that is called. For exam-
ple, we can conceptually rewrite the Logging aspect as:

aspect Logging {
static void Point.printLog()
{ println(“Logged”); }

Log is after() :execution(* Point.set*(..))
--> Point.printLog() ;
} (9)

where Log is the name given to the pure advice, printLog is
the method that contains the advice body, and the --»
arrow indicates the method call. Other researchers have
advocated a similar concept (that of making advice bodies
into explicit methods), but have motivated the idea for dif-
ferent reasons [37]. Without loss of generality, we assume
all advice is pure advice from this point on in this paper.

4.2 Introduction Sum

An introduction is a function that adds a data member or
method to a program. Recall aspect TwoD and class point,
whose composition was modeled algebraically as:

Point; = TwoD (Pointg) (10)

where point, and Point, are values, and TwoD is a function
that maps class Point, to class point,. Appealing to intu-
ition, we can rewrite (10) as the sum of the introductions of
TwoD With Point:

Point, = TwoD + Point, (11)

Operation + is called introduction sum. It is a binary opera-
tion that performs disjoint union on program fragments,
which are sets of variables and methods. For example,
aspect TwoD is the program fragment (set) containing y and
sety, and class point, is the fragment (set) containing x
and setx. We write introduction sum as:

Point; = TwoD + Point,
= (setY + y) + (setX + x)
= setY + y + setX + x

meaning Point, = {setY, y, setX, x} where our notation
above omits set brackets. As + is disjoint set union, intro-
duction sum has the following properties:

Identity. o is the empty program (i.e., a program fragment
that contains no members). If x is a program fragment:

X=X+0=0+X

Commutativity. + is commutative because set union is
commutative.

Associativity. + is associative as set union is associative.

+ differs from AspectJ introduction in that it does not allow
member overriding. We believe overriding is rarely used
and can be circumvented with a more structured design.3

4.3 Weaving

Pure advice is a function that maps an input program to a
program where calls to advice methods have been inserted.
We use function application to model the operation of
weaving. Let a be pure advice and p be a program. The
result of applying (weaving) a into p is program p-:

Weaving has the following properties:

Identity. iq is the null pure advice — i.e., pure advice that
captures no join points. Null pure advice is the identity
transformation; its application does not affect a program. If
p is a program fragment, p=id (p). That is, p does not
change when woven with id.

Associativity. Weaving is right associative.

Distributivity. Weaving distributes over introduction sum.
Let p be a program, a be pure advice, and p’ =a (P) . Suppose
pP=x+Y+32, Where X, v, and z are arbitrary program fragments.
We have:

P’ = a(p)

=a(X +Y + 2Z2)
= a(X) + a(y) + a(2)

Advice applies to all join points in a program. Thus it is
immaterial if the program fragment is viewed as a whole (p)
or as the sum of its parts (x+v+z). This distributivity prop-
erty is central to AOP.

4.4 Advice Sum

Each piece of advice is a transformation (i.e., a function).
The application of multiple pieces of advice is modeled by
function composition, denoted by e, which we call advice
sum. o also models advice precedence. azea1 means apply
advice a1 first and then a3. Advice sum has the properties:

Identity. id is the null pure advice. If a is pure advice:
a=a e id = id e a

Commutativity. The order in which advice is applied mat-
ters. e is not commutative.*

Associativity. e is associative because function composi-
tion is associative.

4.5 Modeling Aspects as Pairs

We model an aspect as a pair of two entries. The first entry,
called the advice part, is the aspect’s advice and the second

3. + also allows new classes and interfaces to be added to a program,
which Aspect] does not support. This extra ability is useful when new
functionality is added [32]. Aspects can encapsulate nested classes and
nested interfaces, but not classes and interfaces that are unnested.

4. Two pieces of advice commute if they have no join point in common.

entry, called the introduction part, is the aspect’s introduc-
tions. The pair for Logging (9) is:

Logging = <Log, printLog>

where Log is the name of the pure advice and printLog is
the name of the introduced method.

counter is another example. A pure advice version of it is:

aspect Counter ({
CounterP is after (Point p):
execution (* Point.set*(..)) && target (p)
--> Point.counterInc (p) ;

static void Point.counterInc (Point p)
{ p.counter++; }
int Point.counter = 0;

and its pair is:
Counter = <CounterP, counterInc + counter>

Note that the second entry of the pair sums the introduc-
tions counterInc (the method of the advice body) and
counter (the variable).

Finally, a pure version of the circular aspect (5) is:

aspect Circular
pointcut pcd()
test.main(..));

: execution (void

static void test.m1(){ ... }
static void test.m3(){ ... }
static void test.m2(){ ... }

al is void around, () :
a3 is after;():
a2 is void around, () :

pcd() --> test.ml();
pcd() --> test.m3();
pcd() --> test.m2();

}

Suppose advice is woven in the textual order listed in an
aspect. circular would be modeled by the pair:

Circular = <a2 ® a3 ® al, m2 + m3 + ml>

The expression a2ea3eal represents compound advice,
where a1 is woven first and a2 last.

4.6 Aspect Composition

Let aspects a1 and a2 be modeled by the pairs a1=<a,,i;>
and A2-<a,, i,>. We denote aspect composition in Aspect]
by operation 0. The Aspect] composition of a2 with a1
(with a1 being applied first) is:

a2 O A1 = <ag, i,> 0 <a;, i;>

= <a; ® a;, i, + i;>

¢ is similar to vector addition because the coordinates of
pairs are summed: + sums program fragments, e sums
advice in weaving order.

As another example, program p can be modeled by the pair
<id, p>, where id is null pure advice and p is the introduc-

tion sum of the members of r. Weaving aspect a1 into p and
then weaving aspect a2 is:

a2 0 a1 0P
= <a,,iy> O <a;,iy> O <id,p>
= <a, ® a; ® id, i, + i; + p>
= <a, ® a;, i, + i, + p>
The code of a pair is the program that the pair represents.
Let v be a pair. Its code, denoted [v1, is computed by weav-
ing its advice part with its introduction part:

[Vl = [<a,i>] = a(i) (12)

This follows from the fact that advice can advise any join
point of a program5 . Thus the program that is produced by
weaving A1 and then a2 into p is:

(a2 0 A1 0 P] = a, ® a;(i, + i; + D) (13)

More generally, when aspects a,...a, are woven in this
order into p, the result is:

A, ¢a,,0 ... 04, ¢0p

= aj®a, 1°®...a;(i+i 1+...+i;+p) (14)

That is, the result of weaving a sequence of aspects into a
program equals the weaving of advice in weaving order into
the program that is the introduction sum of the program’s
members and aspect introductions. (14) represents the
“shape” of any program produced by Aspect]. We call this
the pair model of composition.

(14) identifies the source of the problems noted earlier in
Section 3 about incremental program development using
Aspect]. It can be seen in the expansion of (13):

a2 ¢ a1 ¢ pJ
= a, ® a; (i, + i; + p)
ax®a; (i) + a®a; (i) + ayea; (p)

The offending term is underlined. It means that to apply
aspect a2, the programmer is required to know how an
advice from a previous development step (a,) affects an
introduction added in the current step (i,). More generally,
the weavings that cause problems in incremental develop-
ment are underlined below:

.- 03y, 503,100 10, . 03,03 (1) + ...

In other words, a programmer needs to know how previ-
ously applied pieces of pure advice a; affect later introduc-
tions i, where j < k. These are the terms that make step-
wise development difficult. The problem is aggravated
when a large number of aspects are composed and the
development involves multiple steps.

5. Readers familiar with advice that advises itself will recognize that the
pure advice part advises its introduction part. This is modeled by (12).

4.7 The Functional Model

An alternative way to compose aspects is to equate aspect
composition with function composition. Consider aspect
A=<a, i>. We can model a as the function:

A(x) = a(i + x)

That is, A adds its introductions (1) to its program fragment
input (x) before weaving its advice (a). So applying aspect
A1 to program p and then applying aspect a2 is:

A2(AL(P)) = ay(ip + a;(i; + p))
= ay(i,) + ay®a;(i;) + ay®a;(p) (15)

Note that the offending pure advice a, disappears from the
left summand (a, (i,)). This generalizes to the composition
of any number of aspects: the weavings that make step-wise
development difficult are never generated. We call this the
functional model® In effect, the pair model expresses
unbounded quantification (i.e., the scope of advice extends
over the entire program) [20], whereas the functional model
expresses bounded quantification (i.e., the scope of advice
extends over a stage in a program’s development). An obvi-
ous question arises: which model is more expressive?

The functional model can express programs that the pair
model cannot express, for example program (15). This
expression cannot be produced by the pair model because
all pieces of advice are woven into all introductions yield-
ing program (13). Again, this is a consequence of the
unbounded quantification of the pair model.

Unbounded quantification is a special case of bounded
quantification. Think of quantifiers in first-order logic: the
scope of a quantifier extends from its position in a logical
formula to the right. Unbounded quantification means that
the formula starts with the quantifier. In the functional
model, a weaving expression is interpreted the same way:
the influence of advice extends to the right and not to the
left. Let us illustrate this with program (13) which requires
unbounded quantification. To construct this program in the
functional model, we decompose aspect a1 into a pair of
aspects, one containing introduction i, and the other with
advice a;:

Al;

intro
Alagvice (X) = ap(x)

(x) = 1i; + x

Similarly for aspect a2:

Azintro(x) = i2 + X
A25avice (X) = ax(x)

To build (13), we weave the aspects with introductions to p
first and then the aspects with advice to get:

6. The functional model was inspired by AHEAD, which implements the
laws of this paper; AHEAD has been successfully used to synthesize large
systems [11].

A2a4vice (Alagvice (A2intro (Alinero (P))))

= a, ® a;(i, + i; + p)
This ability to model unbounded quantification in the func-
tional model is general, and is not specific to this particular
example.

In summary, the functional model can express all programs
that the pair model can express, and more once aspects are
expressed in terms of bounded quantification. There are
many useful programs that need bounded quantification.
Recall the point example of Section 3. Let us add a third
dimension to point, which is defined by aspect Threeb that
introduces a z variable and setz method. Assuming that
counter advises all set methods as in (7) using bounded
quantification, we can build at least four programs:

) Color (ThreeD (TwoD (Counter (Pointg))))

) Color (ThreeD (Counter (TwoD (Pointg))))

) Color (Counter (ThreeD (TwoD (Pointg,))))

) Counter (Color (ThreeD (TwoD (Pointg))))

(a) is a program that counts the executions of setx. (b)
counts the executions of setx and setY. (c¢) counts the exe-
cutions of setX, sety, and setz. (d) counts the execution of
all set methods. Each of these programs is synthesized by
reusing and composing aspects as is. Using Aspect], weav-
ing aspects Counter, Color, ThreeD, and TwoD in an arbi-
trary order into p will always produce program (d). To build
all four programs using Aspect] would require four differ-
ent versions of Counter.

To summarize, problems in step-wise development arise
using Aspect] when pointcuts are not bounded to a set of
classes, methods, and variables at a specific stage of pro-
gram development. Common examples are pointcuts that
capture the set of all calls to one or more methods, and
wildcard patterns. Subsequent introductions that are cap-
tured by these pointcuts give rise to the problems discussed
here. The functional model avoids these problems.

5 Perspective

We showed in Section 2.3 that precedence in Aspect]
makes reasoning about and composing programs unneces-
sarily difficult. We showed in Section 4.7 that when aspects
are reused as is, many programs cannot be built. We will
show how to remove these limitations in Section 5.2 with-
out sacrificing the power of Aspect]. Further, our work
places aspects closer to key results in automated software
design, which we now discuss.

5.1 Automated Software Design

The history of automated software design is replete with
results on transformations and their connection to program
structure. Tool-enabled program refactorings are program
transformations [43]. Layers in layered software designs
are transformations [10]. When viewed as increments in

program functionality, features in software product-lines
are transformations [11]. Model transformations play a key
role in Model Driven Architectures; they are mappings
between models (which are non-code representations of
programs) [12]. Arguably the most significant result in
automated software design is relational query processing
[40]: a query evaluation program is defined by a composi-
tion of relational algebra operations. These operations are
transformations of query evaluation programs.

Aspects define very useful transformations, and their
strength is that programmers do not need understand trans-
formation technologies to use them. As mentioned earlier,
transformations are just one of a number of ways in which
aspects can be implemented. The advantage of viewing
aspects as transformations is that it exposes how aspects
modify a program’s structure. Doing so places aspects in
context with results in software architectures and automated
software development that also define and modify program
structure.

5.2 Impact on Existing Tools

Our work eliminates several problems in Aspect]. First, the
precedence rules for ordering pieces of advice within an
aspect (Section 2.3) can be eliminated. We propose a sim-
pler rule: apply advice in the order in which it is listed in an
aspect file. This rule will simplify the ordering algorithms
currently utilized by aspect compilers and will help Aspect]
programmers by reducing the effort to determine a compo-
sition order.

Second, the rules that Aspect] uses to assign precedence to
aspect files can also be eliminated. We propose that a prece-
dence be declared for all aspect files to define their compo-
sition order. Alternatively, the compiler could raise an error
when users fail to specify an order where ordering matters.
Again, this change simplifies advice ordering algorithms
for multiple aspect files and also helps programmers as now
aspect compiler output will be predictable.

AOP researchers have raised the issue that it should be
unnecessary to specify a composition order when aspects
are provably commutative. We agree. In cases where point-
cuts have disjoint sets of join points their corresponding
advice is commutative. Existing tool support can help iden-
tify these situations [8]. However, it is still necessary to
specify when these pieces of advice are to be applied. This
may require an enhancement of existing tools.

5.3 Related Work

Since the Sixties, the paradigm of layered software has
been applied to harness the complexity of large software
systems (initially, they were operating systems [18]). A key
property of layered software is that a layer has knowledge
of lower layers but not of higher layers. (This is bounded

quantification). We apply this principle to aspect orienta-
tion: the weaving of an advice affects the existing program,
but not any parts that are added later.

Compositional models of aspects have a long history. Gen-
Voca, AHEAD, and HyperJ are examples [10][11][20][42].
Relating compositional models to algebras is discussed in
[11]. An early version of the ideas in this paper were pre-
sented at an AOSD 2005 workshop [33].

The relationship between program transformations and
aspects is not new. Lidmmel studied the implementation of
aspects as programs transformations [30]. Kniesel et al.
developed JMangler, a backend tool to support AOP that
relies in transformations at the bytecode level [27]. The
work of Krishnamurthi et al. on modular verification of
aspect advice has an underlying assumption that aspects can
be regarded as transformations [28]. We extend these ideas
by showing how a transformation view leads to an algebraic
model of aspect composition.

McEachen and Alexander consider the problems caused by
weaving bytecode that already contains woven aspects [35].
A foreign aspect is an aspect that has been woven; the
woven bytecode is later imported by a third party that has
no access to the aspect’s source code. A foreign aspect
“comes alive” and can potentially affect subsequently
added base or aspect code. Foreign aspects are problematic
as they can: a) not capture all intended join points, b) cap-
ture unintended join points, and c) inadvertently interact
with other aspects. The authors advocate guidelines to
design the scope of pointcuts, use of abstract pointcuts to
control the set of join points advisable by foreign aspects,
and promote adequate pointcut documentation. Our work
provides a foundation to understand the problems caused by
foreign aspects and a solution to eliminate them. The rules
of the functional model can be enforced by a compiler,
whereas adhering to the guidelines of McEachen and Alex-
ander is the responsibility of programmers.

Modular reasoning with AOP is controversial [15][16][17].
Kiczales and Mezini claim that in the presence of aspects
“the complete interface of a module can only be determined
once the complete configuration of modules in the system is
known” [26]. In other words, aspects entail global reason-
ing that they define as “having to examine all the modules
in the system or subsystems”. The pair model of Aspect]
mathematically corroborates their claim and shows the neg-
ative implications it has for incremental development. The
functional model of composition reduces the need of global
reasoning without restricting the power of Aspect].

Rinard et al. propose a framework to classify aspects based
on their interactions with other aspects and base code [38].
They present a tool that alerts users of cases where modular
reasoning (a user-defined property) could be compromised

so that users can take corrective action when necessary.
Open modules proposes a module system whereby an inter-
face describes the pointcuts and join points that are advis-
able by the pieces of advice of other modules thus
promoting modular reasoning about aspects [1].

Complementary to our approach, there is work that aims to
improve aspect reuse by making significant language
changes. Gybels and Brichau propose a logic-based cross-
cut language to better decouple aspects from programs [22].
Rho and Kniesel propose aspect uniform genericity, appli-
cation of logic metavariables in language constructs, as a
way to promote reuse and to significantly expand the
generic capabilities of Aspect] [39]. Incidentally, they too
take a transformation view of aspects.

Classpects unify aspects and classes [37]; they are classes
enhanced with bindings. A binding associates an advice
type (before, after, around) and a pointcut with a call to a
list of methods. These methods replace the advice body,
similar to what we did when we transformed advice into
pure advice.

A full implementation of the functional model requires
advances in compilers. One issue is separate compilation
[13][2], which is gaining attention in the programming lan-
guages community. Our need for separate compilation
comes from the commutativity of operation +, which per-
mits the introduction of a method before introducing other
members on which the former may depend. This problem
exists now in Aspect] because aspect files cannot be com-
piled separately from their base program. Also, a type the-
ory is needed to tell us whether expressions are valid [25].

6 Conclusions

Aspect-oriented programming should be in the repertoire of
tools and techniques used by software developers. But the
current model and flagship tool of AOP, Aspect]J, has limi-
tations: aspect reuse is limited, woven programs can have
hard to predict behavior, modular reasoning using aspects is
difficult, and step-wise development of programs is error-
prone. We explored these limitations and found that a sig-
nificant source of complexity in Aspect] is its model of
aspect composition.

To address these problems, we recognized that there are
many ways in which aspects could be implemented. We
selected a way — using program transformations — that
revealed how aspects alter a program’s structure. This
allowed us to raise aspects from code artifacts to mathemat-
ical entities (functions that transform programs) and
enabled us to develop an algebra to model aspect composi-
tion. Our algebra exposes a source of the current problems,
it also reveals a solution. By equating aspect composition

with function composition, the problems were eliminated
and the power of Aspect] was preserved.

We are now investigating how to include other Aspect]
capabilities such as declare parents, abstract aspects,
abstract pointcuts, and aspect inheritance into our model.
Our goal is to build languages and tools based on our model
and to evaluate their potential in an experimental setting
using the Aspect Bench Compiler (abc) [9][5]. We believe
that our work lays an algebraic foundation on which to
build and understand AOP tools.

Acknowledgements. We thank Gary Leavens, Paul Kelly,
Oege de Moor, Axel Rauschmayer, Jim Cordy, Sven Apel,
and Dewayne Perry for their comments on earlier drafts.

This research is sponsored in part by NSF's Science of
Design Project #CCF-0438786.

7 References

[1] J. Aldrich. Open Modules: Modular Reasoning about Advice.
ECOOP 2005.

[2] D. Ancona, G. Lagorio, and E. Zucca, “True Separate Compi-
lation of Java Classes”, PPDP 2002.

[3] AOSD Europe Network of Excellence Workshop. ECOOP
2005.

[4] Aspect] Developers mailing list. dev.eclipse.org/mho-
narc/lists/aspectj-dev/maillist.html. Thread on
execution order. October 5, 2005.

[5] P. Avgustinov, et al., “abc: An Extensible Aspect] Compiler”,
AOSD 2005, Chicago, USA.

[6] P. Avgustinov, et al. “Optimizing Aspect]”’, PLDI 2005.

[71 Aspect], version 1.2.1, eclipse.org/aspectj/.

[8] Aspect] Manual,
progguide/language.html.

[91 Aspect Bench Compiler. www.aspectbench.org

[10] D. Batory and S. O'Malley. “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”, ACM TOSEM, October 1992.

[11] D. Batory, J.N. Sarvela, A. Rauschmayer, “Scaling Step-Wise
Refinement”, IEEE TSE, June 2004.

[12] J. Bezivin, “From Object Composition to Model Transforma-
tion with the MDA”, TOOLS USA, August 2001.

[13] L. Cardelli, “Program Fragments, Linking, and Modulariza-
tion”, POPL 97.

[14] S. Chiba, “Program Transformation with Reflective and
Aspect-Oriented Programming”, in [31].

[15] C. Clifton and G. Leavens, “Observers and Assistants: A Pro-
posal for Modular Aspect-Oriented Reasoning”, FOAL 2002.

[16] C. Clifton, GT. Leavens. “Obliviousness, Modular Reason-
ing, and the Behavioral Subtyping Analogy”. SPLAT 2003.

[17] C. Clifton, “A Design Discipline and Language Features for
Modular Reasoning in Aspect-Oriented Programs”, Ph.D.
Dept. Computer Science, lowa State, 2005.

[18] E.W. Dijkstra. “The Structure of the ‘THE’-Multiprogram-
ming System”, CACM, May 1968.

www.eclipse.org/aspectj/doc/

[19] R. Dounce, D. Le Botlan. “Towards a Taxonomy of AOP
Semantics”. AOSD-Europe. Technical Report, July 2005.

[20] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[21] J. Gray et al. “A Technique for Constructing Aspect Weavers
Using a Program Transformation Engine”. AOSD 2004.

[22] K. Gybels and J. Brichau, “Arranging Language Features for
More Robust Pattern-based crosscuts”, AOSD 2003.

[23] K Gybels and K. Ostermann, Discussions at SPLAT 2005.

[24] E. Hilsdale and J. Hugunin. “Advice weaving in Aspect]”.
AOSD 2004.

[25] D. Hutchins, “Making Inheritance Scale: Towards a Theory
of Deep Mixin Composition”, Univ. of Edinburgh, 2005.

[26] G. Kiczales, M. Mezini. “Aspect-Oriented Programming and
Modular Reasoning”. ICSE 2005.

[27] G. Kniesel, et al. “JMangler - A Framework for Load-Time
Transformation of Java Class Files”. SCAM 2001.

[28] S. Krishnamurthi, K. Fisler, M. Greenberg. “Verifying Aspect
Advice Modularity”. FSE 2004.

[29] R. Laddad. AspectJ in Action. Practical Aspect-Oriented
Programming. Manning, 2003.

[30] R. Lammel, “Declarative Aspect-Oriented Programming”,
PEPM 1999.

[31] R. Lammel, J. Saraiva, and J. Visser (Eds), Generative and
Transformational Techniques in Software Engineering, 2005.

[32] R.E. Lopez-Herrejon, et al. “Evaluating Support for Features
in Advanced Modularization Techniques”. ECOOP 2005.

[33] R.E. Lopez-Herrejon and D. Batory. “Improving Incremental
Development in Aspect] by Bounding Quantification”,
SPLAT Workshop, March 2005.

[34] H. Masuhara, G. Kiczales, “Modeling Crosscutting Aspect-
Oriented Mechanisms”. ECOOP 2003.

[35] M. McEachen, R.T. Alexander. “Distributing Classes with
Woven Concerns - An Exploration of Potential Fault Scenar-
ios”. AOSD 2005.

[36] Partsch, H., Steinbriiggen, R.: Program Transformation Sys-
tems. ACM Computing Surveys, September (1983).

[37] H. Rajan, K.J. Sullivan, “Classpects: Unifying Aspect- and
Object-Oriented Programming”, ICSE 2005.

[38] M. Rinard, A. Salcianu, S. Bugrara. “A Classification System
and Analysis for Aspect-Oriented Programs”, FSE 2004.

[39] T. Rho, G. Kniesel. “LogicAlJ - A Uniformly Generic Aspect
Language.” Submitted.

[40] P. Selinger, et al, “Access Path Selection in a Relational Data-
base System”, ACM SIGMOD 1979, 23-34.

[41] Semantic Designs. www. semdesigns.com/

[42] P. Tarr, H. Ossher, et al., “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”, ICSE 1999.

[43] L. Tokuda and D. Batory. “Evolving Object-Oriented
Designs with Refactorings” J. Automated Soft. Engr: 8, 2001.

[44] C. Szyperski, Component Sofiware: Beyond Object-Oriented
Programming, Addison-Wesley, 2002.

[45] M. Wand, et al., “A Semantics for Advice and Dynamic Join
Points in Aspect Oriented Programming”, TOPLAS 2004.

[46] N. Wirth, “Program Development by Stepwise Refinement”,
CACM 14 #4,221-227, 1971.

