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Music transcription refers to the analysis of an acoustic musical signal so as
to write down the pitch, onset time, duration, and source of each sound that
occurs in it. In Western tradition, written music uses note symbols to indicate
these parameters in a piece of music. Figures 1-2 show the notation of an
example music signal. Omitting the details, the main conventions are that
time flows from left to right and the pitch of the notes is indicated by their
vertical position on the staff lines. In the case of drums and percussions, the
vertical position indicates the instrument and the stroke type. The loudness
(and the applied instrument in the case of pitched instruments) is normally
not specified for individual notes but is determined for larger parts.

Besides the common musical notation, the transcription can take many
other forms, too. For example, a guitar player may find it convenient to read
chord symbols which characterize the note combinations to be played in a
more general manner. In a computational transcription system, a MIDI file!
is often an appropriate format for musical notations (Fig. 3). Common to all
these representations is that they capture musically meaningful parameters
that can be used in performing or synthesizing the piece of music in question.
From this point of view, music transcription can be seen as discovering the
“recipe”, or, reverse-engineering the “source code” of a music signal.

A complete transcription would require that the pitch, timing, and instru-
ment of all the sound events is resolved. As this can be very hard or even
theoretically impossible in some cases, the goal is usually redefined as being
either to notate as many of the constituent sounds as possible (complete tran-
scription) or to transcribe only some well-defined part of the music signal, for
example the dominant melody or the most prominent drum sounds (partial
transcription). Both of these goals are relevant and are discussed in this book.

Music transcription is closely related to structured audio coding. A musical
notation or a MIDI-file is an extremely compact representation yet retains the

!Musical Instrument Digital Interface (MIDI) is a standard for exchanging per-
formance data and parameters between electronic musical devices [2, 3].
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Fig. 1. An acoustic musical signal (top) and its time-frequency domain representa-
tion (bottom). The excerpt is from Song G034 in the RWC database [1].
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Fig. 2. Musical notation corresponding to the signal in Fig. 1. The upper staff lines
show the notation for pitched musical instruments and the lower staff lines show the
notation for percussion instruments.
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Fig. 3. A “piano-roll” illustration of a MIDI-file which corresponds to the pitched
instruments in the signal in Fig. 1. Different notes are arranged on the vertical axis
and time flows from left to right.
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characteristics of a piece of music to an important degree. Another related area
of study is that of music perception [4]. Detecting and recognizing individual
sounds in music is a big part of its perception, although it should be empha-
sized that musical notation is primarily designed to serve sound production
and not to model hearing. We do not hear music in terms of note symbols but,
as described by Bregman [5, pp. 457-460], music often “fools” the auditory
system so that we perceive simultaneous sounds as a single entity.

In addition to audio coding, applications of music transcription comprise

Music information retrieval based on the melody of a piece, for example.
Music processing, such as changing the instrumentation, arrangement, or
the loudness of different parts before resynthesizing a piece from its score.

e Human-computer interaction in various applications, including score type-
setting programs and musically-oriented computer games. Singing tran-
scription is of particular importance here.

e  Music-related equipment, ranging from music-synchronous light effects to
highly sophisticated interactive music systems which generate an accom-
paniment for a soloist.

e  Musicological analysis of improvised and ethnic music for which musical
notations do not exist.

e Transcription tools for amateur musicians who wish to play along with
their favourite music.

The purpose of this book is to describe algorithms and models for the dif-
ferent subtopics of music transcription, including pitch analysis, meter analysis
(see Sect. 1 for term definitions), percussion transcription, musical instrument
classification, and music structure analysis. The main emphasis is laid on the
low-level signal analysis where sound events are detected and their parameters
are estimated, and not so much on the subsequent processing of the note data
to obtain larger musical structures. The theoretical background of different
signal analysis methods is presented and their application to the transcription
problem is discussed.

The primary target material considered in this book is complex music
signals where several sounds are played simultaneously. These are referred
to as polyphonic signals, in contrast to monophonic signals where at most
one note is sounding at a time. For practical reasons, the scope is limited to
Western music, although not to any particular genre. Many of the analysis
methods make no assumptions about the larger-scale structure of the signal
and are thus applicable to the analysis of music from other cultures as well.

To give a reasonable estimate of the achievable goals in automatic music
transcription, it is instructive to study what human listeners are able to do in
this task. An average listener perceives a lot of musically relevant information
in complex audio signals. He or she can tap along with the rhythm, hum the
melody (more or less correctly), recognize musical instruments, and locate
structural parts of the piece, such as the chorus and the verse in popular
music. Harmonic changes and various details are perceived less consciously.
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Similarly to natural language, however, reading and writing music requires
education. Not only the used notation needs to be studied, but recognizing
different pitch intervals and timing relationships is an ability that has to be
learned — these have to be encoded into a symbolic form in one’s mind before
writing them down. Moreover, an untrained listener is typically not able to
hear out the inner lines in music (sub-melodies other than the dominant one)
but musical ear training is needed to develop an analytic mode of listening
where these can be distinguished. The richer the polyphonic complexity of a
musical composition, the more its transcription requires musical ear training
and knowledge of the particular musical style and of the playing techniques
of the instruments involved.

First attempts towards the automatic transcription of polyphonic music
were made in the 1970s, when Moorer proposed a system for transcribing two-
voice compositions [6, 7]. His work was followed by that of Chafe et al. [§],
Piszczalski [9], and Maher [10, 11] in the 1980s. In all these early systems, the
number of concurrent voices was limited to two and the pitch relationships of
simultaneous sounds were restricted in various ways. On the rhythm analysis
side, the first algorithm for beat-tracking? in general audio signals was pro-
posed by Goto and Muraoka in the 1990s [12], although this was preceded by
a considerable amount of work for tracking the beat in parametric note data
(see [13] for a summary) and by the beat tracking algorithm of Schloss for per-
cussive audio tracks [14]. First attempts to transcribe percussive instruments
were made in the mid-1980s by Schloss [14] and later by Bilmes [15], both
of whom classified different types of conga strikes in continuous recordings.
Transcription of polyphonic percussion tracks was later addressed by Goto
and Muraoka [16]. A more extensive description of the early stages of music
transcription has been given by Tanguiane in [17, pp. 3-6].

Since the beginning of 1990s, the interest in music transcription has grown
rapidly and it is not possible to make a complete account of the work here.
However, certain general trends and successful approaches can be discerned.
One of these has been the use of statistical methods. To mention a few ex-
amples, Kashino [18], Goto [19], Davy and Godsill [20], and Ryynénen [21]
proposed statistical methods for the pitch analysis of polyphonic music; in
beat tracking, statistical methods were employed by Cemgil and Kappen [22],
Hainsworth and MacLeod [23], and Klapuri et al. [24]; and in percussive in-
strument transcription by Gillet and Richard [25] and Paulus et al. [26]. In
musical instrument classification, statistical pattern recognition methods pre-
vail [27]. Another trend has been the increasing utilization of computational
models of the human auditory system. These were first used for music tran-
scription by Martin [28], and auditorily-motivated methods have since then
been proposed for polyphonic pitch analysis by Karjalainen and Tolonen [29]
and Klapuri [30], and for beat tracking by Scheirer [31], for example. Another

2 Beat tracking refers to the estimation of a rhythmic pulse which corresponds to
the tempo of a piece and (loosely) to the foot-tapping rate of human listeners.
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prominent approach has been to model the human auditory scene analysis
(ASA) ability. The term ASA refers to the way in which humans organize
spectral components to their respective sounds sources and recognize simulta-
neously occurring sounds [5]. The principles of ASA were brought to the pitch
analysis of polyphonic music signals by Mellinger [32] and Kashino [33], and
later by Godsmark and Brown [34] and Sterian [35]. Most recently, several
unsupervised learning methods have been proposed where a minimal amount
of prior assumptions is made about the analyzed signal. Methods based on
independent component analysis [36] were introduced to music transcription
by Casey [37, 38|, and various other methods have been later proposed by
Lepain [39], Smaragdis [40, 41], Abdallah [42, 43], Virtanen (see Chapt. ?7?),
FitzGerald [44, 45], and Paulus [46]. Of course, there are also methods that do
not represent any of the above-mentioned trends, and a more comprehensive
review of the literature is presented in the coming chapters.

The state-of-the-art music transcription systems are still clearly inferior to
skilled human musicians in accuracy and flexibility. That is, a reliable general-
purpose transcription system does not exist at the present time. However,
some degree of success has been achieved for polyphonic music of limited
complexity. In the transcription of pitched instruments, typical restrictions
are that the number of concurrent sounds is limited [29, 20], interference
of drums and percussive sounds is not allowed [47], or only a specific in-
strument is considered [48]. Some promising results for the transcription of
real-world music on CD recordings has been demonstrated by Goto [19] and
Ryynénen and Klapuri [21]. In percussion transcription, quite good accuracy
has been achieved in the transcription of percussive tracks which comprise a
limited number of instruments (typically bass drum, snare, and hihat) and
no pitched instruments [25, 46]. Also promising results have been reported
for the transcription of the bass and snare drums on real-world recordings,
but this is a more open problem (see e.g. Zils et al. [49], FitzGerald et al.
[50], Yoshii et al. [51]). Beat tracking of complex real-world audio signals can
be performed quite reliably with the state-of-the-art methods, but difficulties
remain especially in the analysis of classical music and rhythmically complex
material. Comparative evaluations of beat-tracking systems can be found in
[23, 24, 52]. Research on musical instrument classification has mostly concen-
trated on working with isolated sounds, although more recently this has been
attempted in polyphonic audio signals, too [53, 54, 55, 56].

1 Terminology and Concepts
Before turning to a more general discussion of the music transcription problem
and the contents of this book, it is necessary to introduce some basic terminol-

ogy of auditory perception and music. To discuss music signals, we first have
to discuss the perceptual attributes of sounds of which they consist. There are
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four subjective qualities that are particularly useful in characterizing sound
events: pitch, loudness, duration, and timbre [57].

Pitch is a perceptual attribute which allows the ordering of sounds on
a frequency-related scale extending from low to high. More exactly, pitch is
defined as the frequency of a sine wave that is matched to the target sound
by human listeners [58]. Fundamental frequency (F0) is the corresponding
physical term and is defined for periodic or nearly periodic sounds only. For
these classes of sounds, F0 is defined as the inverse of the period and is closely
related to pitch. In ambiguous situations, the period corresponding to the
perceived pitch is chosen.

The perceived loudness of an acoustic signal has a non-trivial connection
to its physical properties, and computational models of loudness perception
constitute a fundamental part of psychoacoustics® [59]. In music processing,
however, it is often more convenient to express the level of sounds with their
mean-square power and to apply a logarithmic (deciBel) scale to deal with
the wide dynamic range involved. The perceived duration of a sound has more
or less one-to-one mapping to its physical duration in cases where this can be
unambiguously determined.

Timbre is sometimes referred to as sound “colour” and is closely related
to the recognition of sound sources [61]. For example, the sounds of the violin
and the flute may be identical in their pitch, loudness, and duration, but are
still easily distinguished by their timbre. The concept is not explained by any
simple acoustic property but depends mainly on the coarse spectral energy
distribution of a sound, and the time evolution of this. Whereas pitch, loud-
ness, and duration can be quite naturally encoded into a single scalar value,
timbre is essentially a multidimensional concept and is typically represented
with a feature vector in musical signal analysis tasks.

Musical information is generally encoded into the relationships between
individual sound events and between larger entities composed of these. Pitch
relationships are utilized to make up melodies and chords. Timbre and loud-
ness relationships are used to create musical form especially in percussive
music, where pitched musical instruments are not necessarily employed at
all. Inter-onset interval (IOI) relationships, in turn, largely define the rhyth-
mic characteristics of a melody or a percussive sound sequence (the term I0I
refers to the time interval between the beginnings of two sound events). Al-
though durations of the sounds play a role too, the IOIs are more crucial in
determining the perceived rhythm [62]. Indeed, many rhythmically important
instruments, such as drums and percussions, produce exponentially-decaying
waveshapes that do not even have a uniquely defined duration. In the case of
sustained musical sounds, however, the durations are used to control articu-

3Psychoacoustics is the science that deals with the perception of sound. In a
psychoacoustic experiment, the relationships between an acoustic stimulus and the
resulting subjective sensation is studied by presenting specific tasks or questions to
human listeners [57].
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Fig. 4. Ilustration of the piano keyboard (only three octaves are shown here).

lation. The two extremes here are “staccato”, where notes are cut very short,
and “legato”, where no perceptible gaps are left between successive notes.

A melody is a series of pitched sounds with musically meaningful pitch
and IOI relationships. In written music, this corresponds to a sequence of
single notes. A chord is a combination of two or more simultaneous notes.
A chord can be harmonious or dissonant, subjective attributes related to the
specific relationships between the component pitches and their overtone par-
tials. Harmony refers to the part of music theory which studies the formation
and relationships of chords.

Western music arranges notes on a quantized logarithmic scale, with 12
notes in each octave range. The nominal fundamental frequency of note n can
be calculated as 440 Hz x 27/12_ where 440 Hz is an agreed-upon anchor point
for the tuning and n varies from —48 to 39 on a standard piano keyboard,
for example. According to a musical convention, the notes in each octave are
lettered as C, C#, D, D#, E, F, ... (see Fig. 4) and the octave is indicated
with a number following this, for example A4 and A3 referring to the notes
with fundamental frequencies 440 Hz and 220 Hz, respectively.

There are of course instruments which produce arbitrary pitch values and
not just discrete notes like the piano. When playing the violin or singing, for
example, both intentional and unintentional deviations take place from the
nominal note pitches. In order to write down the music in a symbolic form,
it is necessary to perform quantization, or, perceptual categorization [63]: a
track of pitch values is segmented into notes with discrete pitch labels, note
timings are quantized to quarter notes, whole notes, and so forth, and timbral
information is “quantized” by naming the sound sources involved. In some
cases this is not necessary but a parametric or semi-symbolic* representation
suffices.

An important property of basically all musical cultures is that correspond-
ing notes in different octaves are perceived as having a special kind of sim-
ilarity, independent of their separation in frequency. The notes C3, C4, and
C5, for example, play largely the same harmonic role although they are not
interchangeable in a melody. Therefore the set of all notes can be described
as representing only 12 pitch classes. An individual musical piece usually re-
cruits only a subset of the 12 pitch classes, depending on the musical key of
the piece. For example, a piece in the C major key tends to prefer the white

4In a MIDI file, for example, the time values are not quantized.
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Fig. 5. A music signal with three metrical levels illustrated.

keys of the piano, whereas a piece in B major typically employs all the black
keys but only two white keys in each octave. Usually there are seven pitch
classes that “belong” to a given key. These are called scale tones and they
possess a varying degree of importance or stability in the key context. The
most important is the tonic note (for example C in the C major key) and
often a musical piece starts or ends on the tonic. Perception of pitch along
musical scales and in relation to the musical key of the piece is characteristic
to tonal music, to which most of Western music belongs [64].

The term musical meter has to do with the rhythmic aspects of music: it
refers to the regular pattern of strong and weak beats in a piece. Perceiving the
meter consists of detecting moments of musical emphasis in an acoustic signal
and filtering them so that the underlying periodicities are discovered [65, 62].
The perceived periodicities, pulses, at different time scales (or, levels) together
constitute the meter, as illustrated in Fig. 5. Perceptually the most salient
metrical level is the tactus which is often referred to as the foot-tapping rate
or the beat. The tactus can be viewed as the temporal “backbone” of a piece
of music, making beat tracking an important subtask of music transcription.
Further metrical analysis aims at identifying the other pulse levels, the periods
of which are generally integer multiples or submultiples of the tactus pulse.
For example, detecting the musical measure pulse consists of determining the
number of tactus beats that elapses within one musical measure (usually 2-8)
and aligning the boundaries of the musical measures (barlines) to the music
signal.

Another element of musical rhythms is grouping which refers to the way in
which individual sounds are perceived as being grouped into melodic phrases
and these are further grouped into larger musical entities in a hierarchical
manner [65]. Important to the rhythmic characteristics of a piece of music is
how these groups are aligned in time with respect to the metrical system.

The structure of a musical work refers to the way in which it can be sub-
divided into parts and sections at the largest time-scale. In popular music,
for example, it is usually possible to identify parts that we label as the cho-
rus, the verse, an introductory section, and so forth. Structural parts can be
detected by finding relatively long repeated pitch structures or by observing
considerable changes in the instrumentation at section boundaries.
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The forthcoming chapters of this book address the extraction and anal-
ysis of the above elements in musical audio signals. Fundamental frequency
estimation is considered in Parts IIT and IV of this book, with a separate trea-
tise of melody transcription in Chaps. 7?7 and ?7. Meter analysis is discussed
in Chap. ?? and percussion transcription in Chap. ?7. Chapter ??7 discusses
the measurement of timbre and musical instrument classification. Structure
analysis is addressed in Chap. 77, and the quantization of time and pitch
in Chaps. 7?7 and 77, respectively. Before going to a more detailed outline
of each chapter, however, let us have a look at some general aspects of the
transcription problem.

2 Perspectives on Music Transcription

When starting to design a transcription system, certain decisions have to
be made already before the actual algorithm development. Among the ques-
tions involved are: How should the transcription system be structured into
smaller submodules or tasks? What kind of data representations would be the
most suitable? Should musical information be used as an aid in the analysis?
Would it be advantageous to analyze larger musical structures before going
into note-by-note transcription? These general and quite “philosophical” is-
sues are discussed from various perspectives in the following.

2.1 Neurophysiological Perspective

First, let us consider a neurophysiological argument into how the music tran-
scription problem should be decomposed into smaller subtasks. In the human
auditory cognition, modularity of a certain kind has been observed, meaning
that certain parts can be functionally and neuro-anatomically isolated from
the rest [66, 67, 68]. One source of evidence for this are studies with brain-
damaged patients: an accidental brain damage may selectively affect musical
abilities but not speech-related abilities, and vice versa [69]. Moreover, there
are patients who suffer from difficulties dealing with pitch variations in mu-
sic but not with temporal variations. In music performance or in perception,
either of the two can be selectively lost [70, 66].

Peretz has studied brain-damaged patients who suffer from specific music
impairments and she proposes that the music cognition system comprises at
least four discernable “modules” [66, 69]. An acoustic analysis module segre-
gates a mixture signal into distinct sound sources and extracts the perceptual
parameters of these (including pitch) in some raw form. This is followed by two
parallel modules which carry out pitch organization (melodic contour analysis
and tonal encoding of pitch) and temporal organization (rhythm and meter
analysis). The fourth module, musical lexicon, contains representations of the
musical phrases a subject has previously heard.

Page: 9 job: intro macro: svmult.cls date/time: 20-Dec-2006/17:06



10 Anssi Klapuri

Neuroimaging experiments in healthy subjects are another way of local-
izing the cognitive functions in the brain. Speech sounds and higher-level
speech information are known to be preferentially processed in the left audi-
tory cortex, whereas musical sounds are preferentially processed in the right
auditory cortex [68]. Interestingly, however, when musical tasks involve specif-
ically processing of temporal information (temporal synchrony or duration),
the processing is weighted towards the left hemisphere [67], [66]. The relative
(not complete) asymmetry between the two hemispheres seems to be related
to the acoustic characteristics of the signals: rapid temporal information is
characteristic for speech, whereas accurate processing of spectral and pitch
information is more important in music [71, 67, 68]. Zatorre et al. proposed
that the left auditory cortex is relatively specialized to a better time resolution
and the right auditory cortex to a better frequency resolution [67].

In computational transcription systems, rhythm and pitch have often
been analyzed separately and using different data representations (see e.g.
[18, 28, 72, 19, 73, 20]). Typically, a better time resolution is applied in
rhythm analysis and a better frequency resolution in pitch analysis. Based
on the above studies, this seems to be justified to some extent. However, it
should be kept in mind that studying the human brain is very difficult and the
reported results are therefore a subject of controversy. Also, the structure of
transcription systems is often determined by merely pragmatic considerations.
For example, temporal segmentation is performed prior to pitch analysis in
order to allow an appropriate positioning of analysis frames in pitch analysis,
which is typically the most demanding stage computationally.

2.2 Human Transcription

Another viewpoint to the transcription problem is obtained by studying the
conscious transcription process of human musicians and by inquiring about
their transcription strategies. The aim of this is to determine the sequence of
actions or processing steps that leads to the transcription result.

As already mentioned above, reading and writing music is an acquired
ability and therefore the practice of music transcription is of course affected by
its teaching at musical institutions. In this context, the term musical dictation
is used to refer to an exercise where a musical excerpt is played and it has to
be written down as notes [74]. An excellent study on the practice of musical
dictation and ear training pedagogy can be found in [75].

Characteristic to ear training is that the emphasis is not on trying to hear
more but to recognize what is being heard; to hear relationships accurately
and with understanding. Students are presented with different pitch intervals,
rhythms, and chords, and they are trained to name these. Simple examples
are first presented in isolation and when these become familiar, increasingly
complex material is considered. Melodies are typically viewed as a synthesis of
pitch and rhythm. For example, Ghezzo instructs the student first to memorize
the fragment of music that is to be written down, then to write the pitch of
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the notes, and finally to apply the rhythm [74, p.6]. Obviously, ear training
presumes a normally-hearing subject who is able to detect distinct sounds and
their pitch and timing in the played excerpts — aspects which are very difficult
to model computationally.

Recently, Hainsworth conducted a study where he asked trained musicians
to describe how they transcribe realistic musical material [76]. The subjects
(19 in total) had transcribed music from various genres and with varying goals,
but Hainsworth reports that a consistent pattern emerged in the responses.
Most musicians first write down the structure of the piece, possibly with some
key phrases marked in an approximate way. Next, the chords of the piece or
the bass line are notated, and this is followed by the melody. As the last step,
the inner lines are studied. Many reported that they heard these by repeated
listening, by using an instrument as an aid, or by making musically-educated
guesses based on the context.

Hainsworth points out certain characteristics of the above-described pro-
cess. First, it is sequential rather than concurrent; quoting the author, “no-
one transcribes anything but the most simple music in a single pass”. In this
respect, the process differs from most computational transcription systems.
Secondly, the process relies on the human ability to attend to certain parts
of a polyphonic signal while selectively ignoring others.®> Thirdly, some early
analysis steps appear to be so trivial for humans that they are not even men-
tioned. Among these are style detection (causing prior expectations regarding
the content), instrument identification, and beat tracking.

2.3 Mid-level Data Representations

The concept of mid-level data representations provides a convenient way to
characterize certain aspects of signal analysis systems. The analysis process
can be viewed as a sequence of representations from an acoustic signal towards
the analysis result [78, 79]. Usually intermediate abstraction levels are needed
between these two since musical notes, for example, are not readily visible
in the raw acoustic signal. An appropriate mid-level representation functions
as an “interface” for further analysis and facilitates the design of efficient
algorithms for this purpose.

The most-often used representation in acoustic signal analysis is the short-
time Fourier transform of a signal in successive time frames. Time-frequency
decompositions in general are of fundamental importance in signal processing
and are introduced in Chap. ??7. Chapter 7?7 discusses these in a more general
framework of waveform representations where a music signal is represented as
a linear combination of elementary waveforms from a given dictionary. Time-
frequency plane representations have been used in many transcription systems
(see e.g. [19, 80, 43], and Chap. ??), and especially in percussive transcription

®We may add that also the limitations of human memory and attention affect
the way in which large amounts of data are written down [77].
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Fig. 6. Three different mid-level representations for a short trumpet sound (FO
260 Hz), followed by a snare drum hit. The left panel shows the time-frequency
spectrogram with a logarithmic frequency scale. The middle panel shows the si-
nusoidal model for the same signal, line width indicating the amplitude of each
sinusoid. The right panel shows the output of a simple peripheral auditory model
for the same signal.

where both linear [45] and logarithmic [46, 25] frequency resolution has been
used.

Another common choice for a mid-level representation in music transcrip-
tion has been the one based on sinusoid tracks [18, 81, 35, 82]. In this para-
metric representation, an acoustic signal is modeled as a sum of sinusoids
with time-varying frequencies and amplitudes [83, 84], as illustrated in Fig. 6.
Pitched musical instruments can be modeled effectively with relatively few
sinusoids and, ideally, the representation supports sound source separation by
classifying the sinusoids to their sources. However, this is complicated by the
fact that frequency components of co-occurring sounds in music often overlap
in time and frequency. Also, reliable extraction of the components in real-
world complex music signals can be hard. Sinusoidal models are described in
Chap. 7?7 and applied in Chaps. 7?7 and ?7.

In the human auditory system, the signal traveling from the inner ear to
the brain can be viewed as a mid-level representation. A nice thing about
this is that the peripheral parts of hearing are quite well known and compu-
tational models exist which are capable of approximating the signal in the
auditory nerve to a high accuracy. The right panel of Fig. 6 illustrates this
representation. Auditory models have been used for music transcription by
several authors [28, 29, 48, 30] and these are further discussed in Chap. ??.

It is natural to ask if a certain mid-level representation is better than
others in a given task. Ellis and Rosenthal have discussed this question in
the light of several example representations commonly used in acoustic signal
analysis [78]. The authors list several desirable qualities for a mid-level rep-
resentation. Among these are component reduction, meaning that the number
of objects in the representation is smaller and the meaningfulness of each is
higher compared to the individual samples of the input signal. At the same
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Fig. 7. The two main sources of information in music transcription: an acoustic
input signal and pre-stored musicological and sound source models.

time, the sound should be decomposed into sufficiently fine-grained elements
so as to support sound source separation by grouping the elements to their
sound sources. Other requirements included invertibility, meaning that the
original sound can be resynthesized from its representation in a perceptually
accurate way, and psychoacoustic plausibility of the representation.

2.4 Internal Models

Large-vocabulary speech recognition systems are critically dependent on
language models which represent linguistic knowledge about speech signals
[85, 86, 87]. The models can be very primitive in nature, for example merely
tabulating the occurrence frequencies of different three-word sequences (N-
gram models), or more complex, implementing part-of-speech tagging of words
and syntactic inference within sentences.

Musicological information is likely to be equally important for the auto-
matic transcription of polyphonically rich musical material. The probabilities
of different notes to occur concurrently or in sequence can be straightfor-
wardly estimated, since large databases of written music exist in an electronic
format. Also, there are a lot of musical conventions concerning the arrange-
ment of notes for a certain instrument within a given genre. In principle, these
musical constructs can be modeled and learned from data.

In addition to musicological constraints, internal models may contain infor-
mation about the physics of musical instruments [88], and heuristic rules, for
example that a human musician has only ten fingers with limited dimensions.
These function as a source of information in the transcription process, along
with the input waveform (see Fig. 7). Contrary to an individual music signal,
however, these characterize musical tradition at large: its compositional con-
ventions, selection of musical instruments, and so forth. Although these are
generally bound to a certain musical tradition, there are also more universal
constraints that stem from the human perception (see Bregman [5, Ch. 5]). For
example, perceptually coherent melodies usually advance in relatively small
pitch transitions and employ a consistent timbre.

Some transcription systems have applied musicological models or sound
source models in the analysis [18, 81, 34, 21]. The principles of doing this are
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discussed in more detail in Part IV of this book. The term top-down process-
ing is often used to characterize systems where models at a high abstraction
level impose constraints on the lower levels [89, 90]. In bottom-up processing,
in turn, information flows from the acoustic signal: features are extracted,
combined into sound sources, and these are further processed at higher lev-
els. The “unsupervised-learning” approach mentioned on p. 5 is characterized
by bottom-up processing and a minimal use of pre-stored models and as-
sumptions. This approach has a certain appeal too, since music signals are
redundant at many levels and, in theory, it might be possible to resolve this
“puzzle” in a completely data-driven manner by analyzing a huge collection of
musical pieces in connection and by constructing models automatically from
the data. For further discussion of this approach, see Chap. 77.

Utilizing diverse sources of knowledge in the analysis raises the issue of
integrating the information meaningfully. In automatic speech recognition,
statistical methods have been very successful in this respect: they allow rep-
resenting uncertain knowledge, learning from examples, and combining diverse
types of information.

2.5 A Comparison with Speech Recognition

Music transcription is in many ways comparable to automatic speech recog-
nition, although the latter has received greater academic and commercial in-
terest and has been studied longer. Characteristic to both music and speech
is that they are gemerative in nature: a limited number of discrete elements
are combined to yield larger structures. In speech, phonemes are used to con-
struct words and sentences and, in music, individual sounds are combined to
build up melodies, rhythms, and songs. An important difference between the
two is that speech is essentially monophonic (one speaker), whereas music
is usually polyphonic. On the other hand, speech signals vary more rapidly
and the acoustic features that carry speech information are inherently multi-
dimensional, whereas pitch and timing in music are one-dimensional quanti-
ties.

A central problem in the development of speech recognition systems is the
high dynamic variability of speech sounds in different acoustic and linguistic
contexts — even in the case of a single speaker. To model this variability
adequately, large databases of carefully annotated speech are collected and
used to train statistical models which represent the acoustic characteristics of
phonemes and words.

In music transcription, the principal difficulties stem from combinatorics:
the sounds of different instruments occur in varying combinations and make
up musical pieces. On the other hand, the dynamic variability and complexity
of a single sound event is not as high as that of speech sounds. This has
the consequence that, to some extent, synthetic music signals can be used in
developing and training a music transcriber. Large amounts of training data
can be generated since acoustic measurements for isolated musical sounds are
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available and combinations of these can be generated by mixing. However, it
should be emphasized that this does not remove the need for more realistic
acoustic material, too. The issue of obtaining and annotating such databases
is discussed in [91] and in Chaps. ?? and ??. Realistic data are also needed
for the objective evaluation of music analysis systems [92].

3 Outline

This section discusses the different subtopics of music transcription and sum-
marizes the contents of each chapter of this book. All the chapters are intended
to be self-contained entities, and in principle nothing prevents from jumping
directly to the beginning of a chapter that is of special interest to the reader.
Whenever some element from the other parts of the book is needed, an explicit
reference is made to the chapter in question.

Part I Foundations

The first part of this book is dedicated to topics that are more or less related
to all areas of music trancription discussed in this book.

Chapter ?? introduces statistical and signal processing techniques that
are applied to music transcription in the subsequent chapters. First, the
Fourier transform and concepts related to time-frequency representations are
described. This is followed by a discussion of statistical methods, including
random variables, probability density functions, probabilistic models, and el-
ements of estimation theory. Bayesian estimation methods are separately dis-
cussed and numerical computation techniques are described, including Monte
Carlo methods. The last section introduces the reader to pattern recognition
methods and various concepts related to these. Widely-used techniques such
as support vector machines and hidden Markov models are included.

Chapter ?? discusses sparse adaptive representations for musical signals.
The issue of data representations was already briefly touched in Sect. 2.3
above. This chapter describes parametric representations (for example the si-
nusoidal model) and “waveform” representations in which a signal is modeled
as a linear sum of elementary waveforms chosen from a well-defined dictio-
nary. In particular, signal-adaptive algorithms are discussed which aim at
sparse representations, meaning that a small subset of waveforms is chosen
from a large dictionary so that the sound is represented effectively. This is
advantageous from the viewpoint of signal analysis and imposes an implicit
structure to the analyzed signal.

Part II Rhythm and Timbre Analysis

The second part of this book describes methods for meter analysis, percussion
transcription, and pitched musical instrument classification.
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Chapter ?7? discusses beat tracking and musical meter analysis, which con-
stitute an important subtask of music transcription. As mentioned on p. 8,
meter perception consists of detecting moments of musical stress in an audio
signal, and processing these so that the underlying periodicities are discov-
ered. These two steps can also be discerned in the computational methods.
Measuring the degree of musical emphasis as a function of time is closely re-
lated to onset detection, that is, to the detection of the beginnings of discrete
sound events in an acoustic signal, a problem which is separately discussed.
For the estimation of the underlying metrical pulses, a number of different
approaches are described, putting particular emphasis on statistical methods.

Chapter ?? discusses unpitched percussion transcription,® where the aim
is to write down the timbre class, or, the sound source, of each constituent
sound along with its timing (see Fig. 2 above). The methods discussed in
this chapter represent two main approaches. In one, a percussive track is as-
sumed to be performed using a conventional set of drums, such a bass drums,
snares, hi-hats, cymbals, tom-toms, and so forth, and the transcription pro-
ceeds by detecting distinct sound events and by classifying them into these
pre-defined categories. In another approach, no assumptions are made about
the employed instrumental sounds, but these are learned from the input signal
in an unsupervised manner, along with their occurrence times and gains. This
is accomplished by processing a longer portion of the signal in connection and
by trying to find such source signals that the percussive track can be effec-
tively represented as a linear mixture of them. Percussion transcription both
in the presence and absence of pitched instruments is discussed.

Chapter 77 is concerned with the classification of pitched musical instru-
ment sounds. This is useful for music information retrieval purposes, and in
music transcription, it is often desirable to assign individual note events into
“streams” that can be attributed to a certain instrument. The chapter looks
at the acoustics of musical instruments, timbre perception in humans, and
basic concepts related to classification in general. A number of acoustic de-
scriptors, or, features, are described that have been found useful in musical
instrument classification. Then, different classification methods are described
and compared, complementing those described in Chap. ?7. Classifying in-
dividual musical sounds in polyphonic music usually requires that they are
separated from the mixture signal to some degree. Althoug this is usually seen
as a separate task from the actual instrument classification, some methods for
the instrument classification in complex music signals are reviewed, too.

Part IIT Multiple Fundamental Frequency Analysis

The term multiple-F0 estimation refers to the estimation of the FOs of several
concurrent sounds in an acoustic signal. The third part of this book describes

SMany drum instruments can be tuned and their sound evokes a percept of pitch.
Here “unpitched” means that the instruments are not used to play melodies.
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different ways to do this. Harmonic analysis (writing down the chords of a
piece) can be performed based on the results of the multiple-F0 analysis, but
this is beyond the scope of this book and an interested reader is referred to
[93, Ch.6] and [94, Ch.2]. Harmonic analysis can also be attempted directly,
without note-by-note FO estimation [95, 96, 97].

Chapter ?7? discusses multiple-F0 estimation based on generative models.
Here, the multiple-F0 estimation problem is expressed in terms of a signal
model, the parameters of which are being estimated. A particular emphasis
in this chapter is laid on statistical methods where the FOs and other relevant
parameters are estimated using the acoustic data and possible prior knowledge
about the parameter distributions. Various algorithms for online (causal) and
offline (non-causal) parameter estimation are described and the computational
aspects of the methods are discussed.

Chapter 7?7 describes auditory-model based methods for multiple-F0 esti-
mation. The reader is first introduced with computational models of human
pitch perception. Then, transcription systems are described that use an au-
ditory model as a preprocessing step, and the advantages and disadvantages
of auditorily-motivated data representations are discussed. The second part
of the chapter describes multiple-F0 estimators that are based on an auditory
model but make significant modifications to it in order to perform robust FO
estimation in polyphonic music signals. Two different methods are described
in more detail and evaluated.

Chapter 7?7 discusses unsupervised learning methods for source separation
in monaural music signals. Here the aim is to separate and learn sound sources
from polyphonic data without sophisticated modeling of the characteristics
of the sources, or detailed modeling of the human auditory perception. In-
stead, the methods utilize general principles, such as statistical independency
between sources, to perform the separation. Various methods are described
that are based on independent component analysis, sparse coding, and non-
negative matrix factorization.

Part IV Entire Systems, Acoustic and Musicological Modeling

The fourth part of the book discusses entire music content analysis systems
and the use of musicological and sound source models in these.

Chapter ?? is concerned with auditory scene analysis (ASA) in music
signals. As already mentioned above, ASA refers to the perception of distinct
sources in polyphonic signals. In music, ASA aims at extracting entities like
notes and chords from an audio signal. The chapter reviews psychophysical
findings regarding the acoustic “clues” that humans use to organize spectral
components to their respective sources, and the role of internal models and
top-down processing in this. Various computational approaches to ASA are
described, with a special emphasis on statistical methods and inference in
Bayesian networks.
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Chapter 7?7 discusses a research approach called music scene description,
where the aim is to obtain descriptions that are intuitively meaningful to an
untrained listener, without trying to extract every musical note from musical
audio. Concretely, this includes the analysis of the melody, bass lines, met-
rical structure, rhythm, and chorus and phrase repetition. In particular, two
research problems are discussed in more detail. Predominant-F0 estimation
refers to the estimation of the FO of only the most prominent sound in a poly-
phonic mixture. This closely resembles the experience of an average listener
who catches the melody or the “theme” of a piece of music even though he
or she would not be able to distinguish the inner lines. Here, methods for
extracting the melody and the bass line in music recordings are introduced.
The other problem addressed is music structure analysis, especially locating
the chorus section in popular music.

Chapter 7?7 addresses singing transcription, which means converting a
recorded singing performance into a sequence of discrete note pitch labels
and their starting and ending points in time. The process can be broken into
two stages where, first, a continuous track of pitch estimates (and possibly
other acoustic features) is extracted from an acoustic signal, and these are
then converted into a symbolic musical notation. The latter stage involves the
segmentation of the pitch track into discrete note events and quantizing their
pitch values — tasks which are particularly difficult for singing signals. The
chapter reviews state-of-the-art singing transcription methods and discusses
the use of acoustic and musicological models to tackle the problem.
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Analytic mode of listening, 4
Annotation of music, 15
Articulation, 7
Audio coding, 1
Auditory cortex, 10

left /right asymmetry, 10
Auditory model, 4, 12
Auditory scene analysis, 5
Auditory system

peripheral hearing, 12
Automatic music transcription, see

Transcription

Bar line, 8

Bass line, 11

Beat, 8

Beat tracking, 4

Bottom-up processing, 14

Brain damage, 9

Brain imaging, see Neuroimaging

Chord, 7, 11
notation, 1
Classical music, 5
Common musical notation, 1, 2
Complete transcription, 1

Data representation, see Mid-level data
representation

Data-driven processing, 14

Databases, 14

deciBel, 6

Dictation, see Human transcription

Dissonance, 7
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Duration
perceived duration, 6

Ear training, 10
Equal-tempered scale, 7

Fundamental frequency
term definition, 6

Generative signal
speech and music, 14
Genre classification, 11
Grouping, see Rhythmic grouping

Harmony, 7

History of automatic music transcrip-
tion, 4

Human transcription, 3, 10

Human-computer interaction, 3

Information retrieval, see Music
information retrieval

Inner lines in music, 4, 11

Instrument classification, 5

Integration of information, 14

Inter-onset interval, 6

Intermediate data representation, see
Mid-level data representation

Internal model, 13

Interval, 10

Language model, 13
Legato, 7
Loudness, 6
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Measure
musical measure, see Bar line
Melodic phrase, see Phrase
Melody, 7, 10, 11
perceptual coherence, 13
Memory
for music, 9, 11
Meter, 8
Meter perception, 8, 9
Mid-level data representation, 10, 11
desirable qualities, 12
MIDI, 1, 2, 7
Modularity, 9
Monophonic signal, 3
Music cognition, 9
impaired cognition, 9
Music information retrieval, 3
Music perception, 3
Music transcription, see Transcription
Musical key, 7
Musical meter, see Meter
Musical scale, see Scale
Musicological modeling, 13

Neuroimaging, 9
Neurophysiology
of music cognition, 9
Notation, see Common musical notation
Note, 1

Octave equivalence, 7

Partial transcription, 1
Perception
of meter, see Meter perception
of music, see Music perception
of pitch, see Pitch perception
Perceptual attributes of sounds, 5
Perceptual categorization, 7
Percussion notation, 1
Percussion transcription, 4, 5
Phoneme, 14
Phrase, 8
Piano
keyboard, 7
Piano roll, 2
Pitch, 6
tonal encoding, see Tonal encoding
Pitch class, 7
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Polyphonic signal, 3
Popular music, 8
Psychoacoustics, 6
Pulse, see Beat, Meter

Quantization, 7

Rhythm, 8
Rhythmic grouping, 8

Scale, 8
equal-tempered, see Equal-tempered
scale
Scale tone, 8
Score, see Common musical notation
Segmentation, see Temporal segmenta-
tion
Signal model
sinusoidal, see Sinusoidal model
Sinusoidal model, 12
Source model, 13
Source separation, 13
Speech
recognition, 13, 14
speech signals, 14
Staccato, 7
Structure (of a musical work), 8
Structure analysis, 8
by humans, 11
Structured audio coding, 1
Style detection, see Genre classification
Symbolic representation, 7

Tactus, 8, see Beat
Tempo, 4
Temporal segmentation, 10
Timbre, 6
Time-frequency representation, 11
Tonal encoding of pitch, 8, 9
Tonal music, 8
Tonic note, 8
Top-down processing, 14
Transcription
by humans, see Human transcription
complete vs. partial, 1
designing transcription system, 9
state of the art, 5
subtopics, 3, 9
trends and approaches, 4
Tuning, 7
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Unsupervised Well-tempered scale, see Equal-
learning, 5, 14 tempered scale
L Western music, 1, 3, 7, 8

Violin, 7

Written music, see Common musical

Waveform representation, 11 notation
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