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Abstract. Binary classification methods can be generalized in many
ways to handle multiple classes. It turns out that not all generalizations
preserve the nice property of Bayes consistency. We provide a necessary
and sufficient condition for consistency which applies to a large class of
multiclass classification methods. The approach is illustrated by applying
it to some multiclass methods proposed in the literature.

1 Introduction

We consider the problem of classification in a probabilistic setting: n i.i.d. pairs
are generated by a probability distribution on X × Y. We think of yi in a pair
(xi, yi) as being the label or class of the example xi. The |Y| = 2 case is referred
to as binary classification. A number of methods for binary classification involve
finding a real valued function f which minimizes an empirical average of the
form

1
n

∑

i

Ψyi
(f(xi)) . (1)

In addition, some sort of regularization is used to avoid overfitting. Typically,
the sign of f(x) is used to classify an unseen example x. We interpret Ψy(f(x)) as
being the loss associated with predicting the label of x using f(x) when the true
label is y. An important special case of these methods is that of the so-called
large margin methods which use {+1,−1} as the set of labels and φ(yf(x)) as
the loss. Bayes consistency of these methods has been analyzed in the literature
(see [1, 4, 6, 9, 13]). In this paper, we investigate the consistency of multiclass
(|Y| ≥ 2) methods which try to generalize (1) by replacing f with a vector
function f . This category includes the methods found in [2, 5, 10, 11]. Zhang
[11, 12] has already initiated the study of these methods.

Under suitable conditions, minimizing (1) over a sequence of function classes
also approximately minimizes the “Ψ -risk” RΨ (f) = EXY [Ψy(f(x)) ]. However,
our aim in classification is to find a function f whose probability of misclassifi-
cation R(f) (often called the “risk” of f) is close to the minimum possible (the
so called Bayes risk R∗). Thus, it is natural to investigate the conditions which
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guarantee that if the Ψ -risk of f gets close to the optimal then the risk of f also
approaches the Bayes risk. Towards this end, a notion of “classification calibra-
tion” was defined in [1] for binary classification. The authors also gave a simple
characterization of classification calibration for convex loss functions. In Section
2, we provide a different point of view for looking at classification calibration
and motivate the geometric approach of Section 3.

Section 3 deals with multiclass classification and defines an analog of classi-
fication calibration (Definition 1). A necessary and sufficient condition for clas-
sification calibration is provided (Theorem 8). It is not as simple and easy to
verify as in the binary case. This helps us realize that the study of multiclass
classification is not a simple generalization of results known for the binary case
but is much more subtle and involved. Finally, the equivalence of classification
calibration and consistency of methods based on empirical Ψ -risk minimization
is established (Theorem 10).

In Section 4, we consider a few multiclass methods and apply the result of
Section 3 to examine their consistency. Interestingly, many seemingly natural
generalizations of binary methods do not lead to consistent multiclass methods.
We discuss further work and conclude in Section 5.

2 Consistency of Binary Classification Methods

If we have a convex loss function φ : R �→ [0,∞) which is differentiable at 0 and
φ′(0) < 0, then it is known [1] that any minimizer f∗ of

EXY [ φ(yf(x)) ] = EX [ EY|x[ φ(yf(x)) ] ] (2)

yields a Bayes consistent classifier, i.e. P (Y = +1|X = x) > 1/2 ⇒ f∗(x) > 0
and P (Y = −1|X = x) < 1/2 ⇒ f∗(x) < 0. In order to motivate the approach
of the next section let us work with a few examples. Let us fix an x and denote
the two conditional probabilities by p+ and p−. We also omit the argument in
f(x). We can then write the inner conditional expectation in (2) as

p+ φ(f) + p− φ(−f) .

We wish to find an f which minimizes the expression above. If we define the set
R ∈ R

2 as
R = {(φ(f), φ(−f)) : f ∈ R} , (3)

then the above minimization can be written as

min
z∈R

〈p, z〉 (4)

where p = (p+, p−).
The set R is shown in Fig. 1(a) for the squared hinge loss function φ(t) =

((1− t)+)2. Geometrically, the solution to (4) is obtained by taking a line whose
equation is 〈p, z〉 = c and then sliding it (by varying c) until it just touches R. It
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Fig. 1. (a) Squared Hinge Loss (b) Inconsistent Case (the thick curve is the set R in
both plots)

is intuitively clear from the figure that if p+ > p− then the line is inclined more
towards the vertical axis and the point of contact is above the angle bisector
of the axes. Similarly, if p+ < p− then the line is inclined more towards the
horizontal axis and the point is below the bisector. This means that sign(φ(−f)−
φ(f)) is a consistent classification rule which, because φ is a decreasing function,
is equivalent to sign(f − (−f)) = sign(f). In fact, the condition φ′(0) < 0 is
not really necessary. For example, if we had the function φ(t) = ((1 + t)+)2, we
would still get the same set R but will need to change the classification rule to
sign(−f) in order to preserve consistency.

Why do we need differentiability of φ at 0? Fig. 1(b) shows the set R for
a convex loss function which is not differentiable at 0. In this case, both lines
L1 and L2 touch R at P but L1 has p+ > p− while L2 has p+ < p−. Thus we
cannot create a consistent classifier based on this loss function. Thus the crux of
the problem seems to lie in the fact that there are two distinct supporting lines
to the set R at P and that these two lines are inclined towards different axes.

It seems from the figures that as long as R is symmetric about the angle
bisector of the axes, all supporting lines at a given point are inclined towards
the same axis except when the point happens to lie on the angle bisector. To
check for consistency, we need to examine the set of supporting lines only at that
point. In case the set R is generated as in (3), this boils down to checking the
differentiability of φ at 0. In the next section, we deal with cases when the set
R is generated in a more general way and the situation possibly involves more
than two dimensions.

3 Consistency of Multiclass Classification Methods

Suppose we have K≥2 classes. For y∈{1, . . . ,K}, let Ψy be a continuous function
from R

K to R+ = [0,∞). Let F be a class of vector functions f : X �→R
K . Let
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{Fn} be a sequence of function classes such that each Fn ⊆ F . Suppose we
obtain a classifier f̂n by minimizing the empirical Ψ -risk R̂Ψ over the class Fn,

f̂n = arg min
f∈Fn

R̂Ψ (f) = arg min
f∈Fn

1
n

n∑

i=1

Ψyi
(f(xi)) . (5)

There might be some constraints on the set of vector functions over which we
minimize. For example, a common constraint is to have the components of f sum
to zero. More generally, let us assume there is some set C ∈ R

K such that

F = {f : ∀x, f(x) ∈ C }. (6)

Let Ψ(f(x)) denote the vector (Ψ1(f(x)), . . . , ΨK(f(x)))T . We predict the label of
a new example x to be pred(Ψ(f(x))) for some function pred : R

K �→ {1, . . . , K}.
The Ψ -risk of a function f is

RΨ (f) = EXY [ Ψy(f(x)) ] ,

and we denote the least possible Ψ -risk by

R∗
Ψ = inf

f∈F
RΨ (f) .

In a classification task, we are more interested in the risk of a function f ,

R(f) = EXY [ 1[pred(Ψ(f(x))) �= Y ] ] ,

which is the probability that f leads to an incorrect prediction on a labeled
example drawn from the underlying probability distribution. The least possible
risk is

R∗ = EX [ 1 − max
y

py(x) ] ,

where py(x) = P (Y = y | X = x). Under suitable conditions, one would ex-
pect RΨ (f̂n) to converge to R∗

Ψ (in probability). It would be nice if that made
R(f̂n) converge to R∗ (in probability). In order to understand the behavior of
approximate Ψ -risk minimizers, let us write RΨ (f) as

EXY [ Ψy(f(x)) ] = EX [ EY|x[ Ψy(f(x)) ] ] .

The above minimization problem is equivalent to minimizing the inner condi-
tional expectation for each x ∈ X . Let us fix an arbitrary x for now, so we can
write f instead of f(x), py instead of py(x), etc. The minimum might not be
achieved and so we consider the infimum of the conditional expectation above1

inf
f∈C

∑

y

pyΨy(f) . (7)

1 Since py and Ψy(f) are both non-negative, the objective function is bounded below
by 0 and hence the existence of an infimum is guaranteed.
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Define the subset R of R
K
+ as

R = {(Ψ1(f), . . . , ΨK(f)) : f ∈ C} .

Let us define a symmetric set to be one with the following property: if a point z
is in the set then so is any point obtained by interchanging any two coordinates
of z. We assume that R is symmetric. We can write (7) in the equivalent form

inf
z∈R

〈p, z〉 ,

where p = (p1, . . . , pK). For a fixed p, the function z �→ 〈p, z〉 is a linear function
and hence we do not change the infimum by taking the convex hull2 of R.
Defining S as

S = conv{(Ψ1(f), . . . , ΨK(f)) : f ∈ C} , (8)

we finally have
inf
z∈S

〈p, z〉 . (9)

Note that our assumption about R implies that S too is symmetric.
We now define classification calibration of S. The definition intends to capture

the property that, for any p, minimizing 〈p, z〉 over S leads one to z’s which
enable us to figure out the index of (one of the) maximum coordinate(s) of p.

Definition 1. A set S ⊆ R
K
+ is classification calibrated if there exists a predic-

tor function pred : R
K �→ {1, . . . , K} such that

∀p ∈ ∆K , inf
z∈S : ppred(z)<maxy py

〈p, z〉 > inf
z∈S

〈p, z〉 , (10)

where ∆K is the probability simplex in R
K .

It is easy to reformulate the definition in terms of sequences as the following
lemma states.

Lemma 2. S ⊆ R
K
+ is classification calibrated iff ∀p ∈ ∆K and all sequences

{z(n)} in S such that
〈p, z(n)〉 → inf

z∈S
〈p, z〉 , (11)

we have
ppred(z(n)) = max

y
py (12)

ultimately.

This makes it easier to see that if S is classification calibrated then we can
find a predictor function such that any sequence achieving the infimum in (9)
ultimately predicts the right label (the one having maximum probability). The
following lemma shows that symmetry of our set S allows us to reduce the search
space of predictor functions (namely to those functions which map z to the index
of a minimum coordinate).

2 If z is a convex combination of z(1) and z(2), then 〈p, z〉 ≥ min{〈p, z(1)〉, 〈p, z(2)〉}.
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Lemma 3. If there exists a predictor function pred satisfying the condition (10)
of Definition 1 then any predictor function pred′ satisfying

∀z ∈ S, zpred′(z) = min
y

zy (13)

also satisfies (10).

Proof. Consider some p ∈ ∆K and a sequence {z(n)} such that (11) holds. We
have ppred(z(n)) = maxy py ultimately. In order to derive a contradiction, assume
that ppred′(z(n)) < maxy py infinitely often. Since there are finitely many labels,
this implies that there is a subsequence {z(nk)} and labels M and m such that
the following hold,

pred(z(nk)) = M ∈ {y′ : y′ = max
y

py} ,

pred′(z(nk)) = m ∈ {y′ : y′ < max
y

py} ,

〈p, z(nk)〉 → inf
z∈S

〈p, z〉 .

Because of (13), we also have z
(nk)
M ≥ z

(nk)
m . Let p̃ and z̃ denote the vectors

obtained from p and z respectively by interchanging the M and m coordinates.
Since S is symmetric, z ∈ S ⇔ z̃ ∈ S. There are two cases depending on whether
the inequality in

lim inf
k

(
z
(nk)
M − z(nk)

m

)
≥ 0

is strict or not.
If it is, denote its value by ε > 0. Then z

(nk)
M − z

(nk)
m > ε/2 ultimately and

hence we have

〈p, z(nk)〉 − 〈p, z̃(nk)〉 = (pM − pm)(z(nk)
M − z(nk)

m ) > (pM − pm)ε/2

for k large enough. This implies lim inf〈p, z̃(nk)〉 < infz∈S〈p, z〉, which is a con-
tradiction.

Otherwise, choose a subsequence3 {z(nk)} such that lim(z(nk)
M − z

(nk)
m ) = 0.

Multiplying this with (pM − pm), we have

lim
k→∞

(
〈p̃, z̃(nk)〉 − 〈p̃, z(nk)〉

)
= 0 .

We also have

lim〈p̃, z̃(nk)〉 = lim〈p, z(nk)〉 = inf
z∈S

〈p, z〉 = inf
z∈S

〈p̃, z̃〉 = inf
z∈S

〈p̃, z〉 ,

where the last equality follows because of symmetry. This means

〈p̃, z(nk)〉 → inf
z∈S

〈p̃, z〉

3 We do not introduce additional subscripts for simplicity.
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and therefore
p̃pred(z(nk)) = pM

ultimately. This is a contradiction since p̃pred(z(nk)) = p̃M = pm.

From now on, we assume that pred is defined as in (13). We give another
characterization of classification calibration in terms of normals to the convex
set S and its projections onto lower dimensions. For a point z ∈ ∂S, we say p
is a normal to S at z if 〈z′ − z,p〉 ≥ 04 for all z′ ∈ S. Define the set of positive
normals at z as

N (z) = {p : p is a normal to S at z} ∩ ∆K .

Definition 4. A convex set S ⊆ R
K
+ is admissible if ∀z ∈ ∂S,∀p ∈ N (z), we

have
argmin(z) ⊆ argmax(p) (14)

where argmin(z) = {y′ : zy′ = miny zy} and argmax(p) = {y′ : zy′ = maxy py}.
The following lemma states that in the presence of symmetry points having a
unique minimum coordinate can never destroy admissibility.

Lemma 5. Let S ⊆ R
K
+ be a symmetric convex set, z a point in the boundary of

S and p ∈ N (z). Then zy < zy′ implies py ≥ py′ and hence (14) holds whenever
| argmin(z)| = 1.

Proof. Consider z̃ obtained from z by interchanging the y, y′ coordinates. It also
is a point in ∂S by symmetry and thus convexity implies zm = (z+z̃)/2 ∈ S∪∂S.
Since p ∈ N (z), 〈z′ − z,p〉 ≥ 0 for all z′ ∈ S. Taking limits, this inequality also
holds for z′ ∈ S ∪ ∂S. Substituting zm for z′, we get 〈(z̃ − z)/2,p〉 ≥ 0 which
simplifies to (zy′ − zy)(py − py′) ≥ 0 whence the conclusion follows.

If the set S possesses a unique normal at every point on its boundary then the
next lemma guarantees admissibility.

Lemma 6. Let S ⊆ R
K
+ be a symmetric convex set, z a point in the boundary

of S and N (z) = {p} is a singleton. Then argmin(z) ⊆ argmax(p).

Proof. We will assume that there exists a y, y ∈ argmin(z), y /∈ argmax(p) and
deduce that there are at least 2 elements in |N (z)| to get a contradiction. Let
y′ ∈ argmax(p). From the proof of Lemma 5 we have (zy′ − zy)(py − py′) ≥ 0
which implies zy′ ≤ zy since py−py′ < 0. But we already know that zy ≤ zy′ and
so zy = zy′ . Symmetry of S now implies that p̃ ∈ N (z) where p̃ is obtained from
p by interchanging the y, y′ coordinates. Since py �= py′ , p̃ �= p which means
|N (z)| ≥ 2.

4 Our sign convention is opposite to that of Rockafellar (1970) because we are dealing
with minimum (instead of maximum) problems.
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Lemma 7. If S ⊆ R
K
+ is admissible then for all p ∈ ∆K and all bounded se-

quences {z(n)} such that 〈p, z(n)〉 → infz∈S 〈p, z〉, we have ppred(z(n)) = maxy py

ultimately.

Proof. Let Z(p) = {z ∈ ∂S : p ∈ N (z)}. Taking the limit of a convergent
subsequence of the given bounded sequence gives us a point in ∂S which achieves
the infimum of the inner product with p. Thus, Z(p) is not empty. It is easy
to see that Z(p) is closed. We claim that for all ε > 0, dist(z(n), Z(p)) < ε
ultimately. For if we assume the contrary, boundedness implies that we can
find a convergent subsequence {z(nk)} such that ∀k, dist(z(nk), Z(p)) ≥ ε. Let
z∗ = limk→∞ z(nk). Then 〈p, z∗〉 = infz∈S〈p, z〉 and so z∗ ∈ Z(p). On the other
hand, dist(z∗, Z(p)) ≥ ε which gives us a contradiction and our claim is proved.
Further, there exists ε′ > 0 such that dist(z(n), Z(p)) < ε′ implies argmin(z(n)) ⊆
argmin(Z(p))5. Finally, by admissibility of S, argmin(Z(p)) ⊆ argmax(p) and
so argmin(z(n)) ⊆ argmax(p) ultimately.

The next theorem provides a characterization of classification calibration in
terms of normals to S.

Theorem 8. Let S ⊆ R
K
+ be a symmetric convex set. Define the sets

S(i) = {(z1, . . . , zi)T : z ∈ S}

for i ∈ {2, . . . , K}. Then S is classification calibrated iff each S(i) is admissible.

Proof. We prove the easier ‘only if’ direction first. Suppose some S(i) is not
admissible. Then there exist z ∈ ∂S(i) and p ∈ N (z) and a label y′ such that
y′ ∈ argmin(z) and y′ /∈ argmax(p). Choose a sequence {z(n)} converging to
z. Modify the sequence by replacing, in each z(n), the coordinates specified by
argmin(z) by their average. The resulting sequences is still in S(i) (by symmetry
and convexity) and has argmin(z(n)) = argmin(z) ultimately. Therefore, if we
set pred(z(n)) = y′, we have ppred(z(n)) < maxy py ultimately. To get a sequence
in S look at the points whose projections are the z(n)’s and pad p with K − i
zeros.

To prove the other direction, assume each S(i) is admissible. Consider a se-
quence {z(n)} with 〈p, z(n)〉 → infz∈S 〈p, z〉 = L. Without loss of generality, as-
sume that for some j, 1 ≤ j ≤ K we have p1, . . . , pj > 0 and pj+1, . . . , pK = 0. We
claim that there exists an M < ∞ such that ∀y ≤ j, z

(n)
y ≤ M ultimately. Since

pjz
(n)
j ≤ L + 1 ultimately, M = max1≤y≤j{(L + 1)/py} works. Consider a set of

labels T ⊆ {j + 1, . . . ,K}. Consider the subsequence consisting of those z(n) for
which zy ≤ M for y ∈ {1, . . . , j}∪T and zy > M for y ∈ {j +1, . . . ,K}−T . The
original sequence can be decomposed into finitely many such subsequences corre-
sponding to the 2(K−j) choices of the set T . Fix T and convert the corresponding
subsequence into a sequence in S(j+|T |) by dropping the coordinates belonging to

5 For a set Z, argmin(Z) denotes ∪z∈Z argmin(z).
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the set {j+1, . . . , K}. Call this sequence z̃(n) and let p̃ be (p1, . . . , pj , 0, . . . , 0)T .
We have a bounded sequence with

〈p̃, z̃(n)〉 → inf
z̃∈S(j+|T |)

〈p̃, z̃〉 .

Thus, by Lemma 7, we have p̃pred(z̃(n)) = maxy p̃y = maxy py ultimately. Since
we dropped only those coordinates which were greater than M , pred(z̃(n)) picks
the same coordinate as pred(z(n)) where z(n) is the element from which z̃(n)

was obtained. Thus we have ppred(z(n)) = maxy py ultimately and the theorem is
proved.

We will need the following lemma to prove our final theorem.

Lemma 9. The function p �→ infz∈S〈p, z〉 is continuous on ∆K .

Proof. Let {p(n)} be a sequence converging to p. If B is a bounded subset of
R

K , then 〈p(n), z〉 → 〈p, z〉 uniformly over z ∈ B and therefore

inf
z∈B

〈p(n), z〉 → inf
z∈B

〈p, z〉 .

Let Br be a ball of radius r in R
K . Then we have

inf
z∈S

〈p(n), z〉 ≤ inf
S∩Br

〈p(n), z〉 → inf
S∩Br

〈p, z〉

Therefore
lim sup

n
inf
z∈S

〈p(n), z〉 ≤ inf
z∈S∩Br

〈p, z〉 .

Letting r → ∞, we get

lim sup
n

inf
z∈S

〈p(n), z〉 ≤ inf
z∈S

〈p, z〉 . (15)

Without loss of generality, assume that for some j, 1 ≤ j ≤ K we have p1, . . . , pj

> 0 and pj+1, . . . , pK = 0. For all sufficiently large integers n and a sufficiently
large ball BM ⊆ R

j we have

inf
z∈S

〈p, z〉 = inf
z∈S(j)

j∑

y=1

pyzy = inf
z∈S(j)∩BM

j∑

y=1

pyzy ,

inf
z∈S

〈p(n), z〉 ≥ inf
z∈S(j)

j∑

y=1

p(n)
y zy = inf

z∈S(j)∩BM

j∑

y=1

p(n)
y zy .

and thus
lim inf

n
inf
z∈S

〈p(n), z〉 ≥ inf
z∈S

〈p, z〉 . (16)

Combining (15) and (16), we get

inf
z∈S

〈p(n), z〉 → inf
z∈S

〈p, z〉 .
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We finally show that classification calibration of S is equivalent to the consistency
of multiclass methods based on (5).

Theorem 10. Let Ψ be a loss (vector) function and C be a subset of R
K . Let F

and S be as defined in (6) and (8) respectively. Then S is classification calibrated
iff the following holds. For all sequences {Fn} of function classes (where Fn ⊆ F
and ∪Fn = F) and for all probability distributions P ,

RΨ (f̂n) P→ R∗
Ψ

implies
R(f̂n) P→ R∗ .

Proof. (‘only if’) We need to prove that ∀ε > 0,∃δ > 0 such that ∀p ∈ ∆K ,

max
y

py − ppred(z) ≥ ε ⇒ 〈p, z〉 − inf
z∈S

〈p, z〉 ≥ δ . (17)

Using this it immediately follows that ∀ε,H(ε) > 0 where

H(ε) = inf
p∈∆K ,z∈S

{〈p, z〉 − inf
z∈S

〈p, z〉 : max
y

py − ppred(z) ≥ ε} .

Corollary 26 in [12] then guarantees there exists a concave function ξ on [0,∞)
such that ξ(0) = 0 and ξ(δ) → 0 as δ → 0+ and

R(f) − R∗ ≤ ξ(RΨ (f) − R∗
Ψ ) .

We prove (17) by contradiction. Suppose S is classification calibrated but there
exists ε > 0 and a sequence (z(n),p(n)) such that

p
(n)

pred(z(n))
≤ max

y
p(n)

y − ε (18)

and (
〈p(n), z(n)〉 − inf

z∈S
〈p(n), z〉

)
→ 0 .

Since p(n) come from a compact set, we can choose a convergent subsequence
(which we still denote as {p(n)}) with limit p. Using Lemma 9, we get

〈p(n), z(n)〉 → inf
z∈S

〈p, z〉 .

As before, we assume that precisely the first j coordinates of p are non-zero.
Then the first j coordinates of z(n) are bounded for sufficiently large n. Hence

lim sup
n

〈p, z(n)〉 = lim sup
n

j∑

y=1

p(n)
y z(n)

y ≤ lim
n→∞〈p(n), z(n)〉 = inf

z∈S
〈p, z〉 .

Now (12) and (18) contradict each other since p(n) → p.
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(‘if’) If S is not classification calibrated then by Theorem 8 and Lemmas 5
and 6, we have a point in the boundary of some S(i) where there are at least
two normals and which does not have a unique minimum coordinate. Such a
point should be there in the projection of R even without taking the convex
hull. Therefore, we must have a sequence z(n) in R such that

δn = 〈p, z(n)〉 − inf
z∈S

〈p, z〉 → 0 (19)

and for all n,

ppred(z(n)) < max
y

py . (20)

Without loss of generality assume that δn is a monotonically decreasing sequence.
Further, assume that δn > 0 for all n. This last assumption might be violated
but the following proof then goes through for δn replaced by max(δn, 1/n). Let
gn be the function that maps every x to one of the pre-images of z(n) under Ψ .
Define Fn as

Fn = {gn} ∪ (F ∩ {f : ∀x, 〈p, Ψ(f(x)〉 − inf
z∈S

〈p, z〉 > 4δn}
∩ {f : ∀x,∀j, |Ψj(f(x)| < Mn})

where Mn ↑ ∞ is a sequence which we will fix later. Fix a probability distribution
P with arbitrary marginal distribution over x and let the conditional distribution
of labels be p for all x. Our choice of Fn guarantees that the Ψ -risk of gn is less
than that of other elements of Fn by at least 3δn. Suppose, we make sure that

Pn
(∣∣∣R̂Ψ (gn) − RΨ (gn)

∣∣∣ > δn

)
→ 0 , (21)

Pn

(
sup

f∈Fn−{gn}

∣∣∣R̂Ψ (f) − RΨ (f)
∣∣∣ > δn

)
→ 0 . (22)

Then, with probability tending to 1, f̂n = gn. By (19), RΨ (gn) → R∗
Ψ which

implies that RΨ (f̂n) → R∗
Ψ in probability. Similarly, (20) implies that R(f̂n) �

R∗ in probability.
We only need to show that we can have (21) and (22) hold. For (21), we

apply Chebyshev inequality and use a union bound over the K labels to get

Pn
(∣∣∣R̂Ψ (gn) − RΨ (gn)

∣∣∣ > δn

)
≤ K3‖z(n)‖∞

4nδ2
n

The right hand side can be made to go to zero by repeating terms in the sequence
{z(n)} to slow down the rate of growth of ‖z(n)‖∞ and the rate of decrease of
δn. For (21), we use standard covering number bounds (see, for example, Section
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II.6 on p. 30 in [7]).

Pn

(
sup

f∈Fn−{gn}

∣∣∣R̂Ψ (f) − RΨ (f)
∣∣∣ > δn

)

≤ 8 exp
(

64M2
n log(2n + 1)

δ2
n

− nδ2
n

128M2
n

)

Thus Mn/δn needs to grow slowly enough such that

nδ4
n

M4
n log(2n + 1)

→ ∞ .

4 Examples

We apply the results of the previous section to examine the consistency of several
multiclass methods. In all these examples, the functions Ψy(f) are obtained from
a single real valued function ψ : R

K �→ R as follows

Ψy(f) = ψ(fy, f1, . . . , fy−1, fy+1, . . . , fK)

Moreover, the function ψ is symmetric in its last K − 1 arguments, i.e. inter-
changing any two of the last K − 1 arguments does not change the value of the
function. This ensures that the set S is symmetric. We assume that we predict
the label of x to be arg miny Ψy(f).

(a) (b)

Fig. 2. (a) Crammer and Singer (b) Weston and Watkins
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4.1 Example 1

The method of Crammer and Singer [3] corresponds to

Ψy(f) = max
y′ 	=y

φ(fy − fy′), C = R
K

with φ(t) = (1 − t)+. For K = 3, the boundary of S is shown in Fig. 2(a). At
the point z = (1, 1, 1), all of these are normals: (0, 1, 1), (1, 0, 1), (1, 1, 0). Thus,
there is no y′ such that py′ = maxy py for all p ∈ N (z). The method is therefore
inconsistent.

Even if we choose an everywhere differentiable convex φ with φ′(0) < 0, the
three normals mentioned above are still there in N (z) for z = (φ(0), φ(0), φ(0)).
Therefore the method still remains inconsistent.

4.2 Example 2

The method of Weston and Watkins [10] corresponds to

Ψy(f) =
∑

y′ 	=y

φ(fy − fy′), C = R
K

with φ(t) = (1 − t)+. For K = 3, the boundary of S is shown in Fig. 2(b).
The central hexagon has vertices (in clockwise order) (1, 1, 4), (0, 3, 3), (1, 4, 1),
(3, 3, 0), (4, 1, 1) and (3, 0, 3). At z = (1, 1, 4), we have the following normals:
(1, 1, 0), (1, 1, 1), (2, 3, 1), (3, 2, 1) and there is no coordinate which is maximum
in all positive normals. The method is therefore inconsistent.

(a) (b)

Fig. 3. (a) Lee, Lin and Wahba (b) Loss of consistency in multiclass setting
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4.3 Example 3

The method of Lee, Lin and Wahba [5] corresponds to

Ψy(f) =
∑

y′ 	=y

φ(−fy′), C = {f :
∑

y

fy = 0} (23)

with φ(t) = (1−t)+. Fig. 3(a) shows the boundary of S for K = 3. In the general
K dimensional case, S is a polyhedron with K vertices where each vertex has a 0
in one of the positions and K’s in the rest. It is obvious then when we minimize
〈p, z〉 over S, we will pick the vertex which has a 0 in the same position where
p has its maximum coordinate. But we can also apply our result here. The set
of normals is not a singleton only at the vertices. Thus, by Lemma 6, we only
need to check the vertices. Since there is a unique minimum coordinate at the
vertices, Lemma 5 implies that the method is consistent.

The question which naturally arises is: for which convex loss functions φ does
(23) lead to a consistent multiclass classification method? Convex loss functions
which are classification calibrated for the two class case, i.e. differentiable at 0
with φ′(0) < 0, can lead to inconsistent classifiers in the multiclass setting. An
example is provided by the loss function φ(t) = max{1 − 2t, 2 − t, 0}. Fig. 3(b)
shows the boundary of S for K = 3. The vertices are (0, 3, 3), (9, 0, 0) and
their permutations. At (9, 0, 0), the set of normals includes (0, 1, 0), (1, 2, 2) and
(0, 0, 1) and therefore condition (14) is violated.

As Zhang shows in [12], a convex function φ differentiable on (−∞, 0] with
φ′(0) < 0 will yield a consistent method.

4.4 Example 4

This is an interesting example because even though we use a differentiable loss
function, we still do not have consistency.

Ψy(f) = φ(fy), C = {f :
∑

y

fy = 0}

with φ(t) = exp(−βt) for some β > 0. One can easily check that

R = {(z1, z2, z3)T ∈ R
3
+ : z1z2z3 = 1},

S = {(z1, z2, z3)T ∈ R
3
+ : z1z2z3 ≥ 1}

and
S(2) = {(z1, z2)T : z1, z2 > 0} .

This set is inadmissible and therefore the method is inconsistent. We point out
that this method also does not yield a consistent classifier for the choice φ(t) =
(1 − t)+.
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5 Conclusion

We considered multiclass generalizations of classification methods based on con-
vex risk minimization and gave a necessary and sufficient condition for their
Bayes consistency. Our examples showed that quite often straightforward gen-
eralizations of consistent binary classification methods lead to inconsistent mul-
ticlass classifiers. This is especially the case if the original binary method was
based on a non-differentiable loss function. Example 4 shows that even differen-
tiable loss functions do not guarantee multiclass consistency. We are currently
trying to find simple and sufficient differentiability conditions that would im-
ply consistency of methods discussed in Examples 2 and 4 (like the one Zhang
provides for Example 3).
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