
Methodologies and Tools for Development of Signal Processing

Software on Multicore Platforms

Jerker Bengtsson∗and Bertil Svensson†

Centre for Research on Embedded Systems
Halmstad University

PO Box 823, SE-301 18 Halmstad, Sweden

Research Focus To be able to handle the rapidly
increasing programming complexity of multicore pro-
cessors, we argue that domain specific development
tools are needed. The signal processing required
in radio base stations (RBS), see figure 1, is natu-
rally highly parallel and described by computations
on streams of data. Each module in the figure en-
capsulates a set of functions, further exposing more
pipeline-, data- and task level parallelism as a func-
tion of the number of connected users. Many ra-
dio channels have to be processed concurrently, each
including fast and adaptive coding and decoding of
digital signals. Hard real-time constraints imply that
parallel hardware, including processors and accelera-
tors is a prerequisite for coping with these tasks in a
satisfactory manner.

One candidate technology for building baseband
platforms is multicores. Based on the specified tim-
ing constraints and different types and levels of par-
allelism in this specific type of application, we are
especially interested in multicores where cores:

• are many to the number

• are tightly coupled via a decentralized intercon-
nection network and offer low core send- and re-
ceive occupancy

• have individual instruction execution ability

• allow the programmer to orchestrate the trans-
actions between local and global memories

∗contact: Jerker.Bengtsson@hh.se
†contact: Bertil.Svensson@hh.se

Parallel Models of Computation One of the re-
quirements from industry in order to fully adopt com-
mercial multicore technology – in favor of in-house
hardware solutions – is that the application software,
the tools and the programming models are portable.
Streaming models of computation (MoC) offer a good
match both when expressing signal processing appli-
cations and as input when generating parallel code
for multicore processors. One good example is syn-
chronous dataflow (SDF) [1]. Using SDF it is possible
to describe different types and granularities of paral-
lelism, while at the same time abstract away phys-
ical mapping details related to memory allocation,
scheduling of communication and synchronization.

Research has demonstrated efficient compiler
heuristics for programming languages based on
streaming MoC, achieving good speedup and high
throughput for parallel benchmarks [2]. However,
even though a compiler can generate optimized code
the programmer is left with very little control of how
the source program is transformed and mapped on
the cores. This means that if the resulting code out-
put does not comply with the system timing require-
ments, the only choice is trying to restructure the
source program.

We argue that experienced application program-
mers must be able to direct and specialize the parallel
mapping strategy by giving directive tool input.

Flexible Mapping Strategies For complex real-
time systems, such as baseband processing platforms,
we see a need for tunable code parallelization- and

1



Figure 1: A simplified modular view of the princi-
pal functions of the baseband receiver in long term
evolution (LTE) RBS [3].

mapping tools, allowing programmers to take the sys-
tem’s real-time properties into account during the
optimization process. Therefore, complementary to
fully automatized multicore compilers, we are propos-
ing an iterative code parallelization- and mapping
tool flow that allows the programmer to tune map-
ping by:

• analyzing the result of a parallel code map using
performance feedback

• giving timing constraints, clustering and core al-
location directives as input the tool

Such a tool would allow the programmer early in
the development process to explore the run time be-
havior of the system and to find successively better
mappings. We believe that this iterative, machine
assisted workflow helps keeping the application soft-
ware portable and supports the user to make trade-
offs concerning throughput, latency and compliance
with real-time constraints on different platforms.

Tool Chain for Iteratively Tuned Code Gen-
eration We are designing a tool chain that allows
the programmer to specify a multicore architecture
(using a configurable machine model), to describe a
model of the application (using SDF) and to obtain
a parallel intermediate representation (IR) that can
be evaluated [4].

To enable portability and code generation for a
multitude of processor targets, there is an obvious

need for a parallel machine abstraction. A research
challenge here is that this model needs to be gen-
eral enough to capture the architectural structure of
a set of processors, while still be detailed enough to
be useful for realistic performance analysis. The diffi-
cult part to model is contention on shared resources,
mainly the network and the global memory. By focus-
ing on software controlled cache machines this prob-
lem can be delimited to a network modeling problem.
We have developed such a machine model which is
subject to experimental evaluation.

To be able to evaluate performance we need an
IR that is also easily abstractly computable. In our
work, we have proposed one such parallel IR. The IR
is a process networks graph in which nodes (cores)
and edges (logical communication) are associated
with processing costs derived from the application-
and the machine model. Interesting research ques-
tions here are what kind of feedback information is
useful and how the developer can and should interact
with the mapping tool using this information.

References

[1] E. A. Lee and D. G. Messerschmitt, “Static
Scheduling of Synchronous Data Flow Programs
for Signal Processing,” IEEE Transactions on
Computers, vol. C-36, January 1987.

[2] M. I. Gordon, W. Thies, and S. Amarasinghe,
“Exploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Programs,” in In-
ternational Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, (San Jose, CA), 2006.

[3] H. Sahlin, “Introduction and overview of LTE
Baseband Algorithms.” Powerpoint presentation,
Baseband research group, Ericsson AB, February
2007.

[4] J. Bengtsson, “A Model Set for Manycore Perfor-
mance Evaluation Through Abstract Interpreta-
tion of Timed Configuration Graphs,” Tech. Rep.
IDE0850, School of Information Science, Com-
puter and Electrical Engineering, 2008.

2


