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Simulated Annealing

Dimitris Bertsimas and John Tsitsiklis

Abstract. Simulated annealing is a probabilistic method proposed in
Kirkpatrick, Gelett and Vecchi (1983) and Cerny (1985) for finding the
global minimum of a cost function that may possess several local minima.
It works by emulating the physical process whereby a solid is slowly
cooled so that when eventually its structure is “frozen,” this happens at
a minimum energy configuration.

We restrict ourselves to the case of a cost function defined on a finite
set. Extensions of simulated annealing to the case of functions defined
on continuous sets have also been introduced in the literature (e.g.,
Geman and Hwang, 1986; Gidas, 1985a; Holley, Kusuoka and Stroock,
1989; Jeng and Woods, 1990; Kushner, 1985). Our goal in this review is
to describe the method, its convergence and its behavior in applications.
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1. THE METHOD

The basic elements of simulated annealing (SA) are
the following:

1. A finite set S.

2. A real-valued cost function J defined on S. Let
S* C Sbe the set of global minima of the function
J, assumed to be a proper subset of S.

8. ForeachieS, aset S(f) C S — {i}, called the set
of neighbors of i.

4. For every i, a collection of positive coefficients
gij» j € S(i), such that Zjesy g = 1. It is assumed
that j e S(i) if and only if i € S(j).

5. A nonincreasing function T: N — (0, =), called
the cooling schedule. Here N is the set of positive
integers, and 7\(t) is called the temperature at
time ¢.

6. An initial “state” x(0) € S.

Given the above elements, the SA algorithm consists
of a discrete-time inhomogeneous Markov chain x(t),
whose evolution we now describe. If the current state
x(t) is'equal to i, choose a neighbor j of i at random;
the probability that any particular j € S(i) is selected
is equal to gi;. Once j is chosen, the next state x(¢t + 1)
is determined as follows:
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IfJ(j) < J(i), then x(¢ + 1) = .
If J (j) > J(i), then
x(t+1)=j
with probability exp[— (J(j) — JG))/T(¢)]
x(t + 1) = i otherwise.

Formally,
Plx(t + 1) = j|x(t) = 1]

1)

= qi;; €Xp

1 N
s max(0,0) Jm}]

ifj # i,j e S().
If j # i and j ¢ S(i), then Plx(¢t + 1) =j | x(¢) = i] = 0.
The rationale behind the SA algorithm is best under-
stood by considering a homogeneous Markov chain
x7(t) in which the temperature 7/(¢) is held at a constant
value 7. Let us assume that the Markov chain x7(¢) is
irreducible and aperiodic and that g; = g;; for all i, j.
Then xr(t) is a reversible Markov chain, and its invari-
ant probability distribution is given by

@) 7o) = ——exp [— ‘@} ies,

Zr T
where Zr is a normalizing constant. (This is easily
shown by verifying that the detailed balance equations
hold.) It is then evident that as T'¥ 0, the probability
distribution 77 is concentrated on the set S* of global
minima of J. This latter property remains valid if the
condition g;; = g;; is relaxed (Faigle and Kern, 1989).
The probability distribution (2), known as the Gibbs
distribution, plays an important role in statistical me-
chanics. In fact, statistical physicists have been inter-
ested in generating a sample element of S, drawn
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according to the probability distribution nr. This is
accomplished by simulating the Markov chain x7(z)
until it reaches equilibrium, and this method is known
as the Metropolis algorithm (Metropolis et al., 1953). In
the optimization context, we can generate an optimal
element of S with high probability if we produce a
random sample according to the distribution 77, with
T very small. One difficulty with this approach is that
when T is very small, the time it takes for the Markov
chain xr(t) to reach equilibrium can be excessive. The
SA algorithm tries to remedy this drawback by using
a slowly decreasing “cooling schedule” T1(z).

The SA algorithm can also be viewed as a local search
algorithm in which (unlike the usual deterministic local
search algorithms) there are occasional “upward” moves
that lead to a cost increase. One hopes that such up-
ward moves will help escape from local minima.

2. CONVERGENCE ANALYSIS

2.1 Basic Results

Having defined the algorithm, we now address its
performance. The main questions are:

1. Does x(t) “converge” to the optimal set S*?
2. How fast does the convergence to S* take place?

The first question has been more or less completely
answered, and we will now survey the main results.
Much less is known about the second, as we will discuss
later.

From now on, we assume that for some fixed 7" (and
therefore for all 7') the Markov chain x(t) is irreducible
and aperiodic. We say that the SA algorithm converges
if lim,... P{x(t) € S*] = 1. (Note that this is convergence
in probability, rather than almost sure convergence.)
A fair amount of work has been concerned with finding
necessary and sufficient conditions for convergence, in
the above sense. The main result, due to Hajek, is
presented next, following some definitions.

TueoreM 1 (Hajek, 1988). We say that state i com-
municates with S* at height h if there exists a path in
S (with each element of the path being a neighbor of
the preceding element) that starts at i and ends at
some element of S* and such that the largest value of
J along the path is J(i) + h. Let d* be the smallest
number such that every i € S communicates with S*
at height d*. Then, the SA algorithm converges if and
only if lim;~. T(t) = 0 and

o

(3) exp[—d*/T(t)] = .
1

t=

The most popular cooling schedules (in theory, at least)
are of the form

4) @) = —

where d is some positive constant. Theorem 1 states
that SA converges if and only if d = d*.

The constant d* is a measure of the difficulty for
x(t) to escape from a local minimum and go from a
nonoptimal state to S*. We are primarily interested in
problems where d* >0, which will be assumed from
now on. Such problems have local minima that are not
optimal. Some understanding of Theorem 1 is provided
by the following argument. Consider a local minimum
whose “depth” is d*. The SA makes an infinite number
of trials to escape from it, and the probability of suc-
cess at each trial is of the order of exp[—d*/T\(t)]. Then
condition (3) amounts (by the Borel-Cantelli lemma) to
saying that an infinite number of these trials will be
successful. Indeed, the proof in Hajek (1988) proceeds
by estimating the statistics of the exit times from
certain neighborhoods of local minima.

Let =n(i; t) = Plx(t) = i]. If T(t) decreases very slowly,
as is the case in (4), then x(t) behaves, over fairly long
time intervals, like a homogeneous Markov chain, and
it can be reasonably expected that the difference be-
tween mr(i) and n(i; t) is small at all times. Indeed,
one of the very first convergence proofs (Geman and
Geman, 1984) was based on this idea, although the
results therein were less sharp than Theorem 1.

In order to acquire more intuition about the inter-
pretation of Theorem 1, we will carry the connection
between SA and the corresponding family of homoge-
neous Markov chains further. For this goal we consider
the cooling schedule 7(t) = d/log t. In general, the
statistics of the Markov chain x(t) under a slowly
varying cooling schedule 7(t) remain pretty much un-
changed if a related cooling schedule is used in which
the temperature is held constant for fairly long time
periods. In our case, the schedule 7(t) = d/log t can be
approximated as follows. Let t; =1 and 4+, =t +
exp(kd). Then let T(t) = 1/k, for t, < t < ty+1. Consider
the kth segment [t, t;+1] of the piecewise constant
schedule 7(t). We are dealing with the reversible homo-
geneous chain x1,(t), and we will now investigate how
fast it reaches steady state.

We want to study the convergence of the chain
x1x(t). The eigenvalues of its transition-probability ma-
trix are real. Its relaxation time is determined by its
second-largest eigenvalue A, for which good estimates
are available, at least in the limit as £ = o (e.g., Chiang
and Chow, 1988; Holley and Stroock, 1988; and Ventcel,
1972). In particular, if the cost function J has a unique
global minimum, the relaxation time is well approxi-
mated by exp(kd*). Interestingly enough, this is the
same as the constant d* defined in Theorem 1, some-
thing that is far from obvious. This yields another
interpretation of the convergence condition d = d* for
the schedule 7t). If d < d*, then at each temperature
1/k we are running x1,(t) for a negligible fraction of its
relaxation time, and this is not enough for =(i; ¢) to
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stay close to m7{(i). On the other hand, if d > d*, then
the interval [t:, t,+1] corresponds to exp[k(d* — d)] re-
laxation times of x1/(t), which implies that n(i; tx+1) is
very close to (i), as k& = oo.

One can also pursue this approximation by piecewise
constant schedules directly, without introducing eigen-
value estimates. The main idea is that, at low tempera-
tures, the statistics of a homogeneous chain can be
accurately bounded by viewing it as a singularly per-
turbed Markov chain and using rather crude large-
deviation bounds (Tsitsiklis, 1988, 1989). For other
convergence proofs, see Connors and Kumar (1988),
Gidas (1985b), Holley and Stroock (1988), and Mitra,
Romeo and Sangiovanni-Vincentelli (1986).

The convergence of SA (in the sense defined earlier
in this section) is a reassuring property, but it is far
from enough for SA to be a useful algorithm. We also
need to know the speed of convergence. It can be shown
that for any schedule 7(t) = d/log t, and for all ¢,

(5) max Plx(t) ¢ S* | x(0)] = A/t?,

x(0)

where A and a are positive constants depending on the
function J and the neighborhood structure. If we wish
x(t) to be outside S* with probability less than ¢, we
need t = (A/¢g)Ye,

We now turn our attention to the practical relevance
of some of the convergence results. From a more practi-
cal perspective, while the algorithm is being run, one
should keep track of the best state i encountered so
far and its associated cost J(i). If the algorithm is to
be run for t* time steps, we are not really interested
in the value of P(x(t*)¢&S*). Rather, we are interested
in the probability that no state in S* is visited during
the execution of the algorithm. Given a cooling sched-
ule of the form T(t) = d/log t, with d > d*, it can be
shown that this probability is at most A/(t*)* for some
positive constants A and a. It vanishes as t = o, which
might seem encouraging. On the other hand, if the
temperature is fixed at any positive value (or even at
infinity, corresponding to a random walk), the probabil-
ity that no state in S* is visited in ¢* time units is at

" most Be*** for suitable positive constants B and b.
So, for very large times, the performance of a random
walk would seem to be better than the performance
guarantees of SA. The key point is that the above
analyses, based on time asymptotics, involve ex-
tremely large constants and are largely irrelevant. In-
deed the constants in the above estimates are often
much larger than the cardinality of the state space S.
In particular, the abeve analysis cannot even establish
that SA is preferable to exhaustive search.

2.2 Taking the Instance Size into Account

One can trace the inadequacy of the analytical meth-
ods mentioned so far to the fact that they deal with
one instance at a time. A more realistic approach would

be to consider a family of instances, together with a
notion of instance size, and then study the statistics
of the first hitting time of the set S* as a function of the
instance size. (We refer to such results as complexity
results.) This would then provide a meaningful yard-
stick for comparing SA to alternative methods. As an
extension, if we are only interested in approximately
optimal solutions to a given problem, we can define a
set S of approximately optimal solutions and study
the statistics of the first hitting time of S. Unfortu-
nately, such results have proved very difficult to derive.
We review briefly some of the progress that has been
made along this direction.

All available positive complexity results we are
aware of use a schedule 7(¢) in which the temperature
is held constant in time, although it may depend on
the instance size. The only nontrivial combinatorial
problem for which SA has been rigorously analyzed is
the maximum matching problem. It has been shown
by Sasaki and Hajek (1988) that, for bounded-degree
graphs with n nodes, the expected time until SA hits
an optimal configuration is O(n®). This is slower than
other available algorithms, but the result is encourag-
ing. On the other hand, no algorithm of the SA type
(even with time-varying temperature) can solve the
matching problem in polynomial expected time when
the degree bound is relaxed (see Sasaki and Hajek,
1988).

Hajek (1985) studied an example in which the state
space is S = {1, 2, 3}" and the cost of a typical state
s = (s1, ..., sn)is equal to 2L, V(s;). This corresponds
to a minimization in N identical uncoupled problems,
and the optimal solution is evident. It is argued that
if the temperature is suitably chosen as a function of
N, the expected first hitting time of the global mini-
mum grows polynomially with N. This is better than
exhaustive search, because the cardinality of S is 3V,
It is also better than the “local search with multistart”
method, whereby a state in S is chosen repeatedly at
random and each time a local search (pure descent)
algorithm is run until a local minimum is reached
(Hajek, 1985). Of course, in this example a much more
efficient algorithm exists. What is encouraging is that
SA does not really use the information that the cost
is separable, that is, that there is no coupling between
s; and s;. For this reason, one may hope that SA
would run in polynomial time even if the problem
was perturbed by introducing some sufficiently weak
coupling between components. No such extensions are
currently available.

One reason why SA works well in the preceding
example is that if a given state is far from optimal,
then there exists a large number of paths that lead to
another state with lower cost. The probability that the
state x(t) escapes from a local minimum of depth d
along any particular path, and in a single trial, is at
most exp(—d/T). On the other hand, if the number of
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candidate paths is very large, the probability of escape
is substantial. It is here that the combinatorial struc-
ture of the state space S and its neighborhood system
should become significant.

In interesting combinatorial settings the state space
is usually exponential in the instance size. So constant-
temperature SA would work in polynomial time if the
relaxation time were polylogarithmic in the size of the
state space (“rapid mixing”). There are a number of
available positive results on rapid mixing in Markov
chains, but they deal mostly with the case where T =
o, corresponding to a random walk. (This is a much
simpler special case, because the cost function J has
no effect.) Unfortunately, SA becomes interesting at
the opposite end, when T is very small. Proving rapid
mixing for large SA Markov chains at small tempera-
tures is a challenging task.

One class of problems for which there is some hope
of obtaining positive complexity results arises in the
context of image processing. Here, we have an N X N
grid. To each gridpoint (;, j), we associate a variable s;
taking values in a finite set A. We thus obtain a
configuration space S = A, Many image-processing
and pattern-recognition problems lead to a cost func-
tion J : S = R of the form

J(s) = 2 fiilsy) + 20 inelsi Sk,
i, J) 6, ) (.0

where gi; is identically zero unless (;, j) and (k, {) are
neighboring gridpoints. Starting with Geman and Ge-
man (1984), SA has become a very popular method for
such problems. Here one defines two states (configura-
tions) to be neighbors if they differ only at a single
gridpoint. Note that when a configuration change is
contemplated (i.e., a change of some s;), the cost differ-
ence (which determines the probability of accepting
the change) depends only on the gridpoints neighboring
(i, j). For this reason, the evolution of the configuration
can be viewed as the time evolution of a Markov ran-
dom field. The relaxation times of Markov random
fields have been extensively studied (e.g., Liggett,
1988), but under rather special assumptions on the
functions f; and gi;.- Thus, the available results are
not yet applicable to the cost functions that arise in
image processing.

As far as theory is concerned, there is at present a
definite lack of rigorous results justifying the use of
SA. Even if SA is accepted, there are no convincing
theoretical arguments favoring the use of time-varying
(decreasing) cooling schedules, as opposed to the use
of a constant temperature. '[This latter question is
partially addressed in Hajek and Sasaki (1989).]

3. BEHAVIOR IN PRACTICE

Despite the lack of a rigorous theoretical justification
of its speed of convergence, researchers have used SA
extensively in the last decade. There are numerous

papers discussing applications of SA to various prob-
lems. We have already mentioned that SA is exten-
sively used in image processing. In order to give an
indication of its performance, we will review some of
the work concerning the application of SA to combina-
torial optimization problems.

In a comprehensive study of SA, Johnson et al.
(1990, 1991, 1992) discuss the performance of SA on
four problems: the traveling salesman problem (TSP),
graph partitioning problem (GPP), graph coloring prob-
lem (GCP) and number partitioning problem (NPP).
Johnson et al. apply SA to these NP-hard problems
using a cooling schedule in which the temperature
decreases geometrically, namely, 7(t + 1) = rT(¢). In
general, the performance of SA was mixed: in some
problems, it outperformed the best known heuristics
for these problems, and, in other cases, specialized
heuristics performed better. More specifically:

1. In the graph partitioning problem, a graph
G = (V, E) is given, and we are asked to partition
the set of vertices V into two subsets V; and V;
S0 as to minimize

1X| + A(Vi] = [ V2,

where X is the set of edges joining a node in V;
with a node in V5, and A is a weighting factor.
For the GPP, SA obtains final solutions that are
at best some 5 percent better than those obtained
by the best of the more traditional algorithms
[e.g., the Kernighan and Lin (1970) heuristic] if
the latter are allowed the same amount of compu-
tation time as SA. For sparse graphs, SA was
better than repeated applications of the Ker-
nighan-Lin heuristic, which is based on ideas of
local optimization, whereas for some structured
graphs the Kernighan-Lin heuristic was better.

2. In the graph coloring problem, a graph G =
(V, E)is given, and we are asked to partition the
set of vertices into a minimal number of subsets,
such that no edge has both endpoints in the same
subset. For the graph coloring problem, SA pro-
duces final solutions that are competitive with
those obtained by a tailored heuristic [the one by
Johri and Matula (1982)], which is considered the
best one for this problem. However, computation
times for SA are considerably longer than those
of the specialized heuristic.

3. For the traveling salesman problem, SA consis-
tently outperforms solutions found by repeated
application of iterative improvement, based on
2-opt or 3-opt transitions, but it is a consistent
loser when compared with the well-known algo-
rithm of Lin and Kernighan (1973). The latter is
based on k-opt transitions, and at each iteration
it decides dynamically the value of k.

Another interesting point is that the choice of the
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cooling schedule influences the quality of solution ob-
tained. In van Laarhoven and Aarts (1987) the authors
compare three different cooling schedules for the graph
partitioning problem, and they observe that the quality
of the solution found by the different cooling schedules
can differ as much as 10 percent. Another observation
is that the computation times can be excessive for
some problems.

In addition to the above mentioned developments in
image processing, SA and various alternative versions
based roughly on it have been used in statistical appli-
cations. Bohachevsky, Johnson and Stein (1986) pro-
posed a “generalized” SA procedure for continuous
optimization problems and applied their method to
an optimal design problem. Many researchers have
considered SA as a tool in the development of optimal
experimental designs. Recent examples include Currin
et al. (1991), Meyer and Nachtsheim (1988) and Sacks
and Schiller (1988). Variants of SA based on Bayesian
ideas have been proposed by Laud, Berliner and Goel
(1989) and van Laarhoven et al: (1989).

Overall, SA is a generally applicable and easy-to-
implement probabilistic approximation algorithm that
is able to produce good solutions for an optimization
preblem, even if we do not understand the structure
of the problem well. We believe, however, that more
research, both theoretical and experimental, is needed
to assess further the potential of the method.
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