Chapter 1

Introduction

1.1 Common terms in molecular biology.

DNA, RNA DNA is a polymer of four possible nucleotides denoted with A (adenine), C
(cytosine), T (thymine), G (guanine). A nucleotide is a molecule connecting a phosphate
group to a five carbon carbohydrate molecule (a sugar) which is connected to one of
the four nitrogenous bases A,C,T,G. The phosphates connect to the sugar of the next
nucleotide thereby forming a polymer of nucleotides called DNA. So a DNA molecule is
a word written with a four letter alphabet {A,C,T,G}. In the coding regions of the
DNA molecule, every three base pairs form the code for a amino acid. There exist only
20 amino acids. The DNA molecule is arranged as a double helix of two intertwined
strands of deoxyribose molecules and phosphate groups, with complementary nitrogenous
bases A,C,T,G extending out from the deoxyribose molecules toward one another. The
complement of A is T" and the complement of C is G.

A complete DNA molecule is found in the nucleus of each cell in an organism. For a human
being a DNA molecule consists of 23 pairs of chromosomes, one chromosome from each
parent. Each chromosome contains many functional regions, the so called genes, which
encode the amino acids forming a protein. A human being has approximately 40,000 genes.
A protein is a sequence of amino acids.

A gene consists of a coding region, a regularitory/operator region and a promotor region.
The coding-regions in the gene which are used to form the mRNA (and the by the mRNA
encoded protein) are called exons and the other regions are called introns. RNA contains
uracil (U) as one of its four nitrogenous bases, whereas DNA has thymine (T) instead of
uracil. RNA is single stranded, whereas DNA is a double stranded helix.

Upstream from the coding regions one finds first a regularitory region and then a pro-
motor region, which are functional in the sense that they are involved in the process of
transcription of the gene. The promotor region functions as a binding site for RNA poly-
merase engyme, needed to start the transcription process. After binding this enzyme tries
to find its way up to the start codon of the coding region to start the transcription process.
However, before arriving there it needs to pass through the regularitory region which is
located between the promotor region and the coding region. Binding of proteins to the
regularitory region can positively (starting the uncoiling of the double stranded helix) and
negatively (obstructing the RNA polymerase) control the transcription process. Genes can
be recognized by a promotor region and start (TAC) and end codons (ATC). Most (99%
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or s0) of the complete DNA molecule consists of non-functional useless regions.

Intron An intervening non-coding section of mRNA that is removed before the production of
the final mRNA molecule.

Exon A section of mRNA that specifies an amino acid sequence and that is retained during the
production of the final mRNA molecule.

Amino Acid A chemical compound that contains at least one amino group (N H3) and one
acid group (CO3) and is a building block of a protein. There are twenty amino acids.

Codon A three base sequence on an mRNA molecule that specifies a particular amino acid.

Operator and Promotor regions Structural genes are the coding regions which actually en-
code the structure of the protein it produces. Next to the structural genes is a series
of nitrogenous bases responsible for binding mRNA to the ribosome, a process needed
to translate mRNA into the encoded protein. Knows as the ribosomal binding site,
this base sequence encodes the base sequence in mRNA that ensures the ability to unite
correctly with the ribosome. This site contains no genetic message.

The next site encountered as we move further away from the structural genes is the recog-
nition site for RNA polymerase. This site is called the promotor because binding to the
site promotes transcription. RNA polymerase binds to the promotor then moves to the
right until it encounters a special “start transcription” signal (TAC) at the beginning of
the structural genes.

Lying between the promotor and the structural genes, we encounter the operator or
regulatory region. This is the regulatory site for repression and activation of the gene.
An important level of control takes place here because RNA polymerase must pass through
the operator region to get to the structural genes. For instance, when the base sequence of
the operator binds with repressor protein, the RNA polymerase cannot pass the blockage
and the structural genes do not function.

RNA polymerase The enzyme that functions in transcription and synthesizes an RNA
molecule with bases complementary to those in DNA. These RNA molecules, together
with ribosomal proteins and enzymes, constitute a system that carries out the task of
reading the genetic message and producing the protein that the genetic message specifies.

Enzyme A protein that catalyzes a chemical reaction of metabolism while itself remaining
unchanged.

Transcription and protein synthesis The production of mRNA from DNA is called tran-
scription. Transcription of the mRNA by RNA polymerase begins at a specific DNA site
on the gene called the promotor site. The promotor site is a sequence of nitrogenous
bases. For a given gene, the promotor site exists on one DNA strand but not on the other.
The strand having the promotor site will transcribe its message to mRNA and is called
the sense strand.

The process of transcription and thus protein synthesis is initiated by an uncoiling of the
DNA double helix and an uncoupling of the two strands of DNA. A functional region of
the DNA, the gene, is thereby exposed. Using the sequence of nitrogeneous bases along
only one of the DNA strands, molecules of RNA are synthesized with complementary
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bases. The enzyme RINA polymerase moves along one strand of the DNA molecule and
synthesizes a complementary mRNA molecule, using the base code of the DNA strand as
a guide. Component nucleotides stored in the region are used for the synthesis, and the
enzyme RNA polymerase binds the nucleotides together to form the RNA molecule. This
RNA molecule formed is called an RNA transcript.

Three types of RNA transcripts are constructed for use in protein synthesis. One type is
called messenger RNA (mRNA). Each mRNA molecule is a long, single strand of RNA
that passes out of the nucleus into the cell’s cytoplasm carrying the genetic message. This
molecule specifies which amoni acid is to occupy which position in the protein.

The second type of RNA transcript is ribosomal RNA (rRNA). Ribosomal RNA com-
bines with protein to form ribosomes, the ultramicroscopic bodies existing along the cell’s
internal membranes. The ribosomes are sites on the rRNA molecule where the enzymes as-
semble amino acids to proteins according to the instructions delivered by mRNA molecules.

The third type of RNA transcript is transfer RNA (tRNA). A tRNA is a molecule of
RNA that carries an amino acid molecule to the ribosome for use in protein synthesis.
Transfer RNA molecules exist in dozens of different types and float freely in the cell’s
cytoplasm, where they bind to amino acids. Then they deliver the aminoacids to the
ribosome.

Ribosome An ultramicroscopic cellular body where amino acids are enzymatically bonded to
form a protein. Each ribosome has two subunits: a smaller one binds the ribosome to
mRNA molecules and a large one where the enzymes for linking amino acids and the
amino acids carried by tRNA (below) together are located.

Translation The ribosome moves along the mRNA molecule from codon to codon, as tRNA
molecules bring their amino acids into position. Each amino acid is then attached to the
growing protein chain, which is at this stage called a polypeptide. Once is has given
up its amino acid molecule, the tRNA molecule moves back into the cytoplasm to unite
with another amino acid molecule. Meanwhile the ribosome moves to the next codon
and receives the next tRNA with its amino acid. Note that the codon in mRNA and the
anticodon in tRNA contain complementary bases. This complementary pairing specifies
which amino acids is slotted into which position in the growing protein chain. Also note
that tRNA molecules with different anticodons unite with different amino acids.

Various ribosomes can work simultaneously on a single mRNA molecule. The number of
ribosomes simultaneously attached to a gene-specific mRNA is a measure of the number
of proteins formed from one mRNA.

Gene expression The production of a mRNA molecule as encoded by the gene. Gene expres-
sion can be quantified by the number of mRNA copies in the cell’s cytoplasma.

Gene control All the genes are not operating all the time. Gene transcription only occurs for
a specified period of time. In most cases, the control of gene expression involves control of
transcription at the level of the gene. The site of control is usually a sequence of nucleotides
called the regularitory site. In many cases, a specific regularitory protein, a so called
repressor protein, will bind to the regularitory site and exert its controlling influence.
This process is called repression. When a repressor protein reacts with a regularitory
site to inhibit transcription, the control mechanism is referred to as a negative control.
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Negative control often takes place between points where RNA polymerase binds and the
gene for transcription begins. By binding to the site, the repressor protein prevents the
movement of RNA polymerase toward the gene. Without RNA polymerase, the gene
cannot be transcribed. Placing a log across a railroad track would have a similar effect.

Gene expression can also be controlled by a type of positive control. In this case, the
regularitory protein encourages gene transcription. The regularitory protein is called an
activator protein and the process is called activation. Activation takes place when
the activator protein binds to the regulatory site and stimulates unwinding of the DNA
helix to encourage mRNA formation. As usual, the mRNA formation is directed by RNA
polymerase, but the enzyme operates more efficiently once the DNA has been unwound.
Thus, the process has been activated.

Shape of regularitory protein matters The level of control is regulated by the shape of
the regularitory protein. The change in shape can enhance or destroy the ability of a
regularitory protein to bind to the regularitory site. For example, in its new shape the
regularitory protein may recognize a binding site not recognized previously, or the newly
configured protein may be unable to bind to a site where binding was previously possible.

Regulatory site A regularitory site is a sequence of nitrogenous bases where gene expression
can be controlled by reaction with repressor or activator proteins.

Repressor protein A protein that reacts with a regulatory site and restricts expression of
the gene by inhibiting transcription. If such a repressor is bound to a binding site in the
promotor region, then a change in environment can disconnect the repressor protein. For
example, the repressor protein unites with (e.g.) lactose molecules and therefore takes a
new shape. Now, it is unable to hold onto the DNA sequence in the operator, and the
repression is lifted. When the lactose is used up, the repressor protein changes back to
its original shape. It then complexes to the operator and biochemically shuts off the gene
again.

Enhancer, transcription factor A series of nitrogenous bases that encourages DNA activity
at a distant promotor site. Enhancers can be thousands of bases away (upstream) on the
DNA molecule. Proteins which attach to the enhancers are called transcription factors.
They appear to induce the DNA to bend into a loop.

Regulation is complex Regulation of gene expression is not confined to control at the time
of transcription. Regulation can occur at multiple levels of gene expression. It can occur,
for instance, in how mRNA molecules are processed before leaving the nucleus, in the
transport of mRNA molecules out of the nucleus, by the lifespan of mRNA molecules, by
the number of ribosomes binding to mRNA molecules and in the activity and stability of
the protein products of gene expression. These factors are as important for understanding
gene activity as transcription and translation.

1.2 The microarray technology to measure gene expression pro-
files.

One important ingredient of the biotechnology is the collection of complementary DNA (cDNA)
corresponding with each gene in the genome of the organism we study. This results in a cDNA
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library which can then be used to construct cDNA gene chips covering the complete genome.

One carries this out by first identifying cells which are known to produce mRNA of large
collection of genes. Given such a sample of cells, the task of isolating the mRNA begins. The
cells are disrupted and the cellular contents are subjected to an exhaustive series of chemical and
physical treatment to exclude all other proteins, fats, carbohydrates and nucleic acids. Then,
the mRNA molecules are collected by zeroing in on the poly-A tails they all possess. These are
chains of 150-200 nucleotides containing the base adenine. The mass of mRNA is combined with
cellulose particles containing on their surfaces a series of nucleic acid segments having thymine.
The poly-A section of the mRNA binds tightly to the poly-T molecules, and the remaining
debris is washed away. Now, the mRNA molecules can be collected from the cellulose particles
to yield concentrated mRNA.

Complementary DNA or cDNA is a DNA molecule that complements the base sequence in
RNA and results from reverse transcriptase activity. Reverse transcriptase is an enzyme
that uses the base sequence in an RNA molecule as a model for synthesizing a complementary
DNA molecule. The use of reverse transcriptase to synthesize a DNA molecule requires a primer,
or starting nucleotide sequence. The primer consists of a string of thymidine nucleotides, which
binds to the poly-A tail of the mRNA and acts as an initiation site for DNA production.
The reverse transcriptase then moves along the mRNA molecule, encoding a DNA molecule
complementary to the mRNA. This new DNA molecule is referred to as complementary DNA.
Then using degradation techniques in alkaline solutions, the cDNA molecule is cleaved away
from the mRNA template molecule and isolated in pure form.

Extracting the gene-specific cDNA’s is described in Alcamo (1999) “DNA Technology, the
Awesome Skill” and is a delicate task. Once one has identified a complete cDNA library one
can produce microarray slides which cDNA of all the genes spiked in. These microarray slides
can be used to carry out the microarray experiment which maps two tissues or cell line samples
into a relative gene expression profile for all genes simultaneously.

The basic microarray experiment. Two tissue or cell line samples are collected and the
mRNA of each is labeled with red and green dye. Subsequently, equal amounts of the mRNA
samples are combined and washed over microarray slides prepared with the cDNA of p genes.
Say that each gene is represented by two spots on a slide. The labeled RNA of gene j will
attach to the corresponding spots on the microarray, j = 1,...,p. A scanner measures the red
and green intensity at each of the spots. The red and green intensities can be normalized by
1) requiring that the total sum of red intensities equals the total sum of green intensities or
2) by including control genes on the chips which are spiked in equal amounts into two tissues
and normalizing the other intensities on the chips in such a way that the control genes are
empirically 1:1. Subsequently, for each spot we calculate the ratio of red and green intensity. A
natural gene-specific summary measure R/G is the geometric mean (i.e. take the average of the
log-ratios and exponentiate it) of these gene-specific ratios across the gene-specific spots. Due to
the variability in the amount of cDNA in the wells and the strong correlation between red and
green intensity at spots it is much better to take averages of spot-specific ratios than to take a
ratio of an average of red and an average of green intensities. In order to adjust for dying bias
one also carries out the same experiment but with reverse colors for the two samples. As final
gene-specific summary measure one takes the average of the two gene-specific “ratios” R/G and
G/R.

Typically, one of the samples is a control and the ratios are defined as test over control.
When component X; > 1, the DNA of gene j has a higher expression in the test sample than
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in the control sample. We say that gene j is overexpressed. If component X; < 1, then
we say that gene j is suppressed and if X; # 1, then one says that gene j is differentially
expressed. Let X be the p-dimensional column vector of “ratios” representing the relative gene
expression profile for a subject or cell line.

1.2.1 Measurement error and P-values.

For each experimental unit there exists a true gene expression profile X*, so that X = X™*+e¢ for
some error term €, where X is the actual measured gene expression profile. This error term has
various components, namely an actual measurement error corresponding with the microarray
experiment and errors which can potentially occur before the actual microarray experiment in
the collection of the two cell samples used in the microarray experiment.

The measurement error of the microarray experiment In order to measure the quality
of the microarray experiment itself in measuring the relative gene expression profiles in
the two cell samples at hand, one needs to carry out the microarray experiments with two
identical samples, so that the mRNA ratios should be one for all genes. The results of
such an experiment provide an estimate of a null distribution of the gene-specific ratios
around the true ratio 1. In order to always have a sense of this measurement error one
should spike in the two cell samples known concentrations of known genes and put these
genes on each microarray slide. The measurement error will depend, in particular, on the
surface of the slides and the concentration of the mRNA in the two samples. In general,
the measurement error follows a U-parabolic shape as a function of concentration: If the
mRNA has a low concentration in the sample, then the gene-specific “ratio” X; will be
more variable than if the mRNA occurs in reasonable concentrations. On the other hand,
if the mRNA has a very high concentration in one of the samples, then the cDNA in the
wells might be used up before the mRNA in the other sample might have a chance to bind.
Note that if the cDNA is abundant in the wells relative to the samples, then this latter
“saturation effect” would not occur.

Other sources of unwished variability The collection of the tissues and a possible amplifi-
cation of mRNA from a small sample of mRNA are important sources of variability.

The measurement error of the microarray experiment itself is typically very small for high level
gene-chips and technicians relative to the other sources of variability and is easy to establish.

To estimate the distribution of the full € one will need to sample experimental units for
which the true X* is known and carry out the complete experiment resulting in the measured
gene expression profile X . For example, suppose that X is the relative gene expression profile of
cancerous tissue relative to healthy tissue of a randomly sampled subject. Then one can obtain
an estimate of the distribution of e (assuming it does not depend on the value of X* itself) by
sampling healthy patients and measuring the gene expression profile of healthy cells relative to
healthy cells, thereby precisely imitating the complete experiment applied to the cancer patients.
An estimate 150 of this error-distribution can be used as a null distribution to assign p-values
Poj(X ; > x;) of an observed gene expression X; = x;. This p-value now truly measures the
likelihood of seeing a gene expression as extreme as x;, if in truth the subject was sampled from
the null-distribution. Note that this null distribution now includes all sources of variability.

If the variance of ¢ is small relative to the variance of X™* across experimental units, then it
is still appropriate to just focus on estimation of parameters, such as the mean and covariance
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matrix, of the measured gene expression profile X and thus ignore the measurement error model
log(X) = log(X*)+e. This will be our approach, but we do recommend establishing an estimate
of a null distribution of the measurement error € is relatively small.

1.3 Data sets with gene expression.

Observational and experimental studies increasingly (over time) involve the collection of gene
expression profiles at one or more time points on each experimental unit. The gene expressions
can represent important outcomes, e.g. measuring how different a cell is relative to a control,
and it can also be viewed as an important predictor of a clinical outcome such as survival.
Therefore we decided that it is natural to distinguish 3 types of parameters. The first set
of parameters are summaries of the “marginal” distribution of the gene expression profile(s).
The second set of parameters quantify the effect of gene expression(s) on a future (i.e. post-
expression) outcome such as survival. Finally, the third set of parameters quantify the effect of a
pre-expression variable (such as medical treatment) on the gene-expression profile. The second
and third type of parameter is typically defined as a regression parameter in a regression model.
For each of these 3 types of parameters, we want to develop estimators of these parameters and
corresponding estimates of variability. The second and third set of parameters might actually
describe causal effects as defined in the causal inference literature. In the latter case these
parameters will be defined as regression parameters in causal regression models such as the
marginal structural models.

We note that a causal effect of a gene expression on (say) survival is particularly important
because it predicts what one would see on a subject if one knocks-out the gene relative to if one
does not knock out the gene. Note that such knock-out experiments are actually possible and
are used by drug-development companies to develop gene-therapies for a variety of diseases.

Below, we provide a few examples of data sets involving the collection of gene expression.

The reader should describe globally parameters of interest and classify them into these three
groups.
1. A yeast Saccharomyces cerevisiae data set generated by Dr. M. D. Sollewijn Gelpke, Postdoc
Molecular Biology Department, which measures for each gene the gene-specific distribution of
the number of attached ribosomes to the mRNA-copies in a cell for a variety of mutant yeast
strains.

This data set is important to determine how effective the mRNA copies for each gene in yeast
are translated into protein copies and how much a mutant affects the distribution of ribosomes
of genes. The results of this analysis might be used to improve understanding gene activity.

2. Yeast data (public domain): Cell cycle gene expression data on 6220 genes at 17 time points
with 10 minute intervals such that two full cell cycles are covered in Cho et al. (2001).

Data (public domain): Rosetta Inpharmatics yeast data Hughes et al. (2000) contains expression
of 6,220 yeast genes under 300 various experimental conditions (diverse mutations and chem-
ical treatments). In particular, it contains experiments related with Copper and Iron intake
methabolism.

In the analysis of yeast data the following data bases are important:

Data (public domain): Genome database: SGD, is a scientific database of the molecular biology
and genetics of the yeast Cherry et al. (2001).

Data (public domain): SCPD: The Promoter Database of Saccharomyces cerevisiae (Zhu and
Zhang, 1999). This contains known regulatory elements/transcription factors of yeast genome,
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their location on upstream sequences etc.

Data (public domain): TRANSFAC: Transcription Factor Database of Heinemeyer et al. (1998)
which is a more comprehensive database of transcription factors and it captures yeast as well as
many other organisms.

3. The UCSF-cancer center, funded by two NIH-proposals, has data on n &~ 2000 breast cancer
patients, including gene expression profiles at the primary tumor, histopathologic characteristics
(e.g. tumor size, stage, grade, lymphnode involvement), molecular markers (e.g the well known
tumor suppressors and oncogenes) and clinical outcomes such as survival, time till recurrence
and the followed treatment regime.

4. Data (public domain): Molecular portraits of human breast tumors Perou et al. (2000), Perou
et al. (1999).

Gene expression profile of breast tumors on time before and after chemotherapy and histopatho-
logic characteristics of the tumor and baseline characteristics of the subject.

5. Data: Cell line data on 60 human cancers accompanying Ross et al. (public domain).

6. Gene expression profiles on a sample of AML and a sample of ALL Leukemia patients Golub
et al. (1999).

7. Colon cancer patient data (Chiron/UCSF, confidential). Gene expression profiles on the
primary tumors in 30 colon cancer patients, relative to healthy tissue taken from the colon.
Gene expression profile on the metastasized tumors in 50 colon cancer patients. In addition, one
collects medical treatment taken between the primary tumor and time at recurrence of a metas-
tasized tumor, histopathologic characteristics of the primary tumor, baseline characteristics of
the patients, and right-censored survival.

8. Fresno Asthma Children Environmental Study (FACES). The principal investigator of this
study is Prof. Ira Tager, Epidemiology, School of Public Health, UC Berkeley. It is funded by
the California Air Resource Board. A random sample of 450 clinically diagnosed asthmatic chil-
dren ages 6-10 in the Fresno/Clovis area will be enrolled from a register of asthmatic children.
The enrollment started in October 2000 and the PI has immediate access to the data base. This
community has high asthma morbidity. Children are enrolled in groups of 50; membership in
each group will be fixed. The study design consists of a longitudinal and a panel components
with 4.5 years of follow up. In the longitudinal component, each subject will undergo detailed
baseline and 6-monthly evaluations (medical history, house characteristics, medication use, lung
function testing, prick skin testing somatic growth and a Biotech company assists in collecting
a large number of biomarkers from blood-samples). For the panel component, each group of
50 subjects will be observed in ten 14-day panels (1 in each of 3 air pollution seasons over 4.5
years). During panel periods, daily data will be obtained on factors such as: twice daily forced
expiratory volumes, symptoms, medication use, time-location activity patterns, etc.). Detailed,
daily ambient air pollution data will be available from two special monitoring programs which
will provide an unprecedented level of daily data on PM mass/constituents/particle number and
gaseous pollutants. These will be supplemented by study monitoring of bioaerosol (e.g. fungi,
pollens, endotoxin). A subset of each panel will undergo detailed personal monitoring to be used
to develop microenvironmental models to assign personal exposures to all study subjects for all
panel days.

Important features of the data set are 1) right censoring by time of analysis, 2) possibly
informative right-censoring if subjects drop out before the end of the study, 3) (possibly
informative) missing visits and missing variables will occur, 4) the joint effect of airpollution
with other exposure variables (humidity, temperature) is confounded by the time-dependent
variable “rescue-medication use”, 5) airpollution and the biomarkers represent very high
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dimensional variables and each component corresponds with parameters of interest.

9. Knock out (of candidate genes) experiments.

10. Two groups of identical mice, one group received diet I and the other group received diet II
(e.g Prof. Vulpe, Department of Nutrition, UC Berkeley). One collects gene expression profile
at one point in time (if it requires sacrificing the mouse) or more points in time (if the relevant
tissue can be taken without sacrificing the mouse). One might also be interested in collecting
data on time till recurrence of tumor, time till death, certain biomarkers, or other outcomes of
interest such as weight loss.
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Chapter 2

The Statistical Analysis of a Sample
of Gene Expression Profiles

ABSTRACT

Recent developments in microarray technology make it possible to capture the gene expression
profiles for thousands of genes at once. With this data researchers are tackling problems ranging
from the identification of “cancer genes” to the formidable task of adding functional annota-
tions to our rapidly-growing gene databases. Specific research questions suggest patterns of
gene expression that are interesting and informative (e.g. genes with large variance or groups of
genes that are highly correlated). Cluster analysis and related techniques are proving to be very
useful. We add to this the visualisation of the clusters by visualizing an ordered distance matrix
van der Laan and Pollard (2001). However, such exploratory methods alone do not provide
the opportunity to engage in statistical inference. Given the high-dimensionality (thousands)
and small sample sizes (< 30) encountered in these datasets, an honest assessment of sampling
variability is crucial and can prevent the over-interpretation of spurious results. van der Laan,
Bryan (2001) describe a statistical framework that encompasses many of the analytical goals
in gene expression analysis; this framework is completely compatible with many of the current
approaches and, in fact, can increase their utility. We propose the use of a deterministic rule,
applied to the parameters of the gene expression distribution, to select a target subset of genes
that are of biological interest. In addition to subset membership, the target subset can include
information about relationships between genes, such as clustering. This target subset presents
an interesting parameter that we can estimate by applying the rule to the sample statistics
of microarray data. The parametric bootstrap based on a multivariate normal model, or the
nonparametric bootstrap based on resampling from the observed data, is used to estimate the
distribution of these estimated subsets and relevant summary measures of this sampling distri-
bution are proposed. We focus, in particular, on rules that operate on the mean and covariance.
Using Bernstein’s Inequality, we obtain consistency of the subset estimates, under the assump-
tion that the sample size converges faster to infinity than the logarithm of the number of genes.
We also provide a conservative sample size formula guaranteeing that the sample mean and
sample covariance matrix are uniformly within a distance ¢ > 0 of the population mean and
covariance. The practical performance of the method using a cluster-based subset rule is illus-
trated with a simulation study. The method is illustrated with an analysis of a publicly available
leukemia data set.
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2.1 Introduction

2.1.1 Microarray context

Microarray studies are swiftly becoming a very significant and prevalent tool in biomedical
research. The microarray technology allows researchers to monitor the expression of thousands
of genes simultaneously. A readable introduction to microarrays can be found in Marshall (1999)
and a more technical overview is given in the “The Chipping Forecast” [1999].

By comparing gene expression profiles across cells that are at different stages in some pro-
cess, in distinct pathological states, or under different experimental conditions, researchers gain
insight into the roles and reactions of various genes. For example, one can compare healthy
cells to cancerous cells within subjects in order to learn which genes tend to be over (or under)
expressed in the diseased cells; regulation of such genes could produce effective cancer treat-
ment and/or prophylaxis. DeRisi et al. (1996) suppressed the tumorigenic properties of human
melanoma cells and compared gene expression profiles among “normal” and modified melanoma
cells; this experiment allowed investigators to study the differential gene expression that is as-
sociated with tumor suppression. Data analysis methods appropriate for microarray data are
surveyed by Claverie (1999), Eisen et al. (1998), and Herwig et al. (1999).

Recent microarray studies have relied heavily on clustering procedures. Eisen et al. (1998)
apply a hierarchical cluster analysis algorithm to an empirical correlation matrix and Golub
et al. (1999) use a neural network algorithm called self-organizing maps (SOM) which, like
K-means clustering and the partitioning around medoids (PAM) of Kaufman and Rousseeuw
(1990), places objects into a fixed number of clusters. We feel that such approaches suffer from
two deficiencies, which we address in this chapter. First, since these techniques are used in
a purely data exploratory manner, they lack important notions such as parameter, parameter
estimate, consistency and confidence. Second, techniques that are purely descriptive and ad hoc
make it difficult to design a study to meet particular goals.

2.1.2 Overview of the statistical method

For a randomly sampled subject or organism (from some population) we measure with the
microarray experiment (as described previously) a relative gene expression profile for p genes
in one cell sample relative to a control cell sample. Let X be the p-dimensional column vector
of ratios representing the relative gene expression profile for a subject or cell line randomly
drawn from a well-defined population. Suppose that we observe n i.i.d. copies Xi,...,X,, of
this random vector X, for example, one for each of n randomly sampled subjects.

In the dataset that originally motivated this work, the population of interest is human
colon cancer patients and for each subject we have a sample of healthy colon tissue (control)
and colon tumor tissue (test). From such data, we want to find a subset of genes for which
differential expression is associated with cancer. Below, we will show that two sample data sets
or paired sample data sets can be naturally transformed to a one sample data set. For example,
in the dataset we analyze in section 2.9, the population of interest is human acute leukemia
patients described by Golub et al. (1999). The data actually arise from a microarray technology
slightly different than the cDNA arrays described above, namely, an oligonucleotide produced by
Affymetrix. In any case, the dataset contains expression profiles for patients with two distinct
types of leukemia, namely ALL and AML. One can now define X as the gene expression profile
of a ALL patient relative to the mean profile among the AML patients. Our data analysis in
section 2.9 focuses on finding genes whose expression best distinguishes the two tumor classes
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and are, therefore, useful in diagnosis.

In light of the typical scientific goals, we generally wish to find (1) genes that are differentially
expressed, e.g. expression is different in the test sample relative to the control, and (2) groups
of genes which are significantly correlated with each other. We are interested in genes whose
expression levels tend to vary together, because such genes might be part of the same causal
mechanism.

Since k-fold over-expression represents the opposite of k-fold under-expression, it is natural
to use a logarithmic transformation: let Y;* = log(X;) j = 1,...,p. In addition, to control the
effect of outliers and to obtain nonparametric consistency results proved later in this paper, we
also propose to truncate the log-ratios by a user-supplied constant M:

Y; =

j {Yj* if V7] < M, j=1,...,p,

M xsgn(Y™) if [Y[ > M. 0<M < oo.

Another additional truncation would be to examine centered data Yj* — ﬁj and truncate all
observations that were, for example, greater than 3 standard deviations in absolute value. Let Y
be the column vector with component j being equal to Y}, j = 1,...,p. Denote the expectation,
covariance, and correlation of Y by u, 3, and p, respectively.

We do not require that Y is a gene expression profile, but it can be any high dimensional
vector. In particular, if one is interested in finding binding sites on the regularitory DNA-region
of a gene which predict gene expression, then it is preferable to define Y as a transformation of
a gene expression profile defined by the DNA-sequence of the regularitory region. For example,
each component of Y might correspond with a word of bases { A, C, T, G} of length 6 and measure
its importance in predicting gene expression for the randomly sampled subject or organism. The
latter approach is studied in chapter 4 (Keles, van der Laan, Eisen, 2001). For the sake of clarity,
in this chapter we will treat Y as a vector or gene expression profiles.

Suppose that we know p and X, and that subject matter experts believe that certain patterns
of gene expression distinguish specific genes as important. Then a natural question is “How
should we select a subset (u, %) — S(u, X) of genes that merit special attention?” We might
also wish to regard S(u, ) as a set of genes that is subdivided into several groups labeled from
1 to K. We can identify such a subset S(u, ¥) by a p-vector S whose components take values
in {0,...,K}. If S; =0, then gene j is excluded from the subset and if S; =k, k € {1,..., K},
then gene j is included in the subset and carries label k. At times, we will also describe the
subset as a set of gene indices j, j € {1,...,p}; this is equivalent to setting S; = 0 for genes
not in the subset and to some integer between 1 and K otherwise. Hereinafter S = S(u, ) will
represent the target subset of genes that we wish to distinguish as important.

As an example of a very simple rule, one could define S(-,-) as {j : p; > C}, for some
C > 0. A more sophisticated subset rule would be to (1) select those genes which are at least
3-fold differentially expressed w.r.t. the geometric mean (i.e. only include gene j if |u;| > log 3);
and (2) construct a correlation-distance matrix for these differentially expressed genes from
the appropriate elements of p; and (3) apply a clustering algorithm to (some function of) this
distance-matrix; and possibly (4) only include those genes in S that are closest to the cluster
centers. In fact, most of the analytical techniques currently being applied to gene expression
data (for example Eisen et al., 1998; Golub et al., 1999) operate on the mean and covariance and
are, therefore, perfect candidates for the type of subset rule considered here. It is not necessary
for the subset rule to eliminate genes at all, although it generally advantageous to do so. Even
if the rule simply applies labels that have a stable meaning — for example, by employing a
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supervised clustering technique that find clusters around pre-specified genes — the methods we
propose would allow the analyst to assess the stability of these clusters.

Given a well-defined subset rule S(-,-), a natural estimate of the target subset S is
§n = S(i,,, i\)n), where p,, and i\)n are the sample mean and covariance, respectively, of the
(truncated) data. We prove the consistency of (fi,, £,) and S(fi,,, 5,) (see section 2.4) non-
parametrically when n/log(p(n)) — oo and M < oo. The case where p = co and p >> n is
extremely relevant, as microarray experiments already produce data on 20000 genes and in the
future we will encounter datasets with all human genes (estimated to be between 35000 and
140000). In stark contrast, sample sizes often fall below 30. We also provide a nonparametric
sample size formula that guarantees with probability at least 0 < v < 1 that the maximal differ-
ence between p,, and p is smaller than € and similarly for i\)n and X. If one is willing to assume
that Y ~ N(u,X¥) has a multivariate normal distribution, then the truncation is not needed,
but we aim to be as nonparametric as possible.

The sampling distribution of the estimated subsets §n provides valuable information for the
analyst. One might wish to choose the sample size and/or subset rule in order to ensure the
reproducibility of certain results or to realize some other performance measure. As an example
of a feature we would hope to see reproduced in samples, consider a gene j that appears in
S. For a particular data-generating distribution, sample size n, and subset rule S(-,-), there is
a probability p; that gene j will appear in the estimated subset §n produced by a randomly
drawn sample; we will call such probabilities p; “single-gene probabilities”. If the single-gene
probabilities are low for many of the genes in S, we might choose to increase the sample size or
select a subset rule that is easier to estimate. If the single-gene probabilities are generally high,
we might proceed with the study and, when we observe estimates of p; that are close to 1, feel
confident that those genes are in S.

Since we want to determine the membership of a specific set, it is natural to apply conven-
tional measures of test quality, such as sensitivity and positive predictive value, to any procedure
we devise. In this context, sensitivity is the proportion of the target subset that also falls in the
estimated subset and positive predictive value is the proportion of the estimated subset that is
also in the target subset.

Determining single-gene probabilities and the distribution of subset quality measures requires
knowledge of the actual sampling distribution of §n In order to estimate these quantities we use
the parametric or nonparametric bootstrap. In general, the asymptotic validity of the parametric
bootstrap requires that the chosen parametric model be correct. However, as long as we choose a
parametric model that places no constraints on (u, ¥), even when it is incorrect, the parametric
bootstrap will still consistently estimate the degenerate limit distribution of S(u,, Sigma,) and
S(pn). Specifically, we use as parametric model the multivariate normal model Y ~ N(pu, X)
and, based on the data we have seen, we believe this to be a reasonable choice after truncation.

The bootstrap (Efron and Tibshirani, 1993) was first used to investigate the reproducibility
of certain features of phylogenetic trees by Felsenstein (1985). Efron and Tibshirani (1998) later
took up this problem more generally and termed it the “problem of regions”. They ask: given an
interesting feature in an observed descriptive statistic, how confident can we be that this feature
is present in the data-generating distribution? Efron and Tibshirani also link this confidence
measure, in certain settings, to frequentist p-values and Bayesian a posteriori probabilities.
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2.1.3 Application to paired and unpaired comparisons

Now suppose we have two sets of relative gene expression measurements (X,Y) on a common
set of p genes that we wish to compare. Such data can arise under two different scenarios:
paired and unpaired. In the paired scenario, we have two observations on each subject. For
example, gene expression might be measured on a cell line at two different time points in the cell
cycle relative to a baseline. Or we might observe the same subject before and after treatment.
Perou et al. (2000), for example, analyzed gene expression in human breast cancer tumors before
and after chemotherapy using a common reference sample. In the unpaired scenario, we have
observations on subjects drawn from two subpopulations of subjects (possibly with different
numbers of observations in each subsample). Golub et al., for example, used gene expression
data to distinguish between acute lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML).

We might want to focus on genes that appear to be very differently expressed in the two data
sets. One approach is to simply analyze the two data sets separately and compare the clustering
patterns. Another approach is to combine the two data sets into one data set. The way we do
this depends on the scenario that generated the data. In the paired scenario, we can form a
p-dimensional vector of log ratios, log (X;/Y;), by dividing the relative expression for a subject
at one time point by that at the other before taking the log. In the unpaired scenario, we can
form a p-dimensional vector of log ratios by dividing the relative expression for a subject by the
geometric mean relative expression for all subjects in the other subpopulation before taking the
log so that we get log (X;/py ). For both scenarios, the empirical mean of the combined data set
is the difference between the two sample means of the log ratios in the two separate data sets.

2.2 The estimated subset and the bootstrap

2.2.1 Subset rules

We propose several simple, but easily interpretable, subset rules and all are simply functions of
the parameters (p, ). We have found it natural to divide the subset rule into three phases: (1)
a pre-screen in which certain genes are eliminated; (2) a mid-rule in which inter-relationships
between genes are sought; and (3) a post-screen in which even more genes are eliminated. We
emphasize that it is not necessary to employ all three phases of the rule and, therefore, a clus-
tering algorithm alone can be regarded as an example of such a rule, whenever the distance
metric is a function of (u, ). For example, this is the case with Euclidean distance, correla-
tion distance, the modified correlation distance proposed by Eisen et al. (1998), and principal
component based metrics. From now on, we denote the distance between genes ¢ and j by D;;,
the p by p symmetric matrix of such distances by D, and we assume that D is determined by
(p, 3).

Table 2.1 presents examples of the rules and metrics one can work with. A common require-
ment for inclusion in the subset is differential expression and we use the pre-screen to retain
only those with sufficient evidence of differential expression. The table presents pre-screens that
range from very simple cutoffs to those that determine whether a certain proportion p of the
population exhibits a sufficient level log(d;) of over and/or under (determines expression. We
then seek groups of genes that tend to be coexpressed; a clustering algorithm, such as PAM
(Kaufman and Rousseeuw, 1990, chap. 2), is a typical mid-rule, but many other clustering and
neural network algorithms are also suitable. Finally, since clustering algorithms place all objects
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Table 2.1: Subset rule examples.

Pre-screen Distance metric Mid-rule Post-screen
I > | Euclidean dis- | PAM D;; < o,
log(d1) tance
|15 > | 1 —|pijl, 1 — pij PAM, with fixed | for some cluster cen-
log(d1) medoids ter i
] > 1 - Eisen’s modi- | Self-organizing maps silhouette; > o

fied
log(d1)  + | correlation Hierarchical clustering | (part of PAM out-
a;07(p) put)

K-means clustering

into clusters, even if there is little evidence to favor one cluster assignment over another, we often
use the post-screen to retain only those genes that appear to be well-matched to their cluster.
One could use actual distances to cluster centers or members to make this determination or, as
in the case of the “silhouettes” in PAM, there may be other useful output from the clustering
procedure one can exploit.

2.2.2 Partitioning Around Medoids (PAM).

A particular subset rule S(u, ) is based on the output of the clustering procedure PAM (Kauf-
man and Rousseeuw, 1990, chap. 2), which takes as input a dissimilarity matrix D based on
any distance metric. Let D;; denote the dissimilarity between genes i and j where each gene
is represented by an n dimensional vector. Possible dissimilarities which are functions of X
between these two n-dimensional vectors are:

D;; = 1— pjj correlation
D;j = 1—] pi; | absolute correlation
Dijj = 1- p?j cosine-angle
Dij = 1—| pgj | absolute-cosine-angle
n
Dy = Z(Yz — Yj1)? euclidean,
=1
where i
0 > YaYj

Pij = n v — Y2'
2oie1 Vil /2o 4l

It is of interest to note that the 1 — p?j equals 2 times the squared euclidean distance of the two
vectors standardized to have euclidean norm 1. This distance was used in Eisen et al. (1998),
and it has been our experience that it is a sensible choice in many applications.

Let K be the number of clusters (i.e.: the number of causal mechanisms we believe to be
operating). Given K, PAM selects K potential medoids, calculates for each gene its distance to
the closest of these potential medoids and minimizes over the vector of K potential medoids the
sum of these distances over all genes. The solution of this minimization problem is a vector of K
medoids. Each medoid identifies a cluster, defined as the genes which are closer to this medoid
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than to any of the other K —1 medoids. Like any clustering routine which solves a minimization
problem, PAM often converges to one of the many local minima, which is not necessarily the
global solution. For example, by randomly permutating the rows of the data matrix, we can
produce different choices of medoids and possibly different clustering labels for some genes which
lie between one or more clusters. As a solution, we recommend randomly permutating the data
matrix a large number of times to produce different starting values, rerunning PAM each time,
and selecting the medoids which give the smallest sum of distances.

One can consider K as given or it can be data-adaptively selected, for example, by maximizing
the average silhouette as recommended by Kaufman and Rousseeuw. The silhouette for a gene
is calculated as follows. For each gene j, calculate a; which is the average dissimilarity of gene
j with each other member of gene j’s cluster. For each gene j and each cluster k£ that is not
gene j’s cluster, calculate bj;, which is defined as the average dissimilarity of gene j with the
members of cluster k. Let b; = miny bji, where the minimum is taken over all clusters k that
are not gene j’s cluster. Finally, the silhouette of gene j is defined by the formula:

j — a4y

silhouettej = m
VAR

Note that the largest this can be is 1, which occurs only if there is no dissimilarity within gene
Jj’s cluster (i.e.: aj = 0). The other extreme is -1. Heuristically, the silhouette measures how
well matched an object is to the other objects in its own cluster versus how well matched it
would be if it were moved to another cluster.

The (minimal) output of PAM consists of two vectors: (1) a p-dimensional vector ¢, where
¢; = k indicates that gene j belongs to cluster k, and (2) a K-dimensional vector m, where
my, = j indicates that the medoid of cluster k is gene j, where j € {1,...,p}and k € {1,..., K}.
An attractive property of PAM is that the clusters are identified by the medoids, which are genes
themselves, and it has been our experience that the medoids are stable representations of the
clusters.

Comparison with k-means One of the most well known partitioning methods is k-means.
In the k-means algorithm the observations are classified as belonging to one of k groups. Group
membership is determined by calculating the centroid for each group, the multidimensional ver-
sion of the mean, and assigning each observation to the group with the closest centroid. The
centroids are calculated by minimizing the sum over all elements of the squared-euclidean dis-
tance to its closest centroid. PAM has 2 crucial advantages relative to k-means. Firstly, k-means
only allows clustering with respect to the euclidean distance, while PAM accepts any dissimilar-
ity matrix as input. Secondly, PAM is more robust because it minimizes a sum of dissimilarities
instead of a sum of squared euclidean distances. The latter is particularly important in the
context of clustering genes when many genes do not really belong to any cluster so that most
clusters contain many badly clustered genes. In this situation the centroids of k-means will be
heavily affected by the badly clustered genes, while the medoids are much more robust elements
of the clusters. It has been our experience that the medoid-genes typically represent the strongly
clustered component of the cluster.

2.3 Visualisation of clusters.

We propose to visualize the clusters by 1) ordering the clusters 2) ordering the elements within
the clusters and 3) visualising the ordered dissimilarity matrix with colors such as red (genes
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are close) and green (genes are far apart). To be concrete, let’s consider the visualisation of the
clusters of genes as obtained with PAM. Let PAM (data, k, d) represent the output of PAM when
we give it the data set “data”, number of clusters k£ and distance metric d. Since the clusters are
defined by the medoids one can order the clusters by just ordering the corresponding medoids.

Ordering medoids. We propose to order the medoids by building a hierarchical tree from
the medoids with PAM as follows. Let “medoids.data” be the k& by n matrix containing the k
medoids. Initially, we apply PAM (medoids.data,?2,d) and label the two clusters with clustl
and clust2. For each of the two clusters we can now define the neighboring cluster “clust-next”.
Subsequently, at each node we apply PAM again with say k£ = 2 and we now order the k new
clusters by their distance with respect to medoid of “clust-next” going from maximal distance to
smallest distance if “clust-next” is to the right and from smallest distance to maximal distance
if “clust-next” is to the left. In this way each level of the tree has an ordered list or clusters.
By running down the tree until each cluster is of size one, we obtain a unique ordering of the
k medoids. Note that this ordering is based on the same dissimilarity measure as we used to
cluster the original data set.

We also implemented the following ordering based on minimizing a criteria. Consider a par-
ticular ordering of medoids. For component i and j in this ordered list we have a distance d(i, j)
between these two corresponding medoids. Compute now the empirical correlation between the
distance j — i in the list and the actual distance d(i,j) over all pairs (i,7),7 < j. We now
compute the ordering of medoids which minimizes this empirical correlation. In all our data set
examples the hierarchical PAM ordering of medoids corresponded with this optimized ordering
of the medoids, but we do not claim they generally agree.

Ordering genes within cluster. Given the ordering of clusters, it remains to cluster the
genes within the clusters. We choose to order the genes within each of cluster by either (i) their
distance with respect to the medoid of that cluster so that the badly clustered genes end up at
the edge of these clusters or (ii) their distance with respect to the medoid of the neighboring
cluster.

2.3.1 The parametric and nonparametric bootstrap.

In order to establish the variability and reproducibility of the clustering output S(un, X,) (e.g.
the clusters in level [* of the tree), we propose to run the parametric or nonparametric bootstrap.
This involves repeatedly sampling n observations Yl#, ce Yn# from a multivariate normal distri-
bution N (i, Xp) (van der Laan and Bryan (2001)) or from the empirical distribution which puts
mass 1/n on each of the original observations Y7, ...,Y,. One estimates the distribution (and,
in particular, the variance) of the clustering output S(uy, X, ), with the empirical distribution
of S(uit, =F).

Above we defined output S(uy,, Xy,) obtained by applying the PAM program to the empirical
mean and covariance matrix p,, >,. In order to carry out the bootstrap it is important that
S(pen, L) is defined as a deterministic rule applied to the data or a summary of the data (p,, X,,):
if the clustering output was based on visual inspection steps, then these need to be automated in
order to satisfactorily carry out the bootstrap. Now, we carry out precisely the same procedure
in each bootstrap sample.

Another clustering output is to simply apply PAM with fixed medoids. Since we have seen
that the selection of medoids (but not so much the cluster assignments) may be dependent on
the original order of the genes in the data set, it makes sense to select good medoids in the
initial clustering as we have suggested above and then continue to use these in the bootstrap.
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In order to establish the cluster variability when fixing the medoids, one fixes the medoids in
the bootstrap. Note that this bootstrap avoids estimating the variability in the selection of
the medoids. Nonetheless, it provides information about important components of the cluster
variability. Since the medoids are the same in each bootstrap sample, we can keep track of the
proportion of times a gene falls in each cluster. In other words, for each gene one keeps track of
the proportion of times among the bootstrap samples the gene fell into each of the clusters. ?
propose a cluster-probability plot to summarize these statistics which provides a visual way to
inspect the cluster reproducibility. These bootstrap cluster-specific probabilities can be used to
order the genes within the clusters so that the badly clustered genes can be removed or end up
at the edge of the clusters.

If the ordering of the clusters is not a parameter of interest, one might enforce an ordering
of the bootstrapped clusters corresponding as close as possible to the ordering in S(un, Xy)
by comparing their medoids. In this way, one aims at measuring the variability of the actual
clusters instead of the ordering. One can also plot the distance matrix ”distance(k(l*))” for a
number of bootstrap samples and inspect the variability of the cluster structures visually.

Specifics on the parametric bootstrap. Our goal is to estimate the distribution of
S, =S(fi,, ) € {0,..., K}?, where (Ji,, %,) are the observed mean and covariance matrix of
a size n sample from a N, M)(p,, ¥) distribution, where we will treat K as fixed. The parametric
bootstrap described below could also be used to address uncertainty of a data adaptively deter-
mined K. The parametric bootstrap estimates the distribution of §n with the distribution of
S, =8S(n,,, X,), where (,,, 3,,) are the observed mean and covariance matrix of a size n sample
from a N,(i,,, i\)n) From this point on, sample quantities (first-generation draws from the data-
generating distribution) will be indicated by hats and bootstrap quantities (second-generation
draws from statistics of an observed first-generation sample) with tildes.

When we draw from a N,(i,,, in), we will be faced with a singular covariance matrix s,
when n is smaller than p. In that case we add to the diagonal elements of f)n an arbitrarily
small number A > 0, which produces a nonsingular covariance matrix that is extremely close to
f)n. This ensures that we are sampling from a well-defined distribution.

So, for b =1,..., B (B large), we draw n observations (i.e. microarrays) \?ll’, .. .,\?g from

~ s ~h b .
Ny (fi,, ), compute the observed statistics (1%, 32,,), and record the estimated bootstrap subset

St =s(pt,» ~n) This provides us with B realizations S .. §B of S, = S(f,,, ). We use
this observed distribution as an estimate of the dlstrlbutlon of S and, for n large enough, one
can view the sampling distribution of S, as an estimate of the distribution of S,, = = S(p,,, by n)-

Important features of the sampling distribution.

To be specific, consider one of the cluster-based subset rules. Because of the high dimensionality
of §n, we limit our focus to certain aspects of the empirical distribution of §n Note that the
values and/or distributions of the quantities defined in this section certainly depend on the
sample size n; we will employ notation with and without the n, depending on the context.
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Indicate the size of a set A by |A|. Let

pi =pjin = P(S;>0)
Pj=PFPj, = P(S;>0,5>0)
Qij = Qijn = P(Si=5;>0)
sens = sens, = |SNS|/|S|
ppv =ppv, = |SNS|/[S]

The quantities p;, P;;, and Q;; are referred to collectively as “feature-specific probabilities”. The
random variables sens and ppv are will be called “quality measures”. It is important to note that
the concepts of sensitivity and predictive value as employed here differ from their epidemiological
counterparts, in that the p genes are not assumed to be i.i.d. Since these quantities are functions
of the estimated subset, the distribution of sensitivity and positive predictive value are to be
considered when evaluating a proposed subset rule.

The significance of sensitivity is rather obvious, but we would like to emphasize the impor-
tance of positive predictive value as well. If scientists use the estimated subset §n as a means
for selecting a relatively small set of genes for intensive study, it is crucial that the predictive
value be high, since a great deal of time and money could be wasted otherwise. This is especially
relevant when p is very large. Since an estimated subset for which 50% of the genes are false
positives might not be considered usable, information on the predictive value of the estimated
subset could alert researchers to the need to collect more data or to choose a different subset
rule.

The bootstrap analogue of the above feature-specific probabilities is the empirical frequency
in the bootstrap replicates of the appropriate event. Likewise the bootstrap estimate of the
distribution of a quality measure will be based on the appropriate empirical proportions. For
example, D; = Djn = 5 Zbl(gjb > 0) and sens’ = @Z = |SN SP|/|S|. All of these quantities
are retained in the bootstrap. For practical reasons, we focus on the single-gene probabilities,
pj, and sort the genes in descending order based on this. We report the top-ranked genes and
ensure that all members of §n are included. In such a list, the genes which fall “deep” into the
target subset S will typically appear before the genes which barely qualified for inclusion into
S. The scientist can begin carefully investigating the top ranked genes.

In some settings, there may be a subset of genes that are not only excluded from the target
subset S, but are regarded as particularly unsuitable for further study. The definition of such
genes is completely up to the user, but will generally correspond to genes that lie far outside
the target subset. We will denote this subset by £, which is a subset of §¢, the complement of
S. For example, one might regard the set £ = {j : |u;| < D,}, where D, < C,,, as particularly
inappropriate for further study. The proportion of such genes in the estimated subset is of great
interest; we will refer to this quantity as the “proportion of extremely false positives” or pefp.
If this proportion is always very low, one can be reasonably confident that the top ranked genes
of the reported subset contain no extremely false positives. We define §; = &;(p, X) = 1 if gene
jisin £ and §; = 0 otherwise, j = 1,...,p. Now, the proportion of extremely false positives

(pefp) for the estimated subset S,, can be defined as:

1 .
pefp =pefpn=—=—> I(&=1,5;>0).

1Sal 5=

As with sensitivity and predictive value, we can use the parametric bootstrap to estimate the
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expectation E(pefp) and variance Var(pefp). Note that if £ = S pefp is simply one minus
the positive predictive value. Therefore, pefp becomes interesting only when L is considerably
smaller than S°€.

Other important quantities of interest are the 0.95-quantiles of |f,, — p| = max; |1 — 1|
and max; ; |p,, — p|. It should also be noted that one could replace the PAM procedure described
above with some “supervised” clustering method that allows the analyst to specify the cluster
centers. If the centers were fixed at genes of known function, the clusters have a coherent
meaning throughout the bootstrap. In that case, we can also track how often each gene appears
in each fixed-center cluster and, thereby, obtain information on cluster stability.

Interpretation of the output of the parametric bootstrap.

By relying on asymptotic properties established in Section 2.4, we can view the relative frequen-
cies (pj, Pij, Qw) as estimates of the probabilities (pj, i35 Qw) Consider now the situation in
which 7 is too small to reasonably assume that (i, 3,) is close to  (p, X). In this case, it does
not follow that the distribution of Sn is close to the distribution of S It is our experience that
the results of the parametric bootstrap are still valuable. One can simply interpret the results
as a simulation study for estimation of S,, when sampling from N (I, i\)n) Findings of such a
simulation study (such as a low predictive value) will demonstrate the difficulty of estimating
S with the given sample size n. In particular, one can run the parametric bootstrap for several
subset rules and thereby determine which types of subsets can be reasonably estimated with the
available sample size.

2.4 Asymptotic theory.

Our proposed method for analyzing gene expression data reports an estimated subset §n =
S(ty,, i\)n) and bootstrap estimates of the feature-specific probabilities and other quantities, such
as the distribution of sensitivity and predictive value. In this section we prove the consistency of
§n and thereby the consistency of the bootstrap estimate of its distribution under appropriate
conditions. Additionally, we provide a sample size formula that controls the probability of the
estimated subset containing any extremely false positives.

Because p is typically much larger than n, we are interested in the performance of §n and the
parametric bootstrap when p(n) > n. Clearly, if p is fixed at some finite value, our method will
be valid for some sufficiently large n; but we are concerned with the case where p is essentially
infinite. If S is a fixed (in p) finite subset, which is a reasonable assumption, we have that
P(S C §n) (or, alternatively, the sensitivity) converges to 1 as the sample size converges to
infinity. This is true regardless of the rate at which p(n) converges to infinity. However, the
positive predictive value still may not converge to one (i.e. the number of false positives may not
converge to zero). It is not enough for the target subset to be merely contained in the sample
subset; we want the two sets to be identical with probability tending to one. To achieve this
convergence, we require uniform consistency of (i, i\)n) for (@, ¥). In summary, for a typical
subset rule S(+, -) and under the assumption that there are no subset elements on the boundary,
uniform consistency of (f,,, £,) for (p, £) implies that P(S, = S) — 1 as n — oo.

In order to control the error in §n as an estimate of & one needs to control the uniform
distance between (1,,, i\)n) and (p,X). In particular, if one wants to control the probability of
finding extremely false positives in S, then one needs (fi,,, &,) to be within a specified distance
e from the true (u, 3), where € will depend on the definition of an extremely false positive. For

21



example, consider the simple subset rule S(u) = {j : p; > log3}. Then one might define an
extremely false positive as a gene j with p; < log2. In this case, given a small user-supplied
number § > 0, one wants to choose the sample size n such that the probability that the uniform
distance between p,, and p is smaller than € = log3 — log 2 ~ 0.41 is larger than 1 — 4.

The next two theorems establish the uniform consistency of (f,, ) (and, therefore, S) and
provide a sample size formula, respectively; both proofs rely on Bernstein’s Inequality for sums
of independent mean-zero random variables. Recall that (see van der Vaart and Wellner, 1996,

page 102): If Z;,..., Z, are independent, have range within [-W, W], and have zero means,
then
PUZi+ ...+ Zn| > ) <2 —2°/2 (2.1)
. T exp | ———— )
! " =2OPALT Wax/3

forv>var(Z1+ ...+ Zy).

Theorem 2.4.1 (Consistency) Let p = p(n) be such that n/log(p(n)) — 0o as n — oo and
M < oo (recall that M bounds the absolute value of the underlying data). As n — oo, then

max |[1; — pj| — 0 in probability
J
and
max |2;; — X;;| — 0 in probability.
ij

This implies the following: Suppose that the subset rule (p, %) — S(u, X) is continuous in the
sense that if, for the sequence (f,,, X,) (p(n) vectors and p(n) x p(n) matrices, respectively),

1B ) = (D) g — 0. then S (. ) = S (1. B — 0. (2.2)

Then for any e > 0, R
P(|Sn = S|

For example, consider subset rule 2.5, defined in section 2.2, indexed by user-supplied C,, and
C,. If there ewists an € > 0 such that

{j:,uj € (C;L_QCM—FG)}:@
{(Zvj) P pij € (CP -6 CP +€)} = (bv (*)

then, for such a subset rule, we have

maz > €) — 0 as n — oo.

~

PS,=S8)—1asn— .

Theorem 2.4.2 (Sample Size Formula) Let ¢ > 0,1 > § > 0, and the number of genes
p be given. Let o be an upper bound of max; ajz and let W > 0 be a constant such that
P(Y; — pj € [-W,W]) =1, for all j. Define n*(p, ¢, 8, W, d?) as follows:

1 2 ?
(06,0, W) = C(logp +log 5), where ¢ = ele, 0%, W) = 5.

If n > n*, then
P(max |1; — pj| > €) < 0.
J
Similarly, if n > n*(p% €, 6, W2, J%), where J% is an upper bound of the variance of Y;Y}, then

P(max|S;; — $ij| > €) < 4.
ij
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The consistency of S(fi,,, %) is a direct consequence of the uniform consistency of (f,,, %)
We will prove the uniform consistency of f,,. For a particular component of p,,, application of
Bernstein’s Inequality gives:

2
—ne
Pl — s <2 —_—— | .
(|7 — il > €) < 2exp (202 n 2We/3>
Since P(U;4;) < Zj P(A;), we have an upper bound on the probability that the uniform
distance from p,, to p exceeds € > 0:

. . —ne?
P(mjaX\uj —uil >€) < ;P(‘Mj — pj| > €) < 2pexp (m) : (2.3)

The expression on the right converges to zero if n/ log(p(n)) — oo asn — oco. A similar argument
holds for i\)n

The n* in theorem 2.4.2 is precisely the solution obtained when we set the right-hand ex-
pression of (2.3) equal to 0 < § < 1 and solve for n. If one assumes independence of genes, then
P(max; |i; — pj| <€) =[[; P(|ii; — pj| < €). By applying Bernstein’s Inequality to each term
of the product, one obtains the same sample size formula as above, to first order approximation.
Therefore, this sample size formula is as sharp as Bernstein’s Inequality. In a similar fashion as
for the mean, one obtains such a sample size formula for P(max;; \EYZYJ — EY;Yj| > €) < and
thus for P(max;; \f]zj — Y| > €) < 4. In this case the summation is over p(p — 1)/2 elements
and Y;Y; is bounded by w2.0

If p increases from p; to pa, then n*(p) increases by a magnitude log(pa/p1)/c and, if p is
large, then the derivative %n* (p) = 1/(cp) actually converges to zero. Therefore the sample size
is heavily driven by the factor 1/c. Consider the example given above and suppose we want the
probability of including any extremely false positives to be less than 0.1. Suppose that p = 5000,
that the maximal variance is 0.5 and that the truncation level W is 1.4 (twice the maximal
standard deviation). Application of theorem 2.4.2 says that, if n > n*(5000,0.41,0.1,1.4,0.5) =
95, then P(sup; |i; — p5] > 0.41) < 0.1). Note that the effect of a huge increase in p on the
required sample size is minor: e.g. n*(100000,0.41,0.1,1.4,0.5) = 120.

To convey a general sense of the implications of this sample size formula, we provide a few
examples:

n*(p =5000,e=0.1,0 = 0.10, M = 2,06 = 0.5) ~ 1304
n*(p =5000,e=0.5,0 = 0.10, M = 2,6%> = 0.5) ~ 77
n*(p = 5000,e = 0.5,6 = 0.01, M = 2,02 =0.5) ~ 92
n*(p = 5000, € = 1.0,6 = 0.05, M = 2,02 = 0.5) 28

If we set the right-hand expression of (2.3) equal to § and solve for €, we obtain a 1—d-uniform
confidence band for p with radius e for each component:

L £ e(p,n, 0, W, o?), where

1 |2W 2 2W 2 2
— |2 z il ZV\2 2 z
€=5-173 (logp—l—log5) + \/<( 3 (logp+log5)) + 8no (logp—l—log5)>] (2.4)

23



It is better to construct a confidence band by first scaling the data to have variance one (i.e.
apply the formula to Y;j/o; and use 02 =1 in (2.4)) and then returning to the original scale by
multiplying the radius € with o; for each gene:

pj £ oje(p,n, s, W, o?=1).

In the above o can be estimated with its empirical counterpart oj,, j =1,...,p.

Figure 2.1 illustrates visually the implications of this sample size formula for several realistic
scenarios. In the top panel we have set ¢ = 1 and in the bottom e¢ = 0.58. Decreasing the
tolerable distance €, holding all other constants fixed, increases the required sample size. The
noise levels implied by the values of o in the range [0.5, 1.0] are typical for the data sets we
have seen. We note that the sample size formula is actually quite conservative. It makes no
assumptions about the correlation between the p genes and, when there is a significant amount
of correlation, the true dimension of the problem can be much smaller than p. In practice, given
the highly correlated microarray data, we see that the sample size formula produces extremely
false positive rates much lower than the nominal rate of 4.

Bonferoni simultaneous confidence interval. Suppose one is concerned with setting e such
that P(max; | pwjn—u; | /(0j/v/n) > €) < § for a small number § such as 0.05. Once this number
is obtained then that yields a simultanous confidence band pj, + €oj/v/n which contains with
probability 1 —4 all p; simultaneously. It is easy to show that if all y1;,,, j = 1,.. ., p, are pairwise
independent, then € ~ q;_s/(2p), where ¢, = ®~1(r) is the r-th quantile of the standard normal
cumulative distribution function ®. This choice of € is referred to as the Bonferoni adjustment,
which is thus conservative if the y;, happen to be dependent.

Bootstrapped simultaneous confidence interval. Let ¢ be chosen so that the distribution

|Hﬁ_lijn|

of the resampled u# is such that Pf (max; T > q) = 0.05, i.e. the proportion of times
Jjn

# “Hyn
across all bootstrapped samples that max; % > ¢ is smaller than or equal to 0.05. Now,
Jjn

a simultaneous 0.95-confidence interval for y is given by pj, & g * 0jn/+/n. The validity of this
confidence interval relies on the consistency of the bootstrap and therefore it will be of interest
to test its validity in a simulation study. The advantage of this simultaneous confidence interval
is that it exploits the dependencies between the components of u, and will therefore be less
conservative than the Bonferoni simultaneous confidence interval.

2.4.1 Consistency of the bootstrap.

Given this consistency of §n, we are now concerned with the asymptotic behavior of the feature-
specific probabilities as n — oo. To be able to prove such a theorem, we need to consider a
specified simple subset rule. For simplicity, we consider

S(/“l’v 2) = {] S g > C;mpij > Cpa for some j 7& ’L}, (25)

This rule seeks genes that are over expressed and that have a large correlation with at least one
other over expressed gene. Theorem 2.4.3 demonstrates that these probabilities converge to one
(zero) when the appropriate feature is present (absent) in the target subset. For example, for
genes j such that S§; > 0, we have that p; — 1.
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Figure 2.1: Sample size requirements for different situations.

25



Theorem 2.4.3 Consider the simple subset rule 2.5. Let p = oo and M < oo. Assume that
C,, and C, are chosen so that the boundary condition (%) of theorem 2.4.1 holds. Then the
feature specific probabilities p;,, and P;;,, converge uniformly in i, j to the corresponding feature-
indicators 1(j € S) and I((i,7) € S), as n — 0.

The following theorem proves consistency of the bootstrap estimates of the feature specific
probabilities under the condition that n/log(p(n)) — oo.

Theorem 2.4.4 Consider the simple subset rule (2.5). Let M < oo. Assume that C,, and C,
are chosen so that the boundary condition (x) of theorem 2.4.1 holds. If n/log(p(n) converges
to infinity, then Dj, and ﬁwn converge in probability uniformly in (i, 7) to the feature-indicators
I(j€8) and I((i,j) € S).

In order to establish asymptotic consistency of (i, i\)n) and validity of the bootstrap at a
non-degenerate level, we have proven an infinite dimensional central limit theorem for /n(p, —
1)Var, in which the latter are treated as elements of an infinite dimensional Hilbert space with
a weighted Euclidean norm . Subsequently, we prove nonparametric asymptotic validity of the
parametric bootstrap for the purpose of estimating the limiting distribution of /n(u, — p).
Similarly, this can be proved for /n(%, — X) if one assumes the multivariate normal model.
These proofs can be found in van der Laan and Bryan (2001).

In order to show formally that the parametric bootstrap is consistent for (u, 3), one first es-
tablishes that \/n(u,—u)Var converges in distribution to a Gaussian process as random elements
of some Banach (or Hilbert) space endowed with the Borel sigma algebra. Subsequently, one
shows that the bootstrap empirical process (sampling from Ny (L, i)n)) Vn(pn — p)VarBoot
converges in distribution to the same Gaussian process. If the latter holds, then one says that
the bootstrap method is asymptotically valid for estimation of the distribution of (i, i\)n),
considered as random elements of the Banach space.

Let R>°(A1) be the Hilbert space of infinite-dimensional vectors with inner-product (x,y); =
> TjYj A1y, where it is assumed that 3, A1; < oo. Then we can view v/n(u, — p) as a ran-
dom element of the Hilbert space R*(\). Similarly, let R*(\2) be the Hilbert space of infi-
nite dimensional vectors with inner-product (z,y)s = Zij T;ijYijA2,ij, where it is assumed that
Y _ij A2ij < co. Then we can view \/n(¥,—X) as a random element of R**(\2). The potential lim-
iting distribution of v/n(u, — ) is determined by the multivariate CLT for any finite dimensional
sub-vector of /n(u, — p) and is thus a Gaussian process 71 = (Z1(j) : j = 1,...,). Similarly,
the potential limiting distribution of \/n(X%, — ¥) is a Gaussian process Zs = (Z3(ij) : ¢,7). In
Hilbert spaces an infinite dimensional central limit theorem follows from the point-wise central
limit theorem and a rather weak tightness condition (see Appendix).

We have the following functional central limit theorem for p,, and 3.

Theorem 2.4.5 Let M < oco. We have that /n(u, — p)Var converges in distribution to the
Gaussian process (Z1, Zs) as random elements in R (A1) x R®(\2) endowed with the Borel
stgma algebra.

The following theorem proves that the bootstrap estimate of the distribution of v/n(u, — )
is asymptotically consistent.

Theorem 2.4.6 Let M < oo and let W, be the empirical mean vector based on sampling from
Noo(tty,, 2r). We have that \/n(p,, — ,,) converges in distribution to the Gaussian process Z;
(of theorem 2.4.5 above) as random elements in R*(\1).
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We can also prove asymptotic validity of the parametric bootstrap for v/n(X, — X), but that
requires assuming that ¥ ~ N (u, X).

2.5 Data analysis

We examine a data set which is an example of an unpaired comparison with observations from
two subpopulations. We extracted a publicly available data set from the data base accompanying
Ross et al. (2000). The authors performed microarray experiments on 60 human cancer cell lines
(the NCI60) derived from tumors from a variety of tissues and organs by researchers from the
National Cancer Institute’s Developmental Therapeutics Program. The data set includes gene
expression measurements for 9,703 cDNAs representing approximately 8,000 unique transcripts.
Each tumor sample was cohybridized with a reference sample consisting of an equal mixture of
twelve of the cell lines chosen to maximize diversity. We used the normalized tumor:reference
ratios, as in Ross et al. (2000). These were transformed to a logl0 scale and truncated above
and below, so that any ratio representing greater than 20-fold over- or under-expression was set
to log10(20).

For this comparative analysis, we selected two very different types of cancer from those
included in the NCI60: melanoma and breast. We created a data set with all samples from
these two types of cancer, which included seven breast and eight melanoma cell lines. Next, we
applied an initial subset rule in order to reduce the size of the data set for computational reasons
only. We retained those genes where at least 30% of all cell lines had a ratio corresponding with
greater than 2-fold over- or under-expression. Using a 30% cut-off, a gene differentially expressed
in one type of cancer and not the other would still be included. There were 3500 genes in the
resulting data set. This data set was divided into two smaller data sets consisting of the cell
lines from each type of cancer. These data sets were analyzed separately and also combined into
one data set by dividing the melanoma ratios by the geometric mean breast ratios before taking
the log. Unless otherwise noted, we are working with the single, combined data set containing
3500 genes and eight observations.

One goal of the analysis is to identify genes differently expressed in melanoma relative to
breast cancer; such genes help us to understand the biological characterization of different cancers
and may lead to new cancer-specific treatments. Another goal revisited in chapter 3 is to study
clustering patterns in the data set in order to discover information about how the genes involved
in tumors work together.

2.5.1 Selecting differently expressed genes

A common approach to selecting differently expressed genes is to retain those genes whose
absolute mean log ratios are greater than some cut-off value. In order to account for variance
as well as mean expression, one can standardize the log ratios by dividing them by their gene-
specific standard errors before taking the mean. These standardized means can be compared
to the quantiles of a standard normal distribution on an individual basis. For the combined
data set, p* = 1731 genes were significantly differently expressed at the a = 0.05 level (cut-off
value= zl_%/ vn = 0.69). Since we are in a multiple comparisons setting, it is advisable to
adjust the cut-off value. The Bonferoni adjusted cut-off value was 1.53 and produced a much
smaller subset of p* = 605 differently expressed genes. As mentioned above, the Bonferoni
adjustment is sharp if the genes are independent, but is conservative otherwise.
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An alternative, less conservative approach is to derive a cut-off value from an appropriate
null distribution with zero means and the true covariance structure. A parametric method is to
generate a large number of samples from a multivariate normal distribution N (0, p), where p is
the correlation matrix, and select a cut-off value such that no more than 1 — & of samples have
any differently expressed genes. The correlation matrix p can be estimated by the empirical
correlation matrix. A non-parametric method is to standardize the observed data so that each
gene has mean zero and variance one, then generate a large number of bootstrap samples from
this data (resampling cell lines with replacement), and use these to compute the cut-off value
such that no more than 1 — § of samples have any differently expressed genes. For both the
parametric and non-parametric methods, a less stringent approach is to choose the cut-off value
such that on average any sample is expected to have no more than 1 — & of genes differently
expressed. We used the nonparametric bootstrap with the more stringent criteria and obtained
a subset of p* = 889 genes. The cut-off value was 1.17, which lies between the value which

ignores the multiple comparisons and the too strict Bonferoni adjusted value.

2.6 Simulation to assess variability of empirical relative gene
expression and empirical pairwise distance between genes.

Let X be the p-dimensional column vector of gene-specific relative gene expressions representing
the relative gene expression profile for a randomly drawn subject. Thus we observe n i.i.d.
copies X1, ..., X, of this random vector X. The total data set “Gene-ID”, X1,...,X,,, can be
represented by an array with p rows and n columns.

Let Y = log(X) be the vector of truncated log-ratios and Y7, ...,Y,, are the i.i.d observa-
tions of the p-dimensional vector Y. In these experiments we are particularly concerned with
estimation of

i = FEY the vector of gene-specific population means

Y = E(Y —p)(Y — p)Tthe p by p matrix of covariances

and the corresponding p by p correlation matrix p which one can compute from >::

Yij ..
= ,i,7€{1,...,p}.
Pij 710 2Wi { p}

In particular, our subset rules S(u,>) maps these unknown parameters into a subset of genes
which is believed to be of interest for drug-development.

Let ptn, 3n, pn be the empirical counterpart of p, 33, p. In practice the subset of genes we are
going to select is S(pn, Xyn). Therefore this estimated subset will only be close to the wished
subset if 1, and X, are close to 1 and X-respectively. For example, if 1,,; deviates more than
log(3) — log(2) from the true p;, then the fact that p,; > log(3) (i.e. it is 3-fold differentially
expressed on average among the selected patients) does not imply that gene j is in truth 2-fold
differentially expressed. Therefore we are interested in determining a sample size so that we
can trust that the true means and true correlation are within a reasonable distance from the
observed means and correlations for each of the p genes.

A subset rule can still have a good performance when there are some highly wrong empirical
correlations. In particular, one can design a subset rule which protects oneself against false
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Table 2.2: Quantiles of standard deviations o, j = 1,...,p based on data set of a 12 colon-
cancer patients using truncation M = log(5) = 1.6, M = log(7.5) = 2 and M = log(10) = 2.3,
respectively.
M 05 07 09 max
1.6 048 0.55 0.67 1.38
2 0.51 0.60 0.74 1.55
2.3 0.52 0.62 0.78 1.74

positives due to high empirical correlations. To start with one can just use a higher rate of
initial screening so that it becomes much harder to make it into the clustering routine. For
example, one only selects highly differentially expressed genes (so that one end up clustering e.g.
only 100 genes) or one only selects genes with relatively small standard deviation. Moreover,
we can thin out the clusters by requiring strong correlations with the centers (medoids) of the
clusters: in this way, a gene which happens to have a strong correlation with various genes while
in truth it is not correlated at all might still not make the subset since it needs to be strongly
related with the actual center of the cluster. Suppose that one is interested in determining
which genes among m < p selected genes cluster with a given gene. In this case one just needs
to estimate m pairwise correlations of genes with the given gene. The bootstrap can be used to
compare various subset rules w.r.t to their performance in finding the correct subset of genes
and the number of false positives.

In this section we study the distribution of the maximal difference (over all p genes) be-
tween true and observed averages, true and observed standard deviations and true and observed
correlations under various sample sizes. In order to do this at an appropriate noise level we
use a noise level observed in an actual data set of 12 colon cancer patients. In order to create
a worst case scenario and to protect outselves against false positives we will determine these
distributions in the context that all genes are unrelated: if many genes are correlated than the
true dimension of the problem can be much lower than p. We also study the performance of
empirical correlations when the true correlation is high in order to determine how well we can
do in discovering all highly correlated genes.

The observed noise level in a data set depends on the truncation level M one uses: the larger
M the larger the noise level. We first compute the 0.5,0.7,0.9-quantile and maximum of the p
standard deviations of the by M truncated log-ratios of a colon-cancer data set with 12 patients.
Table 2.2 reports these quantiles for M = log(5), log(7), log(10).

2.6.1 Sample sizes for estimation of the population mean.

Consider a p = 10000 dimensional vector of log-relative gene-expressions where each component
is truncated by M. Let o; be the standard deviation of component j and let 0 = max; o;. The
following function computes the sample size

2
= 272 n() + 10(2/0))

such that with probability 1 — § the maximal difference max; | p,,; — 15 | over p genes is smaller
than e.

29



Table 2.3: Consider a p = 10,000 dimensional vector of log-relative gene-expressions where
each component is truncated by M. Let o; be the standard deviation of component j and
let 0 = max;o;. The following table gives the sample sizes such that with probability 0.95
the maximal difference max; | pn; — p1; | over p = 10000 genes is smaller than e. We provide
this sample size for M = log(5),log(7.5),log(10, corresponding 0.5,0.7,0.9,1-quantiles of the
p-standard deviations as observed in the colon-cancer data set and € € {0.1,0.2,...,1}.

M,Sigma 0.1 02 03 04 05 06 07 08 09 1
16,048 732 217 112 72 51 39 32 26 23 20
1.6,0.55 918 264 133 83 59 45 36 29 25 22
1.6,0.67 1296 358 175 107 74 55 43 35 30 25
1.6,1.38 5051 1297 592 341 224 159 120 94 76 63

2,051 843 254 132 8 61 47 38 32 27 24
2,0.60 1101 318 161 101 72 54 44 36 31 26
2,074 1585 439 214 131 91 68 53 44 37 31
2,1.55 6370 1636 746 430 282 201 151 118 96 79
23,052 895 273 143 93 67 52 42 36 31 27
2.3,0.62 1189 347 176 111 79 61 48 40 34 30
2.3,0.78 1767 491 240 148 102 Y7 60 49 41 35
2.3,1.74 8009 2052 934 538 352 250 188 147 118 98

Table 2.4: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the

maximal difference max;ciy . | ftnj — ptj | between p = 10,000 sample means and true means.

Here fi,,; is the sample mean of logratios based on n observations with N (mu;, sigma = 0.55)
distribution, 7 = 1,...,10000.
n 0.5-q 0.7-q 0.9q
n=15 0.56 0.59 0.63
n=30 040 0.41 0.43
n=60 0.28 0.29 0.31
n=100 0.22 0.22 0.24
n=150 0.18 0.19 0.20

Since n* only depends on p through log(p) the effect of p on the required sample size n* is
very minimal. For example, suppose the noise level is ¢ = 0.55, M = log(5) and one wants to
be sure that the sample means of p genes are within a distance € = 0.5 of the true means, then
the required sample size for p = 1 is 17 and the required sample size for p = 100000 is 69.

The following table 2.3 provides now these sample sizes for M = log(5), log(7.5),log(10) and
the values of o as computed in the table above.

This sample size formula is a conservative formula since it holds for any data generating
distribution function. We will now carry out a simulation to determine the distribution of
maxX;e(1,..p} | pnj — p; | for p = 10,000 at a noise level corresponding with the 0.7-quantile of
the 0,;’s we observed in a coloncancer patient data set at truncation level M = log(5). In all
these simulations we assume that all p genes are uncorrelated which corresponds with a worst
case scenario. For example, if n = 15, then with probability 0.9, each of the 10,000 observed
averages are within a distance 0.63 of the truth.
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Table 2.5: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the

maximal diffference max;c(i 1 | onj — 0; | between p = 10,000 sample standard deviations

and true standard deviations. Here o,,; is the sample standard deviations of logratios based on

n observations with N (mu;, sigma = 0.55) distribution, j = 1,...,10000.

n 0.5-q 0.7-q 0.9q
n=15 040 0.43 0.46
n=30 0.28 0.3 0.31
n=60 0.2 021 0.22
n=100 0.15 0.16 0.18
n=150 0.13 0.13 0.14

Table 2.6: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the
which are equal to zero. Here ,p;ij is the sample correlation of uncorrelated logratios for genes
1 and j with standard deviation o = 0.55 and p = 1000.
n 0.5-q 0.7-q 0.9-q
n=15 0.92 0.93 0.94
n=30 0.76 0.77 0.77
n=60 0.58 0.59 0.6
n=100 0.46 047 048
n=150 0.38 0.39 041

2.6.2 Sample size for estimation of the standard deviations.

Various interesting subset rules rely on estimates of the gene-specific standard deviations o;.
Therefore it is also of interest to know with high certainty that the true standard deviation is
within a reasonable distance from the observed standard deviation.

2.6.3 Sample size for estimation of the correlations.

If a pair of genes have an observed correlation larger than a certain number, then that might
be an important finding in the process of drug development. For example, one might find that
an unknown gene has a large correlation with a gene which is well known (from the literature)
to be an important cause of cancer. In that case, one might decide to carry out experiments
controlling this unknown gene. In addition, if one observes clusters of genes in the data then that
will be interpreted as that genes are working together. Our cluster routines are purely functions
of the observed correlations and can thus only be trusted if we do a good job in estimating the
true correlation matrix of the genes we decided to cluster. Note that we typically only cluster a
subset of all p genes: for example, we might just cluster all 3-fold differentially expressed genes.
Therefore we are particularly interested to know what sample size we need to estimate a 300 by
300 (if we cluster 300 genes) or at most 1000 by 1000 correlation matrix. Table 2.6 reports the
performance in estimation of a 1000 by 1000 diagonal correlation matrix (i.e. all correlations
are zero). Table 2.7 reports the performance in estimation of a 300 by 300 diagonal correlation
matrix (i.e. all correlations are zero).

Suppose now that all the true correlations one is interested in are high. Now, one might
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Table 2.7: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the
which are equal to zero. Here ,p;ij is the sample correlation of uncorrelated logratios for genes
1 and j with standard deviation o = 0.55 and p = 300.

n 0.5-q 0.7-q 0.9-q
n=15 0.87 0.89 0.91
n=30 0.69 0.71 0.73
n=60 0.52 0.54 0.57
n=100 0.42 042 043
n=150 0.33 0.34 0.34

Table 2.8: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the

maximal difference max;c1, ) | pnj — pj = 0.8 | of the p = 100,000 sample correlations and

true correlations. Here py, ; is the sample correlation based on n observations of X ~ N (0, 0.55),Y

with Y = 0.445X 4+ N(0,0.2) so that the true correlation between X and Y is 0.77.

n 0.5-q 0.7-q 0.9-q
n=15 1.1 1.1 1.2
n=30 0.59 0.61 0.64
n=60 035 0.36 0.38
n=100 0.24 0.25 0.27
n=150 0.18 0.18 0.19

want to be able to discover them all as highly correlated pairs of genes. Table 2.8 provides
the performance in estimating 100,000 highly correlated pairs simultaneously at various sample
sizes.

Suppose now that all the true correlations one is interested in are high. Now, one might
want to be able to discover them all as highly correlated pairs of genes. Table 2.8 provides
the performance in estimating 100,000 highly correlated pairs simultaneously at various sample
sizes.

Suppose now that one gene j* is given and one just wants to estimate the the p correlations
pjj* with this gene j*, 7 = 1,...,p. Tables 2.9 and 2.10 provides the performance in estimating p
zero-correlations for various sample sizes and p = 1000, 300. Table 2.11 provides the performance
in estimation of p = 300 high correlations for various sample sizes.

2.7 Simulation to assess clustering performance

The goal of this simulation study is to explore the performance of §n and the bootstrap in the
context of a known data-generating distribution. We are particularly interested in assessing the
difficulty of applying cluster labels in the presence of genes that belong to no cluster and how
that is affected by sample size. The simulation shows that it is beneficial to screen unrelated
genes prior to applying a clustering algorithm. We also see that unrelated genes tend to depress
conventional measures of the clustering strength. Lastly, it is apparent that post-screens affected
by isolated extreme values, such as the smallest entries in a column of a correlation matrix, will
require large sample sizes to achieve good performance of S and alternative screens should be
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Table 2.9: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the

maximal difference maxje(1,.. p} | pnjj* — pjj= | of the p = 1000 sample observed correlations

and true correlations with a fixed gene j*. Here p, ;;j~ is the sample correlation based on n

observations of X;, ~ N(0,0.55),Y; ~ N(0,0.55).

n 0.5-q 0.7-q 0.9-q
n=15 0.78 0.8 0.85
n=30 0.58 0.61 0.67
n=60 043 045 0.49
n=100 0.33 0.35 0.37
n=150 0.27 0.29 0.31

Table 2.10: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the

maximal difference max;ciy . | pn.jj* — pjj= | of the p = 300 sample observed correlations

and true correlations with a fixed gene j*. Here p, ;;j~ is the sample correlation based on n

observations of Xj, ~ N(0,0.55),Y; ~ N(0,0.55).

n 0.5-q 0.7-q 0.9-q
n=15 0.72 0.74 0.79
n=30 0.55 0.57 0.61
n=60 0.38 0.41 0.44
n=100 0.3 0.32 0.36
n=150 0.25 0.26 0.28

Table 2.11: Below we report the median, 0.7-quantile and 0.9 quantile of the distribution of the
maximal difference max;ciy . | pn.jj* — pjj= | of the p = 300 sample observed correlations
and true correlations with a fixed gene j*. Here p, j;+ is the sample correlation based on
n observations of X;, ~ N(0,0.55), Y; = 0.445X,, + Z;, Z; ~ N(0,0.55), so that the true
correlations are 0.77.
n 0.5-q 0.7-qg 0.9-q
n=15 0.34 045 0.65
n=30 0.22 0.27 0.36
n=60 0.15 0.18 0.21
n=100 0.12 0.14 0.17
n=150 0.092 0.11 0.13
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considered.

2.7.1 Data-generating distribution

We create a data-generating distribution by assuming a multivariate normal model and selecting
the parameters (p, ¥). The first priority is to impose a cluster structure; in particular, we want
K = 3 clusters of genes. There are three clusters — cluster A, cluster B, and cluster C — and each
contains 100 genes. Each cluster has a core set of genes that are more highly correlated with one
another and a more weakly correlated set of peripheral genes. The genes in a given cluster have
no correlation to genes in the other clusters. The clustered genes are embedded in a set of 300
other genes that have absolutely no correlation with other genes at all. The correlation matrix
of the full set of 600 genes p is block diagonal. With this set-up we are trying to simulate what
seems to be an important data structure: a fraction of the genes being studied are involved in
the phenomenon of interest and even break down into several well-defined clusters, but there are
many “noisy” genes on the array, which are not involved and whose presence makes it difficult
to find the relevant clusters.

The mean expression levels are also set with the cluster structure in mind. The noisy
genes have means near zero, with some individual genes exhibiting a mild amount of differential
expression. Cluster A contains genes that are over-expressed, many quite strongly. Most genes
in Cluster B are differently expressed, with slightly more being under-expressed than over-
expressed. Cluster C contains genes with a wide range of expressions. Gene-specific standard
deviations have different distributions for each cluster and for the noisey genes. Throughout
this section, we use yellow for cluster A, violet for cluster B, and blue for cluster C.

2.7.2 Subset rule

The subset rule is applied to the true mean and covariance (not simulated data), so that we can
examine properties of the target subset S. The rule we use is typical of those applied in many
microarray data analyses: first, screen for differently expressed genes and then apply cluster
analysis. We will exclude genes with an absolute mean || < logy 1.5 = 0.58, which corresponds
to 1.5-fold differential expression. Of the 600 genes, 318 are retained and 282 are excluded based
on this screen.

The remaining 318 genes are provided to a cluster analysis routine, with the dissimilarity
between two genes defined as 1 minus the absolute value of the correlation. For a fixed number
of clusters K, a partitioning method finds the best grouping and, by exploring different values of
K, we can assess the evidence for different K values (see Kaufman and Rousseeuw, 1990, chap.
1, sect. 3). It is also valuable to have a way to assign meaning to a particular cluster label
k; most scientific papers that employ cluster analysis to analyze microarray data discuss the
unifying theme of the genes found in each cluster. In the context of one data set, any clustering
algorithm will likely yield at least one partition that can be interpreted. However, when one
views a data set and its clustering as just one realization of a stochastic phenomenon, it is
desirable to have a way to enforce a coherent meaning for cluster label k. The cluster centers
that are important in most partitioning methods play this role very well. By fixing cluster
centers, one can ensure it is sensible to compare genes with label k from one realization of the
experiment to the next. Lastly, we prefer an algorithm called “partitioning around medoids”
(PAM) (Kaufman and Rousseeuw, 1990, chap. 2) to k-means because we like being able to use
any distance metric and we prefer that cluster centers be one of the underlying objects (in this
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Table 2.12: Average Silhouettes for K = 2, 3,4 in simulation study.

Which K Overall | Cluster | Cluster | Cluster | Cluster
genes? Avg. 1 2 3 4
Silh.
318 2 0.09 0.06 0.17
genes 3 0.13 0.12 0.17 0.11
(67 noise) 4 0.09 0.12 0.02 0.04 0.11
251 2 0.07 0.03 0.17
genes 3 0.09 0.04 0.17 0.10
(no noise) | 4 0.05 0.04 0.06 0.02 0.10

case, a gene) instead of an average of objects, a quantity that is difficult to interpret and less
robust to outliers.

Given any partition, Kaufman and Rousseeuw (1990) define for each object a quantity called
the silhouette, which reflects how well-matched an object is in its cluster versus the next closest
cluster. Silhouettes take values in the interval [—1, 1], with 1 corresponding to a perfect match.
Silhouettes are a valuable tool for assessing what is basically the goodness-of-fit for a clustering.
For a given data set and clustering method, silhouettes can be compared for different numbers
of clusters in order to choose the optimal number. There were 251 genes in clusters A, B, and
C that passed the differential expression screen (318 - 251 = 67 noise genes pass the screen, but
have silhouettes of zero). Silhouettes were examined for K = 2,3, and 4. When K = 2, we see
that cluster B is fully recovered, while clusters A and C are lumped together. When K = 3,
which we know to be the correct value of K, and we see that PAM recovers the underlying
clusters. When K = 4, clusters A and C are fully recovered and Cluster B is split into two.
The lack of evidence for K = 4 is apparent in the erratic, even negative, silhouettes for genes
in cluster B. The core versus periphery structure of the underlying clusters is also reflected in
the silhouettes. Table 2.12 presents average silhouettes for these clusterings, with and without
the 67 noise genes that pass the differential expression screen. We see that the overall average
silhouette is highest at the correct value of K, which is 3, regardless of the presence of the noise
genes. But the noise genes have a dampening effect on the silhouettes in general. This points out
the benefit of eliminating all unrelated genes prior to attempting any type of cluster analysis.

After clustering the genes, we chose to apply one last screen in another attempt to eliminate
uninteresting genes. The goal is to remove genes that are not particularly well-matched to
their cluster. We used two different approaches, one based on pairwise dissimilarities and one
based on silhouettes. The dissimilarity screen DYS works in this manner: the cluster center (or
“medoid”) is automatically included. Any gene with a dissimilarity of less than 0.655 with the
cluster center is included. Any gene with a dissimilarity of less than 0.655 with any previously
included gene is also included. This last step is repeated until no changes occur. The silhouette
screen SILH includes all genes with a silhouette greater than 0.08. Both of the screens result in
target subsets S containing 150 genes. Table 2.13 presents target subset S membership by true
cluster membership for both screens.

To summarize the subset rule, the genes were first screened for differential expression by
requiring that |p;| > 0.58. The remaining 318 genes are clustered by PAM, with the cluster
number K = 3. The cluster centers are noted and will be fixed in future analyses. In light of
the clustering, genes are screened again based either on dissimilarities or silhouettes to yield a
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Table 2.13: Target subset membership by true cluster membership.
Target Subset S; =

True 0 [1 J2 [3 [>0]AN
DYS screen

Noise 300 0 300
Cluster A 50 50 50 100
Cluster B 27 73 73 100
Cluster C 73 27 27 100

450 | 50 73 27 150 | 600

SILH screen

Noise 300 0 300
Cluster A 71 29 29 100
Cluster B 12 88 88 100
Cluster C 67 33 33 100

450 | 29 88 33 150 | 600

final subset containing 150 genes and their cluster labels.

2.7.3 Sampling distribution of §n

We generated 100 samples of size n = 25,50, and 150 from the chosen data-generating distri-
bution N((u, X)) and applied the two subset rules described above. Based on these samples,
we can estimate the reappearance probabilities p; and pé?. In Figure 7?7, we examine the effect
of sample size in the DYS screen. The results are somewhat counter-intuitive but illustrate an
important phenomenon. At the series of sample sizes considered here (n = 25,50, 150), overall
pj tend to decrease for all genes. Average p; within different values of & are presented in the
lower left panel. But it is important to examine the cluster-specific reappearance probabilities.
The top panel presents this information for 4 typical genes, one for each value of S, and the
lower right panel presents averages within values of §. We see that, while overall p; may be
declining, the correct cluster-specific pf are climbing steadily. One expects that, had we added
a larger sample size such as n = 300, even the overall p; would begin to increase as n does.
The results of this simulation demonstrate that the mean requires much less data to estimate
than the covariance structure. For all sample sizes, the expected number of genes passing the
differential expression screen is very close to the true number of 318. It is approximately 325,
323, and 321 for n = 25,50, and 150, respectively. From other simulations not reported here,
in which the subset rule consists solely of the differential expression screen, we know that both
sensitivity and positive predictive value at this stage are extremely high (between 0.95 and 0.99)
and, therefore, the correct genes are almost always passing this initial screen at all sample sizes.
The problem occurs in the clustering and DYS screen — that is, the steps of the subset rule that
depend on the covariance. At n = 25, many genes are misclassified into the incorrect cluster,
but frequently pass the dissimilarity screen due to sampling variability in the covariance. Since
a gene can pass this screen by exhibiting even one extremely small pairwise distance, it is almost
always passed for small samples. Therefore, the probability of appearing in the §n has significant
contributions from all three cluster-specific probabilities p}, p?, and p?. This can be seen in the
first stacked column for each of the 4 genes highlighted in the top panel of Figure ?7. As the
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Table 2.14: Cluster-wide quality measures for the DYS rule in the simulation study.

n = 25 n = 50 n = 150
E{Sens} 0.98 0.97 0.77
E{PPV} | 0.45 0.50 0.84
E{PEFP} | 0.00 0.00 0.00
PAFP 0.48 0.09 0.00

sample size increases to 50 and 150, this misclassification decreases and p; becomes dominated
by the correct cluster-specific probability. This can be seen in the second and third stacked
columns. These simulation results suggest a modification of the DYS screen in which a gene
must have a sufficiently small dissimilarity specifically with the cluster center.

The behavior described above is also apparent in subset-wide measures of quality, reported
in Table 2.14. As expected, the sensitivity decreases at these sample sizes, but the positive
predictive value increases. Once again, we conjecture that the sensitivity would increase for
n > 150. Extremely false positives were defined as genes with absolute mean expression less than
logy 1.1 = 0.14. The expected proportion of extremely false positives (E{PEFP}) is essentially
zero for all n and the probability of any extremely false positives (PAFP) decreases as n grows.

The situation is quite different for the subset rule SILH that screens based on the silhouettes.
Summary information on p; and pé? is depicted graphically in Figure 77. It is immediately
apparent that the reappearance probabilities are much lower in general than those seen with the
DYS rule. This is due to the fact that, compared to the silhouettes produced by the true block
diagonal correlation matrix, the silhouettes in observed data are lower. The average silhouette
in the target subset S is 0.09. The expected average silhouette in the sample subset S is 0.02.
The non-zero empirical correlation that arises between even unrelated genes has the effect of
making the clustering appear to be less strong. Therefore, when applying the silhouette cutoff
to a clustering based on a finite amount of data, we are left with a smaller set of genes. The
average size of §n is approximately 32, 27, and 43 for n = 25, 50, and 150, respectively. Both the
expected subset size and the p; and pg? seem to grow very slowly as the sample size increases. We
have also noted here and in other analyses that the values of the silhouettes are very dependent
on the dimension of the data set (number of genes), so that universal cutoff values as described in
Kaufman and Rousseeuw (1990) are not appropriate in the gene expression context. One screen
that may be more useful than absolute cutoffs based on silhouettes is to always retain a fixed
number of top-ranked genes based on silhouettes or estimated cluster-specific probabilities. If one
wishes to test the significance of a silhouette, we propose using a simulation from an appropriate
null distribution (i.e.: one with no clustering).

Table 2.15 presents subset-wide measures of quality for the SILH rule. Both sensitivity and
positive predictive value increase with n and the probability of any false positive is extremely
small even at n = 25 and quickly falls to zero.

We are also interested in the actual gene-specific probabilities p; and p?. For genes in &
for the DYS rule, although the overall p; decrease, the correct cluster-specific probabilities pg?
increase with n. In fact, at n = 150, essentially no genes appear in S carrying the incorrect
cluster label. This observation supports the above discussion of the DYS rule. Consistent with
the above findings regarding the stringency of the silhouette-based screen, we see relatively low
pj, which grow very slowly with n, for the SILH rule. The misclassification of genes is practically
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Table 2.15: Cluster-wide quality measures for the SILH rule in the simulation study.

n = 25 n = 50 n = 150
E{Sens} 0.18 0.18 0.28
E{PPV} 0.86 0.98 0.99
E{PEFP} | 0.00 0.00 0.00
PAFP 0.04 0.00 0.00

impossible with this rule.

2.7.4 Bootstrap results

For each of the 100 size n samples generated from the data-generating distribution N ((u, X)),
we carried out the parametric bootstrap as described in van der Laan and Bryan (2001). Since
the simulated data is multivariate normal distributed here, the use of this distribution in the
bootstrap is appropriate. The empirical distribution of the bootstrap subsets allows us to esti-
mate interesting features of the sampling distribution of S. The probability of gene j appearing
in §n, i.e. pj, is estimated by the proportion of bootstrap subsets in which gene j appears.
An analogous approach leads to estimates of p?. Figures ?? and 77 plot true reappearance
probabilities against average bootstrap probabilities for the DYS and SILH rules, respectively.

In finite samples, the expected bootstrap probabilities are biased estimators of the true
probabilities. For certain simple rules, this bias is relatively straightforward to quantify and is
discussed in ?). For complicated rules such as DYS and SILH, the only relevant result is that, as
n — oo, the expected bootstrap probabilities will approach 1 for genes in & and 0 for all other
genes. Graphically, this means that as n — oo, we will eventually see points only at (0,0) and
(1,1). But for finite n, plots such as 7?7 and ?? are the best way to understand the relationship
between the expected bootstrap and true reappearance probabilities.

2.7.5 Distribution of the sample mean

For a fixed n and J, the formula stated below in equation 2.4.2 can be solved for the € such that
the probability of even one component of the p-dimensional sample mean p,, varying by more
than e from the corresponding component of the true mean g is less than 0 < § < 1. The sample
size is quite conservative, since it does not exploit the correlation among the genes. That is, when
one computes values of € > 0 as described below, the actual probability of max; |11; — ;| > € is
much less then §. Table 2.16 illustrates this and also shows that one can use a value of ¢ that
is much smaller than the actual maximum of the gene-specific log ratio standard deviations and
still see favorable results. In all instances, n = 25 and M = 5.

An alternative, less conservative approach to determining the sample size needed for a certain
precision is to perform simulations utilizing the correlation structure in the data. By the central
limit theorem, we have that the sample mean fi is asymptotically distributed N (fin, ﬁ)n). By
simulating from this distribution, we can determine the sample sizes needed for different levels

of precision. Non-parametric simulations could also be employed.
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Table 2.16: Demonstration that the sample size formula is conservative.

Nominal § | € Actual o

0.05 2.64 0.000 max; 0; = 2.06

0.50 2.27 0.000 max; 0; = 2.06

0.20 1.52 0.005 75-th quantile of o; = 0.89
0.40 1.14 0.030 25-th quantile of o; = 0.37
0.80 1.01 0.055 0.25

2.7.6 Conclusions

These simulations illustrate some important issues encountered in cluster analysis of gene ex-
pression data. In particular, we see that sampling variability of the covariance structure and
the presence of unrelated genes can have a strong impact on partitioning algorithms and mea-
sures of cluster strength and stability. We have found that pre- and post-screening of the genes
helps to avoid some of these problems. The simulations show that screens based on differential
expression are accurate even for small sample sizes, whereas screens based on the covariance are
harder to estimate accurately. One drawback of screening the genes, however, is that important
or interesting genes can be excluded along with the “noisy” genes we wish to remove.

In response to this issue, we have developed an algorithm called Hierarchical Ordered Parti-
tioning And Collapsing Hybrid (HOPACH), which incorporates both partitioning and agglom-
erative steps in order to identify clustering patterns in the data even in the presence of many
unrelated genes. We have conducted simulations which illustrate that this methodology does
better than simple partitioning or agglomerative methods at identifying small clusters in the
presence of many noisy genes (van der Laan and Pollard (2001)). In Section 2.5 we outline
the HOPACH method and apply it to a cell line data set with two subpopulations. We also
demonstrate methods for selecting differently expressed genes using a null distribution.

2.8 Simulations to compare different bootstrap methods.

We report here on a simulation study carried out in Pollard and van der Laan (2001). The
nonparametric bootstrap has the advantage of being computationally much easier than the
parametric bootstrap. In addition, the nonparametric bootstrap avoids distributional assump-
tions about the parameter of interest, whereas the estimation of the distribution of \/n(%, —X)
using the parametric bootstrap is only consistent under the model assumption. There is reason
to believe, however, that the parametric bootstrap might perform better in the gene-expression
context, where the number of observations n is typically very small relative to the dimension p
(number of genes). The performance of the bootstrap is measured by how well the distribution
of 07 approximates the distribution of 6,,. It is clear that this performance is mainly dependent
on how close P, is to P. Our initial feeling was that in this setting, the empirical distribution P,
(i.e. nonparametric bootstrap) might be an inappropriate estimate of P. Another fact of inter-
est is that the nonparametric bootstrap is known to be inconsistent in various low-dimensional
examples, while the parametric bootstrap is consistent under minimal additional assumptions
given that the parametric model is correct Giné and Zinn (1990).

With these ideas in mind, we conducted a simulation study to assess the asymptotic validity
of the nonparametric, convex, and parametric bootstraps for estimating the distribution of a
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gene clustering parameter. We used p = 3000 genes and n = 40 samples. These choices reflect
typical dimensions of the data matrix X (possibly after prescreening) as seen in commercial and
academic settings. In order to investigate the effect of asymptotics on our results, we repeated
the simulations using n = 250 samples.

2.8.1 Simulation: Multivariate Normal Data (with diagonal covariance)

This simulation investigates gene clustering. The true data generating distribution was chosen
to be a multivariate normal with diagonal covariance matrix so that the genes were uncorrelated.
For simplicity, a fourth of the genes was generated from each of four distributions: N(0.5,0.25),
N(-0.5,0.5),N(1,1), N(—1,0.75). The summary measures of interest were selected to be the 0.9
quantile of the maximum absolute difference in the mean vector, median vector, and correlation
matrix. These measures give a good indication of how far a distribution is from the truth.

In order to define the “true” values of the summary measures, a large number N draws
from the true distribution were compared to the known mean, median and correlation. Results
were compared for N = 100, 1000, 10000 and showed little dependence on N so that N = 100
was deemed sufficient. Next, a single draw from the true distribution was identified as the
”observed” data and the three types of bootstrap were performed with convex repeated for
d = 0.1,0.3,0.5. In each case, B = 100 bootstrap samples were generated from which the 0.9
quantiles were calculated. In order to investigate the variability of these measures, we repeated
each simulation twenty times with n = 40, obtaining twenty sets of 0.9 quantiles. From these, we
calculated a mean and standard deviation. The coefficient of variation was on the order of 2.5%
for the mean, 3.0% for the median and 1.25% for the correlation. These values were sufficiently
small that we chose to use the results from just one simulation of B = 100 bootstrap samples
in each case.

Table 2.17 shows the results of Simulation 1. We found that the bootstrap is good at n = 250
and a little conservative at n = 40. At both sample sizes, the bootstrap performed poorly for
the median, which is a known result. It is interesting to note that in contrast to our hypothesis,
the nonparametric bootstrap actually performed well relative to the convex and parametric
bootstrap. We had expected the convex bootstrap, a smoothed version of the nonparametric,
to perform consistently better than the nonparametric, but instead found that the convex was
more biased for the mean than the nonparametric, performing best when d was smallest (d = 0
is equivalent to nonparametric).

This simulation suggests that the nonparametric and parametric bootstraps can be used to
assess the variability of summary measures of gene clustering (see also van der Laan and Bryan
(2001)). Since estimated variability in the means is quite accurate and estimated variability in
the correlation is accurate at n = 250 and conservative at n = 40, then we should be able to
assess the variability of subset rules of the form S(u,Y¥) accurately (or at least conservatively)
for reasonable sample sizes.
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0.9 quantile of maximum absolute difference
Parameter: Mean ‘ Median ‘ Correlation
n=40
True distribution | 0.60 0.74 0.75
Nonparametric 0.60 0.98 0.89
Convex d=0.1 0.59 0.97 0.89
Convex d=0.3 0.54 0.86 0.88
Convex d=0.5 0.50 0.78 0.87
Parametric 0.63 0.93 0.84
n=250
True distribution | 0.25 0.30 0.35
Nonparametric 0.26 0.38 0.36
Convex d=0.1 0.23 0.34 0.36
Convex d=0.3 0.21 0.30 0.36
Convex d=0.5 0.20 0.27 0.36
Parametric 0.24 0.36 0.35

Table 2.17: Results of Simulation 1 for gene clustering. B = 100 i.i.d. bootstrap samples were
used in each simulation. Every bootstrap sample included n = 40 or n = 250 observations of a
3000-dimensional gene expression vector. The 0.9 quantile of the maximum absolute difference
in each summary measure is reported.

2.9 Data Analysis in Human Acute Leukemia

Golub et al. (1999) analyze gene expression data in human acute leukemias to demonstrate
a proposed method for discovering cancer classes (within a broader cancer diagnosis such as
leukemia) and for predicting the class membership of a new tumor. The primary data consists
of profiles for 38 leukemia patients, 27 of which have acute lymphoblastic leukemia (ALL) and 11
of which have acute myeloid leukemia (AML). For each patient there is a gene expression profile
obtained from hybridization of bone marrow RNA to Affymetrix oligonucleotide microarrays.
With oligonucleotide arrays, a specific probe (DNA fragment) is deposited on each spot on the
array in a fixed quantity. With the cDNA arrays described earlier, there is much less control
over the amount of probe placed on the array and that is the main reason for hybridizing two
samples at once. By competitive hybridization, we can measure relative expression and avoid
relying on the absolute intensity measured from one sample alone. This technical distinction
means that one can actually interpret the raw intensities from an Affymetrix chip and compare
them from one patient to another.

We use our methodology to search for the subset of genes that are the best classifiers for
diagnosis. It is clinically important and, apparently, difficult to distinguish the two tumor classes.
Obviously, we want to look for genes which are differentially expressed in ALL patients versus
AML patients. Since there is no natural pairing of measurements, we have chosen to form a
reference AML expression for each gene by taking the geometric mean of the intensities across
all 11 subjects. We use this as the denominator and form a ratio for each gene for all 27 ALL
patients. Therefore n = 27 and, after data pre-processing recommended by Golub et al. (1999),
we have p = 5925 genes.
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Table 2.18: Data analysis bootstrap results on subset quality.

Avg Bootstrap Estimate ‘
K=2 K=3
Sensitivity 0.88 0.88
Positive Predictive Value 0.85 0.84
Prop. of Ext. False Pos. 0.00 0.00
Any Ext. False Pos. 0.00 0.00
0.90 quantile of max abs dev. (mean) 1.20 1.25
0.90 quantile of max abs dev. (std dev’'n) || 3.34 3.31
0.90 quantile of max abs dev. (corr) 1.00 1.00
0.90 quantile of max abs dev. (covar) 11.15 10.93

We retained genes with at least 3-fold differential expression, which translates into an ab-
solute log-ratio mean of at least 1.585. Of the original 5925 genes, 147 passed this pre-screen.
We then ran PAM for several cluster numbers. The distance D;; between genes ¢ and j was
defined as one minus the modified correlation proposed by Eisen et al. (1998). This quantity
is obtained when one uses the normal formula for correlation p;; = 0yj/0s0; but replaces the
means f; and p; with a user-specified reference value (in this case zero) in the usual calculation

of covariance and standard deviation (e.g. oj; = E(Y;Yj), o) = \/E(Y?), and pl; = o};/0j0}).
As recommended by Kaufman and Rousseeuw we chose the number of clusters K by inspecting
the average silhouette widths for various values of K. For K = 2,3, and 4, the average silhou-
ette widths were 0.87,0.74, , and 0.24 respectively (for K =5, ..., 9, average silhouettes widths
were consistently below 0.24). We decided to run the bootstrap for both K = 2 and K = 3
and omitted the post-screen in both cases. Genes with absolute mean less than 0.07, which
corresponds to 1.05-fold differential expression or less, were deemed particularly unsuitable as
classifiers and 1415 genes met this criterion in the observed data. We carried out 100 bootstrap
iterations and, once the medoids for the observed data were found, the cluster centers were fixed
at these medoids throughout the bootstrap.

Table 2.18 provides basic quality measures for the bootstrap subsets. We see that sensitivity
and positive predictive value are high (around 85%) for both bootstraps and we see no extremely
false positives. Figure 77 presents the single-gene proportions from the bootstrap both the K = 2
and K = 3 cases; the length of each horizontal bar represents the number of bootstrap iterations
in which a particular gene appears in the bootstrap subset. Since the cluster centers were fixed,
we can also report the stability of cluster labels and the relative frequency of each label is
depicted by the shading within the horizontal bars. We see that, when increasing the cluster
number from 2 to 3, in fact we split one existing cluster into two and leave one cluster untouched.
In both cases, the genes in the estimated subset reappear extremely often and almost always
carry the same label as in the estimated subset. Overall, the stability of these clusters is quite
strong. This is confirmed by the cluster-specific quality measures presented in table 2.19.
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Table 2.19: Data analysis bootstrap results on cluster stability.

K = 2 Bootstrap Avg. K = 3 Bootstrap Avg.
Cluster || Medoid | Size | Sensitivity | Pred. || Medoid | Size | Sensitivity | Pred.
Value Value
1 1936 | 106.2 0.90 0.89 1936 | 106.3 0.89 0.89
2 5706 | 47.6 0.85 0.78 2227 | 139 0.83 0.76
3 3816 | 34.2 0.81 0.75
| | 153.8] 0.88 085 | 1[154.3] 088 |0.84
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