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ABSTRACT: Image segmentation plays a crucial role in many medical imaging applications by automat-
ing or facilitating the delineation of anatomical structures and other regions of interest. We present herein
a critical appraisal of the current status of semi-automated and automated methods for the segmentation of
anatomical medical images. Current segmentation approaches are reviewed with an emphasis placed on
revealing the advantages and disadvantages of these methods for medical imaging applications. The use
of image segmentation in different imaging modalities is also described along with the difficulties encoun-
tered in each modality. We conclude with a discussion on the future of image segmentation methods in
biomedical research.

1 Introduction

Diagnostic imaging is an invaluable tool in medicine today. Magnetic resonance imaging
(MRI), computed tomography (CT), digital mammography, and other imaging modal-
ities provide an effective means for noninvasively mapping the anatomy of a subject.
These technologies have greatly increased knowledge of normal and diseased anatomy
for medical research and are a critical component in diagnosis and treatment planning.

With the increasing size and number of medical images, the use of computers in fa-
cilitating their processing and analysis has become necessary. In particular, computer
algorithms for the delineation of anatomical structures and other regions of interest are
a key component in assisting and automating specific radiological tasks. These algo-
rithms, called image segmentation algorithms, play a vital role in numerous biomedical
imaging applications such as the quantification of tissue volumes [98], diagnosis [176],
localization of pathology [208], study of anatomical structure [198], treatment plan-
ning [90], partial volume correction of functional imaging data [128], and computer-
integrated surgery [6, 61].

Methods for performing segmentations vary widely depending on the specific applica-
tion, imaging modality, and other factors. For example, the segmentation of brain tissue
has different requirements from the segmentation of the liver. General imaging artifacts
such as noise, partial volume effects, and motion can also have significant consequences
on the performance of segmentation algorithms. Furthermore, each imaging modality
has its own idiosyncrasies with which to contend. There is currently no single segmen-
tation method that yields acceptable results for every medical image. Methods do exist
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that are more general and can be applied to a variety of data. However, methods that
are specialized to particular applications can often achieve better performance by taking
into account prior knowledge. Selection of an appropriate approach to a segmentation
problem can therefore be a difficult dilemma.

This chapter provides an overview of current methods used for computer assisted or
computer automated segmentation of anatomical medical images. Methods and applica-
tions that have appeared in the recent literature are briefly described. A full description
of competing methods is beyond the scope of this chapter and the readers are referred
to references for additional details. We focus instead on providing the reader an intro-
duction to the different applications of segmentation in medical imaging and the various
issues that must be confronted. Also, we refer only to the most commonly used radi-
ological modalities for imaging anatomy: magnetic resonance imaging (MRI), X-ray
computed tomography (CT), ultrasound, and X-ray projection radiography. Most of the
concepts described, however, are applicable to other imaging modalities as well.

This chapter is organized as follows. In Section 2, common terminology and issues
associated with the segmentation of medical images are defined and discussed. In Sec-
tion 3, we briefly describe methodologies used in common segmentation approaches. In
Section 4, we review the ways in which segmentation methods have recently been ap-
plied in different imaging modalities. Finally in Section 5, important issues relating to
the future of medical image segmentation are discussed.

2 Background

In this section we define terminology that will be used throughout and describe important
issues in the segmentation of medical images.

2.1 Definitions

An image is a collection of measurements in two-dimensional (2-D) or three-dimensional
(3-D) space. In medical images, these measurements or image intensities can be radia-
tion absorption in X-ray imaging, acoustic pressure in ultrasound, or RF signal amplitude
in MRI. If a single measurement is made at each location in the image, then the image
is called a scalar image. If more than one measurement is made (eg. dual-echo MRI),
the image is called a vector or multi-channel image. Images may be acquired in the
continuous domain such as on X-ray film, or in discrete space as in MRI. In 2-D discrete
images, the location of each measurement is called a pixel and in 3-D images, it is called
a voxel. For simplicity, we will often use the term “pixel” to refer to both the 2-D and
3-D cases.

Classically, image segmentation is defined as the partitioning of an image into non-
overlapping, constituent regions which are homogeneous with respect to some charac-
teristic such as intensity or texture [66, 59, 132]. If the domain of the image is given by
I , then the segmentation problem is to determine the sets Sk � I whose union is the
entire image I . Thus, the sets that make up a segmentation must satisfy

I =
K[
k=1

Sk (1)

where Sk
T
Sj = ; for k 6= j, and each Sk is connected. Ideally, a segmentation method

finds those sets that correspond to distinct anatomical structures or regions of interest in
the image.
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When the constraint that regions be connected is removed, then determining the sets
Sk is called pixel classification and the sets themselves are called classes. Pixel classi-
fication rather than classical segmentation is often a desirable goal in medical images,
particularly when disconnected regions belonging to the same tissue class need to be
identified. Determination of the total number of classes K in pixel classification can be
a difficult problem [97]. Often, the value of K is assumed to be known based on prior
knowledge of the anatomy being considered.

Labeling is the process of assigning a meaningful designation to each region or class
and can be performed separately from segmentation. It maps the numerical index k of
set Sk, to an anatomical designation. In medical imaging, the labels are often visually
obvious and can be determined upon inspection by a physician or technician. Computer
automated labeling is desirable when labels are not obvious and in automated processing
systems. A typical situation involving labeling occurs in digital mammography where
the image is segmented into distinct regions and the regions are subsequently labeled as
being healthy tissue or tumorous.

Methods which delineate a structure or structures in an image, including both classical
segmentation and pixel classification methods, are considered in this review. Although
we do not discuss specific labeling methods, we will discuss several techniques that
perform both segmentation and labeling simultaneously.

Two fields closely related to segmentation that we do not discuss here are feature
detection and motion estimation. The distinction we make between segmentation and
feature detection is that feature detection is concerned with determining the presence of
some image property while segmentation generally assumes that the property is already
present and attempts to precisely localize areas that possess the property. For example,
edge detection methods can determine the location of edges in an image but without
further processing, do not necessarily extract any region of interest. Motion estimation
methods often consist of applying segmentation algorithms to time sequences of images.
We consider this application of segmentation to be a separate branch of research and do
not include it in this review.

2.2 Dimensionality

Dimensionality refers to whether a segmentation method operates in a 2-D image domain
or a 3-D image domain. Methods that rely solely on image intensities are independent
of the image domain. However, certain methods such as deformable models, Markov
random fields, and region growing (described in Section 3), incorporate spatial informa-
tion and may therefore operate differently depending on the dimensionality of the image.
Generally, 2-D methods are applied to 2-D images and 3-D methods are applied to 3-D
images. In some cases, however, 2-D methods are applied sequentially to the slices of a
3-D image [7, 52, 103, 141]. This may arise because of practical reasons such as ease of
implementation, lower computational complexity, and reduced memory requirements.
In addition, certain structures are more easily defined along 2-D slices.

A unique situation that occurs in medical image segmentation is the delineation of
regions on a non-Euclidean domain, such as in brain cortex parcellation [148, 156]. This
is essentially segmentation on a surface of measurements. Because a surface is a 2-D
object folded in 3-D space, segmentation on a surface can not be treated as a standard
2-D or 3-D problem. The modeling of spatial characteristics along a surface is much
more difficult than in a standard imaging plane because of the irregular sampling used
by mesh representations and because of the need to compute geodesics [89]. This is an
emerging area of research and preliminary results have shown great promise.
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(a) (b)

Figure 1: Illustration of partial volume effect: (a) Ideal image, (b) acquired image.

2.3 Soft segmentation and partial volume effects

Segmentations that allow regions or classes to overlap are called soft segmentations.
Soft segmentations are important in medical imaging because of partial volume effects,
where multiple tissues contribute to a single pixel or voxel resulting in a blurring of
intensity across boundaries. Figure 1 illustrates how the sampling process can result in
partial volume effects, leading to ambiguities in structural definitions. In Figure 1b, it is
difficult to precisely determine the boundaries of the two objects. A hard segmentation
forces a decision of whether a pixel is inside or outside the object. Soft segmentations
on the other hand, retain more information from the original image by allowing for
uncertainty in the location of object boundaries. Note that the point spread function of
an imaging device can be larger than the spatial extent of a single pixel or voxel. Thus,
partial volume effects can cause boundaries to be blurred across significant portions of
an image.

In pixel classification methods, the notion of a soft segmentation stems from the gener-
alization of a set characteristic function. A characteristic function is simply an indicator
function of where a pixel is inside or outside its corresponding set. For a location j 2 I ,
the characteristic function �k(j) of the set Sk is defined to be

�k(j) =

�
1 if j 2 Sk
0 otherwise

(2)

Characteristic functions can be generalized to membership functions [205] which need
not be binary valued. Membership functions mk(j) satisfy the following constraints:

0 � mk(j) � 1; for all k; j (3)
KX
k=1

mk(j) = 1; for all j (4)

The value of a membership function mk(j) can be interpreted as the contribution of
class k to location j. Thus, wherever membership values are greater than zero for two
or more classes, those classes are overlapping. Conversely, if the membership function
is unity for some value of j and k, then class k is the only contributing class at location
j. Membership functions can be derived using fuzzy clustering and classifier algorithms
[140, 71], statistical algorithms in which case the membership functions are probability
functions [106, 197], or they can be computed as estimates of partial volume fractions
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[24]. Soft segmentations based on membership functions can be easily converted to hard
segmentations by assigning a pixel to its class with the highest membership value.

2.4 Continuous or discrete segmentations

Nearly all medical images used for image segmentation are represented as discrete sam-
ples on a uniform grid. Segmentation methods typically operate on the same discrete grid
as the image. However, certain methods such as deformable models (see Section 3.7) are
capable of operating in the continuous spatial domain, thereby providing the potential
for subpixel accuracy in delineating structures. Subpixel accuracy is desirable particu-
larly when the resolution of the image is on the same order of magnitude as the structure
of interest.

Segmentation on the continuous domain is not equivalent to partial volume estimation
or other soft segmentation methods. Partial volume estimation methods merely provide
the fraction of a structure which is present in a voxel. This may be sufficient for quantifi-
cation purposes but not in situations where precise localization is required, such as for
tumors in surgical or radiotherapy planning. Continuous segmentation methods actually
reconstruct how a structure passes through a voxel. Although continuous segmentation
methods have subpixel or subvoxel resolution, their precision and accuracy are still de-
pendent on the resolution of the original data. Furthermore, this level of precision can
be difficult to validate on real data.

2.5 Interaction

The tradeoff between manual interaction and performance is an important consideration
in any segmentation application. Manual interaction can improve accuracy by incorpo-
rating prior knowledge of an operator. However, for large population studies, this can be
laborious and time consuming.

The type of interaction required by segmentation methods can range from completely
manual delineation of an anatomical structure, to the selection of a seed point for a re-
gion growing algorithm (see Section 3.2). The differences in these types of interaction
are the amount of time and effort required, as well as the amount of training required
by an operator. Methods that rely on manual interaction can also be vulnerable to relia-
bility issues. However, even “automated” segmentation methods typically require some
interaction for specifying initial parameters that can significantly affect performance.

2.6 Validation

In order to quantify the performance of a segmentation method, validation experiments
are necessary. Validation is typically performed using one of two different types of truth
models. The most straightforward approach to validation is by comparing the automated
segmentations with manually obtained segmentations (cf. [199, 186]). This approach,
besides suffering from the drawbacks outlined in the previous section, does not guaran-
tee a perfect truth model since an operator’s performance can also be flawed. The other
common approach to validating segmentation methods is through the use of physical
phantoms [102] or computational phantoms [36]. Physical phantoms provide an accu-
rate depiction of the image acquisition process but typically do not present a realistic
representation of anatomy. Computational phantoms can be more realistic in this latter
regard, but simulate the image acquisition process using only simplified models.
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Once a truth model is available, a figure of merit must be defined for quantifying
accuracy or precision (cf. [20]). The choice of the figure of merit is dependent on
the application and can be based on region information such as the number of pixels
misclassified, or boundary information such as distance to the true boundary. A survey
on this topic is provided in [206].

3 Methods

In this section, we briefly describe several common approaches that have appeared in
the recent literature on medical image segmentation. We define each method, provide an
overview of how the method is implemented, and discuss its advantages and disadvan-
tages. Although each technique is described separately, multiple techniques are often
used in conjunction with one another for solving different segmentation problems.

We divide segmentation methods into eight categories: (1) thresholding approaches,
(2) region growing approaches, (3) classifiers, (4) clustering approaches, (5) Markov
random field models, (6) artificial neural networks, (7) deformable models, and (8) atlas-
guided approaches. Other notable methods that do not belong to any of these categories
are described at the end of this section. Of the methods discussed in this section, thresh-
olding, classifier, clustering, and Markov random field approaches can be considered
pixel classification methods.

Most of the image segmentation methods that we will describe can be posed as opti-
mization problems where the desired segmentation minimizes some energy or cost func-
tion defined by the particular application. In probabilistic methods, this is equivalent to
maximizing a likelihood or a posteriori probability. Given the image y, we desire the
segmentation x̂ such that

x̂ = argmin
x

E(x;y) (5)

where E , the energy function, depends on the observed image y and a segmentation x.
Defining an appropriate E is a major difficulty in designing segmentation algorithms be-
cause of the wide variety of image properties that can be used, such as intensity, edges,
and texture. In addition to information derived from the image, prior knowledge can
also be incorporated to further improve performance. The advantage of posing a seg-
mentation as an optimization problem is that it precisely defines what is desirable in the
segmentation. It is clear that for different applications, different energy functions are
necessary.

Several general surveys on image segmentation exist in the literature [66, 132]. Addi-
tional surveys on image segmentation specifically for medical images have also appeared
[21, 11, 172, 208, 29, 6].

3.1 Thresholding

Thresholding approaches segment scalar images by creating a binary partitioning of the
image intensities. Figure 2a shows the histogram of a scalar image that possesses three
apparent classes corresponding to the three modes. A thresholding procedure attempts
to determine an intensity value, called the threshold, which separates the desired classes.
The segmentation is then achieved by grouping all pixels with intensity greater than the
threshold into one class, and all other pixels into another class. Two potential thresholds
are shown in Figure 2a at the valleys of the histogram. Determination of more than one
threshold value is a process called multithresholding [155].
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Figure 2: Feature space methods and region growing: (a) a histogram showing three
apparent classes, (b) a 2-D feature space, (c) example of region growing.

Thresholding is a simple yet often effective means for obtaining a segmentation in
images where different structures have contrasting intensities or other quantifiable fea-
tures. The partition is usually generated interactively, although automated methods do
exist [155]. For scalar images, interactive methods can be based on an operator’s vi-
sual assessment of the resulting segmentation since the thresholding operation is imple-
mentable in real-time.

Thresholding is often used as an initial step in a sequence of image processing opera-
tions. Its main limitations are that in its simplest form only two classes are generated and
it can not be applied to multi-channel images. In addition, thresholding typically does
not take into account the spatial characteristics of an image. This causes it to be sensitive
to noise and intensity inhomogeneities, which can occur in magnetic resonance images
(see Section 4.2). Both these artifacts essentially corrupt the histogram of the image,
making separation more difficult. For these reasons, variations on classical thresholding
have been proposed for medical image segmentation that incorporate information based
on local intensities [104] and connectivity [99]. A survey on thresholding techniques is
provided in [155].

3.2 Region growing

Region growing is a technique for extracting a region of the image that is connected
based on some predefined criteria. This criteria can be based on intensity information
and/or edges in the image [66]. In its simplest form, region growing requires a seed point
that is manually selected by an operator, and extracts all pixels connected to the initial
seed with the same intensity value. This is depicted in Figure 2b, where region growing
has been used to isolate one of the structures from Figure 1a.

Like thresholding, region growing is not often used alone but within a set of image
processing operations, particularly for the delineation of small, simple structures such
as tumors and lesions [57, 143]. Its primary disadvantage is that it requires manual in-
teraction to obtain the seed point. Thus, for each region that needs to be extracted, a
seed must be planted. Split and merge algorithms are related to region growing but do
not require a seed point [115]. Region growing can also be sensitive to noise, causing
extracted regions to have holes or even become disconnected. Conversely, partial vol-
ume effects can cause separate regions to become connected. To help alleviate these
problems, a homotopic region growing algorithm has been proposed that preserves the
topology between an initial region and an extracted region [114]. Fuzzy analogies to
region growing have also been developed [183].
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3.3 Classifiers

Classifier methods are pattern recognition techniques that seek to partition a feature
space derived from the image using data with known labels [159, 11]. A feature space is
the range space of any function of the image, with the most common feature space being
the image intensities themselves. A histogram, as shown in Figure 2a, is an example
of a 1-D feature space. Figure 2c shows an example of a partitioned 2-D feature space
with two apparent classes. All pixels with their associated features on the left side of the
partition would be grouped into one class. Although the features used can be related to
texture or other properties, we assume for simplicity that the features are simply intensity
values.

Classifiers are known as supervised methods since they require training data that are
manually segmented and then used as references for automatically segmenting new data.
There are a number of ways in which training data can be applied in classifier methods. A
simple classifier is the nearest-neighbor classifier, where each pixel or voxel is classified
in the same class as the training datum with the closest intensity. The k-nearest-neighbor
(kNN) classifier is a generalization of this approach, where the pixel is classified accord-
ing to the majority vote of the k closest training data. The kNN classifier is considered
a nonparametric classifier since it makes no underlying assumption about the statistical
structure of the data. Another nonparametric classifier is the Parzen window, where the
classification is made according to the majority vote within a predefined window of the
feature space centered at the unlabeled pixel intensity.

A commonly-used parametric classifier is the maximum likelihood (ML) or Bayes
classifier. It assumes that the pixel intensities are independent samples from a mixture of
probability distributions, usually Gaussian. This mixture, called a finite mixture model,
is given by the probability density function

f(yj; �; �) =
KX
k=1

�kfk(yj ; �k) (6)

where yj is the intensity of pixel j, fk is a component probability density function pa-
rameterized by �k, and � = [�1; : : : ; �K ]. The variables �k are mixing coefficients that
weight the contribution of each density function and � = [�1; : : : ; �K ]. Training data
is collected by obtaining representative samples from each component of the mixture
model and then estimating each �k accordingly. For Gaussian mixtures, this means
estimating K means, covariances, and mixing coefficients. Classification of new data
is obtained by assigning each pixel to the class with the highest posterior probability.
When the data truly follows a finite Gaussian mixture distribution, the ML classifier can
perform well and is capable of providing a soft segmentation composed of the poste-
rior probabilities. Additional parametric and nonparametric classifiers are described in
[208].

Standard classifiers require that the structures to be segmented possess distinct quan-
tifiable features. Because training data can be labeled, classifiers can transfer these labels
to new data as long as the feature space sufficiently distinguishes each label as well. Be-
ing non-iterative, they are relatively computationally efficient and unlike thresholding
methods, they can be applied to multi-channel images. A disadvantage of classifiers
is that they generally do not perform any spatial modeling. This weakness has been
addressed in recent work extending classifier methods to segmenting images that are
corrupted by intensity inhomogeneities [197]. Neighborhood and geometric informa-
tion were also incorporated into a classifier approach in [85]. Another disadvantage is
the requirement of manual interaction for obtaining training data. Training sets can be



Image Segmentation 9

acquired for each image that requires segmenting, but this can be time consuming and
laborious. On the other hand, use of the same training set for a large number of scans
can lead to biased results which do not take into account anatomical and physiological
variability between different subjects.

3.4 Clustering

Clustering algorithms essentially perform the same function as classifier methods with-
out the use of training data. Thus, they are termed unsupervised methods. In order to
compensate for the lack of training data, clustering methods iterate between segment-
ing the image and characterizing the properties of the each class. In a sense, clustering
methods train themselves using the available data.

Three commonly used clustering algorithms are the K-means or ISODATA algorithm
[34], the fuzzy c-means algorithm [46, 11], and the expectation-maximization (EM)
algorithm [102, 107]. The K-means clustering algorithm clusters data by iteratively
computing a mean intensity for each class and segmenting the image by classifying each
pixel in the class with the closest mean [75]. Figure 3b shows the result of applying the
K-means algorithm to a slice of a MR brain image in Figure 3a. The number of classes
was assumed to be three, representing (from dark gray to white) cerebrospinal fluid,
gray matter, and white matter. The fuzzy c-means algorithm generalizes the K-means
algorithm [11], allowing for soft segmentations based on fuzzy set theory [205]. The EM
algorithm applies the same clustering principles with the underlying assumption that the
data follows a Gaussian mixture model (see Eq. (6)). It iterates between computing
the posterior probabilities and computing maximum likelihood estimates of the means,
covariances, and mixing coefficients of the mixture model.

Although clustering algorithms do not require training data, they do require an initial
segmentation (or equivalently, initial parameters). The EM algorithm has demonstrated
greater sensitivity to initialization than the K-means or fuzzy c-means algorithms [42].
Like classifier methods, clustering algorithms do not directly incorporate spatial model-
ing and can therefore be sensitive to noise and intensity inhomogeneities. This lack of
spatial modeling, however, can provide significant advantages for fast computation [69].
Work on improving the robustness of clustering algorithms to intensity inhomogeneities
in MR images has demonstrated excellent success [58, 140]. Robustness to noise can be
incorporated using Markov random field modeling as described in the next section.

3.5 Markov random field models

Markov random field (MRF) modeling itself is not a segmentation method but a sta-
tistical model which can be used within segmentation methods. MRFs model spatial
interactions between neighboring or nearby pixels. These local correlations provide a
mechanism for modeling a variety of image properties [105]. In medical imaging, they
are typically used to take into account the fact that most pixels belong to the same class
as their neighboring pixels. In physical terms, this implies that any anatomical structure
that consists of only one pixel has a very low probability of occurring under a MRF
assumption.

MRFs are often incorporated into clustering segmentation algorithms such as the K-
means algorithm under a Bayesian prior model [133, 149, 70, 58]. The segmentation is
then obtained by maximizing the a posteriori probability of the segmentation given the
image data using iterative methods such as iterated conditional modes [10] or simulated
annealing [54]. Figure 3c, shows the robustness to noise in a segmentation resulting
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(a) (b) (c)

Figure 3: Segmentation of a MR brain image: (a) original image, (b) segmentation using
the K-means algorithm, (c) segmentation using the K-means algorithm with a Markov
random field prior.

from an MRF prior. The segmentation is much smoother than the non-MRF result of
Figure 3b.

A difficulty associated with MRF models is proper selection of the parameters con-
trolling the strength of spatial interactions [105]. Too high a setting can result in an
excessively smooth segmentation and a loss of important structural details. In addition,
MRF methods usually require computationally intensive algorithms. Despite these dis-
advantages, MRFs are widely used not only to model segmentation classes, but also to
model intensity inhomogeneities that can occur in MR images [70] and texture properties
[153].

3.6 Artificial neural networks

Artificial neural networks (ANNs) are massively parallel networks of processing ele-
ments or nodes that simulate biological learning. Each node in an ANN is capable of
performing elementary computations. Learning is achieved through the adaptation of
weights assigned to the connections between nodes. A thorough treatment on neural
networks can be found in [27, 68].

ANNs represent a paradigm for machine learning and can be used in a variety of
ways for image segmentation. The most widely applied use in medical imaging is as a
classifier [64, 53], where the weights are determined using training data, and the ANN
is then used to segment new data. ANNs can also be used in an unsupervised fashion as
a clustering method [11, 152], as well as for deformable models [191].

Because of the many interconnections used in a neural network, spatial information
can easily be incorporated into its classification procedures. Although ANNs are inher-
ently parallel, their processing is usually simulated on a standard serial computer, thus
reducing this potential computational advantage.

3.7 Deformable models

Deformable models are physically motivated, model-based techniques for delineating
region boundaries using closed parametric curves or surfaces that deform under the in-
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(a) (b)

Figure 4: (a) A 2-D example of using a deformable contour to extract the inner wall of
the left ventricle of a human heart from an MR image. The initial deformable contour
(plotted in gray) and the final converged result (plotted in white). (b) A 3-D example
of using a deformable surface to reconstruct the brain cortical surface from a 3-D MR
image.

fluence of internal and external forces. To delineate an object boundary in an image, a
closed curve or surface must first be placed near the desired boundary and then allowed
to undergo an iterative relaxation process. Internal forces are computed from within
the curve or surface to keep it smooth throughout the deformation. External forces are
usually derived from the image to drive the curve or surface towards the desired feature
of interest. Figure 4a shows an example of applying a 2-D deformable model or active
contour to a MR heart image. The active contour was initialized as a circle, and then al-
lowed to deform to the inner boundary of the left ventricle. Figure 4b shows an example
of a 3-D deformable surface that was used to extract the cerebral cortex from a MR head
scan.

Mathematically, a deformable model moves according to its dynamic equations and
seeks the minimum of a given energy functional [87, 180]. The deformation of a typical
2-D deformable model can be characterized by the following dynamic equation:

�(s)
@2x(s; t)

@t2
+ 
(s)

@x(s; t)

@t
= Fint + Fext (7)

where x(s; t) = (x(s; t); y(s; t)) is a parametric representation of the position of the
model at a given time t, and �(s) and 
(s) are parameters representing the mass den-
sity and damping density of the model, respectively. Eq. (7) causes the model to move
according to the direction and magnitude of the forces on the right hand side. The most
commonly used internal forces are

Fint =
@

@s

�
�(s)

@x(s; t)

@s

�
�

@2

@s2

 
�(s)

@2x

@s2

!
(8)

which represent internal stretching and bending forces. The most commonly used exter-
nal forces are computed as the gradient of an edge map (as shown in Figure 4b).

The main advantages of deformable models are their ability to directly generate closed
parametric curves or surfaces from images and their incorporation of a smoothness con-
straint that provides robustness to noise and spurious edges. A disadvantage is that they
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(a) (b) (c)

Figure 5: Demonstration of atlas warping: (a) template image, (b) target image,
(c) warped template (Images provided courtesy of G.E. Christensen and M.I. Miller).

require manual interaction to place an initial model and choose appropriate parameters.
Reducing sensitivity to initialization has been a topic of research that has demonstrated
excellent success [33, 18, 112, 201]. Standard deformable models can also exhibit poor
convergence to concave boundaries. This difficulty can be alleviated somewhat through
the use of pressure forces [33] and other modified external force models [201]. Another
important extension of deformable models is the adaptivity of model topology using an
implicit representation rather than an explicit parameterization [18, 112, 118]. A general
review on deformable models in medical image analysis can be found in [119].

3.8 Atlas-guided approaches

Atlas-guided approaches are a powerful tool for medical image segmentation when a
standard atlas or template is available. The atlas is generated by compiling information
on the anatomy that requires segmenting. This atlas is then used as a reference frame for
segmenting new images. Conceptually, atlas-guided approaches are similar to classifiers
except they are implemented in the spatial domain of the image rather than in a feature
space.

The standard atlas-guided approach treats segmentation as a registration problem (see
[111] for a detailed survey on registration techniques). It first finds a one-to-one transfor-
mation that maps a pre-segmented atlas image to the target image that requires segment-
ing. This process is often referred to as atlas warping. The warping can be performed
using linear [175, 96, 151] transformations but because of anatomical variability, a se-
quential application of linear and non-linear [35, 39, 26, 156] transformations is often
used. An example of atlas warping for a MR head scan is shown in Figure 5 [26]. Be-
cause the atlas is already segmented, all structural information is transferred to the target
image. This is shown in Figure 6, where the Talairach brain atlas [175] has been mapped
to an MR image [39].

Atlas-guided approaches have been applied mainly in MR brain imaging. An advan-
tage of atlas-guided approaches is that labels are transferred as well as the segmentation.
They also provide a standard system for studying morphometric properties [41, 181, 79].
Even with non-linear registration methods however, accurate segmentations of complex
structures is difficult due to anatomical variability. This is shown in Figure 6 where the
cerebral cortex is not segmented as accurately as shown in Figure 3. Thus, atlas-guided
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Figure 6: Three slices from a MR brain volume overlaid with a warped atlas (Images
provided courtesy of C.A. Davatzikos).

approaches are generally better-suited for segmentation of structures that are stable over
the population of study. One method that helps model anatomical variability is the use of
probabilistic atlases [181] but these require additional time and interaction to accumulate
data.

3.9 Other approaches

Model-fitting is a segmentation method that typically fits a simple geometric shape such
as an ellipse or parabola to the locations of extracted image features in an image [137].
It is a technique which is specialized to the structure being segmented but is easily im-
plemented and can provide good results when the model is appropriate. A more general
approach is to fit spline curves or surfaces [7] to the features. The main difficulty with
model-fitting is that image features must first be extracted before the fitting can take
place.

The watershed algorithm uses concepts from mathematical morphology [59] to parti-
tion images into homogeneous regions [192]. This method can suffer from oversegmen-
tation, which occurs when the image is segmented into an unnecessarily large number
of regions. Thus, watershed algorithms in medical imaging are usually followed by a
postprocessing step to merge separate regions that belong to the same structure [161].

4 Modalities

In this section, we review the application of segmentation to various medical imaging
modalities. We describe the specific issues relevant to each modality and the anatomical
regions for which segmentation methods have been applied. For information about the
physics behind the image acquisition process in these modalities, see [110, 170].

4.1 Magnetic resonance imaging

The majority of research in medical image segmentation pertains to its use for MR im-
ages, especially in brain imaging. This is because of MR’s ability to provide a com-
bination of high resolution (on the order of 1mm cubic voxels), excellent soft tissue
contrast, and a high signal-to-noise ratio. Furthermore, multi-channel MR images with
varying contrast characteristics can be acquired, providing additional information for
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distinguishing between different structures. For general reviews on the segmentation of
MR images, see [11, 139, 106, 208, 29]. Direct comparisons of different methods for
segmenting MR images are also available [187, 30, 64].

Because of its ability to derive contrast from a number of tissue parameters, many
different pulse sequences exist for acquiring MR images. Determining the optimal pulse
sequence for obtaining accurate segmentations [147] is therefore an important problem
that requires knowledge of the underlying tissue properties of the anatomy to be seg-
mented [141, 50]. Furthermore, because of the anatomical and physiological variability
between different subjects, different populations may require different pulse sequences
[141].

Much of the literature on segmentation in MRI focuses specifically on the segmenta-
tion of head scans in normal subjects. There are three general goals in this application:
1) extract the brain volume, 2) segment brain tissue into gray matter, white matter, and
cerebrospinal fluid, and 3) delineate specific brain structures such as the cerebral cortex
or the hippocampus. An exception to this categorization is the use of atlas-guided meth-
ods [35], which are capable of fully segmenting and labeling all structures of the brain
simultaneously, but also have certain disadvantages (see Section 3.8). Overviews on the
segmentation of neuroanatomy are provided in [32, 198].

Brain volume extraction is a difficult problem in MR head scans, particularly in T1-
weighted images. However, it is often a necessary step before segmentation of other
structures can take place. Problems in brain volume extraction arise because there is
a great deal of overlap in intensity values between the non-brain and brain tissues and
because the two can often appear connected. One method to deal with these difficulties
is to allow for some loss of brain tissue in a preliminary segmentation step and then
to recover the tissue using morphological filters [16, 156]. Several methods have also
applied deformable models as a final step in a sequence of image processing operations
[84, 1, 5]. Atlas-guided approaches have also been applied [1].

Methods that attempt to segment brain tissue as gray matter, white matter, and cere-
brospinal fluid use either T1-weighted scalar data [77, 126, 72, 122, 149, 194] or mul-
tispectral data [189, 108, 24, 91, 55, 64, 30, 107, 67, 88, 182, 152]. The trend in the
literature has been favoring the use of T1-weighted data which is capable of providing
higher resolution data without increasing acquisition time and still maintaining good tis-
sue contrast and low noise. Classifier approaches [17, 197, 85], clustering approaches
[64, 107, 140], neural network approaches [64, 152], and Markov random fields [70, 149]
have all been used for brain segmentation. Because most of these methods are based on
intensity information, a major concern is the presence of intensity inhomogeneities, a
topic discussed in the next section. Because the gray matter in the brain is thin and
highly convoluted, partial volume effects are another important consideration. Efforts in
modeling partial volume effects have used statistical methods [24, 157, 158, 17, 76, 95],
soft segmentation derived through fuzzy set theory [28, 13, 154, 140], and linear filters
[166].

The automated segmentation of specific structures in brains is an important area of
research for morphometric analysis. Segmentation of the cerebral cortex has received
much attention with most methods employing deformable models [52, 40, 120, 178,
200]. Deformable models have also been used for segmenting a variety of other struc-
tures such as the ventricles [116, 195], the corpus callosum [41, 195], the hippocampus
[4, 56], and others [173, 190, 177]. Although not often employed for segmenting the
cortex, atlas-guided methods also appear well-suited for segmenting subcortical brain
structures such as the ventricles [2, 142] and the hippocampus [79]. Segmentation of
tumors and lesions in the brain has been applied to magnetic resonance images using
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neural networks [207], atlas-guided approaches [83], linear filters [166], fuzzy region
growing [185], and deformable models [19]. Because of its complexity, this problem
typically requires a sequence of operators [196, 57].

Besides head scans, segmentation has also been used for extracting a variety of other
structures. Segmentation in cardiac imaging has been used for delineating the cavities
of the left ventricle using region growing and thresholding approaches [163, 44], as well
as deformable models [12, 145, 9]. Deformable models in cardiac imaging, however,
are more often proposed for tracking motion in the heart [8]. Markov random field
models have been used for segmenting knee images [25] as well as magnetic resonance
angiograms (MRAs) [188]. Other methods for segmenting MRAs include deformable
models [109] and thresholding [31]. Although MRA does not require catheterization,
segmentation in standard angiography is more common because of its generally superior
contrast and spatial and temporal resolution [168, 48, 65, 47].

4.2 Intensity inhomogeneities in MRI

A major difficulty in the segmentation of MR images is the intensity inhomogeneity
artifact [162, 37, 164], which causes a shading effect to appear over the image. This arti-
fact can significantly degrade the performance of methods that assume that the intensity
value of a tissue class is constant over the image. Figure 7a shows an axially acquired
MR image of a female heart with myocardial infarction. Intensity inhomogeneities are
noticeable particular near the breast areas. Numerous approaches have been proposed
in the literature for performing tissue classification in the presence of intensity inhomo-
geneity artifacts. Some methods suggest a prefiltering operation that attempts to remove
the inhomogeneity prior to actual segmentation [108, 43, 123, 76, 100, 92, 14, 165].
Methods that simultaneously segment the image while estimating the inhomogeneity
however, offer the advantage of being able to use intermediate information gained from
the segmentation.

There are two prevailing approaches for modeling inhomogeneities in methods that
perform simultaneous segmentation. The first approach assumes that the mean tis-
sue intensity for each tissue class is spatially varying and independent of one another
[133, 202, 149, 130]. The second approach models the inhomogeneities as a multiplica-
tive gain field [150, 140] or additive bias field of the image logarithm [197, 62, 70, 85]. It
is unclear which of these two provides more accurate modeling of inhomogeneity effects,
although the second approach has the advantage of being computationally less expen-
sive. The second approach can also be used for removing inhomogeneities by simple
multiplication of the acquired image by the reciprocal of the estimated gain field. Fig-
ure 7 shows the results of applying the adaptive fuzzy c-means algorithm that performs
a soft segmentation while compensating for intensity inhomogeneities [140]. The heart
image was segmented into three classes and Figure 7d-f correspond to the membership
functions for those three classes. Figure 7b shows the gain field estimated from the orig-
inal image. The hard segmentation in Figure 7c was obtained as outlined in Section 2.3.
Note that the ring artifact present in Figure 7e results from partial volume effects causing
the boundary between fat, skin, and air to have an intensity similar to that of muscle. This
effect is common and a disadvantage of intensity-based pixel classification methods.

4.3 Chest radiography

Chest radiographs have not received much recent attention in the segmentation literature
partly because the projection nature of the images makes quantification and localization
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(a) (b) (c)

(d) (e) (f)

Figure 7: Example of simultaneous inhomogeneity correction and soft segmentation:
(a) MR heart image acquired using a fast spin echo sequence in a true axial prescription,
(b) estimated gain field, (c) hard segmentation into three classes, (d)-(f) membership
functions of the three classes (Data provided courtesy of C. Constantinides).

a difficult task and also because their analysis often does not require a segmentation
. Despite these issues, efforts have been made for segmenting chest radiographs into
anatomical regions using classifiers [121, 193] and Markov random fields [193]. In
addition, an algorithm has been proposed for delineating posterior rib borders using
active contour models [204].

4.4 Computed tomography

X-ray computed tomography (CT) alleviates some of the difficulties associated with
projection radiography and allows for 3-D imaging at resolutions equal to or better than
MRI. Soft tissue contrast in CT is not as good as in MRI, but CT remains the modality
of choice for imaging bone and bone tumors. Segmentation of bone can be achieved
using thresholding and region growing operations [60] as well as more sophisticated
methods such as Markov random fields [135], deformable models [134, 177, 145, 129],
and fuzzy region growing [183]. Once segmented, image renderings are often used to
provide detailed visualization of skeletal structure [184].

Segmentation in CT has also been applied to thoracic scans using statistical clustering
[102], a combination of region growing and watershed algorithms [199], a combina-
tion of region growing and fuzzy logic [15], and deformable models [174, 78, 145].
Some methods have been applied specifically for the reconstruction of bronchial trees
[167, 136]. CT images have also been used in brain segmentation [103], although MR
imaging is presently more common in neuroimaging segmentation applications. In ad-
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(a) (b) (c)

Figure 8: Segmentation in digital mammography: (a) digitized mammogram and radiol-
ogist’s boundary for biopsy-proven malignant tumor, (b) result of watershed algorithm,
(c) suspicious regions determined by automated method (Images provided courtesy of
C.E. Priebe).

dition, liver segmentation has been performed using model-fitting [7], and deformable
models [116, 49, 127, 56]. Deformable models have also been applied in other CT seg-
mentation applications, including the delineation of abdominal aortic aneurysms [80],
segmentation of the stomach [113], and segmentation of the heart [117, 78, 160].

4.5 Digital mammography

Segmentation in digital mammography is typically performed for localization of tumors
[143, 103], microcalcification clusters [23, 74, 171], or other indicators of pathology
[82]. In delineating suspicious masses for mammography, segmentation methods are
typically employed in one of two ways. In the first approach, the mammogram is ini-
tially segmented into candidate regions which are then labeled as being suspicious or
normal [144, 104, 74, 86]. In the second approach, the image is first processed to detect
for the presence of pathology and a segmentation is performed as a final step to deter-
mine its precise location [23, 94, 63, 22]. Thresholding and its variations are the most
often used segmentation technique in mammography [144, 171, 23, 63, 74], although
extensions of region growing methods have also been proposed [94, 143]. A compar-
ison of thresholding and region growing was presented in [82]. Because pathological
areas often possess different textural properties in mammograms, Markov random field
methods have also been successfully employed [104, 22].

Figure 8 shows an example where the mammogram is initially oversegmented using
a watershed algorithm. A statistical classifier [146] is then used to determine which re-
gions contain microcalcifications. This classification step is typically performed using
textural properties. As illustrated in the figure, false positives can be a significant prob-
lem in the detection of suspicious masses in mammograms (although in this case, they
fall outside the breast area). For these reasons, computer automated detection in mam-
mography has been used only as an aid to increase the reliability of a physician’s diagno-
sis. Improved initial segmentations may lead to a reduction in false-positives. Note also
that a perfect delineation of masses is difficult but not often necessary in mammography
since detection is the primary goal.



Image Segmentation 18

4.6 Ultrasound

Segmentation algorithms have had fairly limited application in ultrasound imaging. High
levels of speckling present in ultrasound images make accurate segmentations difficult.
Furthermore, the real-time acquisition in ultrasound makes it better suited for motion
estimation tasks (cf. [45, 124]) where active contours, because of their dynamic nature,
are often used. Ultrasound is also often employed in detecting pathology using textural
classifiers (cf. [125, 81]) but regions of interest are typically obtained through manual
interaction.

Nevertheless, some automated segmentation work has been performed in ultrasound
for extracting a variety of structures. In [179], a thresholding of intensity and texture
statistics was used to segment ovarian cysts. Deformable models have had good success
in ultrasound applications such as in the segmentation of echocardiograms [38, 160, 78,
93]. In [101], an active contour was used to determine the boundary of the calcaneus in
broadband ultrasonic attenuation parameter images, which are less noisy than standard
ultrasound images. In [19, 138], deformable models were used to determine the bound-
ary of the fetus and the fetus head respectively. Deformable models have also been used
to segment cysts in ultrasound breast images [203]. Other methods have been applied
for the segmentation of coronary arteries in intravascular ultrasound images [169] and
for segmenting the pubic arch in transrectal ultrasound [137].

4.7 Multimodal

Multimodal image segmentation attempts to take advantage of the different kinds of
anatomical information provided by different imaging modalities. For example, multi-
modal imaging can take advantage of the bone imaging capabilities in CT and the soft
tissue imaging capabilities in MRI. In brain imaging, functional imaging data can be
used to help delineate tumors [29]. There are two major difficulties in multimodal im-
age segmentation, however. First, multimodal data is not always available. Second,
when the data is available, they are typically not in the same alignment, and therefore
require registration [111]. Recent methods have been proposed for simultaneously reg-
istering and segmenting multimodal images [3]. Once the images have been registered,
standard multi-channel segmentation techniques can be applied. Segmentation of mul-
timodal images was targeted specifically in [131] using neural networks, and in [73],
which presented a Bayesian framework for simultaneous restoration and segmentation.

5 Conclusion

Future research in the segmentation of medical images will strive towards improving the
accuracy, precision, and computational speed of segmentation methods, as well as reduc-
ing the amount of manual interaction. Accuracy and precision can be improved by incor-
porating prior information from atlases and by combining discrete and continuous-based
segmentation methods. For increasing computational efficiency, multiscale processing
(cf. [51]) and parallelizable methods such as neural networks appear to be promising
approaches. Computational efficiency will be particularly important in real-time pro-
cessing applications.

Possibly the most important question surrounding the use of image segmentation is
its application in clinical settings. Computerized segmentation methods have already
demonstrated their utility in research applications and are now garnering increased use
for computer aided diagnosis and radiotherapy planning. It is unlikely that automated
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segmentation methods will ever replace physicians but they will likely become crucial
elements of medical image analysis. Segmentation methods will be particularly valuable
in areas such as computer integrated surgery, where visualization of the anatomy is a
critical component.
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