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Abstract

We introduce an abstract general notion of system of equations between terms, called Term Equational Sys-
tem, and develop a sound logical deduction system, called Term Equational Logic, for equational reasoning.
Further, we give an analysis of algebraic free constructions that together with an internal completeness
result may be used to synthesise complete equational logics. Indeed, as an application, we synthesise a
sound and complete nominal equational logic, called Synthetic Nominal Equational Logic, based on the
category of Nominal Sets.
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Introduction

Formal reasoning is fundamental in computer science, and frameworks for support-
ing it abound. Those that are most relevant to this work are equational logic [10]
and algebraic theories [16] together with their extensions, e.g. to rewriting [18],
higher-order [15,19], and nominal [8,4] settings. The common conceptual core of
these frameworks consists of syntactic structure providing a notion of term together
with a logical system of equational judgements. Ideally, this is further equipped
with a model theory for which soundness and completeness hold. A main general
aim of the paper is to formally articulate this scenario by means of a general and
practical mathematical theory. Indeed, we provide a mathematical theory for the
development of term equational systems and logics.

Our Term Equational System framework is given by a semantic universe together
with an abstract notion of syntax on it. From it, the following are induced.
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1. A notion of term in context, and therefore notions of equation and equational
theory.

2. A model theory, providing a satisfaction relation between models and equa-
tional judgements.

3. A sound logical deduction system, called Term Equational Logic, for equational
reasoning.

4. A construction of free algebras that, in certain important and common scenar-
ios, provides a sound and complete system of equations that aids the develop-
ment of a complete logic.

We outline the technical development of the paper introducing it here in re-
stricted form so as to more easily convey the basic ideas and intuitions. The more
general enriched universes of discourse considered in the paper (Definition 2.2) are
indispensable to accommodate multi-sorted theories.

For the purpose of this introduction, thus, we consider a symmetric monoidal
closed category (¢, 1,®,[—,=]) as universe of discourse and a monad T = (T, n, u)
on it, equipped with a strength 7, as notion of syntax. For C € ¥, the ob-
ject TC' € € intuitively represents terms with variables in C'. A global term corre-
sponds thus to a map I — T'C'. More generally, however, as it is well-known from
categorical logic (see e.g. [17]), one should consider generalised terms of the form
A — TC'. For these, the pair (A, C') provides a notion of arity, with C' being the co-
variant arity of the term and A the contravariant arity. Intuitively, one may think
of generalised terms of arity (A,C) as an A-parameterised family of terms with
variables in C. A notion of generalised equation between terms of the same arity,
denoted as t = t/, and hence of generalised theory, is thus induced. (See Section 2.)

A natural model theory arises. As expected, models for the monad are given by
Eilenberg-Moore algebras. The interpretation of a generalised term ¢t : A — T'C in
such a model (X,s:TX — X) is a map

[[t]](X,s) : [CvX] ®A—X )

intuitively evaluating the A-parameterised family of terms ¢ according to the algebra
structure (X, s) with respect to assignments in X for the variables in C. Formally,
the interpretation map [[t]]( X,s) 18 given by the composite

[C. Xt

C,X]® A 0, X]oTC X (0, X0 ¢) Lsx —- X .

Consequently, a model (X, s) is said to satisfy the equation t =’ : A — T'C when-
ever [t] x o = [t'] x5 : [C, X] ® A — X. (Again see Section 2.)

Based on the model theory, a sound equational logic, called Term Equational
Logic, is introduced. The logic has the rules Ref, Sym, Trans of equivalence relations;
the rule Axiom stating that the equations of a theory are derivable; the rule Subst
stating that substitution is a congruence; the rule Ext stating that an operation
of context extension is a congruence; and the rule LocChar expressing the local
character of entailment (see e.g. [17]). (See Section 3.)

In the presence of free models for a given generalised theory, we show an internal
soundness and completeness result: A generalised equation is satisfied by all models
of a generalised theory iff it is satisfied in a particular free model (see Section 4).
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This, in view of an explicit construction of free models (see [6,7] and Section 1), may
be used to synthesise a sound and complete deduction system which, in turn, may
suggest how to extend the aforementioned equational logic to make it complete,
and allow the use of equational term rewriting as an alternative for establishing
equational judgements.

Overall, thus, we advocate the following general methodology for developing
term equational systems and logics.

1. Select a universe of discourse ¥ and consider within it a notion of signature
such that every signature 3 gives rise to a strong monad Ty = (Tx, 7,7, 1) on

.

We do not insist on an a priori prescription for the definition of signature, but
rather consider it as being domain specific. Of course, standard notions of sig-
nature (e.g., as they arise in the context of (enriched) algebraic theories [14,20])
may be considered. However, one may also need to go beyond them—see [5].

2. Select a class of arities (A, C') and give a syntactic description of the generalised
terms A — TxC'. This yields a syntactic notion of equational theory with an
associated model theory arising from that of Term Equational Systems.

We are ultimately interested in the existence of free algebras for the signature 3
satisfying the equations of a theory. In cocomplete universes of discourse, these
may be constructed according to the theory of free constructions of [6], e.g. by
considering functors Ty that preserve colimits of A-chains and equations with
A-compact arities (see Definition 2.13) for some limit ordinal .

For applications to finitary theories, however, one need only examine the
case A = w; even under the further conditions that 7% preserves epimorphisms
and the arities of equations are projective (see Definition 2.13). This guarantees
a simple inductive construction of free algebras, well-suited to the extraction
of explicit descriptions.

3. Synthesise a deduction system for equational reasoning on syntactic terms with
rules arising as syntactic counterparts of the rules from the Term Equational
Logic associated to the underlying Term Equational System. By construction,
thus, soundness will be guaranteed.

The analysis of the rule Subst will typically involve the consideration of a
syntactic substitution operation corresponding to the Kleisli composition of
generalised terms.

4. In view of the internal completeness result, analyse the construction of free
algebras so as to either establish the completeness of the synthesised equational
logic, or get insight into how to extend it to make it complete.

This methodology in the universe of Sets with X a finitary signature, Ty, the in-
duced term monad, and theories with equations of arity (1, C), for C a finite set of
variables, leads to equational logic. In fact, the instantiation of our framework for
Term Equational Systems and Logics in universes of Sorted Sets (see Examples 2.6,
2.11, and 3.2) essentially yields the framework of equational theories and logics for
monads on categories of Sorted Sets of Climent and Soliveres [3].
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In Section 5, as a substantial case study providing evidence for the practicality
of the mathematical theory, the above methodology is applied within the universe
of Nominal Sets (which is equivalent to the Schanuel topos). In this development,
terms are generated from signatures of nominal sets of finitary operators together
with meta-variables carrying nominal-variables; the context of meta-variables arises
as the covariant arity of a term, whilst the context of nominal-variables as its con-
travariant arity. The equational theories thus arising naturally specify nominal
algebraic structures (as e.g. that of afn-equivalence of A-terms). For these, a sound
deduction system for equational reasoning is synthesised and, furthermore, shown
to be complete. Our nominal equational logic is logically equivalent to those re-
cently introduced by Gabbay and Mathijssen [8], and Clouston and Pitts [4]. (We
note that a similar development can be carried out in the universe Set!, for I the
category of finite sets of names and injections between them, and that this leads to
the Binding Equational Logic of Hamana [11, Section 4].)

In a subsequent paper, we will also apply the methodology in the context of
second-order abstract syntax as developed in [5] to synthesise an equational logic
for second-order algebraic theories.

Our mathematical theory generalises to incorporate rewriting modulo equations.
However, we do not dwell on this here.

1 Equational systems and free algebras

Equational systems. We recall the notion of equational system introduced by
the authors [6].

Definition 1.1 (Algebra) A X-algebra (X,s) for an endofunctor ¥ on a cate-
gory ¢ is given by an object X € %, called the carrier, together with a morphism
s: XX — X in ¥, called the structure map. Homomorphisms from a Y-algebra
(X, s) to another one (Y, ) are morphisms h : X — Y such that ho s =toXh.

The category »-Alg has objects given by X-algebras and morphisms given by
homomorphisms. The forgetful functor Us, : 3-Alg — % maps X-algebras to their
carrier objects.

Definition 1.2 (Functorial term) A functorial signature X on a category € is an
endofunctor on it. A functorial term T in a functorial context I' for the functorial
signature X on ¢, denoted ¢ : X > I' - T, is given by an endofunctor I' on % and
a functor 7' : ¥-Alg — I'-Alg such that Upr o T' = Usy.

Definition 1.3 (Equational system) An Equational System (ES)
S=(¢:X>TFL=R)

consists of a category € together with a pair of functorial terms ¢ : X > ' - L and
¢ : X > I R, referred to as a functorial equation.

Definition 1.4 (ES algebra) For an ES S=(¢:X>TF L =R), an S-algebra
(X, s) is a X-algebra satisfying the equation; that is, such that L(X,s) = R(X,s) :
rx —X.
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The category S-Alg is the full subcategory of ¥-Alg consisting of S-algebras,
and the forgetful functor Us : S-Alg — € maps S-algebras to their carrier objects.

Example 1.5 Every monad T = (T, n, 1) on a category ¢ with binary coproducts
has an associated ES defined as T = (¢ : T >T'F L = R) where T'X = X + T?X
and L(X,s) = [idx,soTs], R(X,s) = [sonx,soux]. The category T-Alg is (iso-
morphic to) the category of Eilenberg-Moore algebras €.

For more examples of ESs and their categories of algebras see Sections 2 and 5.

Free algebras. We outline a basic theory for the inductive construction of free
algebras, see [6,7].

Definition 1.6 An ES S= (¢ :X > T+ L =R) is said to be A-finitary, for A a
limit ordinal, if the category % is cocomplete, and both the functors ¥ and I’
preserve colimits of A\-chains. Such an ES is said to be A-inductive if furthermore
both functors ¥ and I' preserve epimorphisms.

As it is customary, we refer to the above notions in the case of the ordinal w simply
as finitary and inductive.

Theorem 1.7 ([6,7]) Let S be an ES. If S is A-finitary then the forgetful func-
tor S-Alg — € has a left adjoint.

Consider an inductive ES S = (¢ : X > T'+ L = R). Since the forgetful functor
Us decomposes as S-Alg “Js— 3-Alg -Us— €, its left adjoint can be described in
two stages as the composition of a left adjoint to Uy, followed by a left adjoint to
Js.

The inductive construction of a left adjoint to Us, or equivalently that of free
Y-algebras, is well-known (see e.g. [1,2]). The free Y-algebra (T'X, 7x) on an ob-
ject X € ¢ and the universal map nx : X — T'X are constructed as follows. The
object T'X is a colimit of the w-chain { f,, : X;, — X411 }n>0 inductively defined by
setting Xo = 0 to be initial and X,,11 = X + X(X,,), for all for n > 0; and letting
fo = u be the unique map and f,+1 = X + X(f,), for all n > 0. Since the functor
X + X(—) preserves colimits of w-chains, the object X + X(TX) is a colimit of the
w-chain { f, : X;, — X,41 }n>1. The map [nx, 7x]| is the unique mediating map as
follows:

X 4+ 2024 X 4+ B(X 4 X0) o X + %(TX)
|
H H 3N [nx 7x] = (1)
u X+Zu + ]
0——= X +30——=X +3(X +X0) - TX colim

The intuition behind this construction of TX, in which X represents a signature and
X an object of variables, is that of taking the union of the sequence of objects X,
of terms of depth at most n built from the operators in ¥ and the variables in X.
To give a left adjoint to Jg, we construct a free S-algebra ()N( ,$) on a Y-algebra
(X,s) and a universal homomorphism q : (X,s) — (X,3) as in the diagram (2)
below. The intuition behind the construction of X; in there is that of quotienting
X according to the equation L = R. For n > 1, the construction of X,,;; from
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X, is intuitively quotienting the object X,, by congruence rules. Therefore, the
construction of free ES algebras formalises that of quotienting by equations and
congruence rules.

X 4» EX]_ a1 XY EX2 2q2 A ZXB ...... ZX

\ \ \ o (@)

77 X 7 X >f X
el W§m

q

More precisely, the map qq is the coequaliser of the parallel pair L(X,s), R(X, s).
The map sg is set to be gy o s and the maps ¢; and s;, for ¢ > 1, are inductively
defined by letting X; 1 with ¢; and s; be a pushout of s;_1 and ¥(¢;—1). The carrier
object X is given as a colimit of the w-chain { ¢; };>0, and the structure map s as
the unique mediating map from the colimit ©X , induced by the assumption that
% preserves colimits of w-chains. The universal homomorphism ¢ : (X, s) — (X, 3)
is the component ¢ : X — X of the colimiting cone. Using that X preserves epi-
morphisms, one can inductively show that each ¢; and 3(g;) are epimorphisms,
and thus that so is ¢. Furthermore, we have ¢ : (X, L(X,s)) — ()Z',L()Z',g)) and

q: (X,R(X,s)) — ()N( R(X, 5)) in I'-Alg, and since q coequalises L(X, s), R(X, s)
11: follows that I'q equalises L(X 3), R(X s). Hence, as I'q is an epimorphism,

L(X,3) = R(X,3) and (X,3) is an S-algebra. (Note that the overall argument does
not rely on I' preserving colimits of w-chains.)

Thus we see that the requirement in inductive ESs that ¥ and I' preserve epi-
morphisms plays a central role in allowing the construction of free algebras by the
simple inductive process in (2). Further interest in this preservation property resides
in the results below.

Definition 1.8 For ESs S; = (¢ : X > 1+ L; = R;), i = 1,2, where ¢ has binary
coproducts, the ES $1&S; is defined as (¢ : X > (I'y + I'a) F [Ly, Lo] = [Ry, Ry)).

Proposition 1.9 Let S; = (¢ : ¥ > I'; b Ly = R;), for i =1,2, be A-inductive
ESs. For F 4 Uy, : ¥-Alg — € and F; 4 Js, : S;-Alg — X-Alg, fori=1,2, the
Y-algebra FoF1 F X is a free (S1&S2)-algebra on X.

Corollary 1.10 For a A-inductive ES S = (¢ : T >T't- L = R) and a monad T =
(T,n,p) on €, the free S-algebra (TX,ux) on the T-algebra (TX,ux) is a free
(S&T)-algebra on X.

2 Term Equational Systems

We introduce a more concrete, yet abstract, notion of equational system, called
Term Equational System (TES).

Enriched universes. The notion of TES (Definition 2.5) is given in the context of
certain enriched universes of discourse (Definition 2.2). So as to place these within
the theory of enriched categories, we need recall the following.

6
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For a ¥ -category ¢, with 7 monoidal closed, the notions of tensors V' ® A and
powers [V, B] for V € ¥ and A, B € €, also referred to in the literature as copowers
and cotensors, respectively arise from isomorphisms

¢(VeoAB)2YV|V,4(A,B)]=%(A,[V,B]) in¥

for which the former is #-natural in B and the latter #-natural in A, where
¥ [—,=] denotes the internal hom-functor of ¥ (see [13] for details). Further, in
the important and quite common case in which 7 is symmetric monoidal closed,
a YV-category ¥ with tensors and powers can be equivalently presented as an or-
dinary category %, equipped with a ¥ -action (=) ® (=) : ¥ x €o — %o such that
the functors (—) @ C : ¥ — %y and V ® (—) : 69 — 6o have right adjoints for all
C €% and V € ¥ (see [12] for details).

Remark 2.1 For clarity, and as a notational convention, we will henceforth high-
light #-enriched structures by underlining them. Corresponding structures that are
not underlined will denote ordinary categorical notions. Thus, for instance, for a
¥ -category €, its underlying ordinary category is denoted % .

Definition 2.2 (Enriched universe) An enriched universe (¥, %) is given by a sym-
metric monoidal closed category 7 and a ¥ '-category € with tensors and powers.

As a basic example of enriched universe, note that every symmetric monoidal
closed category ¥ gives rise to the enriched universe (#,%). Another class of
examples is obtained from a family of enriched universes { (¥, %;) }ics for a small
set I when 7" has I-indexed products; as (¥, [[,c; €;) is an enriched universe. (This
construction is needed for specifying I-sorted TESs.)

Term Equational Systems. A Term Equational System (TES) consists of a
theory of equations between terms.

Definition 2.3 (Generalised term) For an endofunctor 7' on a category ¢ and
objects A,C' € €, a generalised term of type T with arity (A,C) is a morphism
A—TCin .

Definition 2.4 (Generalised theory) A pair of generalised terms t =¢' : A — TC
is called a generalised equation. A generalised theory of type T is a set of generalised
equations consisting of generalised terms of type T

Definition 2.5 (Term Equational System) A Term Equational System (TES) S
(¥,€¢,T,A) is given by an enriched universe (¥,%), a #-monad T = (T, n, 1)
%, and a generalised theory A of type T in €.

on

Example 2.6 As a basic example, we show how multi-sorted equational theo-
ries [10,3] arise as TESs.

Recall that an S-sorted signature X, for S a set of sorts, is specified by a family
of sets of operators { ¥(o,s) },es+ ses, where the elements of ¥(s; ...s,,s) stand for
operators of arity si,...,s, —s. Recall further that an S-sorted equational theory
on such a signature is given by a set of tuples (I' = ¢t = ¢’ : s) for I' a context of
S-sorted variables and ¢, ¢’ terms of sort s built from the operators in ¥ and variables
in I
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Every S-sorted signature ¥ induces the signature endofunctor Fx, on Set> given
as follows:

(FsX)(5) = [lpes £(0.5) % [Lipo X(01) (X € SetS,;s€5S).

The forgetful functor Fx-Alg — Set® is monadic, and the induced monad Ty, on
Set® abstractly embodies the notions of terms, variables, and substitution for the
signature X..

Moreover, multi-sorted equational theories on an S-sorted signature ¥ are in
bijective correspondence with TESs (Set,SetS, Ty, A) for which the equations in
A have arity (As,Cr), for s an S-sort and I' an S-sorted context, where As(t) =
{(|s=t}and Cr(t)={z|(z:t) €T }.

The #-monad T = (T,n,u) of a TES is typically given, and henceforth
considered, in the equivalent form of a strong monad (7', 7,7, u) on ¢ with strength

e VOTC-T(VRC): ¥V x€—%E.

Strong monads for TESs commonly arise as free monads on strong endofunctors
as in the proposition below.

Proposition 2.7 For ¥V symmetric monoidal closed, let € be a ¥ -category
with tensors and powers. Further, for an endofunctor F' on € with strength
Tve:VRFC——=FV®C), assume that the forgetful functor F-Alg — € has a
left adjoint and let T = (T, n, u) be the induced monad on € .

Then, T becomes a strong monad, with the components of the strength T given
by the unique maps such that

Vo FTC—Y P(V @ TC) -V FT(V @ C)

V®gocl J:PV@C

TVl

where (T X, ¢x) is a free F-algebra on X.

Model theory. The model theory of TESs is developed.

Let S= (¥,%¢,T, A) be a TES. Every generalised term ¢t : A — T'C'in % induces
a functorial term [t] : T-Alg — (€(C, —) ® A)p-Alg over €, mapping s : TX — X
to the composite

Z(C,X)®t
—

CC,X)® A (0, X) @ TCECOST(¢(C, X) © C) LSTx 5 X,

which is the transpose of €(C, X) %K(TC’, TX) MK(A, X).

The functorial interpretation of terms induces a model-theoretic notion of equal-
ity between generalised terms for algebras. We formalise it by introducing a satis-
faction relation: for a T-algebra (X, s),

(X,s)Fu=v:A—=TC iff [u](X,s)=[v](X,s):€C,X)®A— X .
8
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More generally, for a set of T-algebras .o, we set & F=u=v iff (X,s) Eu=wv for
all (X,s) e .

It is an important fact that the algebras satisfying an equation are closed under
powers. Indeed, every algebra structure s : TX — X induces an algebra structure
sy on [V, X] given by the transpose of the composite

TV, [V, X]

VTV, X| 41w eV, X])Lorx ——X

and we have the following result.

Lemma 2.8 For (X,s) a T-algebra, (X,s) Fu=v iff ([V,X],sv) Eu=v for
allVev.

Definition 2.9 (TES algebra) An S-algebra for a TES S = (¥,%,T, A) is an
Eilenberg-Moore algebra (X, s) for the monad T satisfying the equations in A; that
is, such that (X,s) Fu=wv for all (u=v) € A.

The category S-Alg is the full subcategory of the category of Eilenberg-Moore
algebras €T consisting of the S-algebras. We thus have the following situation

S-Alg ¢ » T C yT-Alg
Tl

The following remark indicates why, in general, a single equation is not sufficient
for the specification of categories of TES algebras.

Proposition 2.10 Assume that € has I-indexed coproducts for a small set I. For
(X,s) a T-algebra, if (X,s) Eti=t,: A —TC; for alli €I then (X,s) =t=1t
for

Hie[ Ai L
Hie[ 2]
[Lic; TC; —T0ilicr— T( [Lics Ci)
Hie[ Ai v

On the other hand, the converse need not hold.

Example 2.11 Let Sz 4) be the TES associated to an equational theory A on an
S-sorted signature ¥ as in Example 2.6.

The functorial term induced by a map As — Tx(Cr) in Set®, or equivalently
a term t of sort s in context I', maps a Tyx-algebra (X, s), or equivalently an
Fx-algebra (X, s*), to a map

[CFt:s]x,) : Set>(Cr,X) @ A;— X in Set® (3)

where, for S € Set and P € Set®, the tensor S ® P € Set® is given pointwise by
setting (S ® P)(t) = S x P(t) for all t € S. Thus, to give (3) is equivalent to give a
single function

[Tt es]ix eyt Tlies Set(Cr(t), X(t)) — X(s) .
9
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The explicit description of this function is given by the following inductive definition.
e For (z:s) el

[T'F 2 s]x e (p) = ps(a) -
e Forf:sq,...,s, —sin X,

[T FfQt, .o tn) 2 S] x5 () = si([TF ¢y : st]xs4)(P)s oo [Tt sn]](X,s*)(p))
where s; denotes the f-component of the structure map s*.

It follows that S(s;, 4)-Alg is (isomorphic to) the category of (3, A)-algebras.

Remark 2.12 We note that the model theory of TESs can be easily recast in the
framework of ESs. Indeed, for ¢ with small coproducts, every TES S = (¥, %, T, A)
induces an ES S = (¢ : T' >4 + L = R) such that (S&T)-Alg = S-Alg, where

Fa(X) =Hp=zvarcyens €(C,X)® A

L(X,5) = [[£)(X,5)] R(X,s) = [[{)(X,5)]

(t=theAd” (t=t)eA

Furthermore, when the strong monad T arises as the free monad on a strong

endofunctor F' (as in Proposition 2.7), the TES S induces a simpler ES S with
S-Alg = S-Alg. Indeed, S = (CK F>T L= R), where

L(X,s") = [[L](X,9)] R(X.s%) = [[¢'](X.9)]

(t=th)eA
for (X, s) the T-algebra corresponding to the F-algebra (X, s*).

(t=t)eA

Definition 2.13 Let (¥,%) be an enriched universe. A pair of objects (A4,C) in
¢ is respectively said to be A-compact, for A a limit ordinal, and projective if the
endofunctor (€(C, ) ® A)p on € respectively preserves colimits of A-chains and
epimorphisms.

Proposition 2.14 Let S= (¥,%,T, A) be a TES. If the category € is cocomplete,
the endofunctor T on € preserves colimits of A-chains (and epimorphisms), and
every arity of an equation in A is A-compact (and projective), then the ES S&T is
A-finitary (A-inductive).

Thus, the theory of Section 1 may be applied to TESs.

3 Term Equational Logic

We introduce a sound deduction system for reasoning about equality between gen-
eralised terms in the context of TESs.

For a TES S = (¥,%,T, A), we consider equality judgements of the form
AFru=v:A—TC

where u, v are generalised terms of arity (A, C) in €. The associated Term Equa-
tional Logic (TEL) consists of the following rules.

10
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Equality rules.

Ref —/——— AFu=v Aru=v Akv=w
AFu=u Sym AFv=u Trans AFu=w
Axioms.
A ) €
XOM = A u=v

Congruence of substitution.

AFui=v1:A—TB AFus=vy: B—TC
Al—ul[u2] = ’Ul[UQ]ZA—)TC

Subst

where w1 [ws] denotes the Kleisli composite A —~TB Tw2>T(TC’) HaC.

Congruence of tensor extension.

AFu=v: A—TC
B Vyu = (Vo Ve d TV el (Ve?)

where (V)w denotes the composite V @ A%V @ TC—2ST(V @ C) .

Local character.

Abuoe; = voei: Ai—TC (i€l . .
Aru=v: A—TC ({ & }ier jointly epi)

LocChar

Remark 3.1 One can also consider the following theory-dependent rule:

AFT(e)ou = T(e)ov: A—TD
AFu=v:A—TC

(e : C — D S-extendable)

where e : C'— D in € is S-extendable iff € (e, X) : €(D,X) — €(C,X) in ¥ is an

epimorphism for all S-algebra carriers X.

However, we know of no concrete example where this rule is of real significance.

Example 3.2 The TEL associated to the TES of a multi-sorted equational the-
ory (see Example 2.6) conservatively extends its multi-sorted equational logic [10].
Note for instance that the usual congruence rule for substitution is derivable from
the TEL rules Subst and LocChar. Details are left to the interested reader (see

also [3]).

The soundness of TEL is the following result.

Theorem 3.3 (External soundness) For a TES S= (¥,¢,T,A),

AbFu=v implies S-AlgEu =v.

Interestingly, the soundness of the congruence rule for tensor extension essentially

amounts to Lemma 2.8.

11
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4 Internal completeness

Omne cannot expect to obtain an external completeness result at the level of gen-
erality of the previous section. However, in the presence of free constructions, an
internal completeness result does hold. Its importance in relationship to external
completeness is illustrated in the application of the following section.

Let S=(7,%¢,T, A) be a TES for which the forgetful functor S-Alg — % has
a left adjoint € — S-Alg : X +— (T X,0x : TTX —TX), and let T = (1,7, i) be
the associated monad on €. Then, the embedding S-Alg < T induces a strict
monad morphism ¢ : ']I‘%ﬁ‘, with each component ¢gx : TX — TX given by
the unique homomorphism (T'X, ux) — (T'X,0x) extending 7x : X — T'X along
nx : X —TX.

Lemma 4.1 The monad T has a strength T induced from T, with components Ty, x
given by the unique map such that

T(Tv,x)

Ve TTx — a1V o TX) —2 51TV @ X)

V®UXJ, lUV(X)X

VOTX- -~~~ ———“——=-—~ +T(V @ X)

M/K

and making q : T — T a map of strengths in the sense that

VeoTX —2% v eoTx

TV, X l i;\ﬂ b'e

TV ®X) =TV e X)

VeX

The equivalence of the first two statements below is a form of strong complete-
ness; it states that an equation is satisfied by all models iff it is satisfied in a freely
generated, hence somewhat syntactic, one.

Theorem 4.2 (Internal soundness and completeness) For a TES S such
that the forgetful functor S-Alg — € has a left adjoint, the following are equivalent:

(i) SSAlgEu=v: A—=TC
(i) (TC,00) Eu=v:A—TC
(iii) goou = goov:A—TC
Proof. (i) = (ii) Vacuously. N
(1i) = (iii) Because, for u:A—TCin % and ng : I — €(C,TC) in ¥ the
transpose of I @ C =2 (C—— TC in %, we have that

AT A" 90, TC)o A

“J J{[[UH (I'Coc)

TC ic *TC
12
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(7i1) = (i) Because, for all (X, s) € S-Alg, we have
£(07X)®qo

€0, X)TC ¢ (C,X) 0 TC
T%(QX)’CJ sz(c,x),c

T(¢(C,X)® C)————T(€(C, X) © C)

d¢(C,X)®C

TGJ/ J(fe
TX = TX
\ /

X

where s’ denotes the unique homomorphism (TVX ,ox) — (X, s) extending id x along
ix: X 5 TX. 0

Importantly for applications, we remark that when a TES is represented by
an inductive ES, the strong-monad morphism ¢ : T — T has an inductive descrip-
tion. For instance, for a TES S = (¥,%, T, A) with € cocomplete, T arising as
a free monad on a strong endofunctor F' that preserves colimits of w-chains and
epimorphisms, and A with equations of compact and projective arity, the ES S (see
Remark 2.12) is inductive and the quotient map gx : TX—» TX is inductively con-
structed as follows:

FTX*»FYi Uy FY, »e—» F(TX)

‘ *
i \ \ f!ax (4)
/Yg T
I

> T X colim

where (T'X, %) and (TX, o%) are the F-algebras respectively corresponding to
the T-algebras (T'X,ux) and (TX,0x), and where gy is the universal map that
coequalises every pair [ul(TX, pux) and [v](TX, pux) with (u = v) € A.

5 Synthetic Nominal Equational Logic

We recall the basic structure of the category NMom of Nominal Sets [9, Section 6]
(which is equivalent to the Schanuel topos [17, Section II1.9]) and present it as an
enriched universe.

On Nom we consider a class of TESs which we call NESs (Nominal Equational
Systems). A syntactic notion of nominal theory arises, and its model theory is
derived from that of NESs. An equational logic, called SNEL (Synthetic Nominal
Equational Logic), for nominal theories is synthesised from the TEL associated to
NESs. The logic SNEL is sound by construction, and we establish its completeness
by means of the internal completeness result through an analysis of the inductive
construction of free algebras.

Gabbay and Mathijssen [8], on the one hand, and Clouston and Pitts [4], on the
other, have recently introduced sound and complete equational deduction systems

13
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for nominal algebraic structures. These logics are logically equivalent to our SNEL.
However, our novel top-down development—from general mathematical theory to
concrete application—leads to new syntax and proof of completeness.

Nominal sets. For a fixed countably infinite set A of atoms, the group &y(A)
of finite permutations of atoms consists of the bijections on A that fix all but
finitely many elements of A. A &y(A)-action X = (|X]|,:) consists of a set |X|
equipped with an action (—) - (=) : Sg(A) x | X| — | X]| satisfying ida - * = = and
7 (m-x)=(n'w) -z for all z € | X| and 7,7 € Sy(A). Sp(A)-actions form a cat-
egory with morphisms X — Y given by equivariant functions; that is, functions
f:|X|— Y| such that f(7-z)=m-(fx) for all 7 € Sy(A) and z € | X|.

For a Gy(A)-action X, a finite subset S of A is said to support x € X if for
all atoms a,a’ € S, we have that (a a’) - z = x, where the transposition (a a') is
the bijection that swaps a and a’, and fixes all other atoms. A nominal set is a
So(A)-action in which every element has finite support. As an example, the set of
atoms A becomes the nominal set of atoms A when equipped with the evaluation
action - a = 7(a). The category Mom is the full subcategory of the category of
So(A)-actions consisting of nominal sets.

The supports of an element of a nominal set are closed under intersection, and
we write suppx (z), or simply supp(z), for the intersection of the supports of = in
the nominal set X. For elements x and y of two, possibly distinct, nominal sets X
and Y, we write x # y whenever suppy(z) and suppy (y) are disjoint. Thus, for
a€ A and x € X, a # x stands for a & suppy (z); that is, a is fresh for x.

The category NMom is complete and cocomplete. In particular, for a family of
nominal sets { X; }ics, the coproduct [[,.; X; is given by |[[,.; Xi| = [1,c; | Xi]
with action 7 - v;(x) = ¢;(7 - x); whilst the product [[,.; X, for finite I, is given by
| TLiesr Xil = I ey | Xi] with action 7 - (2;)ier = (7 - 2;)ier. Further, Nom carries a
symmetric monoidal structure (I, #). The unit I is the singleton set consisting of the
empty tuple equipped with the unique action. The separating tensor X #Y is the
nominal subset of X x Y with underlying set given by { (z,y) € |X| x|Y ||z # v }.
As usual, we write X" for X #...# X (n times). For instance, A”" consists of
n-tuples of distinct atoms equipped with the pointwise action. Note that X#Y is I.

Henceforth, we write a”, or simply a when n is clear from the context, as a short-
hand for a tuple aq,...,a, of distinct atoms. A multi transposition (a™ b™) denotes
a fixed bijection on A satisfying (a” b")(a;) = b;, fori =1,...,n, and (a™ b")(c) = ¢
for c ¢ {a"} U{b"}.

The separating tensor # is closed and the corresponding internal-hom functor
is denoted [—,=]. In particular, the functor [A#", —] provides a notion of atom
multi abstraction. For a nominal set X, the nominal set [A# ™, X| has underlying
set given by the quotient set |A¥ " x X |/~ determined by the a-equivalence relation
~ defined as (a,z) ~ (b, 2') iff there exists a fresh ¢ € A#" (i.e., a tuple satisfying
c # a,z,b,2’) such that (ac) -z = (bc)-2'. We write (a) x for the equivalence
class [(a@,x)|~. Note that supp((a™) x) is supp(z)\{a"}.

Thus, the structure ((Nom, I,#), Nom) is an enriched universe.

We now wurge the reader to read the remaining of the section in the context of

14
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the methodology for developing term equational systems and logics presented in the
Introduction.

Nominal Equational Systems. A nominal signature ¥ is given by a family of
nominal sets { X(n) }nen, each of which consists of operators of arity n. To each
such signature, we associate the endofunctor Fyx, on NMom defined by Fx(X) =
[T,en B(n) x X™ with strength 7xy : Fx(X)#Y — Fe(X#Y) for X,Y € Nom
given by

TX,Y (Ln(o, Ty ,mn),y> = Ln(O, (1,9), .-, (xn, y))
forn e Njoe X(n),z1,...,2p € X,y €Y.

Nominal Equational Systems (NESs) are of the form (Mom, Nom, Ty., A) where
Ty is the free monad on Fy (with strength defined as in Proposition 2.7) and where
every term in A has an arity of the form (A#", ]_[le A7) for n,l,ny,...,ny € N.
It follows that NESs satisfy all the conditions in Proposition 2.14 and hence induce
inductive ESs.

Nominal syntax. We proceed to analyse the syntactic structure underlying
NESs. To this end, first note that, since the functor Fx preserves colimits of w-chains
and the category NMom is cocomplete, the free monad Ty, on FY is constructed as
in (1). Thus, we have the following inductive definition of TxX:

teTsX n=x (reX)
| oty...tg (o€ X(k),t1,..,tx, € TxX)

with action given by 7z =nm-xy x and 7- (0o t1... tg) = (m-0) (w-t1)... (7 tg).
More generally, we need to consider generalised terms A# " — ]_[le A# i From
the bijections

{t: A#r T (][, A#™) )
> {11 — [AF" Ty (1L, AF ™)}
= {te[A*" To(]Tj_, A*™)] | supp(t) = 0}
= {(a)t € [A*", T (ITi_, A*™)] | supp(t) C {a} }

it follows that every such generalised term can be described by pairs
(a,t) € AF" x Tx([ ', A#*™) with supp(t) C {a} (5)

via the abstraction quotient map A#™ x Tg(]_[le A#F) s [AT Ty (]_[f:1 A7)
and the above bijections.

We thus obtain a representation of generalised terms of arity (A%, Hle AT 1)
as syntactic open terms built up from ¢ variables respectively of valence ny,...,ny
in the context of n atoms. It is therefore convenient to introduce a syntactic notion
of context that reflects this structure. To this end, fix a countably infinite set V
of variables and define a context [a]V as consisting of an atom context given by
a tuple of distinct atoms a and a wvariable context given by a valence function V'
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from a finite subset |V| C V of variables to N. Every context [a]V determines the
arity (A#% V) with V = ey A#V (@),

The open terms t in context [a]V, for which we use the notation [a]V F ¢, cor-
responding to the descriptions (5) are thus given by the following rules:

[aVit (1<i<Fk)
[a]Vl—otl...tk

(o € X(k) and supp(o) C {a})

where we write z(b) for the element ,(b) of V and, when convenient, further ab-
breviate z() as x. The generalised term of arity (A#2l, V) associated to the open
term [a|V F t is denoted 7 ([a]V F t). Hence, 7 ([a]V F t)(b) = (a b) - t.

Nominal theories. A nominal theory consists of a nominal signature and a set
of equations of the form [a]V F ¢t =t' where [a]V Ft and [a]V F t’ are open terms.
We give the canonical example.

Example 5.1 (c¢f. [8,4]) The nominal signature ) for the untyped A-calculus is
given by the nominal sets of operators ¥(0) ={V,|a € A}, ¥\(1)={L,|a € A},
¥A(2) ={A} with action -V, = V(q), 7- Lo = Ly(q), 7- A = A. The nominal theory
Sy for afn-equivalence of untyped A-terms consists of the following equations:

(a) [a,bl{x:1}F Ly x(a) = Ly z(b)
(Bx) lal{z:0,y:1}F A (Lox) yla) ==
(Bv) lal{z: 1} A (Lo Va) x(a) = z(a)
(Br) la.bl{z:2,y: 1} A (Lo (Ly 2(a,b))) y(a) = Ly (A (Lo 2(a,b)) y(a))
(Ba) [a{z:1,y:1,2:1}

= A (La (A 2(a) y(a)) z(a) = A (A (Laz(a) 2(a)) (A (Lay(a)) 2(a))
(Be) la.bl{z:1}F A (Laz(a)) Vi = 2(b)
(n) la{z:0}FLa(AzVy) =2
where a variable context V with |V| = {x1,...,2¢} and V(2;) =n; (i =1,...,¢)
is denoted { z1 : ny,...,xp: ng }.
Model theory.  Every nominal theory S= (¥,.A) induces the NES S =
(Nom,Nom, Ty, A), with

A={T(aVFt)=T(a]V+t)|([aVFt=t)c A},

that provides its model theory. This we now spell out in elementary terms.
Every open term [a]V F ¢ has an interpretation as a functorial term

[[a]V I 1] : Fo-Alg — Figr-Alg ,
where Figy(X) = A#lal 4 Hy€|v|[A# V() X], given as follows.
16
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For (X,¢) € Fy-Alg and (b, ((cy) Sy)y€|V|) € Fgv X,

[la]V m(c)ﬂ(xg) (b, ({ey) Sy)y) = (cz (ab)-c) ss
[lalV Eoti...tk] xe (b, ({ey) sy)y) = &k(',th, ..., 1))

where & : X(k) x X* — X is the k-component of the structure map ¢ and where
o' =(ab)-o, ti=[lalVFt]xg (b, ({cy) sy)y) -

Then, for an Fy-algebra (X, €) and a judgement [a]V Ft =t the satisfaction
relation (X, &) |= ([a]V Ft =t') holds whenever

[lalV Et] xe = lla]VEt]ixe : FlavX —X.

An S-algebra is an Fy-algebra satisfying the equations in A. The category S-Alg
is the full subcategory of Fx-Alg consisting of S-algebras.

Example 5.2 For the nominal theory of Example 5.1, an Sy-algebra has a carrier
X € Nom with structuremaps [V] : A — X, [L] : Ax X - X, [A] : X x X — X
satisfying the equations of the theory. For instance, according to the equation ()
we have that

[L](a,(ca)-z) = [L](b,(cb)-z) forall (a,b,(c)x) € A#A#[A, X]
and according to the equation (1) we have that

[L](a, [Al(z,[V]a)) =z for all (a,z) € A#X.

The initial Sy-algebra given by the construction (4) on the initial term alge-
bra 7%, 0 has as carrier the nominal set of a8n-equivalence classes of A-terms with
the appropriate action.

Synthetic Nominal Equational Logic. We now introduce SNEL (Syn-
thetic Nominal Equational Logic) for equational reasoning with nominal theories
S = (%, .A) according to the above model theory. The logic deals with judgements
[a]V =t =t for open terms [a]V Ft and [a]V F ¢/, and is described in Figure 1.
The operation of substitution used therein maps open terms

[alU -t {[byU(y),c]Vl—sy }y with a # ¢

€lU|

to the open term

la, ]V = t{y(by) = sylye

defined as follows:
(z(b))[y(by) = sylyeju] = (ba b) - 5o

(0 t1...tr)[y(by) = sylyer) = o (t1y(by) = sylye) - - - (kly(by) = sylyeiv) -

17
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Ref [alV =t [alVEt=t - [alVEt=t [alVET=t"
T r— m
S lavit=t MVt =¢ rans [@VFt=t"
([alViEt=t)e A [a, bV t=t
i i b#t,t
Axdom = o = ¢ Elim = v i=v (b#1.7)
ntro alVEt=t

la, b]V<b> Ftlz(ey) b x(ey, b)]m€|V| = t'[z(cy) b x(ey, b)]m€|V|
where [V{®)| = |V| with Ve V® (z) = V(x)+ |b|

QUEt=t  {[b."OWV F sy =5, baep

Subst [a]V F tz(by) 3x]x€|U| = t'[z(by) Sx]xE|U|

Fig. 1. Rules of SNEL.

Note that the definition of substitution models that of parameterised Kleisli
composition, in that

T (la. ]V F tly(by) = sylye) = T(@)U F )@ [[T([b,"Y, eV F s,)],eiv]

where T ([a]U I t){® is the composite

T ([a)Urt) # Alel T alel ——

T (U) # Al —==—T5(U # Aldl) = T (U1@) |

Alal 4 Alel

The logic SNEL is sound because it has actually been induced from the TEL for
the NES S. Indeed, if the judgement [a]V Ft =1t is derivable in SNEL then the
judgement A+ T([a]V Ft) = T([a]V F t') is derivable in TEL. More precisely, the
rule Elim arises from the TEL rule LocChar with respect to the epimorphic projection
map A#(al+b) o A#lal. the rule Intro arises from the TEL rule Ext extended
with A#%l: and the rule Subst arises from the TEL rule Subst together with the
rule LocChar with respect to the jointly epi family of maps { ¢, : A#U®) — U Yaelu)-

Remark 5.3 Since the category of sets embeds in that of nominal sets, every classi-
cal equational theory is a nominal theory and for them SNEL restricted to contexts
with empty atom context and variables of valence zero reduces to classical equa-
tional logic.

Completeness. Consider a nominal theory S = (3, A). Since, for the associated
NES S = (J\fon’f\, Nom, Ty, A), the monad Ty is free on the endofunctor Fy and
the induced ES S (see Remark 2.12) is inductive, the free S-algebra monad Tg exists
and the quotient monad morphism gx : Tx X —» T5X is constructed as in (4).

By the internal completeness result, we have that the satisfaction relation
S-Alg = ([a]V =t =1t') is equivalent to ¢ o T([a]V F t) = qp o T([a]V F 1) :
A#lal —, T5(V)). Moreover, by the equivariance of 7 ([a]V F t) and T([a]V F ¢),
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n t ~™ t/ ~n t/ t/ ~T t”
Ref" ——n7 Sym" S Trans” T
o] ([a"UFt=t)e A
xiom

((an bn) t){<cm> Sm}x ~ ((an bn) 't/){<cm> Sm}x
where b" # (c,) s, € [A#U@) TGV] for all z € |U]

i (1<i<k)

Co >2,0€e Xk
ng’ ot1...lp =" ot] ...t} (n>2 (k)
n t%n_lt/
Ine' g (123

Fig. 2. Rules for ~™.

this is further equivalent to gy (t) = g3 (t') in T 5(V).

The construction of the nominal set 75V and the map gy as in (4) is as follows:

F ~
FZTEV RN S (8 e » s (T5V)
\ \ J‘ﬁ?
=TV — > Y1—4 ,,YQ oo » TV colim
-
Since the forgetful functor | — | : Mom — Set creates colimits, we have the following

explicit description of the above construction.

The nominal set Y, (n > 1) has underlying set |Y,| = |T5V|/~» with action
7 - [t]am = [ - t]an for =™ the equivalence relation given by the rules in Figure 2.
The instantiation operation used in Axiom! is given by:

(y(c)){(c@ szt = (€y €) - sy,
(0 t1...te){(ca) Sz}e = 0 (t1{{ca) sa}a)--- (te{(cz) S2}a) -

The map go sends t to [t]~1, and the map ¢, (n > 1) sends [t|un to [t]nt1.

The nominal set TV, being the colimit of the w-chain (Y,),>0, is given by
I TsV| = |T%V|/~e with action 7 - [t]ae = [7 - ¢}~ where ~¥ is the equivalence
relation generated by the relation ~ of Figure 3.

Since the map gy : TV — TV sends t to [t|]~w, we have that the satisfac-
tion relation S-Alg = ([a]V Ft=1t) holds iff ¢t ~“ . Furthermore, since for
([@"UFt=1t) € Aand b" # (c,) s, € [A#UE) TyV] for all = € |U], the judge-

ment
[V F (a7 b") - t){(cx) su}a = ((@" b)) {(C0) 50 }a
with {d} D b" U], supp(s;)\{c,} is derivable in SNEL, it follows that, for all

[@]V It and [a]V 1, if t & ' in T5V then [a]V ¢t =t is derivable in SNEL.
Hence, SNEL is complete.
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([aUFt=t)ec A
((an b") - t){<cm> Sp e N ((an b") - tl){<cm> S ta

where b" # (c,) s, € [A#U@) TEV] for all & € |U]

Axiom

it (1<i<k)

Con
& oty...ly =ot] ...t

(o € E(k:))

Fig. 3. Rules for ~.

We conclude with two corollaries of completeness.
(i) Since [a]V It = t' is derivable in SNEL iff ¢i7(t) = ¢i(t') and the map gy is
equivariant, the rule
[a"lViEt=t
"V (a"b") -t = (a™ b") -t/
is admissible in SNEL.
(ii) Since [a]V F ¢t =t is derivable in SNEL iff there exist t = tg,...,t;, ...t =1

in s,V such that t; =~ t;41 or ;41 = t; for all 0 < i < n, one may use equational
term rewriting to establish nominal equational judgements.
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