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ABSTRACT

Connected Dominating Set (CDS) has been a well known approach
for constructing a virtual backbone to alleviate the broadcasting
storm in wireless networks. Current research has focused on min-
imizing the size and diameter or improving the fault tolerance of
CDS. However, to our best knowledge, no existing research has
considered these three important factors together in a single model.
In this paper, we introduce the fault tolerant model studying a joint
optimization problem in which the objective is to minimize the
CDS size as well as the network latency. This model also addresses
the tradeoffs between the objective functions. We next propose one
approximation algorithm and two distributed algorithms with con-
stant ratios for the model. Simulation results show that our algo-
rithms can gain good tradeoffs between the three factors, which
coincide with theoretical analysis. Moreover, our algorithms could
obtain a better performance than previous work.

Categories and Subject Descriptors: C.2.1 [Network Architec-
ture and Design]: Wireless communication

General Terms: Algorithms.

Keywords: Wireless Ad-Hoc Networks, Connected Dominating
Set, Fault Tolerance, Bounded Diameter.

1. INTRODUCTION

Connected Dominating Set (CDS) has been a well known ap-
proach for constructing a virtual backbone to alleviate the broad-
casting storm [2] in wireless networks. With the help of the CDS,
only nodes in CDS need to forward the messages. Meanwhile, rout-
ing becomes much easier and can adapt quickly to network topol-
ogy changes [6]. Furthermore, using a CDS as forwarding nodes
can efficiently reduce the energy consumption, which is also a crit-
ical concern in wireless networks.
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Since every node in CDS works as the central management agents
with heavy load, constructing a CDS with minimized size can greatly
help to reduce transmission interference and the number of con-
trol messages [6]. Another issue that recent research [8] [9] has
addressed is the diameter of CDS, which is the longest shortest
path between any pair of nodes in CDS. Considering the situation
that the receiver is not within the transmission range of the sender,
communicate through multi-hop links by using some intermediate
nodes to relay the messages, which is called multi-hop routing, is
needed. Since a CDS with large diameter often leads to an increase
in propagation error and transmission latency, a CDS with small di-
ameter is certainly preferred for reliable message delivery and short
delay in this case.

As CDS is often very vulnerable due to frequent node failure
and link failure, which is inherent in wireless networks, construct-
ing a fault tolerant CDS that continues to function during node or
link failure is another issue. The previous work [14]- [16] have ad-
dressed this issue. However, they only considered the size of CDS
together with the fault tolerance, without the diameter of CDS.

Since a CDS problem is NP-hard [1] and it is easy to reduce
the CDS problem to our model in polynomial time. Therefore, we
expect that our model is also NP-hard.

As to our best knowledge, no existing research has considered
these three important factors together in a single model. In this
paper, we first study the problem of constructing a CDS by consid-
ering the three factors together. The approximation algorithm for
k-Connected m-Dominating Sets (km-CDS, also known as fault
tolerant CDS) with bounded diameter is presented. We minimize
the size and the diameter of km-CDS while maintaining its fault
tolerance. The tradeoffs between objective functions are shown
by proving its’ approximation ratios. Meanwhile, as 1-Connected
Dominating Sets (1-CDS) with bounded diameter is the prereq-
uisite of our model, two distributed algorithms are addressed for
constructing 1-CDS, which consider the size and diameter of it at
the same time. Solid proofs for their approximation ratios are pre-
sented, which indicate the tradeoffs on size and diameter also exists
in 1-CDS. Moreover, our model allows user-defined inputs to bal-
ance the size and diameter of 1-CDS. In the end, we evaluate our
proposed algorithms through the experiments.

The contributions of this paper are as follows:

1. An approximation algorithm for £m-CDS with bounded di-
ameter is proposed. Three factors are optimized at the same
time and the tradeoffs between objective functions are pre-
sented in theoretical analysis and simulation. To our best
knowledge, it is the first work to study this model.

2. Two approximation algorithms to minimize the size and di-
ameter of 1-CDS in disk graphs are presented in distributed



manner for our model as a whole. The benefits of proposed
algorithm are either featured with low time complexity or ef-
fective in minimizing the size and diameter of 1-CDS.

3. The performance of our model is adjustable by the user-defined

input. Through extensive simulation, we verify this fact and
the results show our algorithms will have good tradeoffs be-
tween the three factors, which coincide with theoretical anal-
ysis.

4. Comparing with CDS-BD algorithm proposed in [9], the sim-
ulation results show that our algorithms outperform CDS-BD
under the same network condition.

The rest of the paper is organized as follows. Section 2 describes
the related work of this problem. The wireless communication
model and some preliminaries are presented in Section 3. our pro-
posed model is studied in Section 4. Two distributed algorithms
for 1-CDS with bounded diameter and their theoretical analysis are
presented in Section 5.1 and Section 5.2 respectively. Section 6
provides the simulation results and Section 7 concludes this paper.

2. RELATED WORK

Although the CDS problem has been extensively studied [3]-
[7], little work has been done on fault tolerant CDS problem with
bounded diameter. Mohammed e al. mentioned the problem of
constructing CDS with small diameter [8]. However, they did not
give a guaranteed performance in their model. In [9], Li ez al. stud-
ied the CDS problem with bounded diameter in Unit Disk Graph
(UDG) and proposed a constant approximation algorithm, called
CDS-BD. However, their algorithm is centralized and no exper-
imental results are provided. In contrast, our algorithms can be
implemented in distributed manner for 1-CDS not only in UDG,
but also disk graphs. The constant approximation ratios are also
preserved.

In summary, none of the previous work address our model in
literature. The contributions of this paper is multi-fold: First, the
performance of this model is not fixed, it can be adjusted in a range
by an user-defined input. Second, we prove that the tradeoffs ex-
ist between the three factors, that is, it is hard to optimize them at
the same time. Third, the experiments reveal some important prop-
erties of our model, which could not be discovered in theoretical
analysis.

3. WIRELESS COMMUNICATION MODEL
AND PRELIMINARIES

In this paper, we model the wireless network using a Disk Graph
with Bidirectional links (DGB) G = (V, E). The nodes in V" are
located in the two dimensional Euclidean plane and each node v; €
V has a transmission range 7; € [T'min, "maz)- R is denoted as the
transmission range ratio, i.e. R = Tmas/Tmin. The edge set E
represents all links in the network. There is an edge between a pair
of nodes if they are within the transmission range of each other,
which means that an edge (v;,v;) in E if the distance between
two nodes d(v;,v;) < min{r;,r;}. Note that if denote K as the
independent neighbors of a node v in DGB, then K = 5if R =1,
otherwise, K = 10([%] + 1) [3].

A Dominating Set (DS) of this graph is a subset C' C V such
that each node either belongs to C or is adjacent to at least one
node in C. A CDS is a DS which induces a connected subgraph.
The size of a CDS is the number of nodes in CDS. Denote d;; as
the number of hops in the shortest path between node ¢ and node

j. Then the diameter of a CDS d(C'DS) = max(d;;), where i
and j are any nodes in CDS. We also denote D™ as the minimum
diameter of CDS of G, and C'DS™ as the CDS with smallest size.

4. FAULT TOLERANT CDS WITH
BOUNDED DIAMETER

In this section, we introduce our problem and provide a solution
for km-CDS, where 1< k < m + 1.

Before we introduce the definition of the problem, we need to
give the following definitions in graph theory: A graph G is k-
connected if it is connected and removing any k£ — 1 nodes from
G will not partition G, i.e, G is still connected. A separating set
or cut-vertex of a graph G = (V, E) is aset S C V, such that
G — S has more than one component. When |S| = 1, S is a cut
vertex. A k-block of a graph is a maximal k-connected subgraph
of G that has no separating set. If G itself is k-connected and has
no separating set, then G is a k-block. The fault tolerant CDS with
bounded diameter problem could be formally defined as follows:

DEFINITION 1. Fault Tolerant CDS Problem with Bounded
Diameter: Given a DGB G = (V, E) representing a network and
two positive integers k and m, find a subset Cyy, C 'V satisfy-
ing the following three conditions: (1) the subgraph induced by
Clm, i.e., G[Crm), is k-connected, and (2) each node not in Cim,
is dominated (adjacent) by at least m nodes in Cip,. (3) the size
and diameter of Cim, are bounded.

The joint optimization problem considers three factors (size, di-
ameter and fault tolerance) together, and the three factors are opti-
mized at the same time. Some recent work [14]- [16] has addressed
the general fault tolerant CDS Problem. However, none of them
mentioned how to bound the diameter of it.

In our previous work [15], we have proposed a solution for km-
CDS problem, where 1< k < m+ 1, as illustrated in Algorithm 1.
In this paper, we still use this algorithm to solve our joint optimiza-
tion problem. However, a new analysis is proposed for the diameter
of km-CDS. The main idea of Algorithm 1 is that merging all the
k’-blocks in 1-Connected m-Dominating Set (1m-CDS) into only
one k’-block by adding extra nodes, where k' = 2 initially. Then,
we increase k' by 1 and repeat the above operation until k¥’ = k.
We can use any 1-CDS with bounded size and diameter as the input
of Algorithm 1. However, in order to make the solution adjustable
by the user, an («, 3)-CDS, to be introduced in Section 5.1, is pre-
ferred to be an input of Algorithm 1.

Algorithm 1 km-CDS Algorithm [15]

1: INPUT: A connected DGB G = (V, E) and a 1-CDS C1; with
bounded diameter and size

2: OUTPUT: A km-CDS Cy,, with bounded diameter and size

3: Step 1: Based on the input C11, construct a 1m-CDS C1,, by
using CDSMIS Algorithm in [15]

4: Step 2: Compute all the k’-blocks in C1.y, initially k' = 2.

5: Step 3: If there is more than one k’-block in C1, find the
shortest path in the original graph that satisfies the two re-
quirements: (i) the path can connect two k’-blocks sharing a
same separating set to be one k’-block of Ci,,. (ii) the path
does not contain any nodes in C'1,,, except the two end points.
Then add all intermediate nodes in this path to C1p,.

6: Step 4: Repeat Step 2 and 3, until there is only one k’-block in
Cim.

7: Step 5: Increase k' by 1 and then repeat Step 2, 3 and 4, until
k" = k. The resultant C',,, will be Cip,.




4.1 Theoretical Analysis

THEOREM 1. Ifthe input 1-CDS has an approximation ratio of
« on size (ov > 1), then Algorithm 1 produces a km-CDS with
(2K + 2m + 1)a—approximation on size, where CY,,, and C},,
are the 1m-CDS and km-CDS with optimal solution on size re-
spectively.

Proof: Cp, is the union of C,, and the nodes added into C'yy,,
in order to make C'.,, k-connected. The number of nodes we added
to make C',, k-connected is at most 2(k —2)(|Cim| —1) +2(K +
1)(|Cim| — 1) [15]. Therefore,

[Crm| = [Crm| + 2(k = 2)(|C1m| = 1) + 2(K + 1)(|C1m| -

< (2K + 2k — 1)|Crm|

However, in our previous work [15], we already concluded the
following inequality,

|Cim| < @|CDS™| 4+ (K +m — 1)|C1,,]

Thus,
|Cem| < (2K + 2k —1)|C1pi
< (2K + 2k — 1)(K +m +a — 1)|Cf]
< 2K +2m+ 1)(K + m+a — 1)|CL|
o
LEMMA 1. d(Cim) < d(C11) + 2.

Proof: Since each node not in C'y; is dominated by at least one
node in C41. Therefore, when we add more nodes into C'1; in order
to make it to be C1,,, we only increase d(C11) by at most 2 hops.
O

LEMMA 2. d(Ckm) < d(Cim) + 2.

Proof: Suppose two nodes v and v are in Cy,. The position
of node u and v has three possibilities: (1) u,v € Cipm. 2) u €
Ckm — Cim, v € Cim. (3) u,v € Crm — Ci,. For case (1),
the number of hops between  and v is bounded by d(C1.,). For
case (2), u must be dominated by a node in C'1,,,. Therefore, u is
only one hop away from its dominator in C,, and the number of
hops between w and v is bounded by d(C1,,) + 1. For case (3), u
and v are dominated by different nodes in C'y,,. However, v and v
are only one hop away from their dominators. Thus, the number of
hops between u and v is bounded by d(C1y,) + 2. O

THEOREM 2. If the diameter of input 1-CDS is bounded by
BD*, the approximation ratio of the constructed km-CDS on di-
ameter is 5Dy, + 4.

Proof: From Lemma 1 and 2, we have the following inequality:
d(Crm) < d(Cim)+2 < d(C11)+2+2 < D" +4 < 8Dy, +4
O

S. 1-CDS WITH BOUNDED DIAMETER

In this section, we introduce two algorithms for 1-CDS (also
known as CDS) with bounded diameter. One is called Basic Dis-
tributed Algorithm (BDA) and another is called Progressive Dis-
tributed Algorithm (PDA). The two algorithms could be used as an
input of Algorithm 1. The benefit of BDA is the low time complex-
ity on constructing CDS, while PDA performs well on optimizing

[

the size and diameter of CDS. We will prove the two facts through
simulation. The definition of this problem is same as Definition 1
when k =m = 1.

To construct a CDS, we often employ an Maximal Independent
Set (MIS) which is also a subset of all the nodes in the network.
The nodes in MIS are pairwise nonadjacent and no more nodes can
be added to preserve this property. Therefore, each node which not
in MIS is adjacent to at least one node in MIS. Therefore, an MIS
is indeed a DS. If the nodes in MIS are connected by adding more
nodes to the MIS, a CDS can be constructed.

5.1 Basic Distributed Algorithm and Analysis

The main idea of BDA is as follows. First, use Wan'’s distributed
MIS algorithm [4] to construct an MIS. Color all the nodes in MIS
black. Second, randomly choose a black node as the root, and as-
sign a level to each node, which is based on the number of hops
away from the root. Third, connect the nodes in MIS from low
level to high level with minimum number of hops.

One existing distributed algorithms for MIS [4] is executed to
obtain a DS. The obtained MIS satisfies the following lemma:

LEMMA 3. Any pair of complementary subsets of a constructed
MIS has a distance of exactly two hops. [4]

In order to implement this algorithm in distributed manner, each
node maintains a local status which is initialized to unexplored and
set to explored after proceeded by the algorithm. Each node also
maintains a local variable which stores the ID of message sender
and is initially empty.

The following operations for connecting the nodes in MIS with
minimum number of hops may be conducted as described in Algo-
rithm 2:

Algorithm 2 Basic Distributed Algorithm (BDA)

1: INPUT: A connected DGB G = (V, E) and an MIS computed
by Wan’s algorithm [4]

2: OUTPUT: A CDS T¢ps with minimum diameter

3: Each node maintains a unique node ID and a status of unex-
plored initially

4: Color all nodes in MIS black and color every node adjacent to
a black node in grey

5: Randomly choose a root r in MIS and set r to explored. Each
node y is assigned a level k such that k = HopCount(r,y),
where 0 < k < k™. Suppose k™ is the maximum value of k.

6: r broadcasts EX PLORE messages to its neighbors at level
1, where r is at level O

7: Upon receiving EX PLORE messages, an unexplored grey
node z at level ¢ sets itself explored and check if it has a black
neighbor y at level ¢ or ¢ + 1, if true, its color is set blue, the
ID of the message sender is stored, and sends EXPLORE
messages to its black neighbors at level ¢ and ¢ + 1 if possible.

8: Upon receiving an EXPLORE message, an unexplored
black node y at level i(¢ > 2) sets itself explored and the
ID of the message sender is stored, then it employs the stored
node IDs to trace a 2-hops-away black node z at level 7 — 2 or
level 4 — 1 via a blue node z, add the path (z, z,y) into Teps
and then sends £ X PLO RE messages to its grey neighbors at
level ¢ and ¢ + 1 if possible.

9: The algorithm stops until there is no node changed from grey
to blue.

10: The union of black and blue nodes is T¢ps.

Note that if a black node z at level (i — 2) do not have a 2-hops-
away black node y at level ¢, then = must have a 2-hops-away black



node y at level (¢ — 1), since Lemma 3 holds. Therefore, for each
black node y we color exactly one grey node in blue to make « and
y connected. So, the number of nodes we have to add is exactly
|[MIS|—1.

Note that the CDS constructed by BDA is the union of MIS and
a set of blue nodes that connects MIS. Thus, We have the following
theorem:

THEOREM 3. Denote Tc ps as our solution obtained from BDA,
then |TCD5‘ < QK‘CDS*‘ — 1 and d(TCDs) <4D* +4ina
DGB.

Proof: It is known that for an MIS in a DGB, |I| < K|CDS”|
[3]. From the observation that the number of nodes we have to add
to connect the nodes in MIS is exactly |I| — 1, thus, |Tcps| <
2|I| =1 < 2K|CDS*| — 1. For diameter of CDS, every black
node at level k is away from r within a distance at most 2k hops.
Suppose G has diameter D, then D > k*, and the minimum diam-
eter of CDS is at least D — 2. In the worst case, two nodes in Tcps
at k™ level are separated by 2 * 2k™ hops since each node is away
from r at most 2k hops. In addition, we note that no black nodes
exist at level 1, the black nodes in level 2 can connect with r with
2 hops. Therefore, d(Tcps) < 2% 2(k* —2)+4 <4D* 4+ 4

0O

THEOREM 4. The BDA has O(n) time complexity and O(n log n)

message complexity.

Proof: Construction of an MIS takes O(n) time complexity and
sends O(nlogn) messages [4]. After that, we use linear message
and take at most linear time to connect the nodes in MIS. Overall,
BDA has O(n) time complexity and O(n log n) message complex-

1ty.
O

5.2 Progressive Distributed Algorithm and
Analysis

In this section, we introduce (v, (3)-CDS into our model to be the
input of Algorithm 1. Also, it can solve the CDS with bounded di-
ameter problem proposed in [9]. It approximately satisfies the size
constraint and the diameter constraint by constructing a CDS. As
we intent to balance the size and diameter, the definition of («, 3)-
CDS in given in wireless networks as follows:

DEFINITION 2. (a, 3)-CDS: Forafixedow > 1land 3 > 1, a
CDS C of G meeting the following two requirements is called an
(o, B)-CDS.

1. (Size) The size of C' is at most « times the minimum CDS
size.

2. (Diameter) For any pair of vertex uw and v in C, d(C) is at
most (3 times the minimum diameter of CDS plus a constant
number.

In (o, 3)-CDS, S is an user-defined input, and usually « is a
function of 3. Therefore, the value of o depends on the user-
defined input 8. In the following, we will describe how to gen-
erate an (o, 3)-CDS and study the tradeoff between the size and
diameter of it. Since an (v, 3)-CDS might be used as an input of
Algorithm 1, the tradeoff is still preserved for km-CDS.

The general idea of our PDA is as follows.

1. Construct a CDS T¢ps rooted at r by using BDA. Root r
should locate at the center of network, which is the mid-point
of the longest shortest path between two nodes in graph G.

2. Construct a Shortest Path Tree (SPT) T's pr rooted at r, which
only includes all the shortest paths from 7 to every other node
inTecps.

3. Traverse Tcps in a depth-first manner. When visiting a node
u, if the number of hops from 7 to w in Tcps is larger than
a user-defined threshold 3 times the number of hops from r
to u in T's pr, then a new path from 7 to w in T's pr is added
in TC DS.

If we denote Dops(u,v) as the number of hops from u to v
in Teps and Dspr(u,v) as the number of hops from « to v in
Tspr. The details of PDA is as follows:

Algorithm 3 Progressive Distributed Algorithm (PDA)
PDA()
1: Locate the center of network and choose r at the center.
2: Build a T¢ps rooted at r
3: Use Dijkstra’s algorithm to construct an SPT Tspr
4: C =FIND (Tcps, Tspr, T, 3)
5: return C
FIND (TCDS, TSPT, T, /8)
1: INITIALIZE (T¢ps, 1)
2: DES (r)
3: return a desired CDS C
INITIALIZE (G, r)
1: for each vertex v € Tcps do
2:  dy] « o
3: 7wy« NIL
4: end for
5:d[r] <0
RELAX (u,v)
1: if d[v] > d[u] + Deps(u,v) then
2:  dv] =d[u] + Decps(u,v)
3 7w —u
4: end if
DFS (u)
if d[u] > BDgspr(r,u) then
ADD-PATH (u)
end if
: for each child v of uin Tcps do
RELAX (u, v)
DFS (v)
RELAX (v, uw)
end for
ADD-PATH (v)
1: if d[v] > Dspr(r,v) and parentspr(v) != NIL then
2:  ADD-PATH (parentspr(v))
3:  RELAX (parentspr(v),v)
4: end if

A T

1. Root Selection and CDS Tree Construction: With Dijkstra’s

algorithm [13], which is used to solve the single-source shortest-

paths problem, each node maintains a global variable, which
stores the current longest shortest path in the graph G, we
could find the mid-point of the longest shortest path by run-
ning Dijkstra’s algorithm on each node, if a longer shortest
path is found, the global variable of each node will be up-
dated. While constructing Tcps rooted at » by BDA, each
node u needs to maintain a pointer 7[u] for its parent on the
tree Tcps and an upper bound d[u] for the number of hops



tor. Weuse the INITIALIZE and RELAX algorithms
in [10] to initialize and maintain both of these attributes.

2. Shortest Path Tree Construction: 7'spr rooted at r is con-
structed by using Dijkstra’s algorithm. It only contains all the
shortest paths from the root r to every other node in T¢ps.

3. Depth First Search (DFS): Traverse the T¢ ps in a DFS man-
ner beginning from the root r along the paths from 7 to all the
other nodes in Tcps. When node w is reached for the first
time, if d[u] is greater than 3% Dgpr(r,u), then the shortest
P, in Tspr is added to Teps and dfu] and 7[u] are up-
dated. After this, node u’s parent v needs to be checked if
the updated path from r to u will result in reducing the num-
ber of hops from r to v. If so, then v’s parent will be checked
and so on until the root r is reached.

With the execution of BDA, distributed SPT (dSPT) (e.g. [11]),
and distributed DFS (dPFS) (e.g. [12]), Tcps, Tspr and a DFS
traversal order could be achieved. In this way, with a Manager (e.g.
root node), PDA could be easily initiated and terminated according
to the details illustrated in Algorithm 3.

To evaluate the correctness of the PDA, we examine whether the
two constraints in the definition has been satisfied. Taking (3 as
an user-defined input, we derive a relationship between « and (3,
which shows the relationship between the size of the constructed
CDS and the optimal solution of CDS on size. We also analyze the
time complexity of the PDA.

Define w(Tcps) as the total weight of Tcps in G, where we
assume each edge has been assigned the unit weight of 1. Then
Dspr(u,v)and Deps(u, v) are equal to the weight of Ts pr(u, v)
and T¢ ps (u, v) respectively. Another observation is that |Tcps| =
w(Teps) + 1, since the number of node in a tree equals to the to-
tal number of edges, which also equals to w(Tcps) plus 1. Mean-
while, as we mentioned before, the lower bound of minimum diam-
eter of CDS is D — 2. Actually, the upper bound for the minimum
diameter of CDS is D, i.e., all the nodes in G are in CDS, therefore,
D* =D.

Due to the specific structures of CDS, we will classify the fol-
lowing proofs into two cases. case (1): the diameter of SPT T
rooted at 7 that spans all nodes in G is equal to D and all other
situations are classified into case (2).

LEMMA 4. For any pair of nodes w and v in C, the number of
hops between u and v is at most 3 times (D*+2), when d(T) = D.

Proof: When a vertex v is visited, if d[v] > BDspr(r,v),
then shortest path between r and w is added into Tcps by call-
ing ADD — PATH. Also, we know that the maximum value for
Dgspr(r,v) is the height h of T's pr, we will prove that 2h < D™+
2 in the following. After v is visited, d[v] is at most 3Dgpr(r,v),
which is less or equal to Bh and subsequently never increases. For
u, the same analysis can also be applied. Therefore, the total num-
ber hops between v and w in C is at most 23h, therefore at most
B(D* +2).

Now, we prove that 2h < D™ + 2. First, it is easy to see that
2h < d(T') and d(T") = D. Then we have the following:

2h—2<d(T)—2<D-2<D*

Therefore, we prove that 2h < D* + 2.
O

LEMMA 5. In case (2), for any pair of nodes u and v in C, the
number of hops between u and v is at most 23 times (D* + 1).

Proof: 1If d(T') # D, the worst case is that d(T)) = 2D*. A
simple example to illustrate that is a ring, the degree of each node
in the ring is only 2 and all the nodes in G are included in CDS, see
Fig. 1. Therefore, h < D* + 1, then the maximum number of hops
between u and v is at most 2h, that is 23(D* + 1). O

Figure 1: All the nodes in the ring are a CDS with diameter of
8

In real wireless network, case (2) rarely happens, since it requires
all the hosts (nodes) are uniformly deployed as a ring. However, in
most cases, they are deployed randomly. Therefore, the diameter
of CDS returned by PDA is bounded by S(D* + 2) in most cases.

LEMMA 6. The total number of nodes on the added shortest
paths is at most % |CDS™| + 3.

Proof: Let vo = r and v1, v2.....vx be the vertices that caused
shortest path to be added during the traversal, in the order they
were encountered. When the shortest path from 7 to v; (i > 1) was
added, the number of hops of the added path was Dgpr (7, v;).
Also, the nodes on the path to v; has been relaxed in order, so
that d[v;] < Dspr(r,vi—1) + Deps(vi—1, v;). The shortest path
to v; was added because 3Dgspr(r,v;) < d[v;]. Combining the
inequalities,

BDspr(r,v;) < Dgpr(r,vi—1) + Deps(vi—1,v;)

Summing over ¢ bounds from 1 to k, the number of hops of the
added paths:

k
B Z Dspr(r,v;)

i=1

k
Z (Dspr(r,vi—1) + Deps(vi—1,vi))

and therefore

k k
B—=1)> Dspr(r,v:) <Y Dops(vio1,vi)
=1 =1
The DFS traversal traverses each edge exactly twice, and hence
the sum on the right-hand side is at most twice w(Tcps), since

one hop corresponds to a unit weight of 1, i.e.,

k
Z Deps(vi—1,v:i) < 2w(Teps)

i=1

We note that the number of new nodes on the added shortest path
is exactly equal to Dgpr(r,v;) — 1 and |Teps| = w(Teps) + 1.
Therefore,

k
~1) Y (Dspr—1)(r,v:) +k(B—1) < 2(w(Tops)+1) —2
i=1



k
1)> (Dspr — 1)(r,v:) + k(B — 1) < 2|Teps| — 2
i=1

Here, we intend to maximize k in order to have a tighter bound
on >F_(Dspr — 1)(r,v:), which is the total number of new
nodes on the added shortest paths, Let denote Zle (Dspr —
1)(r,v;) as Ps;ze for clear representation.

Intuitively, & is at most || since all black nodes in MIS of Tcps
may cause shortest paths to be added during the traversal. However,
the root r and at least two black nodes at level 2 will not be counted
in k. Therefore, k is at most |I| — 3.

(B =1DPsize <2|Tops|—2— (1| =3)(B—1)
<A —4— (] =3)(B-1)

<G-BUI+36-T7
Since |I| < K|CDS*| [3], we have:

Pyize < %\CDS*\ +3
O

THEOREM 5. Given the value of (3, the approximation ratio o
on the size of CDS is (ﬂ;%)l}(

Proof: From the above analysis, C' is the union of Tcps and
the added shortest paths. Therefore, combining the Theorem 3 and
Lemma 6,

‘C| = |TCDS‘ + Psize
< 2K|CDS*| — 14 CAK|CDS* | +3
< EBE|ICDS* | +2

O

THEOREM 6. The time complexity of the PDA algorithm is O(n
and the message complexity of the PDA algorithm is O(n?).

Proof: From Theorem 4, the time complexity and message com-
plexity for BDA are O(n) and O(nlogn) respectively and dSPT
and dDFS run at most O(n?) time complexity and send O(n?)
messages [11] [12]. Now, we analyze the procedure of finding the
center of network. The dSPT is executed at each node x simultane-
ously, after that, x needs to broadcast the longest path in SPT rooted
at  and compare it with the longest paths returned by other nodes.
Therefore, this procedure needs O(n?) time complexity and O(n?)
message complexity. Since all other operation only take at most
O(n) time complexity and O(n) message complexity, the overall
message complexity and time complexity of PDA are O(n?) and
O(n?).

O

6. SIMULATION RESULTS

In this section, we conducted the simulation experiments to mea-
sure the diameter and size of CDS constructed by our proposed al-
gorithms. Moreover, we are interested in comparing the CDSs re-
turned by CDS-BD [9] and PDA. Since the running time for PDA
and BDA has been discussed in Section 5, we also would like to
verify the running time of the two algorithms in practice. In addi-
tion, we do various experiments by adjusting the user-defined pa-
rameter (3 in PDA, in order to see how the CDS size and diameter

2)’

could be balanced. At last, we evaluate the performance of Al-
gorithm 1 by comparing to PDA so that the tradeoffs between the
three factors could be systematically discovered.

To simulate the network, we randomly deployed n nodes to a
fixed area of 3,000m x 3,000m. n changed from 100 to 300 with
an increment of 10. Each node v; randomly chose the transmission
range 7; € [Fmin, 'maz] Where rmin = 100m and rmaz = 300m.
For each value of n, 1,000 network instances were investigated and
the results were averaged.

6.1 Simulations for BDA and PDA
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Figure 2: Simulations for BDA and PDA

The purpose of this simulation is to evaluate the performance
of our proposed algorithms under different number of nodes and
verify the importance of root selection at the same time. In order
to highlight the root selection, we use a variation of BDA, called
BDA-Mid, as a reference. Compared to BDA, BDA-Mid selects
the center of network as the root instead of choosing randomly.
Also, we include PDA in this simulation and [ is set to 1.

Fig. 2(a) compares the diameter of CDS constructed by the three
algorithms. It is shown that, under different number of nodes de-
ployed in networks, the CDS built by PDA has the smallest diame-
ter. We observe that the gap between BDA and BDA-Mid is shown
clearly, which indicates that the CDS could achieves smaller diam-
eter with the root locating at the center of network. On the other
hand, the difference between BDA-Mid and PDA is small, which
highlights an important fact that if the center of network is detected,
the diameter of CDS rooted at the center will be nearly optimal,
even using an algorithm that only guarantees a loose bound on di-
ameter, such as BDA. In order to see how far the diameter of CDS
returned by BDA-Mid from the optimal solution. we set 3 to 1 in
PDA. Since with 8 = 1, PDA will produce a CDS with minimum
diameter mostly.

In Fig. 2(b), we present the size of CDS obtained from all three
algorithms, depending on the number of nodes deployed. The sizes
of CDSs returned by the three algorithms are close to each other
and they all increase with the number of nodes. Also, considering



Number BDA BDA-Mid PDA

of Node | Runtime | Runtime | Runtime
100 0.0030 1.2640 1.6460
120 0.0035 2.6260 3.4025
140 0.0065 4.8320 6.2470
160 0.0080 8.3955 10.790
180 0.0105 13.612 17.588

200 0.0150 20.604 26.650
220 0.0195 30.427 38.916
240 0.0245 49.698 63.839
260 0.0350 78.144 100.67

280 0.0385 104.91 134.48
300 0.0480 155.49 197.78

Table 1: Runtime(ms)

the same number of nodes, BDA returns a larger size of CDS than
PDA and BDA-Mid. Although the gaps between these algorithm
look small in Fig. 2(b), the difference between BDA and BDA-Mid
is clear to observe in the comparison of real data, which illustrates
that the size of CDS can be reduced by choosing the center of net-
work as the root. Therefore, the center of network appears to be an
important issue in the construction of CDS.

In Table 1, we present the running time for the proposed algo-
rithms. As the complexity analysis indicates, the runtime of BDA-
Mid and PDA is much higher than that of BDA. This is due to the
long time spent on detecting the center of network. Moreover, we
show in Table 1 that the BDA-Mid still runs faster than PDA, since
PDA needs to compute T'spr to shorten the diameter. When the
number of nodes increases, PDA and BDA-Mid spend more time
on detecting the center of network. Therefore, it is a tradeoff be-
tween the size (diameter) of CDS and running time of the proposed
algorithms.

6.2 Simulations for CDS-BD and PDA
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Figure 3: Simulations for CDS-BD and PDA

We also conducted simulations to compare the performance of

CDS-BD and PDA. CDS-BD is an algorithm proposed in [9] to
construct a CDS with bounded diameter and size. It selects a root
randomly and spans a CDS from the root. The approximation ra-
tios of CDS-BD are 11.4 and 3 on size and diameter respectively.
For the purpose of fairness, we set 5 = 3 (the approximation ra-
tio of PDA on diameter) in PDA and also choose the root of CDS
randomly.

Fig. 3(a) shows that the diameters of CDS built by the two al-
gorithms are quite close to each other and the two curves intersect
with each other when different number of nodes deployed in the
network. For example, when the number of nodes deployed is 130,
PDA achieves smaller diameter than CDS-BD, while at 140, CDS-
BD has smaller value. The reason why they look close to each other
is that they all guarantee a constant approximation ratio of 3 on di-
ameter. Even though PDA does not always outperform CDS-BD
from this result, out of the 21 points in Fig. 3(a), PDA outperforms
CDS-BD at 16 points, which is around 76% in probability. So sta-
tistically, if the number of nodes deployed in the network is within
the range of 100 to 300, which is the simulation environment in our
model, PDA is still better than CDS-BD in reducing the diameter.

Fig. 3(b) provides the performance comparison of the two algo-
rithms on the size of CDS. It shows PDA always constructs a CDS
with smaller size than CDS-BD, which is much better than theo-
retical analysis we gave in Section 5. Therefore, we can conclude
that PDA outperforms CDS-BD on size and on diameter with high
probability as well.

6.3 Simulations Based on Different s
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Figure 4: Simulations Based on Different 3

In the above simulations, (3 is fixed. In this section, we conduct
the simulations with different values of 5. We study the relation-
ship between [ and the size of CDS and the relationship between
(G and diameter of CDS. As the root selection will not affect the
comparison, we randomly choose the root of CDS in this group of
simulations. Results are shown in Fig. 4.

In Fig. 4(a), each line represents the diameter of CDS based
on one of different values of 3. When (3 is set to 1, PDA adds a
shortest path from v to 7 if Deps(r, v) is larger than Dspr (7, v).



Therefore, PDA with 8 = 1 returns a CDS with the smallest diam-
eter. When (3 is set to 4, PDA will not cause the shortest paths to
be added in, since PDA only adds the path from v to r in Tcps
under the condition that Deps(r,v) is greater than 4 times of
Dgspr(r,v), however, the upper bound of PDA on diameter is 4.
Thus, the CDS by PDA with 3 = 4 has the largest diameter. For
(B = 2, the corresponding line is in the middle. Therefore, as we
expected, the diameter of CDS built by PDA could be controlled by
adjusting the values of 3.

In Fig. 4(b), each line represents the size of CDS based on one
of different values of 3. When g is set to 1, if Depg(r,v) is
larger than Dgpr(r,v), PDA adds a shortest path from v to r.
This strategy will incur more nodes to be added. On the opposite,
when [ is set to 4, no shortest path is needed, which results in a
CDS with smaller size. For 8 = 2, the corresponding line is in
the middle, the same situation as in Fig. 4(a). In conclusion, the
performance of PDA can be balanced depending on the value of
and the tradeoff between size and diameter is clear.

6.4 Simulations for £m-CDS
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Figure 5: Simulations for km-CDS

In this section, we are interested in evaluating the performance
of Algorithm 1. We intend to illustrate that Algorithm 1 improves
the fault tolerance of 1-CDS by adding marginal overhead (in terms
of the number of nodes added into 1-CDS). We generate a 1-CDS
using PDA with random root selection and £ is set to 2 here. We
take the 1-CDS generated using PDA as the input of Algorithm 1
afterwards, and we set k = 2 and m = 1.

Figure 5(a) compares the performance of Algorithm 1 and PDA
in terms of the diameter of CDS. As we expected, there is little
difference on the diameter of CDS based on the two algorithms,
which perfectly matches our theoretical analysis for the diameter
of km-CDS. Therefore, Algorithm 1 enhances the fault tolerance
of CDS without affecting its diameter greatly.

Meanwhile, as observed from Fig. 5(b), the size of km-CDS ob-
tained from Algorithm 1 is certainly larger than 1-CDS by PDA.
Specifically, the performance of the two algorithms is relatively
proportional. As observed from our experiments, the size of km-

CDS obtained from Algorithm 1 is almost 1.06 times the size of

CDS returned by PDA. The results indicate that considering the

fault tolerance will increase the size of the CDS at the same time.

However, the increase in size is still bounded and predictable. There-
fore, it is clear to see the tradeoffs between the three factors.

7. CONCLUSIONS

In this paper, we investigate the fault tolerant CDS problem with
bounded diameter in wireless networks. We propose an approxi-
mation algorithm for a general case of the km-CDS, and two algo-
rithms for 1-CDS, which could be applied into the solution of the
km-CDS model. We analyze the approximation ratios of the these
algorithms in DGB and they guaranteed constant ratios for those
factors considered. Moreover, the proposed algorithms for 1-CDS
can be implemented in distributed manner and the analysis of time
and message complexities is presented as well. Through extensive
simulations, we verify that our proposed algorithms can effectively
reduce the diameter and size of CDS and outperform CDS-BD [9].
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