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Chapter 1

Introduction

We describe a new interactive verification environment called MOCHA for the modu-
lar verification of heterogeneous systems. MOCHA differs from many existing model
checkers in three significant ways:

e For modeling, we replace unstructured state-transition graphs with the het-
erogeneous modeling framework of reactive modules [AH96]. The definition
of reactive modules is inspired by formalisms such as Unity [CM88], I/O au-
tomata [Lyn96], and Esterel [BG88], and allows complex forms of interaction
between components within a single transition. Reactive modules provide a
semantic glue that allows the formal embedding and interaction of compo-
nents with different characteristics. Some modules may be synchronous, oth-
ers asynchronous, some may represent hardware, others software, some may
be speed-independent, others time-critical.

e For requirement specification, we replace the system-level specification lan-
guages of linear and branching temporal logics [Pnu77, CE81] with the module-
level specification language of Alternating Temporal Logic (ATL) [AHK97]. In
ATL, both cooperative and adversarial relationships between modules can be
expressed. For example, it is possible to specify that a module can attain a
goal regardless of how the environment of the module behaves.

e For the verification of complex systems, MOCHA supports a range of compo-
sitional and hierarchical verification methodologies. For this purpose, reactive
modules provide assume-guarantee rules [HQR98] and abstraction operators
[AHR98]; MOCHA provides algorithms for automatic refinement checking, and
will provide a proof editor that manages the decomposition of verification tasks
into subtasks.

In this report, we describe the toolkit MOCHA in which the proposed approach is
being implemented. The input language of MOCHA is a machine readable variant of
reactive modules. The following functionalities are currently being supported:

e Execution, including games between the user and MOCHA



e Enumerative and symbolic invariant checking and error-trace generation
e Compositional refinement checking
e ATL model checking

e Reachability analysis of real-time systems

MocHA is intended as a vehicle for the development of new verification algorithms
and approaches. It adopts a software architecture similar to VIS [BHSVT96], a
symbolic model-checking tool from UC Berkeley. Written in C with Tcl/Tk and
Tix [Exp97], MOCHA can be easily extended in two ways: designers and application
developers can customize their application or design their own graphical user inter-
face by writing Tcl scripts; algorithm developers and researchers can develop new
verification algorithms by writing C code, or assembling any verification packages
through C interfaces. For instance, MOCHA incorporates the VIS packages for im-
age computation and multi-valued function manipulation, as well as various BDD
packages, to provide state-of-the-art verification techniques.

1.1 Organization of this manual

Chapter 2 is a tutorial introduction to MOCHA. Chapter 3 goes into the syntax and
semantics of REACTIVEMODULES in great depth, and is replete with examples, both
simple and moderately complex. Chapter 4 discusses the specification formalism for
specifying requirements of modules accepted by MOCHA. The commands available
at the MOCHA shell prompt are covered in Chapter 5. The support in MOCHA for
modular verification by assume-guarantee reasoning, and other means to circumvent
the intractability of monolithic verification is dealt with in Chapter 6. Real-time
modules and verification is the subject of Chapter 7.

1.2 How to read this manual

The best way to learn to use MOCHA is to taste it quickly and let it stimulate you,
and then let the high take care of the rest. Start with the tutorial in Chapter 2 in
front of a terminal. Then perhaps read Chapter 5 (again in front of a terminal).

Thereafter, continue having fun, and read the other parts of the manual as and
when needed. The tables in Chapter 3, a listing of which can be found on Page 4,
should suffice for the grammar of REACTIVEMODULES. An index can be found at
the end of this manual. If you have any problems, please do not hesitate to send
email to mocha@eecs.berkeley.edu.



Chapter 2

Tutorial introduction to MOCHA

2.1 Introduction

REACTIVEMODULES is the modeling formalism and input language to MOCHA.
REACTIVEMODULES is rich enough to model systems with heterogeneous compo-
nents: synchronous, asynchronous, speed-independent or real-time, finite or infinite
state, etc. In this tutorial chapter we illustrate the facilities of MOCHA by consider-
ing two simple examples, one from hardware and the other from software.

The hardware example is a simple counter adapted from a similar example in the
Symbolic Model Verifier (SM'V) example suite [|; the tricks developed here should en-
able the reader to translate any design in the commonly used subsets of hardware de-
scription languages (HDLs) such as VERILOG [] or VHDL [] into REACTIVEMODULES.
The software example we consider is Peterson’s mutual-exclusion protocol. In ad-
dition to modeling these examples in REACTIVEM ODULES, specifying and verifying
correctness requirements, we walk the reader through an interactive session with the
MOCHA tool.

2.2 3-bit counter

Consider a counter that counts the number of 1’s in a binary input stream, modulo 8.
We construct this out of three 1-bit counter cells.

The Mealy Finite State Machine (FSM) shown in Figure 2.1, counterCell im-
plements the 1-bit counter-cell. counterCell receives a carryIn bit as input, main-
tains a sumBit, and outputs a carryOut bit. sumBit is stored in a register. The
register assumes an initial value 0 (the initialization circuitry is not shown in Fig-
ure 2.1). During each clock cycle, the combinational logic computes the values of
the next-state of the register and the carry-out bit as

(carryOut, sumBit') = (sumBit + carryIn) (2.1)

where carry0Out is the high order bit of the sum and sumBit is the low order bit of
the sum. Notice, the next-state of sumBit, being a latch, is denoted by sumBit’,
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Figure 2.1: counterCell: Mealy FSM

counterCellO counterCelll counterCell2

Figure 2.2: 3-bit counter

whereas the other signals are outputs of combinational gates. It is easy to see that
the FSM of Figure 2.1 implements (2.1).

The 3-bit counter is produced by connecting up three of the counter-cells as
shown in Figure 2.2. The carryOut bit of the first (second) cell is the carryIn bit
of the second cell (third). This is achieved by physically connecting a wire between
the appropriate terminals. The sumBit’s of the three counter-cells store the three
bit sum of the input stream.

2.3 Modeling the 3-bit counter in REACTIVEMODULES

A REACTIVEMODULES specification consists of one or more modules. A module
roughly corresponds to a module in a HDL or a function in a programming language.
A module consists of set of variables and a set of rules to define the evolution
in time of the subset of variables it controls. The input variables are called the
external variables and the output variables are called the interface variables. The
other variables of the module that are not exchanged with its environment are called
private variables. The private and interface variables of a module are controlled by
it.



For the counterCell, sumBit is a private variable, carryIn is an external vari-
able, and carryOut is an interface variable, as in Figure 2.3.

In synchronous digital hardware, in each cycle, the primary inputs (PIs) and
the present state values of latches propagate to determine the next state values
of latches and the outputs (including the primary outputs). Then, all the latches
simultaneously assume their next state values, and the process repeats in this manner
every clock cycle.

Similarly, with REACTIVEMODULES, in every round (like cycle) the variables are
updated. No apriori distinction is made between variables for latches and variables
for combinational gates. Instead, the semantic distinction between these is captured
in their update rules specified by atoms.

If the value of a variable x—the present value—at the beginning of a round is
denoted by z, the update round computes the next or primed value z’. The initial
value computation that happens in the init round is specified by the init section of
the atom, and the subsequent updates in the update rounds are specified by the
update sections of the atoms.

An atom specifies the next state function as a set of guarded commands: when
the guard is satisfied the action is taken. The next-state function of the variable
an atom controls may be a function of the present value of variables (i.e., unprimed
version) it reads and primed value of variables it awaits. In particular, both the
guards and the commands may only involve expressions over the unprimed variables
that are read and the primed variables that are awaited. For instance, the next
value of carryOut (i.e. carryOut’), is a function of the present value of sumBit
(being a latch) and the next value of carryIn (being a primary input): its atom, in
Figure 2.3, reads sumBit and awaits carryIn.

Also, this means that the next value of a variable will be computed after the next
values of the variables it awaits are computed. Note that cyclic await dependencies
are disallowed. In fact, the partial order induced by the await dependencies among
all atoms must be completable to a linear order.

Figure 2.3 shows the REACTIVEMODULES description of the counter-cell. In each
round, the next value of carryln is first computed, and then sumBit and carryOut
may be computed in each order. A sample execution of the module is given in the
table below:

Round: | O (initial) 1 2 3 4
carryln: T T T F T
sumBit: F T F F T
carryOut: F F T F F

From the exercise of modeling the counter-cell in REACTIVEMODULES, we can de-
rive the rules in Table 2.1 to translate a Mealy FSM module to REACTIVEM ODULES.
2.3.1 Module instantiation and composition

New modules can be created from previously defined modules by instantiating them
with renaming as well as by composing together modules. The desired interconnec-



module counterCell
private sumBit : bool
external carryln : bool
interface carryOut : bool

-- this is a comment; a comment line starts with --

atom controls sumBit reads sumBit awaits carryIn
init
[1 true -> sumBit’ := false
update
[ “sumBit -> sumBit’
[] sumBit -> sumBit’
endatom

carryln’
if (“carryIn’) then true else false fi

atom controls carryOut reads sumBit awaits carryln

init
[1 true -> carryOut’ := false
update
[1 true -> carryOut’ := sumBit & carryIn’
endatom
endmodule -- end counterCell

Figure 2.3: 1-bit counter-cell

If a signal z is a function of signal y, then in the atom con-
trolling variable z:

1. if y is a latch-output, the variable y should be read, i.e.,
its unprimed version should be used.

2. if y is a gate output, the variable y should be awaited,
i.e., its primed version should be used.

3. if y is an input signal, the variable y should be awaited,
i.e., its primed version should be used.

Table 2.1: Recipe for variable assignment in translating a Mealy FSM module to
REACTIVEMODULES

10



tion of the counter-cells in Figure 2.2 is done as follows:

cell0 := counterCell[carryIn, carryOut := input, outO]
celll := counterCell[carryIn, carryOut := outO, outl]
cell2 := counterCell[carryIn, carryOut := outl, out2]
threebitcounter := hide outO, outl in (cellO || celll || cell2) endhide

Three instances of counterCell are created by renaming the external and inter-
face variables using common names for the desired interconnections. For instance,
outO is the carryOut of cel10 and the carryIn of celll.

The actual interconnection is achieved by the parallel composition of the three
instances: cellO, celll, and cell2, and hiding the carryOut variables of cell0
and celll, making these private variables of threebitcounter. The module
threebitcounter has one external variable input and one interface variable out2.

The order of cel10, celll, and cell?2 in the parallel composition statement is
not important. For example, the previous parallel composition statement is equiva-
lent to the following line:

threebitcounter := hide outO, outl in (celll || cellO || cell2) endhide

2.4 Other issues in modeling hardware

2.4.1 Connecting a latch output to a primary input

At times we might need to compose modules and connect a latch from one module
to the input of another module. This would lead to a violation of item 1 of Table 2.1
since we decreed that an input variable is to be awaited (by item 3 of Table 2.1).

To work around this we have to insert a unit-delay non-inverting buffer with
the appropriate initial value between the latch-output and the input of the module
it connects to. A unit-delay non-inverting buffer with initial value 0 is modeled in
REACTIVEMODULES as follows:

module noninvertingbufferO
external latchoutput
interface onedelayed

--unit delay non inverting buffer with initial value O
atom controls onedelayed reads latchoutput
init
[1 true -> onedelayed’ := false
update
[1 true -> onedelayed’ := latchoutput
endatom
endmodule

We have one additional rule to invoke in translating a network of Mealy FSMs
to REACTIVEMODULES, and it is stated in Table 2.2.

11



If y is a latch-output and the output of a module A and is
being connected to x an external variable of module B, intro-
duce a unit-delay non-inverting buffer with the appropriate
initial value between y and z.

Table 2.2: Rule for connecting the latch-output of one module to the input of another
module

2.4.2 Non-determinism

Non-determinism is useful in modeling systems at an abstract level. There are two
ways to model non-determinism in REACTIVEM ODULES:

1. With a non-deterministic assignment.
2. By having multiple guarded commands with the same guard.

We illustrate both ways of having non-determinism with a simple example. We
design a module that will serve as the input to the three-bit-counter threebitcounter
to result in a closed system, i.e., one with no inputs (no external variables), and will
non-deterministically output a 0 or 1. The first way of modeling this is shown below:

module nondetinput
interface output : bool

atom controls output
init update
[ true -> output’ := nondet
endatom
endmodule

The variable output is assigned a value non-deterministically from the range
of values it can assume. The keyword nondet is used to assign to a variable a
nondeterministic element of the variable domain.

The second equivalent way of modeling the module nondetinput is by using
multiple guarded commands with the same guard is:

module nondetinput
interface output : bool

atom controls output
init update

[1 true -> output’ := false
[1 true -> output’ := true
endatom
endmodule

12



This second method is useful (and the only way) currently to model a non-
deterministic assignment to a variable from a subset of the possible values it may
assume.

2.4.3 Simple exercises

1. Modify the module threebitcounter to output a signal whenever the three
bit sum has value 0.

2. Create a new module that is the composition of threebitcounter and nondet-
input.

2.5 Running MOCHA

All the module definitions have to be entered into a single file named typically
with the suffix .rm; in our case, (say) this file is counter.rm (Figure 2.4). MOCHA
is invoked by typing mocha at the shell prompt. If you do not want to bring up
MocHA with its GUI, start MOCHA in the text mode typing mocha -t.

The module is read and parsed with the read module command. MOCHA dis-
plays the names of the modules that were successfully parsed. In the case of a parse
error, an appropriate message is displayed.

mocha: read_module counter.rm

Module counterCell is composed and checked in.

Module cellO is composed and checked in.

Module celll is composed and checked in.

Module cell2 is composed and checked in.

Module threebitcounter is composed and checked in.
Module nondetinput is composed and checked in.

Module InputModule is composed and checked in.

Module closedthreebitcounter is composed and checked in.
parse successful.

The command show_mdls lists the modules that have been read in.

mocha: show_mdls
closedthreebitcounter
InputModule

cellO

celll

cell?

counterCell
threebitcounter

MocHA provides many methods of verifying the correctness of a design: exe-
cution (i.e., simulation), invariant checking, refinement checking, and ATL model

13



-- this is a comment
-- 3 bit counter found in the SMV example suite
module counterCell

private sumBit : bool

external carrylIn : bool

interface carryOut : bool

atom controls sumBit reads sumBit awaits carryIn
init

[1 true -> sumBit’ := false
update

[ “sumBit -> sumBit’ := carryln’

[ sumBit -> sumBit’ := if (“carryIn’) then true else false fi
endatom

atom controls carryOut reads sumBit awaits carryln
init

[1 true -> carryQut’ := false
update

[1 true -> carryOut’ := sumBit & carryIn’
endatom
endmodule -- end counterCell
cell0 := counterCell[ carryIn, carryOut := input, outO ]
celll := counterCell[ carryIn, carryOut := outO, outl ]
cell2 := counterCell[ carryIn, carryOut := outl, out2 ]
threebitcounter := hide outO, outl in

(cellO || celll || cell2) endhide

module nondetinput
interface output : bool

atom controls output
init update
[ true -> output’ := nondet
endatom
endmodule

InputModule := nondetinput[ output := input ]
closedthreebitcounter := hide input in
(InputModule || threebitcounter) endhide

Figure 2.4: Input file: counter.rm

14



checking. We highlight execution and ATL model checking in this tutorial, being
the distinguishing features of MOCHA, and treat refinement checking and assume-
guarantee reasoning in subsequent chapters.

2.5.1 Executing modules

MocHA allows the user to execute any module in three modes: manual, random, and
game, via a Tk-based GUI for interacting with the tool and viewing the execution
trace. To execute a module, first read it in using the read_module command. Then
choose it by selecting it in the browser, that is in turn brought up by choosing under
the browse option under the “File” pull down menu.

After selecting the module, press the open button. For instance, choose the
module closedthreebitcounter. A new window will pop up containing the
REACTIVEMODULES definition of the module selected. Now click the “Execute”
button. A new window pops up giving the three options for execution as radio
buttons. For the Game execution option, the user gets to choose the atoms for
which he can specify the next state (i.e., resolve the non-determinism); the other
atoms’ next states will be chosen by MOCHA; use the browse button to choose the
atoms the user wants to control.

The upper window presents (by default) a table of the external and interface
variables for the chosen module and possible values at the current state. The user
gets to choose the particular tuple he wants to proceed with in the case of manual
or game execution. Additional variables to view can be selected by choosing the
“Select Variables” option under the options pull down menu. For instance, if you
chose to execute closedthreebitcounter under the game mode, and chose to play
the module InputModule, you will have to choose the input variable to be made
visible. When the user’s button is lit, the user should make a choice from the upper
window and then press the “Go!” button. When it’s the system’s turn pressing the
“Go!” button, executes the system’s move. Try it!

2.6 ATL model checking

ATL is a new temporal logic that subsumes CTL and is appropriate for reasoning
about open systems. The difference between ATL and CTL is that the path quan-
tifiers in ATL are parametrized by a set of atoms, and a formula is true along all
paths that the parametrized atoms can take the system into, no matter how the
other atoms behave.

For instance, the CTL formula AF(out2) is not true with respect to the module
closedthreebitcounter. We obtain a counterexample to the formula if the input
to the counter is set to 0. In this case the sum is always 0 and the carry-out from
the third (out2) counter-cell never becomes 1.

The formula AF(out2) stated in ATL is:

<<>> F(out2)

15



where the set of atoms parametrizing the path quantifier (within angle brackets) is
empty. The formula is to be read as follows: no matter how the agents (i.e, atoms)
behave it is the case that the system reaches a state where out?2 is true.

Similarly, the exists (E) path quantifier of CTL is the ATL path quantifier
parametrized by all the atoms. For instance, the module closedthreebitcounter
satisfies the CTL formula EF(out2). The equivalent ATL formula is

<< U >> F(out2)

where U stands for a list of all the atoms in the module closedthreebitcounter.
ATL thus let us specify games where we can divide up the set of atoms into two
teams; with some atoms in one team and the remainder in the other team, we can
pose adversarial questions as to whether a team can enforce a condition no matter
how the other team behaves.
For instance, we can pose the following ATL formula that is stronger than the
CTL formula EF (out2):

<< InputModule >> F(out2) (2.2)

This formula asks: what are the states from which the module InputModule, i.e. the
team comprised of atoms in the module InputModule has a strategy to make sure
that closedthreebitcounter reaches a state where out2 is true no matter how the
other modules (atoms) behave. Notice that in CTL the only two teams possible are
where one is the empty set and the other all the atoms, whereas ATL let us partition
the atoms into two teams any way we want.

The ATL formula of (2.2) is also true of closedthreebitcounter, because again
(for instance) a winning strategy for InputModule is to set the input to 1 sometime.
The reader should be convinced that it is not difficult to come up with instances
of modules that can be distinguished by ATL formulae but not by CTL formulae.
Note that in ATL formulae we may use the short hand A and F to stand for the
parametrized path quantifier with the empty set of atoms and the set of all atoms,
respectively.

The ATL formulae can be entered into a file whose name is suffixed by .spec,
named say counter.spec:

atl "atli" A F (out2) ;
atl "atl2" E F (out2) ;
atl "atl3" << InputModule >> F (out2);

Lines containing ATL formulae start with word atl, followed by the name of
the formula, and then the formula, with a semi-colon terminating the line. The
command show_spec prints out the names of ATL formulae read in (as well as
invariants read in). Try it.

The command for ATL model checking is at1l _check. The following command:

atl_check closedthreebitcounter atll
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which says check if the module closedthreebitcounter satisfies the ATL formula
atll. When you run this, you will get a message reporting a failure. On the
otherhand:

atl_check closedthreebitcounter atl2

should pass as should atl_check closedthreebitcounter atl3.

2.7 Peterson’s mutual exclusion protocol

As an example of a concurrent program consisting of processes that communicate
through read-shared variables, we consider a mutual-exclusion protocol, which en-
sures that no two processes simultaneously access a common resource. The mod-
ules P; and P» of Figure 2.5 model the two processes of Peterson’s solution to the
mutual-exclusion problem for shared variables. Each process has a program counter
(pcl, pc2) and a flag (z1, z2), both of which can be observed by the other pro-
cess. The program counter indicates whether a process is outside its critical section
(outCS), requesting the critical section (reqCS), or occupying the critical section
(inCS). In each update round, a process looks at the latched values of all variables
(reads them) and, nondeterministically, either updates its controlled variables or
sleeps (i.e., leaves the controlled variables unchanged: achieved by the last guarded
command with a true guard and no actions), without waiting to see what the other
process does. Note that each process may sleep for arbitrarily many rounds: non-
determinism is used to ensure that there is no relationship between the execution
speeds of the two processes.

Interleaving. Unlike in interleaving models, both processes may modify their vari-
ables in the same round. While Peterson’s protocol ensures mutual exclusion even
under these weaker conditions, if one were to insist on the interleaving assumption,
one would add a third module that, in each update round, nondeterministically
schedules either or none of the two processes. Alternatively, one could describe the
complete protocol as a single module containing a single atom whose update action
is the union of the update actions of the atoms of Figure 2.5. The guarded command
that specifies a union of actions consists simply of the union of all guarded assign-
ments of the individual actions. This style of describing asynchronous programs as
an unstructured collection of guarded assignments is pursued in formalisms such as
UNITY [CM88] and MURyp [Dil96].

Write-shared variables. The original formulation of Peterson’s protocol uses a
single write-shared boolean variable x, whose value always corresponds to the value
of the predicate £1 = z2 in our formulation. If one were to insist on modeling x as
a write-shared variable, one would add a third module with the interface variable x
and awaited external variables such as P;_sets_z_to_0, which is a boolean interface
variable of the i-th process that indicates when the process wants to set z to 0. This
style of describing write-shared memory makes explicit what happens when several
processes write simultaneously to the same location.
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2.8 Verification

The two modules P1 and P2 are composed to give module Pete. We verify that the
version of Peterson’s mutual exclusion protocol in Figure 2.5 does implement mutual
exclusion. The following invariant says that both processes are not simultaneously
in their critical sections:

inv "mutex" ~ (pcl = inCS & pc2 = inCS);

The invariant can be entered into a file (say) pete.spec. The name of the invari-
ant is mutex. Start up MOCHA, and first read in the module definitions of Figure 2.5

by typing:

mocha: readmodule pete.rm

The specification is read in with the read spec command:
mocha: read_spec pete.spec

The mutual-exclusion is tested with the command:
mocha: inv_check Pete mutex

which says check if the module Pete satisfies the invariant mutex. Pete should
satisfy the invariant.

2.9 Where to find the files for the examples in this chap-
ter

The REACTIVEMODULES files as well as the ATL specs., etc., can be found on the
WWW at http://www-cad.eecs.berkeley.edu/mocha/demo.html
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module P1

interface pcl: {outCS,reqCS,inCS} ; x1 : bool

external pc2: {outCS,reqCS,inCS} ; x2 : bool

atom controls pcl, x1 reads pcl, pc2, x1, x2
init

[ true -> pcl’ := outCS
update

1 pcl=outCS -> pcl’
[1 pcl=reqCS & (pc2=outCS | ~(x1=x2)) -> pcl’
[1 pC1=iIlCS -> pC1’

[1 true -
endatom
endmodule

module P2

interface pc2: {outCS,reqCS,inCS} ; x2 : bool

external pcl: {outCS,reqCS,inCS} ; x1 : bool

atom controls pc2, x2 reads pcl, pc2, x1, x2
init

[1 true -> pc2’ := outCS

update
[1 pc2=outCSs -> pc2’
[1 pc2=reqCS & (pcl=outCS | x1=x2) -> pc2’
[1 pc2=inCS -> pc2’
[0 true ->

endatom

endmodule

Pete:= hide x1, x2 in (P1 || P2) endhide

inCS
outCS

reqCS; x2’
inCS
outCS

Figure 2.5: Asynchronous mutual-exclusion protocol
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Chapter 3

Reactive Modules

The input language that MOCHA uses for language description is that of reactive
modules. The language of reactive modules is vaguely similar to a programming
language. However, REACTIVEMODULES have a different emphasis than most pro-
gramming languages. Programs written in ordinary programming languages are
usually meant to describe procedures or processes in full detail, to enable their
efficient execution. On the other hand, it may not be desirable (or indeed possi-
ble) to encode all the details of a system into a REACTIVEMODULES description.
Hence non-determinism plays in REACTIVEMODULES a more important role than
in ordinary programming languages, as it enables to abstract from such details.
REACTIVEMODULES also provides extensive facilities for the modular description of
a system, and for modeling both synchronous and asynchronous types of behavior.

The structure of a REACTIVEMODULES description resembles that of a con-
ventional (imperative) programming language: to the statements of the language
correspond atoms, and to the procedures correspond reactive modules (modules, for
short). A complete description consists of one or more modules.

3.1 The input file

Structure of the file. A file contanining a REACTIVEMODULES description is
usually given a name ending with the .rm extension, which is what MOCHA assumes
by default. Keywords in REACTIVEMODULES can be separated by any type of
whitespace, where whitespace can be a space, a new-line, or a tab. Comments in
REACTIVEMODULES are introduced with the character sequence --: anything from
—-- to the end of the line is considered as comment, and disregarded by MOCHA.

Splitting a description in multiple files. A long (or short) REACTIVEMODULES
description can be split into multiple files for ease of handling. Each module must
be contained in a single file. The complete description can be loaded into MOCHA
simply by loading the separate files one after the other, as if reading a single file in
successive steps.
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Typographical conventions. In this manual, we write in typewriter font the
keywords, such as atom, that have to be entered as specified, and we write in italics
the items, such as wvar, z, for which you have to substitute the appropriate values.
We use also the following special symbols:

e ... denotes an arbitrary number of items in a list, as in z1, ... ,x,, where we
assume that n > 1. The separator between list elements, when present (“,” in

this example) indicates the separator that has to be used between list items.
e | denotes alternative: in true | false, you can write either true or false.

e [] denotes an option: in [ atom_name ], the input atom_name can be provided
or omitted.

e round parentheses in roman typeface, as in (), are used for grouping.

3.2 Atoms

The state of the system is described by a set of state variables: each system state
corresponds to an assignment of values to the variables. The behavior of the system
consists in an initial round, which initializes the variables to their initial values,
followed by an infinite sequence of update rounds, which assign new values to the
variables, thus describing the evolution of the system’s state. You can also think of
the initial round and the update rounds as the two elements that describe a transition
system: the possible outcomes of the initial round correspond to the initial states of
the transition system, and the update rounds define the transition relation. Atoms
and modules are used to specify the initial and update update rounds for all the
variables.

3.2.1 Atoms

An atom is the basic unit used to describe the initial condition and transition relation
of a group of related variables. The syntax of an atom is given in Table 3.1. The
keyword lazy is optional. Its meaning will be described in Section 3.2.3. The atom
has an (optional) name atom_name which is used only as a reminder of the atom’s
purpose. The identifier is an alphanumerical string which begins with a letter. The

identifier may also contain “” (underscores) and “.” (dots).
An atom has three types of variables: the controlled variables u1, ..., u;, the read
variables v1,...,v;, and the awaited variables wi, ..., w;. An admissible identifier

for a variable is an identifier followed by the optional expression array_declare which
restricts the declaration to particular elements of an array structure. The exact
meaning will be described in Section 3.4.6.

Controlled variables. The controlled variables of the atom represent the vari-
ables for which the atom can establish the value at the next round. Each variable
is controlled by at most one atom: this insures that no conflict can arise between
different atoms trying to update the same variable to different values.
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atom = [lazy| atom [atom_name]

controls Uy, ... ,U;

[reads vy, ...,vj]

[awaits wy, ... ,w]
[init

[guarded_command
guarded_command,,,||
update

guarded_command

guarded_command,,

endatom
u == identifier[array_declare] von= u woon=
atom_name = identifier

Table 3.1: Atom syntax

Read variables. The read variables of an atom are the variables whose current
value can be read by an atom in order to decide the next values of the controlled
variables. Precisely, if a variable z is not read, then the new values of the controlled
variables do not depend on the current value of x.

Awaited variables. The awaited variables of an atom are the variables whose next
value can be read by an atom in order to decide the next value of the controlled
variables. A variable cannot be both awaited and controlled: otherwise, in order
to determine the next value of the variable, you would have to already know this
next value — such a circularity can be often problematic. In order to avoid all
such circularity problems, MOCHA keeps track of the awaits relation >: if an atom
controls a variable x and awaits a variable y, then & > y holds. MOCHA then
computes a global relation >, by taking the union of the >~ relations for all the
atoms. To avoid await circularities, MOCHA checks that the relation > is acyclical.

Guarded commands. The guarded_command statements following the init key-
word specify the values of the controlled variables at the end of the initial round;
the guarded_command statements following the update keyword specify the values
of the controlled variables at the end of an update round. The syntax of guarded
commands is presented in Table 3.2. A guarded command statement consists of two
parts: a guard, that is a boolean expression specifying when the guarded command
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guarded_command =[] guard -> [commandy; ... ;command )

guard = boolean_expr | default

Table 3.2: Guarded command syntax

atom incrdecr
controls x
reads x
init
[ true -> x’ := 0
update
[1 true -> x? (= x + 1
[ true -> x? :=x -1
endatom

Figure 3.1: Atom incrdecr

can be executed, and a list of commands, used to specify the next value of the
controlled variables. The special guard default will be discussed in Section 3.2.3.

3.2.2 Simple examples of atoms

The atom of Figure 3.1 controls a variable x, which we assume to be of type integer
(we will explain later how to specify types for variables). The atom specifies that
the variable x has initially value 0, and that the value of x is either decremented or
incremented by 1 at each round. Thus, variable x performs an (unbounded) random
walk. Note that x must also be listed among the read variables: otherwise, the value
of x at the end of the round would not be able to depend on the current value of x!

In the atom, the guards of all the guarded commands are always true — in fact,
they are equal to the boolean constant true. Given a variable z, you can access the
current value of z (i.e. the value of z at the beginning of the round) by writing x;
you can access the next value of z (i.e. the value of z at the end of the round) by
writing z’. The guarded commands for the initial round cannot access the current
(unprimed) value of the variables, since such value has not been defined yet — the
purpose of the initial round is to define such initial value!

The guards of guarded commands need not be mutually exclusive: the guarded
command that is executed is selected non-deterministically among the ones whose
guards are true. Hence, according to the above atom each state has two successor
states: one in which the value of x is increased by 1, and one in which the value of
x is decreased by 1.

You cannot feed the above atom as input to MOCHA: the smallest unit of input
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module randomwalk
interface x : int

atom incrdecr
controls x
reads x
init
[l true -> x’> := 0
update
[0 true -> x’
[ true -> x?> (= x -1
endatom
endmodule

1]
ol
[y

Figure 3.2: Module randomwalk

to the MOCHA parser is a module, not an atom. To give the atom as input to
MocHA, you can embed it into a minimal module as shown in Figure 3.2. In this
module declaration, variable x is declared of type int (the MOCHA shorthand for
integer), and is listed as an interface variable of the module, indicating that the
module can modify it, and it is visible from outside of the module as well (so other
modules can look at its value).

Unit-delay vs. zero-delay

The module DelayedAnd of Figure 3.3 has three interface variables x1, x2, and y,
of type bool, which is the MOCHA keyword for boolean. Atom randx updates x1
and x2 non-deterministically at each round: the keyword nondet is used to assign
to a variable a non-deterministic element of the variable domain (in this case, the
domain of x1 and x2 is {true,false}). This non-deterministic update simulates
random inputs to our AND gate. Atom delayedAnd assigns to the next value of y
the logical AND of x1 and x2. Abbreviating true and false with T and F, we can
represent one of the possible behaviors of module DelayedAnd as follows:

Round: | O (initial) 1 2 3 5 6 7 8 9 10
x1: T T F T T F T F T T

x2: T F T T T F F T T F

y: F T F F T T F F F T

Under index 4, for ¢ > 0, we list the current values of the variables at round . Thus,
at round 6, the current value of x1 and x2 is F, and the current value of y is F. As
you can see from this example, variable y contains the logical AND of x1 and x2 with
one round of delay: in fact, according to module DelayedAnd the nezt value of y is
the AND of the current values of x1 and x2. To eliminate this delay, you can await
the next values of x1 and x2, and use their next (rather than the current) values
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module DelayedAnd
interface x1, x2, y : bool

atom randx
controls x1, x2

init

[ true -> x1’ := nondet; x2’ := nondet
update

[ true -> x1’ := nondet; x2’ := nondet
endatom

atom delayedAnd
controls y
reads x1, x2
init
[1 true -> y’
update
[1 true -> y’
endatom
endmodule

nondet

x1l & x2

Figure 3.3: Module DelayedAnd

to compute the next value of y. This is what module SynchAnd of Figure 3.4 does.
One of the many behaviors of module module SynchAnd is as follows:

Round: | O (initial) 1 2 3 5 6 7 8 9 10
x1: T T F T T F T F T T

x2: T F T T T F F T T F

y: T F F T T F F F T F

The syntax of boolean expressions is presented in Table 3.3. An admissible identifier
for a boolean variable is an identifier with an optional ’> followed by the optional
expression index_refer. The presence of an indez_refer expression indicates the deref-
erencing of an array structure to a particular element. The exact meaning will be
described in Section 3.4.6. The syntax of int_range_ezpr and nat_ezpr expressions
will be explained in Section 3.4.1. The construct event_var? will be explained in
Section 3.4.2. The equivalence test between enumeration types will be explained in
Section 3.4.4.

The meaning of the boolean operators, together with their precedence, are listed
in Table 3.4. Finally, the syntax of the commands is given in Table 3.5. The forall
construct as well as the syntax of indezr_assign expressions will be described in Sec-
tion 3.4.6. The syntax of bitvector_expr expressions will be described in Section 3.4.7.
The event_var! construct will be described in Section 3.4.2.
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boolean_expr = boolean_var | event_var? | (boolean_expr) | ~boolean_ezpr

| boolean_expr, binary_boolean_op boolean_expr,
| if boolean_expr then boolean_expr,
else boolean_expry

| comparison | true | false

boolean_var = identifier|’][indez_refer]

event_var = identifier

numerical_expr = int_range_ezpr | nat_ezpr

comparison = numerical_expr, comparison_op numerical_expr,

| (elementy | enum_vary) = (elements | enum_vars)

enum_var = identifier[’][index_refer]
binary_boolean_op == & || | <=>|=>
comparison_op = >|<=|=|>=]|<

Table 3.3: Boolean expression syntax

Operator: Meaning;:

~ negation

& conjunction
| disjunction
=> implication
<=> equivalence
Precedence:

~ Highest

&, | Medium

=>, <=> Lowest

Table 3.4: Meaning and precedence of boolean operators
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module SynchAnd
interface x1, x2, y : bool

atom randx
controls x1, x2

init

[l true -> x1’ := nondet; x2’ := nondet
update

[ true -> x1’ := nondet; x2’ := nondet
endatom

atom delayedAnd
controls y
awaits x1, x2
init
update
[1 true -> y? := x1° & x2’
endatom
endmodule

Figure 3.4: Module SynchAnd

command = forall i x’[:] := expr

| z’[indez_assign] := ezpr | nondet

| event_var!
expr = boolean_expr | numerical_expr | bitvector_expr
x = identifier 1 = identifier

Table 3.5: Command syntax
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e The keyword init is missing. Then, the controlled vari-
ables of the atom are initialized non-deterministically.

o The keyword init is present, but no initial guarded
command 1is present. Then, the initial round is assumed
to coincide with the update round.

Table 3.6: Rules for omitting the init keyword, or the initial guarded commands

Rounds and sub-rounds

To understand the semantics of module SynchAnd of Figure 3.4, you can imagine
each round as consisting of one or more sub-rounds. During each subround, one of
the atoms updates the variables it controls. The order in which the atoms execute
their subrounds is arbitrary, except that if an atom A awaits some variable that is
controlled by another atom B, then the sub-round of atom A must precede that
of atom B. The order of execution of the sub-rounds does not change the set of
possible successor states, provided the above constraint is respected (can you see
why?).

Omitting the init keyword

Atom delayedAnd of Figure 3.3 shows that you can omit the guarded commands
following the init keyword: in this case, the initial round is equivalent to the update
round, so that atom delayedAnd can be equivalently written as follows:

atom delayedAnd
controls y
awaits x1, x2

init

[1 true -> y’> := x1’ & x2’
update

[0 true -> y’> := x1’ & x2’
endatom

You can also omit the init keyword entirely. In this case, the controlled variables
of the atom are initialized non-deterministically, as if they were idle. Table 3.6
summarizes these conventions.

3.2.3 Guards

Using guards, you can constrain the random walk of variable x of module randomwalk
(Figure 3.2) to the interval [0,10] as shown in Figure 3.5.
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module randomwalk010
interface x : (0..10)

atom incrdecr010
controls x
reads x
init
[l true -> x’> := 0
update
[l x<10 ->x’ :=x + 1
x>0 ->x’ :=x-1
endatom
endmodule

Figure 3.5: Module randomwalk010

The variable x has a type that ranges over the integers from 0 to 10, included
(type declarations will be discussed in Section3.4). The guards are used to specify
when the corresponding command can be executed. In the above example, when
x = 0, only the first command

[T x< 10 -> x? :(=x + 1

can be executed, so that x can be incremented but not decremented. Similarly,
for x = 10 only the second guarded command can be executed. For 0 < x < 10,
both guarded commands can be executed, and x can be both incremented and
decremented.

Guards can also depend on the nezt value of a variable. The module CountUp of
Figure 3.6 contains two atoms: an atom toggle, whose boolean output x changes
at arbitrary points in time, and the atom counter, which counts with its output
count the number of “positive fronts” (changes from false to true) of x.

Omitting guards

If no guard is true, then the atom idles for one round: this means that all the
variables controlled by the atom are idle, and their value is updated according to
Table 3.7. The reason for the seemingly strange Rule 2 is that if a variable is not
read, its current value is not available to the atom. Therefore, the atom is unable to
insure that the updated value for the variable is equal to its current value. To help
prevent errors, MOCHA issues a warning whenever a variable is controlled but not
read. Using this feature, you can rewrite the previous module CountUp as shown
in Figure 3.7. Note that atom counterPrime is idle whenever variable x does not
change its value.
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module CountUp
interface x : bool; count : int

atom toggle
controls x

reads x
update
[1 true -> x? := "x
[1 true -> x’ := x
endatom
atom counter
controls count
reads x, count
awaits x
init
[1 true —> count’ := 0
update
[0 “(x <=> x’) -> count’ := count + 1
[1 x <=> x’ -> count’ := count
endatom
endmodule

Figure 3.6: Module CountUp

A variable z that is idle in the initial round is updated to a
non-deterministic value in its domain. A variable z that is
idle in an update round is updated as follows:

1. if z is both controlled and read, then the value of z is
left unchanged;

2. if x is controlled but not read, then the value of z at
the next round is chosen non-deterministically from the
domain of .

Table 3.7: Updating idle variables
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module CountUpPrime
interface x : bool; count : int

atom toggle
controls x

reads x
update
[1 true -> x? := "x
[1 true -> x’ := x
endatom
atom counterPrime
controls count
reads x, count
awaits x
init
[1 true —> count’ := 0
update
[0 “(x <=> x’) -> count’ := count + 1
endatom
endmodule

Figure 3.7: Module CountUpPrime
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module randomwalkabove
interface x : (0..10); count : int

atom incrdecr010
controls x
reads x
init
[l true -> x’> := 0
update
[l x<10 ->x’ :=x + 1
x>0 ->x’ :=x-1
endatom

atom countconsec
controls count
reads count
awaits x
init
[ true -> count’ := 0
update
[ x> >5 =-> count’ := count + 1
[1 default -> count’
endatom
endmodule

|
o

Figure 3.8: Module randomwalkabove

The default guard

If you want a guarded command to be executed when the guards of all other com-
mands are false, you can use the keyword default as guard. For example, suppose
that you want to count the number of consecutive times (including the current
one) in which the random walk of module RANDOMWALKO010 (Figure 3.5) is greater
than 5. You can do this as shown in Figure 3.8.

Omitting variable updates

If an atom controls more than one variable, it is possible to omit some of the variable
updates from the guarded commands. If the guarded command is selected, the
variables whose updates are omitted are idle, and their value is updated according
to Table 3.7. This convention often enables a considerable space saving. Module
GrayCode of Figure 3.9 generates outputs x and y, that change cyclically following
the Gray code sequence 00, 01, 11, 10. The module uses a variable pc that is private
to the module: it is visible only from within the module itself.
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module GrayCode
interface x, y : (0..1)
private pc : (0..3)

atom gray
controls x, y, pc
reads X, ¥, PC
init
[l true -> x’ :=0; y’ := 0; pc’ :=0
update
0 pc=0->pc’ :=1 1
[l pc=1->pc’ :=2 =1
[T pc=2->pc’ :=3; x2 :=0
[ pc = 3 -> pc? := 0; =0
endatom
endmodule

Figure 3.9: Module GrayCode

Lazy atoms

A lazy atom is an atom whose controlled variables can remain unchanged during any
update round. Lazy atoms can be declared with the help of the keyword lazy (see
Table 3.1). Precisely, using the keywork lazy is equivalent to adding the update
guarded command with empty body:

[1 true ->

to the atom. When the lazy keyword is used, the atom must read all the variables
it controls. Using keyword lazy, you can encode module CountUpPrime (Fig 3.7)
in the alternative way of Figure 3.10. Since atom toggleSecond can sleep at any
time, the guarded command [] true -> x’ := x is no longer necessary. However,
to insure that variable x retains its value when the atom sleeps, it is now necessary
to declare it as read (see Table 3.7).

3.3 Modules

A module is a collection of atoms, together with a declaration of the variables that
occur in the module. There are two types of modules: simple modules, obtained
by specifying directly the atoms composing the module, and composite modules,
obtained by combining or modifying existing modules.

3.3.1 Simple Modules

The syntax of simple modules is given in Table 3.8. After the keyword module, you
must provide the module name module_name. The module name is followed by a
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module CountUpSecond
interface x : bool; count : int

lazy atom toggleSecond
controls x
reads x
update
[1 true -> x’ := "x
endatom

atom counterPrime
controls count
reads x, count

awaits x
init
[ true -> count’ := 0
update
[ “(x <=> x’) => count’ := count + 1
endatom
endmodule
Figure 3.10: Module CountUpSecond
simple_module ::= module module_name
in_out_decly
in_out_decl,,
atom
atomy,
endmodule
in_out_decl = (private | interface | external)
var_decly; ... ;var_decly,
var_decl = xm1, ...,x; : type
module_name = identifier

Table 3.8: Simple module syntax
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list of variable declarations, which is followed in turn by the list of atoms composing
the module. The keyword endmodule concludes the module specification.

Associated with each module are three sets of variables: the private variables,
the interface variables, and the external variables. These sets of variables have the
following meaning:

e The private variables are the variables that are controlled by some atom of the
module, and that cannot be read or awaited by other modules. The value of
a private variable is thus local to the module.

e The interface variables are the variables that are controlled by some atom in
the module, and that can be read or awaited by atoms in other modules. These
variables cannot however be controlled by atoms of other modules, according
to the general rule stating that a variable can be controlled by at most one
atom.

e The external variables are the variables whose value can be read or awaited by
the atoms in the module. These variables cannot be controlled by any atom
in the module.

Each of the private and interface variables of the module must be controlled by some
atom. External variables, on the other hand, do not need to be read nor awaited by
any atom. Again, the awaits relation >, computed for the module must be acyclical.

The three sets of private, interface and external variables, together with the type
of each variable, are specified using the syntax given in Table 3.8. The symbol type in
the table indicates a type declaration: two possible declarations are int (for integer
type) and bool (for boolean type). Type declarations will be covered in Section 3.4.

You have seen examples of module declarations in the previous section as well
as the tutorial chapter; additional examples will be presented in Section 3.7.

3.3.2 Composite Modules

There are three operations defined on modules in MOCHA: wvariable hiding,, variable
renaming, and parallel composition. These operations create new composite modules,
which can in turn be combined into other composite modules.

Hiding Variables

The hiding of interface variables allows you to construct module abstractions of
varying degrees of detail. For instance, after composing two modules, it may be
appropriate to convert some interface variables to private variables, so that they are
used only for the interaction of the component modules, and are no longer visible
to the environment of the compound module.

Given a module (simple or composite) with name P, denote with Ezternal(P),
Private(P), Interface(P) the set of external, private, and interface variables of P,
respectively. Given any list of interface variables z1,. .., z, € Interface(P), you can
hide z1,...,zy using the construct:
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Q@ :=hide z1, ... ,T, in P endhide
The resulting module @ is identical to P, except that:

Private(Q) = Private(P)U{z1,...,2,}
Interface(Q) = Interface(P)\ {z1,...,2n}.

In other words, the effect of hiding the interface variables z1,...,z, in P is to make
them private, so that other modules cannot access their content.

Variable Renaming

The renaming operation is useful for creating different instances of a module, and
for avoiding name conflicts. Let P be the name of a module, and let = be a variable
(external, private, or interface) of a module. You can rename variable z to y with
the construct:

Q:=P[z:=y]

The resulting module @ is identical to P, except that variable z has been renamed
to y. The new variable y is of the same type of z, and it does not need to be explicitly
declared: MOCHA infers its type and class (external, private, or interface) from the
renaming operation. You can also rename several variables at once: the construct

Q=P [x1, - sTm :=Y1s -+ >Ym J

simultaneously renames the variables x1, ...,y to y1,. .., Yn. This simultaneous re-
naming is especially useful to exchange variables. Note that the variables y1,...,yn
must be all distinct — even if they are external variables of the module of the same
type, in which case renaming them to the same name would make sense (it would
correspond to drawing the various inputs from the same source). For instance, if a
module P has two variables z; and z2 and we want to exchange them, the following

Q:=Plzy:=x0]1[z9 :=11]

leaves (@ and P being identical except that in () the variable zo is mapped to z;.
The correct way to exchange them is

Q := P [:I?l, I :=.’L‘2,.’IJ1]
MocCHA propagates the variable renames to the awaits relation > in the obvious

way.

Parallel composition

You can use parallel composition to combine two modules into a single module
whose behavior captures the interaction between the two component modules. Two
modules with names P and @ are compatible if the following conditions hold:
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program = module_decl | type_def | (module_decl | type_def) program
module_decl = simple_module | module_name := composite_module

composite_module = module_name
| Ccomposite_module)
| hide z1, ...,z in composite_module endhide
| composite_module [ 1, ... & 1= Y1y -« sYm ]

| composite_module, || composite_module,

Table 3.9: Syntax of module declarations

e the sets of interface variables of P and () are disjoint, i.e. Interface(P) N

Interface(Q) = 0;
e the global awaits relation >, for the two modules is acyclic.

If P and @ are compatible, you can form their parallel composition (and give it
name R) with the construct:

R:=P ||l Q

The external, private, and interface variables of R are given by:

Private(R) = Private(P) U Private(Q)
Interface(R) = Interface(P) U Interface(Q)
Ezternal(R) = [Ezternal(P)U Ezternal(Q)]\ Interface(R)

Note that Fzternal(R) is equivalent to [External (P)\ Interface(Q)]U[Ezternal(Q)\
Interface(P)] since the sets of interface variables of P and @) are disjoint.

Summary of module declarations

Table 3.9 summarizes the possible module declarations. The non-terminal program is
the start symbol of the grammar for REACTIVEMODULES. The expression type_def
will be described in Section 3.4. Note that while the name of an atom is used
only for mnemonic purposes, the name of a module is used by MOCHA to construct
more complex modules. In fact, the names of modules will also be mentioned by
verification commands, as you will see later.

As an example, we give two different approaches to constructing an OR gate.
The first approach, sometimes called the behavioral approach, specifies the behavior
of the OR gate directly:
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int_range_expr = int_nat_constant | int_nat_var
| (int_range_expr) | —int_range_expr
| int_range_expr, + int_range_expr,
| int_range_expr, - int_range_expr,
| if boolean_expr then int_range_expr,

else int_range_ezpr,
int_nat_constant = constant

int_nat_var = identifier[’][indez_refer]

Table 3.10: Syntax of integer and range expressions

module BehavOr
external inl, in2: bool
interface out: bool

atom controls out awaits inl, in2
update

[ true -> out’ := ini1’ | in2’
endatom
endmodule

In the second approach, shown in Figure 3.11, we assume that all we have at our
disposal is two-input NAND gates, and we create an OR gate by connecting these
NAND gates in the appropriate way. This approach is sometimes called the structural
approach, because it describes a system by specifying its structure, rather than
directly its behavior. Note that we cannot obtain a NOT gate simply by renaming
the two inputs inl and in2 of the NAND gate to the same name NORIN: we must
introduce a splitter module SPLIT, which makes two signals out of the same signal.

3.4 Types and Expressions

The simplest types of MOCHA are boolean, integer and natural. Other types include
events, ranges, enumerations, arrays, and bitfields. Boolean variables are declared
with the help of the keyword bool, and the syntax and semantics of boolean expres-
sions has already been described in Tables 3.3 and 3.4.
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module nand
external inl, in2 : bool
interface out : bool

atom controls out awaits inl, in2
init update
[1 true -> out’ := ~ (inl1’ & in2’)
endatom
endmodule

module split
external in : bool
interface outl, out2 : bool

atom controls outl, out2 awaits in
init update

[l true -> outl’ := in’; out2’ := in’
endatom
endmodule
StructOr := hide inla, inlb, in2a, in2b, cinl, cin2 in
split [in, outl, out2 := inl, inla, inib]
[l split [in, outl, out2 := in2, in2a, in2b]
|| nand [inl, in2, out := inla, inlb, cini]
|| nand [inl, in2, out := in2a, in2b, cin2]
|| nand [inl, in2, out := cinl, cin2, out]
endhide

Figure 3.11: Modules for structural or

nat_expr = int_nat_constant | int_nat_var
| (nat_ezpr) | nat_ezpr, + nat_expr,
| if boolean_expr then nat_expr,

else nat_exrpry

Table 3.11: Syntax of natural expressions
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3.4.1 Naturals and integers

Integer variables are declared using the keyword int; their domain ranges over the
integers. Natural variables are declared using the keyword nat; their domain ranges
over the non-negative integers. The syntax of integer (and range) expressions is
given in Table 3.10; the syntax of natural expressions is given in Table 3.11. A
constant is a numerical string. Natural variables can be assigned to integer ones,
and they can be used in integer expressions; the converse is not permitted.

3.4.2 Events

In MOCHA, events are represented by toggling the value of boolean variables. A
variable that is used to represent events can be using the keyword event. This
has two advantages. First, it makes it easier to toggle the variable, and detect
the toggling. Second, and more importantly, it notifies MOCHA that the value of
the variable is irrelevant: the only thing that matters is whether the value has
been toggled or not. Therefore, the presence of an additional event variable does
not increase the size of the state space. This will be explained more in detail in
Section 3.6.

If x is an event variable, then we can toggle it with the command x!, and we
can test whether it has been toggled with the boolean expression x? (see Table 3.3).
Aside from these two operations, there are no expressions of event type, and events
cannot be compared using the operators >, <, etc. The simple module EventCount
of Figure 3.12 consists of two atoms: an atom generate that generates events, and
an atom counts that counts them. Note that the atoms that refer to event variables
must also read them, to be able to distinguish when they are toggled.

3.4.3 Range types

A range declaration in MOCHA has the form (0. .maz), where maz is a non-negative
integer constant. The expressions using range types share the same syntax of in-
teger expressions, given in Table 3.10. In these expressions, you must follow the
restrictions:

1. You cannot mix different range types (or range types and int or nat) in the
same expression.

2. You cannot assign an expression of a range type to a different range type, or
to an int or nat.

Arithmetic operations are performed modulo maz+1 on the range type, thus insur-
ing that their value belongs to the same range type of the operands. There is no
type-casting operator in MOCHA, making the translation between different range
types cumbersome. A module that translates a variable of type (0..3) to integers
is given in Figure 3.13: you see that you don’t want to be doing this all the time.
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module EventCount
external e : event
external ¢ : nat

lazy atom generate
controls e
reads e
update
[l true -> e!
endatom

atom counts
controls c
reads c, e
awaits e
init
[ true -> ¢’ =0
update
[ e? >c¢’ :=c+1
endatom
endmodule

Figure 3.12: Module EventCount

module RangeTranslation
external x : (0..3)
interface y : int

atom translate
controls y
awaits x
init update
x =
0x =
0x =
0x =
endatom
endmodule

W N = O
| |

vV V V V

~ ‘4“ “4\' ‘4‘.
11 |

w NN = O

-
|

Figure 3.13: Module RangeTranslation
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module UpDownWalk
private ud : { up, down }
interface ¢ : int

atom generate

controls ud
update

[ true -> ud’ := nondet
endatom

atom count
controls c
reads ¢
awaits ud
init
[ true -> ¢’ =0
update
0 uwa’
(1 ud’
endatom
endmodule

]
[¢]

+
-

up -> c’
down -> ¢’ :=c¢c -1

Figure 3.14: Module UpDownWalk

3.4.4 Enumeration type

To declare a variable of enumeration type, you simply list between curly braces the
possible values of the variable, separated by commas. The only operations you can
perform on an enumeration type are checking for equality (using operator =), and
assignments. The minimal module UpDownWalk of Figure 3.14 contains two atoms:
one that generates an infinite sequence of ups and downs, and another that counts
up or down, as dictated by the former atom.

A value in an enumeration cannot be used in more than one distinct range type.
For example, in Figure 3.15 it was necessary to capitalize the values Water and
Pasta for the range of z in order to avoid using twice the values for the range of x.
On the other hand, note that it is possible to use the same enumeration value in the
same range type multiple times, as illustrated in Figure 3.16.

3.4.5 Naming types

Equality of types in MOCHA is defined structurally (as opposed to being based on
inheritance). This means that two variables have the same type iff they are declared
of structurally equivalent types, even though the type declarations may be distinct.
For example, the module EnumAssign of Figure 3.16 is correct: y’ can be assigned
x’. You can also associate a name with enumeration and range types (but not with
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module RecycleNames

external x : { water, bread, pasta }
interface z : { Water, Pasta, Bananas }

atom copy
controls z
awaits x
init update
[1 x’ = water —> z’

= Water

[l x’ = pasta -> z’ := Pasta
endatom
endmodule

Figure 3.15: Module RecycleNames

module EnumAssign

external x : { water, bread, pasta }
interface y : { water, bread, pasta }

atom copy
controls y
awaits x
init update
[l true -> y’ := x’
endatom
endmodule

Figure 3.16: Module EnumAssign
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type menu : { water, bread, pasta }

module EnumAssignBis
external x : menu
interface y : menu

atom copy
controls y
awaits x
init update
[1 true -> y’ := x’
endatom
endmodule

Figure 3.17: Module EnumAssignBis

integer, natural, boolean, and event types). To do so, you include the declaration
type type_name : complez_type

in the input file, before the modules that use type type_name. The type complez_type
must be an enumeration, range, array, or bitvector type. Using this declaration
makes it easier to write structurally equal types, and also makes the code more
readable. Using this type declaration, you can rewrite the example of Figure 3.16
as shown in Figure 3.17.

3.4.6 Arrays

MOCHA also has array and bitvector types. Arrays are essentially as in ordinary
programming languages, except that multidimensional arrays are not provided, and
other minor limitations are present. Each array variable has to be controlled by
the same module, but different array elements can be controlled by different atoms:
hence, you can think of arrays as a bus of wires or signals, not necessarily controlled
jointly. The syntax for declaring an array type is:

array indez_type of element_type

Type indez_type is the type of the array index, and can be an enumeration type
or a range type (perhaps the most common case). Type element_type is the type of
the array elements, and can be a boolean, integer, natural, enumeration, range, or
bitvector type. An example of an array declaration is

interface x : array (0..10) of bool

Table 3.12 describes the constructs to express dereferencing of arrays in the
context of variable declarations in atoms as well as in expressions and assignments.
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You can declare that an atom controls the whole array x by writing controls
x. If the atom controls only some elements of x, you can specify these simply by
listing them, as in controls x[0], x[2], x[4]. You can specify which elements
are read or awaited in a similar way. Note that the array elements that are controlled,
read, or awaited must be specified using constants or elements of enumeration types
only: you cannot write controls x[1 + 2] or awaits x[a] if a does not denote
an element of an enumeration type. If an array is controlled by the module (i.e. if it
is declared as interface or private in the module), then all array elements must
be controlled by some atom of the module.

You can refer to array elements by writing the variable name followed by a range
expression in square brackets, as in x[4] or x[z + 1]. In an expression, you can
refer to an element of an array of type array index_type of element_type whenever
you can refer to a variable of type element_type.

You can assign values to individual array elements by using constants to specify
them or use the forall assignment to all elements of the array together. Moreover,
you must specify the array element being updated using constants only: for example,
you can write x’ [3] := true, but not x’ [y] := true or even x’[3+1] := true.
Thus, there is no direct way to update entry a of array x. But, indirectly the same
effect can be achieved by using the forall assignment statement as described below.

The forall assignment is used to assign values simultaneously to all array entries.
An example of the forall assignment is

forall i x’[i] := if (i = a) then y else x[i] fi

i is the index variable that is bound by the forall statement. The effect is to
assign to entry i the value of the expression on the right side with the value of i
subsituted for i. Notice also that the above example is just another way of saying

x’[a] :=y

Note that forall assignments may only occur in command expressions as given
in Table 3.5.

Modulo arithmetic is used for indexing whenever the index type of an array is a
range type, e.g., if array x has index type (0..3), x[3+3] refers to x[2]. An array
x can be indexed only by a variable of identically the same type as its index type.
For example, an array with index type (0..7) cannot be indexed with a var of type
int, or type (0..5).

An atom can read or await parts of an array, but then no expression in the atom
can index the array by a variable. Similarly, if an atom controls only part of the
array it can only update array elements specified by constants.

3.4.7 Bitvectors

Bitvectors are essentially arrays of booleans, except that you can perform arithmetic
and logical operations on a bitvector as a whole, and as a consequence each bitvector
variable has to be controlled by a single atom. The index type of a bitvector is always
a range type. An example of a declaration is
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array_declare = [int_nat_constant | element]
indez_refer = [numerical_ezpr | enum_var | element]

index_assign = array-declare

Table 3.12: Array access syntax

bitvector_expr = int_nat_constant | bitvector_var
| (bitvector_ezpr) | —bitvector_expr
| bitvector_expr; + bitvector_expr,
| bitvector_expr, - bitvector_expr,
| ~bitvector_expr
| bitvector_expr, binary_boolean_op bitvector_expry
| if boolean_expr then bitvector_ezpry

else bitvector_ezpr,

bitvector_var = identifier[’][indez_refer]

Table 3.13: Bitvector expression syntax
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interface x : bitvector 8

Here, x has eight elements indexed by the range type (0..7). The rules for
reading or awaiting parts of bitvector variables are identical to those for arrays. It
is not possible for different atoms to control parts of the same array; the whole
bitvector has to be controlled by the same atom. The forall assignment can be used
with bitvectors also.

The operations available for bitvectors are arithmetic operations of addition and
subtraction (modulo 2* for length & bitvectors), and bitwise logical operations &, |,
~, => and <=>. Table 3.13 provides the syntax of bitvector_expr expressions. Two
bitvectors can be added (similarly for other operations) only if they have the same
lengths. Constants can also be used as an argument to these operations. In such
expressions, the constant is interpreted as a constant bitvector of the length of the
other argument. Let x, y, z be bitvectors of length three.

z’ :=(x&y)+5

The numeral 5 in the above expression will be interpreted as the constant bitvec-
tor 101.

3.4.8 Summary of type declarations

Table 3.14 provides a summary of the syntax of the types available in MOCHA.
The element symbol indicates an alphanumerical string (beginning with a letter)
denoting an element of an enumeration type. The following restrictions apply:

e If the type indez_type of an array index is specified by a previously-defined
type name type_name, then type_name cannot refer to another array type.

e If the type element_type of an array element is specified through a previously
defined type name type_name, then type_name cannot refer to another array
or bitvector type. In particular, this rules out arrays of arrays (and thus
multidimensional arrays) and arrays of bitvectors.

For arithmetic expressions on size_constant: *, /, and % have equal precedence,
that is higher than + and — which have equal precedence. Equal precedence oper-
ations are left-associative.

3.4.9 Finite and infinite types in verification

A type is finite if it consists of finitely many possible values, and it is infinite oth-
erwise. Examples of finite types are boolean, enumeration, range, and event types.
The infinite types are integer and natural, as well as the composite types (arrays)
built from integers or naturals. MOCHA can deal much better with finite types
than with infinite ones. In particular, if a REACTIVEMODULES description consists
of only finite types, then MOCHA can use both enumerative and symbolic model-
checking for the verification. If also infinite types are used, then only enumerative
model-checking can be used. This can prevent the use of some of the most efficient
verification methods implemented in MOCHA.
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type

bool | int | nat | event | type_name
| enum_type | range_type
| array indez_type of element_type

| bitvector size_constant

type_name = identifier
enum_type = {element;, ... ,element,}
element ::= identifier
range_type = (0 .. size_constant)
type_def = type type_name : enum_type
| type type_name : range_type
| type type_name :
| type type_name : bitvector size_constant
indez_type = enum_type | range_type

element_type

size_constant

bool | int | nat | type_name
| enum_type | range_type

| bitvector size_constant

int_nat_constant

| (size_constant )

array indez_type of element_type

| size_constant;
| size_constant,
| size_constant;
| size_constant;

| size_constant,

- size_constanto
+ size_constanty
* size_constanto
/ size_constants

% size_constanty

Table 3.14: Syntax of types and type definitions
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3.5 Macro expansion

The parser for REACTIVEMODULES provides a limited macro-expansion facility.
The declaration:
#define name string

defines a macro name that refers to the string string. Any expression that involves
$name will be evaluated after first substituting string for it.

For instance the code fragment:

#define BITWIDTH 4
type valType : bitvector $BITWIDTH

defines valType to be a bitvector of 4 bits.

The other macro allowed is the foreach macro.

#foreach i = (1 .. $BITWIDTH + 1)
type valType_$i : bitvector $i
#endforeach

The above code fragment defines four types: valType_1, valType_2, valType_3, and
valType 4. The index string may be of index_type (see Table 3.14), but cannot be
a type_name; it has to be the type itself. That is,

type food : {pasta, food, water}
#foreach i = food
#endforeach

is not allowed, but foreach i = {pasta, food, water} is fine.

3.6 Efficiency Considerations

The efficiency of the symbolic model-checking methods of MOCHA depends crucially
on the size of the state space, i.e. on the total number of system states. A system
state is simply an assignment of values to the variables (external, interface, and
private) of the REACTIVEMODULES description. Several factors affect the size of
the state space. First, if the description includes variables of an infinite type, then
the state space is infinite, and the symbolic model-checking cannot be performed.
If all the variables are finite, the size of the state space is proportional to the
(product of) size constants used to dimension arrays and range types, and to the
number of values for enumeration types. While this, and similar facts, are well-
known in model-checking, the distinction between read and awaited variables enables
MocHA to limit the size of the state space. In particular, variables that are awaited
but not read, and event variables, do not contribute to the size of the state space.
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3.6.1 Awaited, but not read, variables

If a variable is never read, but only awaited, then the variable does not contribute
to the size of the state space. For example, the variables inla, inlb, in2a, in2b,
cinl, cin2 of Figure 3.11 do not contribute to the size of the state space: they are
not read by any of the modules of the figure, and since they are hidden, we are sure
that no other module can read them. Such variables are also called history-free. The
variables in1, in2 and out may or may not contribute to the size of the state space,
depending on whether or not they are read by some other module.

Variables that are not read, but only awaited, are often used to model wires of
hardware components. The reason why these variables are not read is that these
variables, like wires, have no memory, and thus their state needs not be remembered.
In fact, when computing the transition relation of the system, the values of these
variables in the current state are not used to determine the successor state.

Variables that are read are also called history-dependent variables.

3.6.2 Event variables

Event variables also do not contribute to the size of the state space, even though
they must be both read and awaited by all atoms using them. The reason is that
they current value (which would contribute to the size of the state space) is not
relevant: all that matters is whether they retain their value, or whether they are
toggled, when going from one state to the next. Hence, as in the previous case, the
values of event variables at the current state are not used to determine the successor
state, and hence they need not be remembered.

3.7 More examples

3.7.1 Synchronous message-passing protocols

The modules Sender and Receiver of Figure 3.18 communicate via events in order
to transmit a stream of messages.

The private variable pc of the sender indicates if it is producing a message (pc =
produce), or attempting to send a message (pc = send). The private variable pc
of the receiver indicates if it is waiting to receive a message (pc = receive), or
consuming a message (pc = consume). Messages are produced by the atom AProd,
which requires an unknown number of rounds to produce a message. Once a message
is produced, the event doneP is issued, and the message is shown as msgP (the actual
value of message is chosen non-deterministically from the finite type msgType). Once
a message has been produced, the sender is ready to send the message, and pc is
updated. When ready to send a message, the sender sleeps until the receiver becomes
ready to receive, and when ready to receive a message, the receiver sleeps until the
sender transmits a message.

The synchronization of both agents is achieved by two-way handshaking in three
subrounds within a single update round. The first subround belongs to the receiver.
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type msgType : bool
type sendCtrlType : {produce, send}

type recCtrlType : {receive, consume}
module Sender
external ready : event
interface transmit : event; msgS, msgP : msgType

private pc : sendCtrlType; doneP : event
atom controls pc, transmit, msgS

reads pc, transmit, msgS, doneP, msgP, ready awaits doneP, ready
init

[1 true -> pc’ := produce
update
[1 pc=produce&doneP? -> pc’ := send
[1 pc=send&ready? -> transmit!; msgS’ := msgP; pc’ := produce
endatom
lazy atom AProd controls doneP, msgP reads pc, doneP, msgP
update
[1 pc=produce -> doneP!; msgP’ := nondet
endatom
endmodule

module Receiver
external transmit : event; msgS : msgType
interface ready : event; msgC : msgType
private pc : recCtrlType; doneC : event; msgR : msglype
atom controls pc, msgR
reads pc, transmit, doneC awaits transmit, msgS, doneC

init
[1 true -> pc’ := receive
update
[1 pc=receive & transmit? -> msgR’ := msgS’; pc’ := consume
[1 pc=consume & doneC? -> pc’ := receive
endatom
lazy atom controls ready reads pc, ready
update
[1 pc=receive -> ready!
endatom

lazy atom ACons controls doneC, msgC reads pc, doneC, msgR
update
[1 pc=consume -> doneC!; msgC’ := msgR
endatom
endmodule

Figure 3.18: Synchronous message-passing protocol
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If the receiver is ready to receive a message, it issues the interface event ready to
signal its readiness to the sender. The second subround belongs to the sender. If the
sender sees the external event ready and is ready to send a message, it issues the
interface event transmit to signal a transmission. The third subround belongs to the
receiver. If the receiver sees the external event transmit, it copies the message from
the external variable msgS to the private variable msgR. The sender goes on to wait
for the production of another message, and the receiver goes on to consume msgR.
Messages are consumed by the atom ACons, which requires an unknown number of
rounds to consume a message. Once a message is consumed, the event doneC is
issued, the consumed message is shown as msgC, and the receiver waits to receive
another message.

3.7.2 A train controller

Counsider a railway system with two circular railroad tracks, one for the train travel-
ing clockwise, and the other for the train traveling counter-clockwise. At one point
of the circle, there is a bridge that is not wide enough to accommodate both tracks.
The two tracks merge on the bridge, and for controlling the access to the bridge,
there is a signal at either entrance. If the signal at the western entrance is green,
then a train coming from the west may enter the bridge; if the signal is red, the train
must wait. The signal at the eastern entrance to the bridge controls trains coming
from the east in the same fashion.

Figure 3.19 shows the Reactive Modules description for the a generic train Train.
The module has three interface variables: arrive and leave of type event and pc
of enumerative type {away,wait,bridge}; and one external variable signal. The
module has only one atom which controls all the interface variables. By declaring
the atom to be lazy, we are able to model the assumption regarding independence
of the speeds of different modules.

The module does the following: when the train approaches the bridge, it sends the
event arrive to the railroad controller and checks the signal at the entrance to the
bridge (pc = wait). When the signal is red, the train stops and keeps checking the
signal. When the signal is green, the train proceeds onto the bridge (pc = bridge).
When the train exits from the bridge, it sends the event leave to the controller
and travels around the circular track (pc = away). Multiple copies of the Train are
created by variable renaming. TrainW, which represents the train traveling clockwise,
is constructed by renaming variables pc to pcW, arrive to arriveW, signal to
signalW and leave to leaveW. TrainE, which represents the train traveling counter-
clockwise, is constructed in a similar fashion.

Figure 3.19 also shows a controller controlling the signals to prevent collisions
of the two trains. The complete railway system is represented by the module
RailroadSystem, which is the composition of the trains with the controller, with
variables arriveW, arriveE, leaveW and leaveE hidden.
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module Train
interface pc : {away, wait, bridge}; arrive, leave : event
external signal : {green, red}

lazy atom controls pc, arrive, leave reads pc, arrive, leave, signal

init
[1 true -> pc’ := away
update
[1 pc=away -> arrive!; pc’ := wait
[1 pc=wait & signal=green -> pc’ := bridge
[1 pc=bridge -> leave!; pc’ := away
endatom
endmodule
TrainW := Train[pc,arrive,signal,leave := pcW,arriveW,signalW,leaveW]
TrainE := Train[pc,arrive,signal,leave := pcE,arriveE,signalE,leaveE]

module Controller

private nearW, nearE : bool
interface signalW, signalE : {green, red}
external arriveW, arriveE, leaveW, leaveE : event

atom controls nearW reads nearW, arriveW, leaveW awaits arriveW, leaveW

init

[1 true -> nearW’ := false
update

[1 arriveW? -> nearW’ := true

[1 leaveW? =-> nearW’ := false
endatom

atom controls nearE reads nearE, arriveE, leaveE awaits arriveE, leaveE

init

[1 true -> nearE’ := false
update

[1 arriveE? -> nearE’ := true

[1 leaveE? -> nearE’ := false
endatom

lazy atom controls signalW, signalE reads nearW, nearE, signalW, signalE

init
[1 true -> signalW’ := red; signalE’ := red
update
[1 nearW&signalE=red -> signalW’ := green
[1 nearE&signalW=red -> signalE’ := green
[1 ~nearWw -> signalW’ := red
[1 ~nearE -> signalE’ := red
endatom
endmodule
RailroadSystem := hide arriveW, arriveE, leaveW, leaveE in TrainW || TrainE

|| Controller endhide

Figure 3.19: Railroad controller
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Figure 3.20: Resource Manager

3.7.3 A resource manager

Consider a resource manager used to resolve accesses to instances of a shared re-
source. A block diagram of a resource manager is given in Figure 3.7.3. There
are four instances of the resource available. The environment interacts with the re-
source manager to allocate and free resources. If a resource is available, the resource
manager responds by granting an instance of the resource.

Figure 3.21 shows a reactive modules description of the resource manager. The
module RManager receives allocate and free requests through the boolean external
variables req and free respectively. The environment also sets the external variable
highPriority to true in the case of a high-priority request. For a normal-prioroty
request, highPriority is set to false. The manager may grant a high-priority
request, even if only one instance of the resource is available. A normal-priority re-
quest, on the other hand may be granted only if at least two instances of the resource
are available. The module RManager signals grants to the environment through the
interface variable grant of type bool. The interface variable grantIndex is set to
the index of the resource that is granted. While freeing the resource, the environ-
ment is expected to set the external variable freeIndex to the appropriate index of
the resouce that is being freed.

Private variable alloc(a boolean array) is used to maintain a bit for each resource
to indicate if it is free or allocated. The history-free private variable halfEmpty of
type bool is set to true if at least two instances of the resource are free. It is used
in handling normal-priority requests.

Module RManagerImpl in Figure 3.22 is a “less-abstract” lower-level description of
the resource allocator, Note that the modules RManager and RManagerImpl have
same set of external and interface variables. However, some design decisions have
been taken to implement the non-deterministic choices allowed in RManager. The
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type indexType : (0..3)
type sindexType : (0..4)
type regType : array indexType of bool

module Rmanager
external req : bool; free : bool; free_index : indexType;
high_priority : bool
interface grant : bool; grant_index : indexType; alloc : regTlype;
half_empty : bool
atom ALLOC controls alloc
reads alloc awaits req, grant, grant_index, free, free_index
init
[1 true —> forall i alloc’[i] := false
update
[1 true -> forall i alloc’[i]
if (grant’ & grant_index’=i) then true else
if (free’ & free_index’=i) then false else alloc[i] fi fi
endatom
atom HALF_EMPTY controls half_empty reads alloc
init
[1 true -> half_empty’ := true
update
[1 "alloc[0] -> half_empty’
if (Talloc[1] | "alloc[2]
[1 "alloc[1] -> half_empty’
if (Talloc[0] | "alloc[2]
[1 ~alloc[2] -> half_empty’
if (Talloc[0] | "alloc[1]
[1 "alloc[3] -> half_empty’
if (Talloc[0] | ~alloc[1]
[1 default -> half_empty’ :=
endatom
atom GRANT_INDEX controls grant_index
init update
[1 true -> grant_index’ := nondet
endatom
atom GRANT controls grant
reads alloc awaits req, high_priority, half_empty, grant_index

~“alloc[3]) then true else false fi
~“alloc[3]) then true else false fi
~“alloc[3]) then true else false fi

~“alloc[2]) then true else false fi
alse

Hh — | — I — 1 — 1

init
[1 true -> grant’ := false

update
[1 req’ & high priority’ & “alloc[grant_index’] -> grant’ := true
[1 req’ & half_empty’ & ~alloc[grant_index’] -> grant’ := true
[1 default -> grant’ := false

endatom

endmodule

Figure 3.21: Resource Manager (Specification)
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module RManagerImpl
external req : bool; free : bool; free_index : indexType;
high_priority : bool
interface grant : bool; grant_index : indexType; alloc : regType;
half_empty : bool
private sum : sindexType

atom ALLOC controls alloc reads alloc
awaits grant, grant_index, free, free_index
init
[1 true -> forall i alloc’[il
update
[1 true -> forall i alloc’[il
if (grant’ & grant_index’=i) then true else
if (free’ & free_index’=i) then false else alloc[i] fi fi
endatom
atom SUM controls sum reads sum, alloc awaits grant, free, free_index
init

false

[1 true -> sum’ := 0
update
[1 grant’ & “(free’ & alloc[free_index’]) -> sum’ := sum + 1
[1 “grant’ & (free’ & alloc[free_index’]) -> sum’ := sum - 1
endatom
atom HALF_EMPTY controls half_empty reads sum
init
[1 true -> half_empty’ := true
update
[1 sum > 2 -> half_empty’ := false
[1 default -> half_empty’ := true
endatom
atom GRANT_INDEX controls grant_index reads alloc
init
[1 true -> grant_index’ := 0
update
[1 "alloc[0] -> grant_index’ := 0
[1 alloc[0] & ~alloc[1] -> grant_index’ := 1
[1 alloc[0] & alloc[1] & ~alloc[2] -> grant_index’ := 2
[1 alloc[0] & alloc[1] & alloc[2] -> grant_index’ := 3
endatom

atom GRANT controls grant reads alloc, sum awaits req, high_priority
init

[1 true -> grant’ := false
update
[1 req’ & high_priority’ & sum <= 3 -> grant’ := true
[1 req’ & sum <= 2 -> grant’ := true
[1 default -> grant’ := false
endatom
endmodule

Figure 3.22: Resource Manager (Implementation)
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grantIndex variable always points to the available resource with the least index, if
one is available (as opposed to the non-deterministic choice in RManager) and there
is a new private variable sum that keeps track of the number of resources that have
been allocated. We will later use MOCHA to show that RManagerImpl is a valid
implementation of the module RManager.
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Chapter 4

Specifications

So far, we described the modeling language used to model systems in MOCHA. In
this section we discuss how to describe specifications. Later, we will illustrate how
to use MOCHA to check if a specification holds true on a module. There are three
different ways to state specifications in MOCHA: (1) invariants, (2) alternating-time
temporal logic, and (3) refinement.

4.1 Invariants

An invariant of a module is a predicate that is intended to hold true in all reachable
states of a module. The syntax for describing an invariant is similar to that for a
boolean expression inside a module. The formal specification is given in Table 4.1.
The full_identifier construct is a generalized form of an identifier which will be
explained in Section 4.6. A full identifier may distinguish different variables with
the same identifier but which belong to different modules.

An invariant [ is a predicate on the states of a module. A state either satisfies or
does not satisfy I. A module M satisfies I if all the reachable states of M satisfy I.
For example, consider the module Pete from Figure 2.5. We would like to state that
P1 and P2 can never be in the critical section at the same time. This is specified
by the invariant

~((pcl = inCS) & (pc2 = inCS))

4.2 Alternating-time temporal logic

We briefly discuss how to specify Alternating Temporal Logic (ATL) formulas in
MocHA. The reader is referred to [AHK97] for an introduction to this logic.

ATL is a generalization of the temporal logic CTL [CE81]. If p is a predicate on
the states of a module, then the CTL formula EFp means that a state satisfying p is
reached along some execution of the module, while the CTL formula AFp means that
a state satisfying p is reached along every execution of the module. The temporal
logic ATL is designed to write requirements of open systems [AHK97], and is defined

o8



inv_formula = atomic_proposition | ~inv_formula

| inv_formula; binary_boolean_op inv_formulay

atomic_proposition 1=

atomic_expr, comparison_op atomic_erpro
| (elementy | full var,) = (elements | full_var,)

atomic_expr == int-nat_constant | full_var

| Catomic_expr) | —atomic_expr
| atomic_expr, + atomic_expry

| atomic_ezpr; - atomic_expr,

full_var full_identifier [ Latomic_expr | element]]

Table 4.1: Invariant formula syntax

path_formula = N state_formula | G state_formula | F state_formula

| C state_formula, U state_formulay )
| € state_formula, W state_formulay )

state_formula = path_quantifier path_formula | atomic_proposition

| ~state_formula

| state_formula, binary_boolean_op state_formulas,

path_quantifier = A |E | << names >> | [[ names 1]

names [module_name , ... ,module_namey]
| [full_atom_name,, ... ,full_atom_name,)
full_atom_name == full_identifier

Table 4.2: ATL formula syntax
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by generalizing the existential and universal path quantifiers of CTL. For instance,
let 3 be a set of agents corresponding to different components of the system and the
external environment. Then, the logic ATL admits formulas of the form << A >> F
p, where p is a state predicate and A is a subset of agents. The formula << A >>F p
means that the agents in the set A can cooperate to reach a p-state no matter how
the remaining agents resolve their choices. This is formalized by defining games,
and satisfaction of ATL formulas corresponds to existence of winning strategies in
such games. The syntax for ATL formulas is defined inductively by the grammar in
Table 4.2 and is explained subsequently.

Atomic formulas. atomic_proposition as given in Table 4.1 represents the simplest
form of state formulas, and is made up of comparisons of expressions of different
types, including integers, natural numbers, ranges and enumerative types.

Path formulas. Path formulas are obtained from state formulas using the temporal
operators N (next), F (eventually), G (always), U (until), and W (while). The formal
syntax is given in Table 4.2. Path formulas are evaluated over infinite trajectories
of a module. Consider an infinite trajectory s = sgsq ... of states. Then,

e The formula N p holds in s, for a state formula p, if the state s satisfies p.

e The formula F p holds in 3, for a state formula p, if, for some 7 > 0, the state
s; satisfies p.

e The formula G p holds in 3, for a state formula p, if, for all 4 > 0, the state s;
satisfies p.

e The formula (p U ¢) holds in 3, for state formulas p and g, if, there exists i > 0
such that the state s; satisfies ¢ and for all 0 < j < 1, the state s; satisfies p.

e The formula (p W ¢) holds in 3, for state formulas p and g, if either all the
states s; satisfy p, or there exists 1 > 0 such that the state s; satisfies ¢ and
for all 0 < j < 1, the state s; satisfies p.

Observe that, as in CTL, arguments of temporal operators are state formulas, rather
than path formulas (e.g. A GF p is not an ATL formula).

State formulas. A state formula is either an atomic proposition, or a boolean
combination of state formulas, or an application of a path quantifier to a path
formula. While constructing boolean combinations, binary_boolean_op is one of the
following: &, |, <=>, =>. Expressions of boolean types are considered to be state
formulas, not atomic propositions. As a result, the operator for equality test for
boolean expressions should be <=>, not =.

In Reactive Modules, each agent corresponds to an atom. For each external
variable, there is an extra agent which controls it. The path_quantifier construct is
given in Table 4.2 where names are a list of full_identifiers separated by comma.
All the names must refer to identifiers of the same type: either they are all module
names, or the full atom names. If module names are given, MOCHA internally break
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them down into the comprising atoms during model checking. A space is required
between the path_quantifier and path_formula . For example, A G should be used
instead of AG. The meaning of the path quantifiers is explained below

e E is existential path quantifier (as in CTL). A state s satisfies the formula E ¢,
for a path formula ¢, if there is an infinite trajectory § whose first state is s
and which satisfies the formula ¢.

e A is universal path quantifier (as in CTL). A state s satisfies the formula A ¢,
for a path formula ¢, if for every infinite trajectory s whose first state is s, 5
satisfies the formula .

e << names >> , for a path formula ¢, means that the listed agents have a strat-
egy to produce a trajectory satisfying ¢, no matter how the remaining agents
behave. The satisfaction is formally defined via two-player games. To evaluate
the formula at a state s, consider the following game between a protagonist and
an antagonist. At every step the protagonist executes the atoms parameter-
izing the path quantifier, while the antagonist executes the remaining atoms.
The game proceeds for infinitely many rounds resulting in a trajectory. The
protagonist wins if the resulting trajectory satisfies the path formula ¢. The
initial state s satisfies the formula << mames >> ¢ if the protagonist has a
winning strategy in this game.

Therefore, the CTL path quantifier A is equivalent to the ATL path quantifier
<< >>.

e The path quantifier [[ 1] is the dual of << >>: [[ names 1] ¢, for a path
formula ¢, means that the agents that are not listed in the quantifier have a
strategy to produce a trajectory satisfying ¢, no matter how the listed agents
behave.

Therefore, the CTL path quantifier E is equivalent to the ATL path quantifier
[C 1.

The ATL formula A G p means that all reachable states satisfy p. For instance,
the mutual exclusion requirement for Petecan be specified by the formula

A G ~((pcl = inCS) & (pc2 = inCS))

The ATL formula A F p means that all trajectories contain a p-state. The deadlock
freedom requirement for Pete can be specified by the formula:

A G ((pcl = reqCS) => A F (pcl = inCS))
The ATL fomula

<< P1 >> G (pcl = outCS)
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spec_line = inv formula_name inv_formula ;
| atl formula_name path_formula ;

formula_name = identifier

Table 4.3: Specification syntax

means that the module P1 has a strategy to produce a trajectory in which pci
always equals outCS. This says that the choice of P1 to stay outside is under its
own control, and does not require any cooperation from P2. This formula is not
expressible in CTL, and is stronger than existential CTL (or ATL) formula:

E G (pcl = outCS)
The ATL formula
<< P1 > F (pcl = inCS)

says that the module P1 has a strategy to enter the critical section no matter how
the other module behaves. Sample ATL specifications of the railroad controller
example are given in Section 7.4.

The model checking problem for ATL is to determine whether a given module
satisfies a given ATL formula. The ATL model checking problem is solved by gen-
eralizing the symbolic fixpoint computation procedure for CTL model checking. It
should be noted that, while ATL is more expressive than CTL, its model checking
problem is no harder.

Specification file. A specification file contains a list of specifications. Each spec-
ification is an invariant or an ATL formula. The syntax of each line in the speci-
fication file is given in Table 4.3 where formula_name is a string used to name the
formula (and refer to it, while model checking the formula) and either inv_formula
or path_formula are the actual specification formulae. Note that each line needs to
be terminated using a semi-colon.

4.3 Refinement

Specifications can also be given in terms of abstract modules. In this case, both the
model and the specification are given as reactive modules, and MOCHA can be used
to check if the model is a refinement of the specification.

The execution of a module results in a trace of observations. Reactive modules
are related via a trace semantics: roughly speaking, one module implements (or
refines) another module if all possible traces of the former, more detailed module
are also possible traces of the latter, more abstract module.
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4.4 The trace language of a module

Let P be a reactive module. As indicated earlier, a state of P is a valuation for the
set Xp of module variables. We write Xp for the set of states of P.

A state s of the module P is initial if it can be obtained by executing all initial
actions of P in a consistent order. We write Initp for the set of initial states of the
module P. The set Initp is nonempty, because all initial actions are executable.
For two states s and ¢ of P, the state ¢ is a successor of s, written s —p ¢, if £ can
be obtained from s by executing all update actions of P in a consistent order. The
binary relation —p over the state space Yp is called the transition relation of the
module P. The transition relation —p is serial (i.e., every state has at least one
successor), because all update actions are executable. Moreover, a module does not
constrain the behavior of the external variables and interacts with its environment
in a nonblocking way.

In this way, the module P defines a state-transition graph with the state space Xp,
the initial states Initp, and the transition relation —p. The initialized paths of
this graph are called the trajectories of the module: a trajectory of P is a finite
sequence S ... S, of states of P such that (1) the first state s is initial and (2) for
all 0 < 7 < n, the state s;11 is a successor of s;. If s is a valuation to a set
of variables, we use [s]p to denote the set of valuations from s restricted to the
observable variables of P. If s = s¢... sy, is a trajectory of P, then the corresponding
sequence [5]p = [so]p - .- [sn]p of observations is called a trace of P. Thus, a trace
records the sequence of observations that may result from executing the module for
finitely many steps. The trace language of the module P, denoted Lp, is the set of
traces of P. By definition, every prefix of a trajectory is also a trajectory, and hence,
every prefix of a trace is also a trace. Since the set of initial states is nonempty, and
the transition relation is serial, every trajectory of a module, and hence also every
trace, can be extended. It follows that a module cannot deadlock. In modeling,
therefore, a deadlock situation must be represented by a special state with a single
outgoing transition back to itself.

4.5 The implementation preorder between modules

The semantics of the module P consists of the trace language Lp, as well as all infor-
mation that is necessary for describing the possible interactions of P with the envi-
ronment: the set intf Xp of interface variables, the set ezxtl Xp of external variables,
and the await dependencies >p N (intfXp X obsXp) between interface variables
and observable variables (there cannot be any await dependencies between external
variables and other variables).

Definition 4.1 [Refinability] The module @ is refinable by the module P, if the
following conditions are met: (1) every interface variable of Q) is an interface variable
of P; (2) every external variable of Q is an observable variable of P; and (3) for
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all observable variables x of Q and all interface variables y of Q, if y -Q then
Yy~pzx

Definition 4.2 [Implementation] The module P implements the module @), writ-
ten P < Q, if the following conditions are met: (1) Q is refinable by P; and (2) if 3
is a trace of P, then the projection [E]Q is a trace of Q.

Refinability ensures that the compatibility constraints imposed by P on its envi-
ronment are at least as strong as those imposed by Q. The second condition for
implementation is conventional trace containment. Intuitively, if P < Q, then the
module P is as detailed as the module QQ: the implementation P has possibly more
interface and external variables than the specification Q; some external variables of
Q may be interface variables of P, and thus are more constrained in P; the imple-
mentation P has possibly more await dependencies among its observable variables
than the specification Q; and P has possibly fewer traces than Q, and thus more
constraints on its execution. It is easy to check that every module P implements
itself, and that if a module P implements another module Q, which, in turn, im-
plements a third module R, then P also implements R. Hence, the implementation
relation < is a preorder (i.e., reflexive and transitive).

Simulation is a stronger notion of one module refining another.

Definition 4.3 [Simulation relation] Let P and @ be modules such that Q is
refinable by P. A relation H C ¥ p X EQ 1s a simulation if the following conditions

are met: (1) For all states s € X p and t € 50 if H(s,t) then [S]Q = [t]Q; (2) For
all states s € L p and t € ZQ, if H(s,t) and s —p s' then there is a state t' of Q
such that t — ) t' and H(s',t').

Definition 4.4 [Simulation] Module @) simulates module P (written P <5 Q) if the
following conditions are met: (1) @Q is refinable by P; and (2) There is a simulation
relation H C ¥ p X EQ such that, for every s that is an initial state of P there is an

initial state t of Q satisfying H(s,t).

Simulation is a sufficient (but not necessary) condition for implementation, as stated
by the following proposition:

Proposition 4.1 [Simulation and implementation] For any two modules P and @,
if P=; Q then P < Q.

The problem of checking if P < Q is PSPACE-hard in the state space of Q. The
problem of checking if P <, Q can be checked in time that is linear on the state
spaces of P and Q. For the special case in which all variables of Q are observable,
the notions of implementation and simulation coincide. In such cases, we just say
that P refines Q.

MocHA provides automatic procedures to check if one module refines the other or
if one module simulates the other. To cope up with large modules, MOCHA also
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full_identifier == identifier | module_name/ full_identifier

Table 4.4: Syntax of identifiers for variables (atoms) in invariant and ATL formulae

supports a compositional refinement methodology. The user commands to support
refinement and simulation checks are described in Chapter 5. Compositional refine-
ment is discussed in Chapter 6.

4.6 Referencing variables and atoms: the naming con-
vention

In specifying invariants or atomic propositions in ATL formulae, variables in mod-
ules need to be referenced. Also, in ATL formulae the path quantifiers may be
parametized by atoms. The question arises as to how to refer to variables and
atoms, especially in the case of composite modules formed by parallel composition
and hiding, etc.

One option is to use the module browser and obtain the name of the variable
or atom. The variables and atoms can also be systematically given hierarchical
names provided certain restrictions are observed in forming composite modules (if
these restrictions are not oberved, the module browser is the only option to find out
variable and atom names).

If M is a module, its visible variables—interface and external—are referenced by
their names. If M is a native module, i.e., that which is not formed by hiding or
renaming of other modules, its atoms are again referenced by their names, if they
were named, and otherwise their names have to be obtained from the browser.

If M2 is a module as below:

M2 := hide x_1, x_2 in M1

then the private variables x_1 and x_2 of M2 can be referenced with the names M2/x_1
and M2/x_2, respectively. Variables and atoms in M_1 are then referenced inductively
with names prefixed by M2/M1. Syntactically, the identifier of a variable or an atom
in a specification is a full_identifier. The formal syntax of full_identifier expressions
is given in Table 4.4.

A similar rule is invoked to name the variables of

M3 := hide x_1, x_2 in (M1 || M2)

For the above defined rules to uniquely name variables and atoms the following
operations are disallowed:
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1. Parallel composition of a module with itself. For instance, P || P, even if they
only have external variables, is not allowed.

2. There can be at most one hide in a module expression. For instance, X :=
(hide x in P ) || (hide x in Q), is not allowed also.
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Chapter 5

User Commands

In this section we illustrate the user level commands of MOCHA. We use the modules
described in earlier sections as examples. These examples can be found in examples/
directory of the MoOCHA distribution.

5.1 Parsing modules

The read_module command is used to read in a module description. We use Peter-
son’s mutual exclusion protocol from Figure 2.5, which can be found in the MocHA
distribution at examples/pete. On a read module command, MOCHA displays the
names of the modules that were successfully parsed. In the case of a parse error, an
appropriate message is displayed.

mocha: read module pete.rm

Module P1 is composed and checked in.
Module P2 is composed and checked in.
Module Pete is composed and checked in.
parse successful.

The command reinit is used to reinitialize MOCHA if there is a parse error. It
clears all the type and module definitions. In case of a parse error, fix the error,
execute reinit and parse the module file again. Once a module file has been read
in, a number of commands can be executed to get information about the modules
in memory. The command show_mdls lists the modules that have been read in.

mocha: show.mdls
P1

P2

Pete

The command show_atoms lists the atoms of a module.
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mocha: show_atoms Pete
Pete/P1/ATMO Pete/P2/ATMO

The command show_types lists the various types.

mocha: show_types

Built-in : bool, int, nat, event
Enumerative : ctype

Range : no range type defined.
Bitvector : mno bitvector type defined.
Array : no array type defined.

The command show_vars lists the different types of variables for a module—history
free, history dependent, event or all the variables.

mocha: show_vars -vALL Pete
pcl

Pete/x1

pc2

Pete/x2

mocha: show_vars -vHD Pete
pcl

Pete/x1

pc2

Pete/x2

Commands such as isPrivateVariable, isHistoryFree, isInterfaceVariable
return 1 or 0.

mocha: isPrivateVariable Pete Pete/x1
1

mocha: isHistoryFree Pete pcl
0

5.2 Executing modules

In MoOCHA, the user can perform three kinds of execution—manual, random, and
game, on any module. MOCHA provides a TK-based graphical user interface for
interacting with the tool and viewing the execution trace. To execute a module,
first read in the file containing the textual description of the module. Then, using
the module browser that’s obtained from the “File” pull-down menu, select a module
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for execution by selecting it and pressing the open button. The REACTIVEM ODULES
code for the module is then displayed on a new window. Press the “Execute” button.
A new window will then pop up offering three types of execution. Choose one.

e Manual execution. Initially, the GUI displays all possible initial states of the
module in the upper section of the window. The user can select any one of
them, and press the “Go!” button, whereupon the tool generates all possible
next states. The user can again select any next state to continue the execution.

e Random execution. User can specify the number of rounds that it wants to
execute the module for. The choices for the initial and successor states at each
step are made randomly.

e Game execution. The user plays a game against the computer. The user con-
trols the update of a subset of the set of atoms of the module being simulated.
In every round, the user chooses to update the variables of the atoms he con-
trols and the system updates the rest of the atoms randomly. This is a much
better way of performing guided execution. In each case, the user has to press
the “Go!” button to advance the execution, no matter who’s turn it is.

By default, the interface displays the value of only the observable variables of a
module. The GUI also lets the user modify the set of variables being displayed, as
well as change the format of the display of values of the variables, by choosing the
right options under the “Option” menu.

5.3 Invariant Checking

Suppose we want to check if the module Pete satisfies mutual exclusion. This is
specified as an invariant in the file examples/pete/pete.spec:

inv "mutex" ~(pcl = inCS & pc2 = inCS);

We first read the invariant using the read_spec command and then check the in-
variant using the inv_check command.

mocha: read_spec pete.spec

mutex

mocha: inv_check Pete mutex

Typechecking invariant mutex...
Typechecking successful

No sym_info.. building it(using sym_trans)
Ordering variables using sym_static_order
Transition relation computed : 2 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Initial Region Computed...
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Step 1: image mdd size = 3 |states| = 4
reached set mdd size = 6 |states| = 8

Step 2: image mdd size = 12 |states| = 4
reached set mdd size = 14 |[states| = 12

Step 3: image mdd size = 10 |states| = 6
reached set mdd size = 14 |states| = 16

Step 4: image mdd size = 12 |states| = 4

Done reached set computation...

reached set mdd size = 14 number of states = 16
Invariant mutex passed

If the invariant fails, MOCHA will display an error trace. Let us create a bug in
Pete by deleting a negation in line 12 of pete.rm. The buggy version is found in
petebug.rm. Let us check the invariant on the buggy model.

mocha: readmodule petebug.rm

Module P1 is composed and checked in.
Module P2 is composed and checked in.
Module Pete is composed and checked in.
parse successful.

mocha: read_spec pete.spec

mutex

mocha: inv_check Pete mutex

Typechecking invariant mutex...
Typechecking successful

No sym_info.. building it(using sym_trans)
Ordering variables using sym_static_order
Transition relation computed : 2 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Initial Region Computed...

Step 1: image mdd size = 3 |states| = 4

reached set mdd size = 6 |states| = 8
Step 2: image mdd size = 12 |states| = 4
reached set mdd size = 12 |states| = 10

Invariant mutex has been violated
Invariant mutex failed in step 2
Counterexample for invariant mutex
pcl=outCS $x1_0=1 pc2=outCS $x2_0=0
pcl=reqCS $x1.0=0 pc2=reqCS $x2_0=0
pcl=inCS $x1 0=0 pc2=inCS $x2 0=0

In this case MOCHA has produced an error trace of length 3. In the first round
both process are outside the critical section; in the second round they both request
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access to the critical section; and, in the third round both processes enter the critical
section.

5.4

ATL model checking

We consider the train controller example from Section 3.7.2. The files for this ex-
ample can be found in examples/train control. There are three agents in the
system: the eastbound train TrainE, the westbound train TrainW, and the signal
controller Controller. We are interested in verifying the following properties:

1.

The system is safe: the eastbound train and the westbound train are not
on the bridge at the same time. This requirement is written as: atl A G
~(pcE = bridge & pcW = bridge); Note that the same can be specified
as an invariant (Section 4.1).

The trains have the discretion to stay away from the bridge. No other agents
can force it to do otherwise. For the eastbound train, this property can
be written as: atl A G (~(pcE = bridge) => << TrainE >> G ~(pcE =
bridge)) ;

Since there is no fairness constraints imposed on the system, once a train
is granted access to the bridge, it has the discretion to leave the bridge at
any time-no other agents can force it to leave. For the westbound train, this
property can be written as: atl A G ((pcW = bridge) => << TrainW >> G
(pcW = bridge));

These requirements can be found in the file train control.spec. After reading
the REACTIVEMODULES description file train control.rm with the read module
command, read the specifcations into MOCHA:

mocha: read_spec train_control.spec
safetyInvariant
safety

atlo
atli

MoCHA read in the specifications. The show_spec can now be used to give the list
of read formulas. Supplying the -1 option lists the formulas and the names of the
specifications

mocha: show_spec -1
atl specifications:

atl0

<< >> G((!'((pcE = bridge)) => << TrainE >> G(!((pcE = bridge)))))

atli
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<< >> G(((pcW = bridge) => << TrainW >> G((pcW = bridge))))

safety
<< >> G(!(((pcE = bridge) & (pcW = bridge))))

inv specifications:
safetyInvariant
' (((pcW = bridge) & (pcE = bridge)))

Note that the specifications are displayed under two sections: atl and inv.

Invariants are checked with the inv_check command and ATL formulas are
model checked with the atl_check command. Both commands have to be followed
by two arguments: the module-name and the formula name. Formula that weren’t
given a name will be assigned a name that can be obtained by the show_spec com-
mand.

There are two modules in the file train control.rm. Systeml is the defective
one and System2 should satisfy all the properties (invariants and ATL formulae).

Try them. Here is what you should get if you try atl check System2 atll.

mocha: atl_check System2 atll

Converting formula to existential normal form...
Performing semantic check on the formulas...
SIM: building atom dependency info

Start model checking...

Building transition relations for module...
Ordering variables using sym_static_order
Transition relation computed : 5 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Building the initial region of the module...
Model-checking formula "atl1"

ATL_CHECK: formula "atll" passed

mocha:

The last line of the output before the MOCHA prompt says the formula passed. If
the property is not satisfied, the last line will indicate the failure of the property.

Counter-example generation. Currently, the ATL model-checker does not have
any mechanism to generate counter-examples. We plan to integrate the game ex-
ecution facility described in Section 5.2 with the ATL model checker to provide
counter-examples and witnesses: when an ATL specification fails, the ATL model
checker synthesizes and outputs a winning strategy as a counter-example, according
to which the simulator will play a game with the user. The user tries to win the game
by finding an execution sequence that satisfies the specification. We believe that by
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playing a losing game, the user can be convinced that their model is incorrect and
subsequently discover the bug in their model.

The invariant check will automatically produce a counter-example, a path to a
state where the invariant is violated, for a failed invariant. Try:

inv_check Systeml safetylInvariant

5.5 Refinement checking

Consider the module Sync3BitCounter (look for it in the file counter.rm in the
examples/counter directory of the MOCHA distribution. It is a 3-bit counter built
out of gates. A behavioral specification for it is given below.

module Sync3BitCounterSpec
external start, inc: bool
interface outO, outl, out2, done: bool
private count: bitvector3
atom controls count reads count start awaits inc

update

[] start & ~inc’ -> count’ := 0

[1 start & inc’ -> count’ := 1

[1 ~start & inc’ -> count’ := count + 1
endatom

atom controls outO, outl, out2 awaits count
init update

[1 true -> out0’ := count’[0]; outl’ := count’[1]; out2’ := count’[2]
endatom
atom controls done reads count, start awaits count
update
[1] ~start & count’=count + 1 & count’=0 -> done’ := true
[1 default -> done’ := false
endatom
endmodule

In MocCHA, the notion of refinement is language containment. As is well-known,

simulation is a sufficient check for language containment. There are two commands

available in MOCHA for checking refinement — check refine and check_simulation.
check_refine is typically more efficient but it can be used only if there are no hid-

den variables in the specification. If there are private variables in the specification

as in this case, then the command check_simulation that checks for simulation is

used. In this case, the specification has a private variable called count. Hence, we

use the command check_simulation.
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mocha: read_module counter.rm

Module And is composed and checked in.

Module Or is composed and checked in.

Module Not is composed and checked in.

Module Xor is composed and checked in.

Module Latch is composed and checked in.

Module SynciBitCounter is composed and checked in.
Module Sync3BitCounter is composed and checked in.
Module Witness is composed and checked in.

Module Foo is composed and checked in.

Module Sync3BitCounterSpec is composed and checked in.
parse successful.

mocha: check_simulation Sync3BitCounter Sync3BitCounterSpec
Building transition relation for module Sync3BitCounter
Ordering variables using sym_static_order

Transition relation computed : 24 conjuncts

Calling Dynamic Reordering with sift

Done initializing image info...

Writing order into imporder.dat

Building transition relation for module Sync3BitCounterSpec
Ordering variables using sym_static_order

Transition relation computed : 3 conjuncts

Calling Dynamic Reordering with sift

Done initializing image info...

Dynamic variable ordering is enabled with method sift.

s ks o e ok ok sk sk sk s s ok ok sk sk sk s s ok sk sk sk s s ok ke sk sk s s ok ke sk sk s s ke sk sk sk s ek sk sk s e ok sk sk s s ek sk ok
Reached fixpoint after 3 steps

Yes: There is a simulation from Sync3BitCounter to Sync3BitCounterSpec
Sync3BitCounter is simulated by Sync3BitCounterSpec

Freeing syminfo for both specification and implementation

mocha:
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Chapter 6

Verification Methodology

In this chapter we describe some techniques and the support in MOCHA that enable
the verification of large systems. Section 6.1 describes how to verify more general
safety properties than invariants by using monitors. Section 6.2 describes how to
circumvent the intractability of language inclusion by specifying witness modules
for refinement checking. Sections 6.3 and 6.4 describe abstraction modules and
assume-guarantee reasoning for modular verification.

6.1 Monitors

Invariants can distinguish between two trajectories only if one of the trajectories
contains a state that does not occur on the other trajectory. Hence there are re-
quirements on the behavior of a reactive module P that cannot be phrased as in-
variants of P. However, many such requirements can be phrased as invariants of the
compound module P||M, for a monitor M of P. The module M is a monitor of P if
M is compatible with P and intf X3, N ext!Xp = 0. If M is a monitor of P, then in
each round, M may record the values of the observable variables of P, but M must
not modify any external variables of P. Thus the monitor M can observe but not
interfere with the behavior of P. In particular, the monitor M may check if P meets
a requirement, and it may signal every violation of the requirement by sounding an
observable alarm. The module P then meets the given requirement iff the compound
module P||M has the invariant that no alarm is sounded by the monitor M.

Figure 3.19 presents an asynchronous railroad controller that enforces the train-
safety requirement. Yet the module Controller is not a satisfactory railroad con-
troller, because it may keep a train waiting at a red signal while the other train is
allowed to cross the bridge repeatedly. In particular, the resulting railroad system
does not meet the equal-opportunity requirement that, while a train is waiting at a
red signal, it is not possible that the signal at the opposite entrance to the bridge
turns from green to red and back to green. Since the equal-opportunity requirement
is violated by trajectories, and not by individual states, we need to employ monitors.
The module
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module EqOppMonitor

interface alert :

external pc :

{0,1,2,3}

{away,wait,bridge}; signall,signal2 :

atom controls alert reads alert, pc, signall, signal2

init

[l true -> alert’

update

=0

[] alert=0 & pc=wait & signall=red & signal2=green ->

[ alert=1 & signall=green ->
[1 alert=1 & signall=red & signal2=red ->
[ alert=2 & signall=green ->
[1 alert=2 & signall=red & signal2=green ->
Figure 6.1: Monitoring equal opportunity
pcW pcE | signalW|signalE|alertW|alertE
away| away red red 0 0
wait | away red red 0 0
wait | wait red red 0 0
wait| wait red green 0 0
wait |bridge| red green 1 0
wait | away red red 1 0
wait | wait red red 2 0
wait | wait red green 2 0
wait |bridge| red green 3 0

{green,red}

alert’
alert’
alert’
alert’
alert’

Figure 6.2: Error trajectory that violates equal opportunity
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EqOppMonitorW :=
EqOppMonitor[alert,pc,signall,signal2:= alertW,pcW,signalW,signalE]

monitors the equal-opportunity requirement for the train that travels clockwise,
where EqOppMonitor is shown in Figure 6.1. The monitor has four levels of alertness.
The alertness level is 0 as long as the train is not waiting at a red signal while the
other signal is green, in which case the alertness level rises to 1. The alertness level
rises to 2 when the other signal turns red, and to 3 when the other signal turns
green again, while the train is still waiting at a red signal. An alertness level of 3
sounds an alarm that indicates a violation of the equal-opportunity requirement for
the train that travels clockwise. The equal-opportunity requirement for the train
that travels counterclockwise is monitored by the module

EqOppMonitorE :=
EqOppMonitor[alert,pc,signall,signal2:= alertE,pcE,signalE,signalW]

in the same manner. The module Controller then meets the equal-opportunity
requirement iff the observation predicate

~(alertW = 3 | alertE = 3)
is an invariant of the compound module
RailroadSystem || EqOppMonitorW || EqOppMonitorE

The error trajectory of Figure 6.2 shows that this is not the case.

6.2 Witness modules for refinement checking

The problem of checking if P < Q is PSPACE-hard in the state space of Q. However,
the refinement check is simpler in the special case in which all variables of QQ are
observable. The module Q is projection refinable by the module P if (1) Q is refinable
by P, and (2) Q has no private variables. If Q is projection refinable by P, then every
variable of Q) is observable in both P and Q. Therefore, checking if P < Q reduces
to checking if for every trajectory s of P, the projection [§]Q is a trajectory of Q.
According to the following proposition, this can be done by a transition-invariant
check, whose complexity is linear in the state spaces of both P and Q.

Proposition 6.1 [Projection refinement] Consider two modules P and @), where Q)
is projection refinable by P. Then P < Q iff (1) if s is an initial state of P, then
[S]Q is an initial state of Q, and (2) if s is a reachable state of P and s — pt, then

[slg = ltlg-

We make use of this proposition as follows. Suppose that Q is refinable by P, but not
projection refinable. This means that there are some private variables in Q. Define
Q" to be the module obtained by making every private variable of Q an interface
variable. If we compose P with a module W whose interface variables include the
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module WitnessMsgO
interface msg0 : msgType
external pcR : recCtrlType; doneP, doneC : event; msgP : msgType
atom controls msg0 reads msg0, pcR, doneP, doneC, msgP
awaits pcR, doneP, doneC
update
[ pcR’=consume & doneP? & ~doneC? -> msg0’ := msgP
endatom
endmodule

module WitnessSpecCtrl
interface pc : specCtrlType
external pcS : sendCtrlType; pcR : recCtrlType
atom controls pc awaits pcR, pcS
init update

[1 pcS’=produce & pcR’=receive -> pc’ := produce
[1 pcS’=send & pcR’=consume -> pc’ := consume
[0 pcS’=send & pcR’=receive -> pc’ := produce_consume
[0 pcS’=produce & pcR’=consume —-> pc’ := produce_consume
endatom
endmodule

Figure 6.3: Witness modules for msg0 and pc

private variables of Q, then Q" is projection refinable by the composition P||W.
Moreover, if W does not constrain any external variables of P, then P||W < Q"
implies P < Q (in fact, P is simulated by Q). Such a module W is called a witness
to the refinement P < Q. The following proposition states that in order to check
refinement, it is sufficient to first find a witness module and then check projection
refinement.

Proposition 6.2 [Witness modules| Consider two modules P and Q such that Q
is refinable by P. Let W be a module such that (1) W is compatible with P, and
(2) the interface variables of W include the private variables of Q, and are disjoint
from the external variables of P. Then (1) Q" is projection refinable by P||W, and
(2) P|W =< Q" implies P < Q.

Furthermore, it can be shown that if P does not have any private variables, and P is
simulated by Q, then a witness to the refinement P < Q) does exist. In summary, the
creativity required from the human verification expert is the construction of a suit-
able witness module, which makes explicit how the private state of the specification
() depends on the state of the implementation P.

Consider the SendRecImpl and SendRecSpec modules described earlier. They can
be found in examples/msg. Note that SendRecSpec is refinable by SendRecImpl,
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but not projection refinable. We can use check simulation command to check that:
SendRecImpl =< SendRecSpec

In order to carry out a refinement check, we need to write witnesses for the pc
and msg0 variables in SendRecSpec. First, the Sender and Receiver modules from
Figure 3.18 need to be changed so as to make their private variables visible. Let
us call the new modules as UnhideSender and UnhideReceiver respectively. To
avoid a name collision, the pc variables of UnhideSender and UnhideReceiver are
renamed to pcS and pcR respectively. The witness modules for WitnessMsg0 and
WitnessSpecCtrl, shown in Figure 6.3 make use of these variables. Now, we can
compose the witnesses with the sender and receiver modules:

UnhideSendRecImpl :=
UnhideSender || UnhideReceiver || WitnessMsgO || WitnessSpecCtrl

Finally, we change the private variable pc in SendRecSpec to an external variable,
and obtain UnhideSendRecSpec. The check refine command can now be used to
prove that UnhideSendRecImpl refines UnhideSendRecSpec. The witness modules
and the “unhidden” modules can be found in examples/msg/msgRef .rm

mocha: read module msgRef.rm

Module UnhideSyncSender is composed and checked in.
Module UnhideReceiver is composed and checked in.
Module WitnessMsgO is composed and checked in.
Module WitnessSpecCtrl is composed and checked in.
Module UnhideSendRecImpl is composed and checked in.
Module UnhideSendRecSpec is composed and checked in.
parse successful.

mocha: check refine UnhideSendRecImpl UnhideSendRecSpec
Building transition relation for module UnhideSendRecImpl
Ordering variables using sym_static_order

Transition relation computed : 7 conjuncts

Calling Dynamic Reordering with sift

Done initializing image info...

Writing order into imporder.dat

Building transition relation for module UnhideSendRecSpec
Ordering variables using sym_static_order

Transition relation computed : 1 conjuncts

Calling Dynamic Reordering with sift

Done initializing image info...

Dynamic variable ordering is enabled with method sift.

Done reached set computation...
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reached set mdd size = 78 number of states = 186
UnhideSendRecImpl refines UnhideSendRecSpec

Freeing syminfo for both specification and implementation
mocha:

6.3 Abstraction modules

Consider two modules P; and P,. Suppose, we want to show that Pi||P, < Q.
Sometimes it is possible to construct modules A; and As such that A; and As are
more abstract that P and P» respectively. Then the following proof rule is correct.

P < A
P, X A
All42 2 @Q
PP < Q
Example.
P} = Sync3BitCounter [ done :=z]
P, = Sync3BitCounter [ inc,outO,outl,out2 := z, out3, out4, outh ]

The specification @ for Py||P» is the following module.

module Sync6BitCounterSpec

external start, inc : bool
interface outO, outl, out2, out3, out4, outb, done : bool
private count : bitvector6
atom controls count reads count, start awaits inc
update
[] start & ~inc’ -> count’ := 0
[1 start & inc’ -> count’ := 1
[] ~start & inc’ -> count’ := count + 1
endatom

atom controls outO, outl, out2 awaits count
init update

[1 true -> out0’ := count’[0]; outl’ := count’[1]; out2’ := count’[2];
out3’ := count’[3]; outd4’ := count’[4]; outb’ := count’[5]

endatom

atom controls done reads count, start awaits count

update
[1 ~start & count’=count + 1 &count’=0 -> done’ := true
[1 default -> done’ := false

endatom

endmodule
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Then, we have the following abstraction modules.

A; = Sync3BitCounterSpec [ done :=z ]
Ay = Sync3BitCounterSpec [ inc,out0,outl,out2 := z, out3, out4, outs ]

Here, A; and Ay are more abstract descriptions of P, and P». By inspection,
we can see that the proof rule described above is applicable. We can show using
check _simulation that P; < A; and P, < Ay. Hence, P1||P, < A1||As. Therefore,
we have that

hide z in (P, || P») endhide =< hide z in (A; || A2) endhide
Now, we can use check_simulation to show that

hide z in (A4; || A2) endhide =< Sync6BitCounterSpec

6.4 Assume-guarantee reasoning

The state space of a module may be exponential in the size of the module description.
Consequently, even checking projection refinement may not be feasible. However,
typically both the implementation P and the specification Q consist of the parallel
composition of several modules, in which case it may be possible to reduce the prob-
lem of checking if P < QQ to several subproblems that involve smaller state spaces.
The assume-guarantee rule for reactive modules [AH96] allows us to conclude P < Q
as long as each component of the specification Q is refined by the corresponding
components of the implementation P within a suitable environment. The following
proposition gives a slightly generalized account of the assume-guarantee rule.

Proposition 6.3 [Assume-guarantee rule] Consider two composite modules P =
Pi||---||Pm and Q = Q1| - ||Qn, where Q is refinable by P. For i € {1,...,n},
let T'; be the composition of arbitrary compatible components from P and Q) with the
exception of Q;. IfT; X Q; for every i € {1,...,n}, then P X Q.

We make use of this proposition as follows. First we decompose the specification
@ into its components Q1| ---||@,. Then we find for each component @Q; of the
specification a suitable module T'; (called an obligation module) and check that T'; <
Q;. This is beneficial if the state space of I'; is smaller than the state space of P. The
module I'; is the parallel composition of two kinds of modules—essential modules and
constraining modules. The essential modules are chosen from the implementation P
so that every interface variable of @); is an interface variable of some essential module.
There may, however, be some external variables of (); that are not observable for the
essential modules. In this case, to ensure that (); is refinable by I';, we need to choose
constraining modules either from the implementation P or from the specification Q)
(other than @;). Once Q; is refinable by T';, if the refinement check I'; < Q; goes
through, then we are done. Typically, however, the external variables of I'; need
to be constrained in order for the refinement check to go through. Until this is
achieved, we must add further constraining modules to I';.
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It is preferable to choose constraining modules from the specification, which is less
detailed than the implementation and therefore gives rise to smaller state spaces
(in the undesirable limit, if we choose I'; = P, then the proof obligation I'; < Q;
involves the state space of P and is no simpler than the original proof obligation
P < Q). Unfortunately, due to lack of detail, the specification often does not supply
a suitable choice of constraining modules. According to the following simple property
of the refinement relation, however, we can arbitrarily “enrich” the specification by
composing it with new modules.

Proposition 6.4 [Abstraction modules] For all modules P, @, and A, if P < Q| A
and @ is refinable by P, then P < Q.

So, before applying the assume-guarantee rule, we may add modules to the specifica-
tion and prove P < Q|| A41]| - - ||Ax instead of P < Q. The new modules Ay,..., Ag
are called abstraction modules, as they usually give high-level descriptions for some
implementation components, in order to provide a sufficient supply of constraining
modules. In summary, the creativity required from the human verification expert is
the construction of suitable abstraction modules, which on one hand, need to be as
detailed as required to serve as constraining modules in assume-guarantee reason-
ing, and on the other hand, should be as abstract as possible to minimize their state
spaces.

MocCHA provides support for assume-guarantee reasoning. To be able to operate
at a finer granularity, MOCHA decomposes a refinement proof at the level of atoms
(i.e, we treat P and @ as single modules and use the atoms of P and @ as P;’s
and @;’s in the above proof rule). The command used to carry out one step in the
assume-guarantee proof is check refine atom. The following is extracted from the
command documentation for check refine_atom:

check refine atom [-e] [-f <size or varlist> ] [-h] [-i <varlist> ]
[-k] [-o <fname>] [-r] [-v] <impl> <spec> <spec_interface_varname>

Do one step in the compositional refinement proof of “Impl refines Spec”. The step
done corresponds to the atom that controls variable named spec_interface_varname
in the specification (let us call this atom atom1). The command does the following;:

Given an implementation, specification modules and an interface variable in the
specification that controls an atom (say atom1), construct new modules “new speci-
fication” and “new implementation” such that (1) new specification contains atom1
only, and (2) new implementation contains heuristically chosen atoms from specifi-
cation and implementation that control variables controlled by atomi, but do not
include atoml itself

A refinement check between the new specification and the new implementation is
performed First, new specification and implementation modules are created. The
new specification contains just atoml. The new implementation contains chosen
atoms from specification and implementation that control variables controlled by
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atoml, but do not include atoml itself. At this point the new implementation
contains only “essential atoms” to do a refinement check.

Further atoms may need to be added to the new implementation to constrain its
environment. There are two ways to do this:

1. Automatic: If the -f O (size) option is chosen, then the implementation
module is not grown any further. For the -f 1 and -f 2 options, progressively
larger “constraining” environments are chosen for the new implementation
module. (The default if no explicit -f option is used is -f 2)

2. Manual: The user can also force specific variables to be controlled in the new
implementation by simply supplying a list of variables in the -f option, e.g. -f
{varl var2 }.

Preference is always given to choose atoms from the specification for the new imple-
mentation whenever possible. However, the -i option can be used to choose specific
atoms from the implementation.

Note 1: Since atom names are mangled by MOCHA (to uniquify atom names
during parallel composition), we identify an atom by any variable that is controlled
by the atom.

Note 2: List of variables are specified by enclosing them in curly braces, e.g. {vari
var2} .

Note 3: You also have to use curly braces if your variable name has array indices,
e.g. {foo2[0][11} .

Examples: Suppose the specification module is Spec and implementation module
is Impl. To do the sub-proof corresponding to a specific atom in the Spec that
controls variable myVar use: check refine atom Impl Spec myVar

To force variables fool and foo2[0] to be controlled use:
check refine atom -f {fool fo02[0]} Impl Spec myVar

In addition, to force f002[0] to be constrained by an atom from Impl, use:
check refine atom -f {fool f002[0]} -i {foo2[0]} Impl Spec myVar

Command Options:

e -e : do transition invariant check only at the end (after completing reachabil-
ity)
e -f 0|1|2|var name 1list :

— 0 : only the “essential atoms” are chosen

— 1 : chooses a bigger set of atoms than size=0. Guaranteed to be compa-
rable with the new specification
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— 2 : heuristically chooses a bigger set of atoms than size=1

— var name list : forces atoms controlling variables in var name 1ist to
be chosen in the new implementation

e -h : print usage

e -i var name_list : if the atom controlling variable in var name_listis cho-
sen, choose it from the implementation

e -k : keep the new modules (for debugging purposes: default behavior if you
do not use this option is to delete them)

e -0 fname : write out the mdd variable ordering in file specified by fname

e -r : do not perform refinement check on the new modules (for debugging
purposes)

e -v : verbose mode

We will use the resource manager example from Figure 3.7.3 and Figure 3.22 to illus-
trate the use of check_refine_atom. We use rmanager.rmfrom examples/resource
First, the module is read in as usual

mocha: readmodule rmanager.rm

Module Spec is composed and checked in.
Module Impl is composed and checked in.
parse successful.

First, we check if the ALLOC atom in RManageris refined correctly by the correspond-
ing atom in RManagerImpl.

mocha: check refine atom Impl Spec alloc
New specification module @M1 created

Adding IMPLEMENTATION atom Impl/ALLOC.0O
Adding SPECIFICATION atom Spec/GRANT_INDEX_O
Adding SPECIFICATION atom Spec/GRANT_O
Adding SPECIFICATION atom Spec/HALF _EMPTY_O
New Implementation module @M9 created

Building transition relation for module @M9
Ordering variables using sym_static_order
Transiton relation computed : 4 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Writing order into imporder.dat
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Building transition relation for module @M1

Ordering variables using sym_static_order

Transiton relation computed : 1 conjuncts

Calling Dynamic Reordering with sift

Done initializing image info...

Dynamic variable ordering is enabled with method sift.

Done reached set computation...

reached set mdd size = 1 number of states = 16

OM9 refines QM1

Freeing syminfo for both specification and implementation
Deleting intermediate specification and implementation
Compositional refinement step successful

Next, we check if the HALFEMPTY atom in RManager is refined correctly by RManagerImpl

mocha: check refine_atom Impl Spec half_empty
New specification module @M11 created

Adding IMPLEMENTATION atom Impl/HALF EMPTY_O
Adding SPECIFICATION atom Spec/ALLOC_O
Adding IMPLEMENTATION atom Impl/SUM_0
Adding SPECIFICATION atom Spec/GRANT_O
Adding SPECIFICATION atom Spec/GRANT_INDEX_O
New Implementation module @M21 created

Building transition relation for module @M21
Ordering variables using sym_static_order
Transiton relation computed : 5 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Writing order into imporder.dat

Building transition relation for module @M11
Ordering variables using sym_static_order
Transiton relation computed : 1 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Dynamic variable ordering is enabled with method sift.

Done reached set computation...
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reached set mdd size = 18 number of states = 16

OM21 refines @M11

Freeing syminfo for both specification and implementation
Deleting intermediate specification and implementation
Compositional refinement step successful

A similar proof can be done for the GRANTINDEX atom. Finally, we are left to
verifying if the GRANT atom in RManager is correctly refined in RManagerImpl. For
all the above proofs, MOCHA was able to choose the constraining environments
automatically. In this proof, however, it is necessary to manually force grant_index
to be chosen from the implementation. We encourage the reader to try the following
command without the —i option and interpret the resulting error trace.

mocha: check refine_atom -i grant_index Impl Spec grant
New specification module @M33 created

Adding IMPLEMENTATION atom Impl/GRANT_O
Adding SPECIFICATION atom Spec/ALLOC_O
Adding IMPLEMENTATION atom Impl/GRANT_INDEX_O
Adding SPECIFICATION atom Spec/HALF _EMPTY_O
Adding IMPLEMENTATION atom Impl/SUM_O

New Implementation module @M43 created

Building transition relation for module QM43
Ordering variables using sym_static_order
Transiton relation computed : 5 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Writing order into imporder.dat

Building transition relation for module @M33
Ordering variables using sym_static_order
Transiton relation computed : 1 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Dynamic variable ordering is enabled with method sift.

Done reached set computation...

reached set mdd size = 18 number of states = 16

@M43 refines @M33

Freeing syminfo for both specification and implementation
Deleting intermediate specification and implementation
Compositional refinement step successful
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Chapter 7

Real-Time Modules

7.1 Describing Systems with Real-Time Modules

MoCHA supports reachability analysis and invariant checking of real-time systems
that are described in the form of timed reactive modules as defined in [AH97]. In
addition to the discrete-valued variables of reactive modules, a timed module makes
use real-valued (IR) clock variables. The purpose of clock variables is to keep track
of elapsed time. Guarded commands can assign integer values to clock variables,
and guards can depend on values of clock variables.

The keyword clock denotes the clock variable type. Clock variables are ini-
tialized to 0 by default!. For each clock z, guards can include positive Boolean
combinations of inequalities of the form z < C, z > C and = = C, where C € IN.
Assignments can assign integer values to clocks in the usual fashion: z := C, where
C eN.

In addition to init and update commands, a timed module has a set of wait
commands which describe the passage of time. When a wait command is executed,
all non-clock variables remain the same, and all clock variables are incremented by
the same amount. A typical wait command has the following form

a=b & x1 <= 3 & x2 <=5 -> x17:<= 3; x2’ :<= b;

a and b are non-clock variables and z1 and z2 are clocks. Instead of a=b, an arbitrary
predicate on non-clock variables could be used. The interpretation of this wait
statement is as follows: If a=b evaluates to true and the values of the clocks satisfy
the inequalities z1 < 3 and z2 < 5, then a time period of § can elapse while the
values of all non-clock variables remain constant. § must satisfy the conditions
21+ =21’ < 3 and 22 + § = 22’ < 5. In this way, wait statements are used
to specify upper bounds on the time elapsed in a given state. The guards of wait
commands are sometimes referred to as “clock invariants” because the invariants on
the clocks specified by the guard must hold for the module to remain in that state.

! An error is signaled if there is a non-zero initial assignment to a clock variable.
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A timed module makes progress by executing either an update command or a
wait command. If no wait command can be executed, then this forces an update
command to be executed?.

module RealTimeTrain

interface pc : {far,near,gate}; arrive : bool
private x : clock
atom controls pc, x, arrive reads pc, x, arrive
init
[1 true -> pc’ := far; arrive’ := false
update
[1 pc=far -> pc’ := near; arrive’ := true; x’ := 0
[ pc=near & x>=3 -> pc’ := gate; x’ := 0
[1 pc=gate & x>=1 -> pc’ := far; arrive’ := false
wait
[1 pc=far ->

[1 pc=near & x<=5 -> x’ :<= 5

[1 pc=gate & x<=2 -> x’ :<= 2
endatom
endmodule

Figure 7.1: Real-time module for the train

A simple example of a real-time module is presented in Figure 7.1. This module
describes the behavior of a train approaching a gate. The interface variable pc
initially has the value far, indicating that the train is far from the gate, and the
variable arrive is set to false. pc can have the value far indefinitely, as indicated
by the first wait command, or can take on the value near. When the train moves
to near, the timer z is reset to 0 and the interface variable arrive is set to true.
The second wait command puts an upper bound of 5 on x while pc = near. While
pc = near, if £ > 3, then the guard of the second update command is satisfied,
which means that after spending 3 time units at pc = near, pc can move to far.
After 5 time units at pc = near, the guard of the second wait statement is no
longer satisfied, which forces the second update command to be executed. After 5
time units, pc must move to far.

The timed reactive module description for a gate controller given in Figure 7.2
operates in a similar fashion. The system consisting of the train and the controller
is then given by

RealTimeTrainSystem :=
hide arrive in RealTimeTrain || RealTimeGate endhide
Transition Relations of Real-Time Modules

Currently, MOCHA restricts guards on clocks and clock invariants to be positive
Boolean combinations of inequalities of the form z < ¢ and =z > ¢, where ¢ € IN.

2For a precise treatment of the semantics of timed modules, refer to [AH97]
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module RealTimeGate
external arrive : bool
interface pc : {open,closing,closed}
private y : clock
atom controls pc, y reads pc, y, arrive awaits arrive
init
[l true -> pc’ := open
update
[] pc=open & arrive’ -> pc’
[1 pc=closing & y>=1 -> pc’
[1 pc=closed & y>=7 -> pc’
wait
[1 pc=open & ~arrive’ ->
[1 pc=closing & y<=2 -> y’ :<= 2
[1 pc=closed & y<=7 -> 7y’ :<=7
endatom
endmodule

closing; y’ := 0
closed; y’ :=0
open

Figure 7.2: Real-time railroad gate controller

This is adequate for modeling the behavior of physical systems. In [HMP92], it is
proven that, with this restriction, for each trace y of a timed module, there exists a
trace [y] such that (i) the sequence values that discrete variables take on is the same
for v and [y] and (ii) all updates of discrete variables take place at integer-valued
points in time. This enables clocks to be modeled as integer-valued variables that
increase at the same rate. Timed modules are converted by MOCHA into (untimed)
modules, equivalent to the original ones in the sense described above.

7.2 Verification with Real-Time Modules

The examples used in this section are located in the examples/ directory of the
MocHA distribution.

7.2.1 Parsing Real-Time Modules

As is the case with untimed modules, real-time modules are read in using the
read module command. In the rest of this section, we use the real-time train ex-
ample, which can be found in examples/rt_train control. On a read module
command, MOCHA displays the names of the modules that were successfully parsed.
In the case of a parse error, an appropriate message is displayed.

mocha: readmodule rt_train control.rm

Module RealTimeGate is composed and checked in.
Module RealTimeTrain is composed and checked in.
Module System is composed and checked in.
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parse successful.

All the commands described in Section 5.1 can be used with real-time modules
in an identical manner.

7.2.2 Invariant Checking

The simplest form of invariant checking is computing the set of reached states of
a real-time module. This set can be computed and stored in a region using the
rtm search command. First, the transition relation of the module needs to be
computed using rtm_trans.

mocha: rtm trans System

Ordering variables using rtm_static_order
Transition relation computed : 2 conjuncts
Done initializing image info...

mocha: rtm_search System

Initial Region Computed...

Step 1: image mdd size = 20 |states| = 6

reached set mdd size = 20 |states| = 3
Step 2: image mdd size = 25 |states| = 8
reached set mdd size = 26 |states| =5

Step 3: image mdd size = 29 [states| = 12

Step 24: image mdd size = 16 |states| = 28
reached set mdd size = 40 |states| = 168

Step 25: image mdd size = 14 |states| = 36

Done reached set computation...

reached set mdd size = 40 number of states = 168
System.r0

System.r0 is the name of the region containing the set of reached states for the
module System. The region corresponding to the set of initial states can be obtained
using the rtm_init command.

Invariants need to be specified in a .spec file, as is the case with untimed mod-
ules. The file examples/rt _train control/rt train control.spec contains the
following specification:

inv "safe" ~((pcTrain = gate) & ~(pcGate = closed));

The invariant safe is read in and checked as follows:

mocha: read_spec rt_train control.spec
safe
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mocha: inv_check -r System safe
Typechecking invariant safe...
Typechecking successful

Initial Region Computed...

Step 1: image mdd size = 20 |states| = 6

reached set mdd size = 20 |states| = 3
Step 2: image mdd size = 25 |states| = 8
reached set mdd size = 26 |states| =5

Step 25: image mdd size = 14 |states| = 36
Done reached set computation...
reached set mdd size = 40 number of states = 168

Invariant safe failed in step 14

Counterexample for invariant safe

arrive=0 pcTrain=far $x 0=0 pcGate=open $y 0=0 timeIncrement=0
arrive=1 pcTrain=near $x_0=0 pcGate=closing $y_0=0 timeIncrement=1
arrive=1 pcTrain=near $x_0=1 pcGate=closing $y_0=1 timeIncrement=0
arrive=1 pcTrain=near $x_0=1 pcGate=closed $y_0=0 timeIncrement=1
arrive=1 pcTrain=near $x_0=2 pcGate=closed $y_0=1 timelIncrement=1
arrive=1 pcTrain=near $x 0=3 pcGate=closed $y_0=2 timeIncrement=1
arrive=1 pcTrain=near $x_0=4 pcGate=closed $y_0=3 timeIncrement=0
arrive=1 pcTrain=gate $x_0=0 pcGate=closed $y_0=3 timeIncrement=1
arrive=1 pcTrain=gate $x_0=1 pcGate=closed $y_0=4 timeIncrement=0
arrive=0 pcTrain=far $x 0=1 pcGate=closed $y_ 0=4 timeIncrement=0
arrive=1 pcTrain=near $x_0=0 pcGate=closed $y_0=4 timelIncrement=1
arrive=1 pcTrain=near $x 0=1 pcGate=closed $y 0=5 timeIncrement=1
arrive=1 pcTrain=near $x_0=2 pcGate=closed $y_0=6 timelIncrement=1
arrive=1 pcTrain=near $x 0=3 pcGate=closed $y_0=7 timeIncrement=0
arrive=1 pcTrain=gate $x_0=0 pcGate=open $y_0=7

Note that the command inv_check needs to be used with the -r option for
MOCHA to use the real-time interpretation on a given module. Otherwise the
inv_check command functionality remains the same. The variable timeIncrement
is a variable internal to MOCHA and indicates how much time elapses while the
discrete-valued variables keep their current values.

The invariant safe in the example above would have passed if the train were
allowed to approach the gate only once, because the gate closes in at most 2 time
units after detecting the arrive signal, whereas the train takes at least 3 time units
to reach the gate after arrive becomes true. However, the invariant safe has failed
because the train is allowed to enter the gate a second time before the gate has had
the time to close.
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