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Abstract

This paper presents an abstract general model for representing
the belief systems of resource-bounded reasoning agents. The
intuition which underlies this new model is that it is possible
to capture the key properties of many different types of belief
system in a structure called a belief extension relation. The
paper shows how such a relation may be derived for any system
that satisfies some basic properties. The resulting formalism is
simple, and yet sufficiently rich that it generalises many other
frameworks for representing belief. A logic is defined, using
the new model to give a semantics to belief modalities. The
properties of the model and logic are discussed in detail. The
paper closes with a discussion and remarks on future work.

Introduction
For many applications in Artificial Intelligence (AI), it is ne-
cessary to build systems that include symbolic representa-
tions of other systems. For example, Distributed AI (DAI)
is concerned with understanding and constructing computer
systems that contain multiple interacting agents, each of
which is an AI system in its own right; it is widely accepted
that to (co-)operate effectively in a multi-agent environment,
agents need to be able to manipulate representations of the
state and behaviour of other agents (Bond and Gasser, 1988,
pp25–29). An obvious research problem is to devise know-
ledge representation formalisms that are suitable for this pur-
pose. This paper contributes to the theoretical foundations of
such formalisms; it considers the representation of belief in
multi-agent AI systems. In this paper, the term belief is used
to mean an agent’s symbolic representation of the world it
occupies, which may include other agents. (It is worth em-
phasising that human belief is not the object of study in this
paper and in particular, no claims are made about the validity
or usefulness of the model for representing human believers.)

Specifically, the paper presents a new model for represent-
ing the belief systems of resource-bounded reasoning agents.
This new model is both general and abstract. It is general
in that it can be used to represent the properties of a wide
range of agents, and can be seen to generalise a number of
other formalisms for representing belief. It is abstract in that
the problem of modelling the complex and intricate reasoning
processes actually used by agents is side-stepped. The idea
underlying the new model is to capture the key properties
of an agent’s belief system in a simple, uniform framework
called the belief extension relation; after introducing these
structures, we show how it is possible to derive such a rela-
tion for any system that satisfies some simple properties. In

order to conveniently represent the properties of belief sys-
tems, a logic containing belief modalities is defined; the se-
mantics of this logic are given in terms of the new model.
The new model is then compared to two other formalisms,
(the deduction model (Konolige, 1986a) and normal modal
logics (Halpern and Moses, 1992)), and is shown to general-
ise them. Some remarks on implementing the new model are
then presented. The paper begins, in the following section,
by reviewing previous attempts to formally model belief.

Notational Conventions: If
�

is a logical language, then
we write Form(

�
) for the set of (well-formed) formulae of

�
.

We use the lowercase Greek letters ϕ and ψ as meta-variables
ranging over formulae of the logical languages we consider,
and the uppercase Greek letter ∆ as a meta-variable ranging
over sets of formulae. Is S is a set, then ℘(S) is the powerset
of S. We use ∅ for the empty set. Note that all proofs have
been omitted due to space restrictions; they may be found in
the associated technical report (Wooldridge, 1994).

Background
The commonest technique for modelling belief is to use a
modal logic with possible worlds semantics (Chellas, 1980;
Halpern and Moses, 1992); this approach was first developed
by Hintikka (Hintikka, 1962). Normal modal logics have
properties that make them simple and interesting tools to
work with, and have proved to be valuable in the formal study
of belief. However, there are a number of problems associ-
ated with normal modal logics of belief. Chief among these is
the so-called logical omniscience problem: any normal modal
logic of belief predicts that (i) agents believe all valid formu-
lae (including all propositional tautologies); and (ii) agents
believe all the logical consequences of their beliefs. While
logical omniscience may be acceptable in the study of theor-
etically perfect believers, any model of belief with this prop-
erty will be unacceptable for representing resource bounded
believers — and any realistic believer is resource bounded.
Given that normal modal logics are unacceptable for repres-
enting real believers, one seems to be faced by at least two
options: (i) weaken possible worlds semantics in some way,
to get rid of logical omniscience; or (ii) seek an alternative
semantics.

A number of attempts have been made to weaken pos-
sible worlds semantics. One of the best-known is due to
Levesque (Levesque, 1984). To weaken the notion of a world,
Levesque borrowed some ideas from situation semantics;
situations (worlds) in his logic may assign either true, false,



or both to a proposition, and thus they do not act like propos-
itional valuations. He then defined an ‘explicit belief’ oper-
ator, with a semantics given in terms of situations. The logic
of explicit belief is much weaker than that of normal modal
belief. Levesque’s original proposal has been extended into
the first-order realm by Lakermeyer (Lakemeyer, 1991). An-
other attempt to weaken possible worlds semantics is due to
Fagin-Halpern, who developed a logic containing an oper-
ator to represent those formulae an agent is ‘aware of’; the
semantics of this operator are given by simply associating a
set of formulae with an agent (Fagin and Halpern, 1985). The
logic also contains an implicit belief operator, with a normal
modal semantics. ‘Explicit’ belief is then defined as implicit
belief plus awareness; the resulting logic of explicit belief is
weaker than implicit belief. Although both of these formal-
isms do get rid of logical omniscience, they have been cri-
ticised for being essentially ad hoc and unmotivated (Kono-
lige, 1986b). Moreover, under some circumstances, they still
predict that agents have unreasonable deductive capabilities.

The second alternative is to reject possible worlds alto-
gether, and seek an alternative semantic base. The best-
known example of such work is the deduction model of belief,
due to Konolige (Konolige, 1986a). In essence, the deduc-
tion model is an attempt to directly model the belief systems
of agents in AI; the concerns of the deduction model are thus
very much the concerns of this paper. Konolige models an
agent’s reasoning process by associating it with a set of de-
duction rules; if this set of rules is logically incomplete, then
the agent is not logically omniscient (for details, see below).
The simplicity and directness of the deduction model has led
to much interest in the (D)AI community. However, the ap-
proach is not without its problems, the most significant of
which is that modelling an agent’s reasoning via incomplete
proof is, in general, still too strong to represent resource-
bounded reasoners.

Belief Models
The new structures we develop to represent belief systems are
called belief models. A belief model representing an agent
i’s belief system is a pair. The first component of this pair
is a set of observations that have been made about i’s be-
liefs. These observations are expressed in some internal lan-
guage; throughout this paper, we shall call this internal lan-
guage

�
. In general, the internal language may be one of

rules, frames, semantic nets, or some other kind of KR form-
alism, but for simplicity, we shall assume that

�
is a logical

language. Thus the first component of i’s belief model is a
set of

�
-formulae representing observations that have been

made about i’s beliefs. The second component of i’s belief
model is a relation, which holds between sets of

�
-formulae

and
�

-formulae. This relation is called a belief extension re-
lation, and it is intended to model i’s reasoning ability. We
generally abbreviate ‘belief extension relation’ to ‘b.e. rela-
tion’. Let BEi be the b.e. relation for agent i. Then the way
we interpret this relation is:

if
i believes ∆ and (∆, ϕ) ∈ BEi

then
i also believes ϕ.

(1)

It is through an agent’s b.e. relation that we are able to make
deductions about what other beliefs it has. Note that we do
not require the b.e. relation to be based on logical inference.
It need not be a proof relation (as in (Konolige, 1986a)); we
can model agents whose ‘reasoning’ is not based on logical
inference, as well as those that are. However, we are ob-
liged to explain where an agent’s b.e. relation comes from;
later, we show how a b.e. relation that correctly describes the
behaviour of an agent’s belief system may be derived, in a
principled way, for any system that satisfies some basic prop-
erties. We now formally define belief models.

Definition 1 A belief model, b, is a pair b = (∆, BE) where

• ∆ ⊆ Form(
�

); and
• BE ⊆ (℘(Form(

�
)) × Form(

�
)) is a countable, non-empty

binary relation betweensets of
�

-formulae and
�

-formulae,
which must satisfy the following requirements:
1. Reflexivity: if (∆, ϕ) ∈ BE, then ∀ψ ∈ ∆, (∆, ψ ) ∈ BE;
2. Monotonicity: if (∆, ϕ) ∈ BE, (∆′, ψ ) ∈ BE, and ∆ ⊆ ∆′,

then (∆′, ϕ) ∈ BE;
3. Transitivity: if (∆, ϕ) ∈ BE and ( � ϕ � , ψ ) ∈ BE, then

(∆, ψ ) ∈ BE.

If b = (∆, BE) is a belief model, then ∆ is said to be its base
set, and BE its b.e. relation. We now define a function bel
which takes as its one argument a belief model, and returns
the set of

�
-formulae representing the belief set of the model.

Definition 2

bel((∆, BE)) def
= � ϕ | (∆, ϕ) ∈ BE �

The idea is that if b is a belief model representing some
agent’s belief system, then bel(b) contains all those formulae
which we can assume the agent believes. Before moving on,
we state a lemma which captures some obvious properties of
belief sets.

Lemma 1 If b = (∆, BE) is a belief model, then

1. If ϕ ∈ ∆, then ϕ ∈ bel(b);
2. If ∆′ ⊆ ∆, and (∆′, ϕ) ∈ BE, then ϕ ∈ bel(b);
3. If ∆′ ⊆ bel(b), and (∆′, ϕ) ∈ BE, then ϕ ∈ bel(b).

Suppose bi is a belief model which represents agent i’s belief
system. Then the interpretation of ‘belief’ in this paper is as
follows.

ϕ ∈ bel(bi) — i believes ϕ
¬ϕ ∈ bel(bi) — i believes ¬ϕ

ϕ ⁄∈ bel(bi) — i doesn’t believe ϕ
¬ϕ ⁄∈ bel(bi) — i doesn’t believe ¬ϕ

Thus the new model is a sentential model of belief;
see (Konolige, 1986a, pp110–118) for a discussion of such
models. Note that it is possible for a belief model to repres-
ent agents that have ‘no opinion’ on some formula. It is also
possible for a model to represent an agent that believes both
a formula and its negation.

A Belief Logic
Belief models are the basic mechanism for representing belief
systems. However, manipulating models directly is some-
what awkward. We therefore introduce a logic that will allow



us to represent the properties of belief models in a more con-
venient way. In the interests of simplicity, we shall restrict
our attention to propositional languages. Adding quantific-
ation is relatively simple in terms of syntax and semantics,
but poses obvious problems when developing proof meth-
ods. We assume an underlying classical propositional lan-
guage, which we shall call

�
0. This language is defined over

a set Φ of primitive propositions, and is closed under the un-
ary connective ‘¬’ (not), and the binary connective ‘∨’ (or).
The remaining connectives of classical logic (‘∧’ (and), ‘⇒’
(implies), and ‘⇔’ (iff)) are assumed to be introduced as ab-
breviations, in the standard way. In addition, the language
contains the usual punctuation symbols ‘)’ and ‘(’. A model
for

�
0 is simply a valuation function π : Φ → � T, F � which

assigns T (true) or F (false) to every primitive proposition.

Syntax of
�

B: The belief models introduced in the preced-
ing section are parameterised by the internal language

�
, used

by agents to represent their beliefs. We desire a language
�

B,
which can be used by us to represent agent’s beliefs: it fol-
lows that

�
must appear in

�
B somewhere. For simplicity,

we assume that beliefs may be arbitrary formulae of
�

B, and
thus that agents are capable of having beliefs about beliefs,
and beliefs about beliefs about beliefs, and so on. Syntactic-
ally,

�
0 is easily extended to

�
B. The language is enriched

by an indexed set of unary modal operators [i], one for each
i ∈ Ag, where Ag = � 1, … , n � is a set of agents. A formula
such as [i]ϕ is to be read ‘agent i believes ϕ’.

Definition 3 The language
�

B contains the following sym-
bols:

1. All symbols of
�

0;
2. The set Ag = � 1, … , n � of agents;
3. The symbols ‘]’ and ‘[’.

Definition 4 The set Form(
�

B) of (well-formed) formulae of�
B is defined by the following rules:

1. If ϕ ∈ Form(
�

0) then ϕ ∈ Form(
�

B);
2. If ϕ ∈ Form(

�
B) and i ∈ Ag then [i]ϕ ∈ Form(

�
B);

3. If ϕ ∈ Form(
�

B) then ¬ϕ ∈ Form(
�

B) and (ϕ) ∈
Form(

�
B);

4. If ϕ, ψ ∈ Form(
�

B) then ϕ ∨ ψ ∈ Form(
�

B).

Semantics of
�

B: A model for
�

B is obtained by taking a
model for

�
0 and adding a set of belief models, one for each

agent.

Definition 5 A model, M, for
�

B is a pair M = � π , � bi ��� ,
where π : Φ → � T, F � is an interpretation for

�
0, and � bi � is

an indexed set of belief models, one for each agent i ∈ Ag. If
bi is the belief model of agent i, then ∆i is its base set, and
BEi is its belief extension relation.

The semantics of
�

B are defined via the satisfaction relation
‘|=’, which holds between models and

�
B-formulae. The rules

defining this relation are given below.

M |= p iff π(p) = T (where p ∈ Φ)
M |= ¬ϕ iff M ⁄|= ϕ
M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ
M |= [i]ϕ iff ϕ ∈ bel(bi)

Validity for
�

B is defined in the usual way: if ϕ ∈ Form(
�

B)
and there is some model M such that M |= ϕ, then ϕ is said
to be satisfiable, otherwise it is unsatisfiable. If ¬ϕ is un-
satisfiable, then ϕ is said to be valid, i.e., satisfied by every
model. If ϕ is valid, we indicate this by writing |= ϕ.

Properties of
�

B: Since the propositional connectives of�
B have standard semantics, all propositional tautologies will

be valid; additionally, the inference rule modus ponens will
preserve validity. In short, we can use all propositional modes
of reasoning in

�
B. However,

�
B has some properties that

�
0

does not. To illustrate this, we first establish an analogue
of Konolige’s attachment lemma (Konolige, 1986a, pp34–
35). (Note that if ∆ = � ϕ1, … , ϕn � then [i]∆ abbreviates
[i]ϕ1, … , [i]ϕn.)

Lemma 2 The set � [i]∆, ¬[i]∆′ � is unsatisfiable iff ∃ϕ ∈ ∆′
such that (∆, ϕ) ∈ BEi.

This lemma allows us to derive a number of useful results,
for example:

Theorem 1 |= [i]ϕ1 ∧ ⋅ ⋅ ⋅ ∧ [i]ϕn ⇒ [i]ϕ where
( � ϕ1, … , ϕn � , ϕ) ∈ BEi.

This result represents the basic mechanism for reason-
ing about belief systems: if it is known that i believes
� ϕ1, … , ϕn � , and that ( � ϕ1, … , ϕn � , ϕ) ∈ BEi, then this im-
plies that i also believes ϕ.

Note that the K axiom and the necessitation rule of normal
modal logic (Chellas, 1980) do not in general hold for belief
modalities in

�
B, and thus

�
B does not fall prey to logical

omniscience. However, this does not mean that
�

B is incap-
able of representing perfect reasoners: below, we show that�

B can be used to represent any agent that can be represented
using normal modal logics of belief.

The Belief Extension Relation
We have now developed belief models, the basic mathemat-
ical tool for representing belief systems, and a language called�

B, which can be used to express properties of belief systems.
However, we have said little about the meaning of belief mod-
els, or where they come from. How can a belief model be
associated with an agent? Under what circumstances can we
say a belief model truly represents an agent’s belief system?
It is these questions that we address in this section.

In practice, it is possible to associate a b.e. relation with
any system that satisfies the following two properties:

• it must be possible to characterise the system’s ‘belief state’
as a set of formulae in some logical language

�
;

• it must be possible to identify the ‘legal belief states’ of the
system, in a way to be described below.

It is argued that the first requirement is quite weak. The be-
liefs of almost any conceivable agent can be described via
a set of formulae of some language. In particular, the be-
liefs of AI systems are generally directly represented as a
set of formulae. (It was this observation, of course, that gave
the impetus to Konolige’s deduction model (Konolige, 1986a,
pp12–13).)

The purpose of the second requirement is simply to en-
sure that the set of all sets of

�
-formulae can be partitioned

into two disjoint sets: one representing legal belief states,



the other representing illegal belief states. The idea is that
the system can never be in one of its illegal states, whereas
for each of the legal states, there is some chain of events
through which the system could come to be in that state. To
illustrate this requirement, consider the following simple ex-
ample. Suppose we have a non-contradictory agent: one that
never simultaneously believes both a formula and its nega-
tion. Then the set of illegal belief states for this agent will
include all those in which the agent believed both ϕ and ¬ϕ,
for any ϕ ∈ Form(

�
).

We shall now introduce some notation.

Definition 6 If i is an agent, then the set of legal belief states
of i is denoted BSi. Note that BSi ⊆ ℘(Form(

�
)).

Given the set BSi, it is possible to derive a b.e. relation that
correctly describes the behaviour of i’s belief system. Sup-
pose it has been observed that agent i has beliefs ∆. What
safe predictions can we make about i’s other beliefs? That is,
what predictions could we make about i’s beliefs that were
guaranteed to be correct?

We could only safely say that if i believes ∆ then it also
believes ϕ iff whenever i believes ∆, it necessarily also be-
lieves ϕ. What interpretation can be given to the term ‘neces-
sarily’? One might say that if i believes ∆, then it necessarily
also believes ϕ iff in all legal states where it believes ∆, it
also believes ϕ. This notion of necessity is that at the heart
of normal modal logics, where ϕ is said to be necessary iff ϕ
is true in all possibilities (Chellas, 1980). However, it is im-
portant to note that belief is not being given a normal modal
interpretation here. This leads to the following derivation of
an agent’s b.e. relation.

Definition 7 If i is an agent, then BEi, the derived b.e. relation
of i, is defined thus:

BEi
def
= � (∆, ϕ) | ∀∆′ ∈ BSi, if ∆ ⊆ ∆′ then ϕ ∈ ∆′ � .

Before we can move on, we need to establish that derived
b.e. relations are actually b.e. relations, i.e., that they satisfy
the properties stated in Definition 1.

Theorem 2 If BEi is the derived b.e. relation of agent i,
∆ ⊆ Form(

�
), and ∃∆′ ∈ BSi, s.t. ∆ ⊆ ∆′, then (∆, BEi) is a

belief model, i.e., BEi satisfies the reflexivity, monotonicity,
and transitivity conditions of Definition 1.

If we have an agent’s derived b.e. relation, then it is obvi-
ous that this relation correctly describes the behaviour of that
agent’s belief system.

Relationship to Other Formalisms
An obvious question to ask of any new formalism for rep-
resenting belief is: how expressive is it? In this section, we
show that the new model is sufficiently expressive that it can
be viewed as a generalisation of two other well-known form-
alisms for modelling belief.

The Deduction Model of Belief
The model of belief systems presented in this paper is similar
in some respects to Konolige’s deduction model (Konolige,
1986a). In fact, as we shall demonstrate formally, the new
model actually generalises the deduction model, in that the
behaviour of any belief system in the deduction model can

be represented using the new model. Before this result is
established, a review of the deduction model is given.

The deduction model uses deduction structures to represent
belief systems. A deduction structure d is a pair d = (∆, ρ),
where ∆ is a base set of beliefs, (in much the same way as in
the new model), and ρ is a set of deduction rules. A deduction
rule is a rule of inference with the following properties:

• it has a fixed, finite number of premises; and
• it is an effectively computable function of those premises.

If ∆ ⊆ Form(
�

), and ρ is a set of deduction rules for the
language

�
, then we write ∆ � ρ ϕ iff there is a proof of

ϕ from ∆ using only the rules in ρ. The deductive closure
of a set ∆ under rules ρ is the set of formulae that may be
derived from ∆ using ρ. Formally, the deductive closure of a
deduction structure is given by the function close:

close((∆, ρ)) def
= � ϕ | ∆ � ρ ϕ � .

A model for a propositional version of Konolige’s language
LB (which corresponds syntactically to

�
B) is a pair � π , � di ��� ,

where π is a propositional valuation, and � di � is an indexed
set of deduction structures, one for each agent. The semantics
of the modal belief operator [i] is then:

� π , � di ��� |= [i]ϕ iff ϕ ∈ close(di).

We now state the key results of this section.

Theorem 3 If d = (∆, ρ) is a deduction structure, and BEρ is
the derived b.e. relation associated with ρ, then close((∆, ρ)) =
bel((∆, BEρ)).
An obvious corollary of this theorem is the following.

Theorem 4 Belief models are at least as expressive as deduc-
tion structures. That is, for any deduction structure d = (∆, ρ),
there exists a corresponding belief model b = (∆, BE) such
that close(d) = bel(b).

Normal Modal Logics of Belief
In this section, we compare the possible worlds approach with
our belief models. To do this, we first define a language

�
w,

with a syntax identical to
�

B, but with a possible worlds se-
mantics.

�
w is essentially a normal modal logic with the

single necessity operator replaced by an indexed set of ne-
cessity operators [i], one for each agent. Models for

�
w are

generalisations of the models for normal modal logics (Chel-
las, 1980).

Definition 8 A model, Mw, for
�

w is a triple Mw =
� W, � Ri � , πw � , where W is a non-empty set of world, � Ri �
is an indexed set of relations over W, one for each agent
i ∈ Ag, and πw : W × Φ → � T, F � is a valuation function that
gives the truth of each primitive proposition in each world.

The truth of a formula thus depends upon which world it is
interpreted in:

� Mw, w � |= p iff π(w, p) = T (where p ∈ Φ)
� Mw, w � |= ¬ϕ iff � Mw, w � ⁄|= ϕ
� Mw, w � |= ϕ ∨ ψ iff � Mw, w � |= ϕ or � Mw, w � |= ψ
� Mw, w � |= [i]ϕ iff ∀w′ ∈ W, if (w, w′) ∈ Ri

then � Mw, w′ � |= ϕ.



Name Theorem Condition on Ri

K [i](ϕ ⇒ ψ ) ⇒ (([i]ϕ) ⇒ ([i]ψ )) any
T [i]ϕ ⇒ ϕ reflexive
D [i]ϕ ⇒ ¬[i]¬ϕ serial
4 [i]ϕ ⇒ [i][i]ϕ transitive
5 ¬[i]ϕ ⇒ [i]¬[i]ϕ euclidean

Table 1: Theorems K, T, D, 4, and 5

The most interesting properties of
�

w are those which re-
late conditions on accessibility relations in the model struc-
ture to theorems in the corresponding logic. Although there
are many properties which correspond to theorems, (see,
e.g., (Chellas, 1980)), only five are of real interest from the
point of view of belief logics: those called K, T, D, 4, and 5.
These theorems, and the conditions they correspond to, are
summarised in Table 1. Theorem T is often called the know-
ledge theorem: it says that if i believes ϕ, then i is true in
the world. Theorem D is the consistency theorem: it says
that if i believes ϕ, then it does not believe ¬ϕ. Theorems 4
and 5 are called the positive and negative introspection theor-
ems, respectively: together, they characterise agents that are
perfectly aware about their own beliefs.

As we add conditions to accessibility relations, we get pro-
gressively more theorems in the corresponding logic. For ex-
ample, if we demand that Ri is reflexive and transitive, then
we have a logic with theorems K, T, and 4. We refer to this
logic as the system KT4. As it turns out, there are just el-
even distinct systems of modal logic based on the theorems
K, T, D, 4, and 5 (see (Chellas, 1980, p132)). These are: K,
K4, K5, KD, KT, K45, KD5, KD4, KT4, KD45, and KT5.
However, axiom T is generally taken to characterise know-
ledge, not belief. For this reason, we shall consider this axiom
no further here; we restrict our attention to the four remaining
axioms and their eight remaining systems: K, K4, K5, KD,
K45, KD5, KD4, and KD45. We shall shortly define a cor-
respondence theorem, (cf. (Konolige, 1986a, pp104–108)),
which relates

�
w and these eight systems to

�
B, in much the

same way that the previous section related
�

B to the deduc-
tion model. First, however, some notation.

Definition 9 If Mw = � W, � Ri � , πw � is an
�

w-model, then
ϕ is said to be valid in Mw, (notation Mw |= ϕ) iff
if w ∈ W, then � Mw, w � |= ϕ. In saying that Σ is
a system of normal modal belief logic we mean Σ ∈
� K, K4, K5, KD, K45, KD5, KD4, KD45 � . In saying that
an

�
w-model Mw is a Σ-model, we mean that if ϕ is a Σ-

theorem, then Mw |= ϕ. If Mw is a Σ-model, we indicate this
by writing MΣ

w.

Definition 10 If i is an agent, Mw = � W, … � is an
�

w-model,
and w ∈ W, then the belief set of i at w in Mw is given by the
function belw:

belw(Mw, w, i) def
= � ϕ | � Mw, w � |= [i]ϕ �

The set of legal belief states associated with a system Σ is
then:
BSΣ

def
= � ∆ | ∃MΣ

w = � W, … � , ∃w ∈ W, ∃i ∈
Ag s.t. belw(MΣ

w, w, i) = ∆ � .

The derived b.e. relation for a system Σ may then be obtained
in the usual way (see above). We can now state our corres-
pondence theorem.

Theorem 5 Let Σ be a normal modal system of belief,
(∆, BEΣ) be a derived belief model of Σ, and ϕ be one of the
theorems K, D, 4 or 5. Then the property expressed by ϕ is
true of (∆, BEΣ) iff ϕ is a Σ-theorem.

This theorem has an obvious corollary.

Theorem 6 For every normal modal belief system Σ, there
exists a corresponding class of derived

�
B models which

satisfy just the theorems of Σ.

We can actually prove a stronger result than this, which
is more in the spirit of the deduction model result, above.
However, the statement of this result is a good deal more in-
volved, and so we omit it; see (Wooldridge, 1994).

Remarks The results of this section are important for the
new model, as they show that it can be used to represent the
kinds of belief system that existing formalisms are capable of
representing. However, there is an informal sense in which
the new model is more expressive than those we have com-
pared it to: because b.e. relations are an abstract way of rep-
resenting an agent’s reasoning, they can readily be used to
capture properties of belief systems that would be awkward
to represent using other formalisms — if they could be rep-
resented at all. This point is discussed in (Wooldridge, 1994).

Implementation Aspects
The issues surrounding the implementation of a system which
makes use of

�
B in some way are not the primary concern

of this paper (see, e.g., (Stein and Barnden, 1995) for a de-
scription of the CASEMENT system for reasoning with be-
liefs). Nevertheless, it is worth briefly commenting on these
issues. First, note that a tableau-based decision procedure
for

�
B has been developed, and is described in the associ-

ated technical report (Wooldridge, 1994). (It has not been
presented here due to space restrictions.) This proof method
has been used on a number of examples, including the wisest
man puzzle (Konolige, 1986a, pp57–61). A PROLOG imple-
mentation of this procedure has been developed and tested on
a number of problems (Gibbs, 1994).

Secondly, recall the informal interpretation given to an
agent’s b.e. relation, as described earlier: if i believes ∆ and
(∆, ϕ) ∈ BEi then i also believes ϕ. This interpretation cor-
responds to an axiom in the logic

�
B (see Theorem 1):

|= [i]ϕ1 ∧ ⋅ ⋅ ⋅ ∧ [i]ϕn ⇒ [i]ϕ where ( � ϕ1, … , ϕn � , ϕ) ∈ BEi.

This axiom readily lends itself to forward reasoning; a b.e.
relation can thus be implemented as a set of rules, very much



like rules in the standard AI sense. Backward reasoning
may proceed in the obvious way; to see whether i believes
ϕ, find some ϕ1, … , ϕn such that i believes ϕ1, … , ϕn, and
( � ϕ1, … , ϕn � , ϕ) ∈ BEi.

Finally, note that reasoning in
�

B may utilise the tech-
nique of semantic attachment, described by Konolige (and
attributed by him to Weyhrauch) (Konolige, 1986a, p7).
The idea is that when reasoning in

�
B we must often de-

cide whether ( � ϕ1, … , ϕn � , ϕ) ∈ BEi, for some agent i and
� ϕ1, … , ϕn, ϕ � ⊆ Form(

�
B). Under certain circumstances,

this reduces to another decision problem. For example, if we
have agents whose internal language

�
is the standard pro-

positional logic
�

0, and that are perfect
�

0 reasoners, then
deciding whether ( � ϕ1, … , ϕn � , ϕ) ∈ BEi reduces to decid-
ing whether � ϕ1, … , ϕn ���
	 0 ϕ. We can thus directly simu-
late an agent’s reasoning process in order to decide whether
some pair is present in its b.e. extension relation.

Concluding Remarks
Formalisms for representing the belief systems of resource
bounded reasoning agents are an area of ongoing research in
(D)AI. This paper has contributed to the theoretical founda-
tions of such formalisms, by presenting a new abstract general
model of resource-bounded belief. A logic called

�
B has been

developed, containing belief modalities with semantics given
in terms of the new model. The properties of the model and
logic have been investigated in detail, and they have been
shown to generalise two other well-known formalisms for
representing belief. Future work will look at integrating this
model with other components of an agent’s cognitive makeup
(for example, the interaction between beliefs and intentions);
this work has already begun, in a practical sense, in an agent-
oriented DAI testbed called MYWORLD (Wooldridge, 1995).
Another well-known attempt to integrate models of belief
with other mental attitudes is (Cohen and Levesque, 1990),
where belief and goal modalities are used to define the no-
tion of intention. Finally, note that in other work, we have
considered the implications of adding temporal modalities to�

B (Wooldridge, 1994; Wooldridge and Fisher, 1994).
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