
Abstract Interpretation of Combinational

Asynchronous Circuits

Sarah Thompson and Alan Mycroft

Computer Laboratory, University of Cambridge
William Gates Building, JJ Thompson Avenue,

Cambridge, CB3 0FD, UK
{Sarah.Thompson,Alan.Mycroft}@cl.cam.ac.uk

Abstract. A technique, based upon abstract interpretation, is presented
that allows general gate-level combinational asynchronous circuits with
uncertain delay characteristics to be reasoned about. Our approach is
particularly suited to the simulation and model checking of circuits where
the identification of possible glitch states (static and dynamic hazards)
is required.
A hierarchy of alternative abstractions linked by Galois connections is
presented, each offering varying tradeoffs between accuracy and com-
plexity. Many of these abstract domains resemble extended, multi-value
logics: transitional logics that include extra values representing transi-
tions as well as steady states, and static/clean logics that include the
values S and C representing ‘unknown but fixed for all time’ and ‘can
never glitch’ respectively.

1 Introduction

Most contemporary design approaches assume an underlying synchronous para-
digm, where a single global signal drives the clock inputs of every flip flop in the
circuit. As a consequence, nearly all synthesis, simulation and model checking
tools assume synchronous semantics. Designs in which this rule is relaxed are
generally termed asynchronous circuits.

In a synchronous model, glitches (also known as static and dynamic hazards)
do not cause problems unless they occur on a wire used as a clock input; with
purely synchronous design rules1 this can not occur. However, such safety re-
strictions are not enforced by the semantics of either Verilog or VHDL – it is
quite easy, deliberately or otherwise, to introduce unsafe logic into a clock path.

We present a technique, based upon abstract interpretation [1, 2], that allows
the glitch states of asynchronous circuits to be identified and reasoned about. The
approach taken involves a family of extended, multi-value transitional logics with
an underlying dense continuous time model, and has applications in synthesis,
simulation and model checking.

Our logics are extended with extra values that capture transitions as well
as steady states, with an ability to distinguish clean, glitch-free signals from

1 Exactly one global clock net driving the clock inputs of all flip flops in the circuit.

2

dirty , potentially glitchy ones. As a motivating example, consider the circuits
represented by the expressions (a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c) and (a ∧ c) ∨ (¬a ∧ b).
With respect to steady-state values for a, b and c, both circuits would appear
to be identical, with the latter representing a circuit that might result from
näıve optimisation of the former. Our technique can straightforwardly illustrate
differences in their dynamic behaviour, however. Consider the critical case a = ↑0

and b = c = T0, representing b and c being wired to true for all time, and a
clean transition from false to true on a (this notation is defined fully in Section
3):

(a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c) (a ∧ c) ∨ (¬a ∧ b)

= (↑0 ∧ T0) ∨ (¬↑0 ∧ T0) ∨ (T0 ∧ T0) = (↑0 ∧ T0) ∨ (¬↑0 ∧ T0)

= ↑0 ∨ ↓0 ∨ T0 = ↑0 ∨ ↓0

= T0 = T0..1

The result T0 may be interpreted as ‘true for all time, with no glitches’. However,
T0..1 represents ‘true with zero or one glitches’, clearly demonstrating the poorer
dynamic behaviour of the smaller circuit.

1.1 Hardware Components

In this paper we consider four2 basic building blocks: (perfect—zero delay) AND-
gates, (perfect) NOT-gates, delay elements (whose delays may depend on time,
and environmental factors like temperature, and thus are non-deterministic in a
formal sense), and inertial delay elements. The difference between an ordinary
delay and an inertial delay is that in the former the number of transitions on
its input and output are equal, but in the latter a short-duration pulse from
high-to-low and back (or vice versa) may be removed entirely from the output.

Of course, real circuits are not so general, in particular no practically re-
alisable circuit of non-zero size can have zero-delay. Hence real-life circuits all
correspond to combinations of the above gates with some form of delay element.
For the point of designing synchronous hardware all that matters is the maxi-
mum delay which can occur from a circuit, so the exact positioning of the delays
is often of little importance. When circuits are used asynchronously (e.g. for de-
signing self-timed circuits without a global clock or, more prosaically, when their
output is being used to gate a clock signal locally) then their glitch behaviour is
often critically important. This leads to two models (the delay-insensitive (DI)
and speed-independent (SI) models) of real hardware. In the SI model logic ele-
ments may have delays, but wires do not; in the DI model both logic elements
and wires have associated delay. One well-known fact about DI models is that it
is impossible to have an isochronic fork, whereby the transitions in output from

2 A perfect OR-gate can be constructed from perfect AND- and NOT-gates using de
Morgan’s law.

3

Fig. 1. The circuit a ∧ ¬a

a given gate will arrive delayed contemporaneously at two other gates. Reason-
ing in the DI model has becomine much more important recently as wire delays
(e.g. due to routing) have become dominant over single-gate element delays in
modern VLSI technologies [11].

Ordinary circuits may be embedded in our model as follows. In the SI model
each physical logic gate at the hardware level is seen as a perfect logic gate whose
output is then passed through a delay element. In the DI model, each physical
logic gate is seen as a perfect logic gate whose input(s) first pass through separate
delays. In essence, the SI and DI models of a circuit are translations of a physical
circuit into idealised circuits composed solely of our four perfect elements.

Now consider the circuit in Fig. 1. Seen as a perfect logic element, its output
is always false regardless of the value of its input signal. Seen as an SI circuit
(i.e. delays on the output of the AND and NOT), given an input F1 which starts
at false then transitions to true and back, the circuit will be false at all times
except (possibly) for a small period just after the rising edge of the input, when
the upper AND-input will already be true, but before the delayed NOT-output
has yet become false. Thus the output is F0|1 if we assume an inertial delay and
F1 if we assume a non-inertial delay3.

In contrast, in the DI model, the separate delays on both inputs to the AND-
gate mean that the same input signal F1 may result in small positive pulses on
both the rising and falling edge of the input; thus the output is described as
F0|1|2. It is important to note that any of these three possible outputs may
occur; delays may vary with time, and can also differ on whether an input signal
is rising or falling.

Our abstract interpretation framework enables us to formally deduce the
above behaviours of the circuit shown in Fig. 1. Our reasoning is correct, because
of the abstract interpretation framework. In some situations our reasoning is also
complete in that all abstractly-predicted behaviours may be made to happen by
choosing suitable delay functions for the delay elements. For example, in the
DI model, our abstraction of the above circuit maps abstract signal F1 onto
F0|1|2, but the SI model cannot produce F2 however (positive) delay intervals
are chosen.

3 This argument assumes positive delays; at times later in the paper we also allow
(non-physically realisable) delays by negative time.

4

1.2 Paper Structure

In Section 2 we define a concrete domain that models signals as (possibly non-
deterministic) functions from time to the Boolean values. Section 3 describes
the most accurate (though complex) of our abstract domains; Sections 5 and 6
show how this can be further abstracted. Section 4 defines the operators neces-
sary to model circuits, Section 4.1 discusses soundness and completeness of these
operators. Refinement and equivalence relations are discussed in Section 7.

2 Concrete Domain

Definition 1. Concrete time R is continuous, linear and dense, having no be-
ginning or end.

Definition 2. A signal is a total function in S : R → {0, 1} from concrete time
to the Boolean values. More precisely, we restrict S to those functions that are
finitely piecewise constant4, i.e. there exists {k1, . . . , kn} which uniquely deter-
mines and is determined by a signal s ∈ S such that

s(ki) = ¬s(ki+1) ∀1 ≤ i < n;

s(x) = s(ki) ∀ki ≤ x < ki+1;

s(−∞) = s(x) = ¬s(k1) ∀x < k1;

s(+∞) = s(x) = s(kn) ∀x ≥ kn.

The function Ψs
def
= {k1, . . . , kn} represents the bijection which returns the set

of times at which signal s has transitions; |Ψs| represents the total number, n, of
transitions made by s. As a further notational convenience, we denote the values
of s at the beginning and end of time respectively as s(−∞) and s(+∞).

We model nondeterministic signals as members of the set ℘(S); e.g. delaying
signal s by time δ, where δmin ≤ δ ≤ δmax , gives {λτ.s(τ−δ) | δmin ≤ δ ≤ δmax}.

3 Abstract Domain

3.1 Deterministic Traces

Definition 3. A deterministic trace t ∈ T characterises a deterministic sig-
nal s ∈ S, retaining the transitions but abstracting away the times at which they
occur. Traces are denoted as finite lists of Boolean values bounded by angle brack-
ets (‘〈. . . 〉’), and must contain at least one element – the empty trace ‘〈〉’ is not
syntactically valid.

4 Note that we do not consider signals that contain an infinite number of transitions,
e.g. clocks that oscillate for all time. We can, however, reason about such signals by
‘windowing’ them within finite intervals (windows) [p, q] of R, resulting in signals
that are themselves finitely piecewise constant.

5

F0 The trace 〈0〉 that is 0 for all time.
F1 The trace 〈0, 1, 0〉 that has 0 at the beginning and end,

containing exactly one pulse.
F2 The trace 〈0, 1, 0, 1, 0〉 that begins and ends with 0,

containing exactly two pulses.
Fn The trace 〈0, 11, 0, 12, 0, . . . , 0, 1n, 0〉 that begins and ends with 0,

containing exactly n positive-going pulses.
T0 The trace 〈1〉 that is 1 for all time.
Tn The trace 〈1, 01, 1, 02, 1, . . . , 1, 0n, 1〉 that begins and ends with 1,

containing exactly n negative-going pulses.
↑0 The trace 〈0, 1〉 that cleanly transitions from 0 to 1.
↑n The trace 〈0, 11, 0, . . . , 0, 1n, 0, 1〉 that transitions from 0 to 1

through exactly n intervening cycles.
↓0 The trace 〈1, 0〉 that cleanly transitions from 1 to 0.
↓n The trace 〈1, 01, 1, . . . , 1, 0n, 1, 0〉 that transitions from 1 to 0

through exactly n intervening cycles.

Table 1. Shorthand Notation: Deterministic Traces

A singleton trace, denoted 〈0〉 or 〈1〉, represents a signal that remains at 0 or
1 respectively for all time. For traces with two or more elements, e.g. 〈a, . . . , b〉,
a is the value at the beginning of time and b is the value at the end of time.

The trace 〈0, 1, 0〉 represents a signal that at the start of time takes the value
0, then at some later time switches cleanly to 1, then back to 0 again before
the end of time. The instants at which these transitions occur are undefined,
although their time order must be preserved.

Values within traces may be discriminated only by their transitions. There-
fore, the trace 〈0, 0, 0, 0, 1, 1, 1〉 is equivalent to the trace 〈0, 1〉. It follows from
this that all traces may be reduced to a form that resembles an alternating
sequence 〈. . . , 0, 1, 0, 1, 0, 1, . . . 〉. Any such sequence can be completely charac-
terised by its start and end values, along with the number of intervening full
cycles5. A convenient shorthand notation that takes advantage of this is defined
in Table 1.

3.2 Nondeterministic Traces

Following the approach taken in Section 2, we represent nondeterministic traces
t̂ ∈ ℘(T) as sets of deterministic traces6.

5 It is of course also possible to represent traces completely in terms of their first (or
last) element and their length. However, the representation chosen here turns out to
be more convenient, e.g. comparing ↑0 with ↑4 makes it immediately obvious that
both represent traces that eventually transition from 0 to 1, with ↑0 being ‘cleaner’
than ↑4. The utility of this approach will become clear later.

6 We adopt the convention that t and t̂ are separate variables that range over T and
℘(T) respectively.

6

The need for this extra structure is demonstrated by the following example.
Let us attempt to specify the meaning of the expression 〈0, 1〉 ∧ ¬〈0, 1〉, which
represents the effect of feeding a clean transition from 0 to 1 to the a input of
the circuit shown in Fig. 1. The ¬ can be evaluated trivially, giving 〈0, 1〉∧〈1, 0〉.
At first sight, it may appear that the resulting trace should be 〈0, 0〉 or just 〈0〉.
This would be the case if certain constraints on the exact times of the transitions
of the 〈1, 0〉 and 〈0, 1〉 traces were met, but it is not sufficient to cope with all
possibilities. If 〈1, 0〉 transitions before 〈0, 1〉, then the result is indeed 〈0〉. Should
the transitions occur in the opposite order, the result is 〈0, 1, 0〉. Formally,

{〈0, 1〉} ∧ ¬{〈0, 1〉} = {〈0, 1〉} ∧ {〈1, 0〉} = {〈0〉} ∪ {〈0, 1, 0〉} = {〈0〉, 〈0, 1, 0〉}

Definition 4. Where t̂ ∈ ℘(T) and û ∈ ℘(T), the nondeterministic choice t̂ | û
is synonymous with t̂ ∪ û. For notational compactness, we alternatively allow
either or both of the arguments of | to range over T, e.g. where t ∈ T, the
expression t | û is equivalent to {t} | û.

The ‘|’ operator allows the above equation to be expressed more compactly
as follows:

〈0, 1〉 ∧ ¬〈0, 1〉 = 〈0, 1〉 ∧ 〈1, 0〉 = 〈0〉 | 〈0, 1, 0〉

Using the shorthand notation, this may equivalently be written as:

↓0 ∧ ¬↓0 = ↓0 ∧ ↑0 = F0 | F1

Definition 5. Letting X range over {T,F, ↑, ↓},

Xm..n
def
=

n
⋃

i=m

{Xi} Xa1|...|an

def
= Xa1

| . . . | Xan

For example, F0 | F1 may equivalently be written as F0|1, and rather than fully
enumerating a long list of alternate pulse counts of the form Fm|m+1|...|n−1|n, the
preferred notation Fm..n may be used instead. These notations may be combined,
e.g. F0|3|5..7|10..12.

Nondeterministic choice obeys all the laws of set union, e.g.

a | a = a a | b = b | a a | (b | c) = (a | b) | c = a | b | c

From this, various subscript laws follow, e.g.

Xa|a = Xa Xa..a = Xa

Xa..b | Xc..d =

{

Xmin(a,c)..max(b,d) if c ≤ b ∧ a ≤ d;

Xa..b|c..d otherwise.

Definition 6. It is convenient to name the following least upper bounds w.r.t.
〈℘(T),⊆〉:

FF

def
=

⋃

n∈N

{Fn} TF

def
=

⋃

n∈N

{Tn} ↑F

def
=

⋃

n∈N

{↑n} ↓F

def
=

⋃

n∈N

{↓n}

F
def
= FF ∪ TF ∪ ↑F ∪ ↓F

7

3.3 Galois Connection

Definition 7. Given a deterministic concrete signal s ∈ S, the abstraction func-
tion β : S → T returns the corresponding deterministic trace:

βs
def
= 〈s(−∞), s(k1), . . . , s(kn)〉 where {k1, . . . , kn} = Ψs

= 〈s(−∞),¬s(−∞), s(−∞),¬s(−∞), . . . 〉

Note that βs has exactly 1 + |Ψs| elements.

Definition 8. The abstraction function α : ℘(S) → ℘(T) and concretisation
function γ : ℘(T) → ℘(S) are defined as follows:

αŝ
def
= {βs | s ∈ ŝ} γt̂

def
= {s ∈ S | βs ∈ t̂}

Definition 9. Letting ∼: S × S → B represent the equivalence relation s1 ∼

s2 ⇔ βs1 = βs2, the set S
] def

= S/∼ is the set of equivalence classes in S with

respect to ∼. The set [s]
def
= {s′ ∈ S | βs = βs′} represents, for any s ∈ S, the

equivalence class containing that element.

Note that S
] is isomorphic with T.

Theorem 1. Together, the adjoint functions 〈α, γ〉 form a Galois connection
between ℘(S) and ℘(T). Following Cousot & Cousot [2], Theorem 5.3.0.4 and
Corollary 5.3.0.5, pp. 273, it is sufficient to show that α◦γ(x̂) w x̂ and γ◦α(x̂) w
x̂. We choose to prove instead the slightly stronger α ◦ γ(x̂) = x̂, and since the
ordering relations on ℘(S) and ℘(T) are subset inclusion, we write ⊇ rather than
w. Proof; letting x̂ = {x1, . . . , xn}

1. α ◦ γ(x̂) = α{s ∈ S | βs ∈ x̂} = {βs′ | s′ ∈ {s ∈ S | βs ∈ x̂}} = {βs′ | βs ∈
x̂} = x̂.

2. γ ◦ α(x̂) = γ ◦ α{x1, . . . , xn} = γ{βx1, . . . , βxn} = γ{βx1} ∪ · · · ∪ γ{βxn} =
{s ∈ S | βs = β{x1}} ∪ · · · ∪ {s ∈ S | βs = β{xn}} = [x1] ∪ · · · ∪ [xn] ⊇
{x1, . . . , xn} = x̂.

4 Circuits

Definition 10. Circuits are modeled by composing four basic operators: zero
delay ‘and’ ∧, zero delay ‘not’ ¬, transmission line delay ∆ and inertial delay
�, which are defined on the concrete domain as follows:

∧
def
= λ(ŝ1, ŝ2).{λτ.s1(τ) ∧ s2(τ) | s1 ∈ ŝ1 ∧ s2 ∈ ŝ2}

¬
def
= λŝ.{λτ.¬s(τ) | s ∈ ŝ}

∆
def
= γ ◦ α

8

¬]

F0 T0

Fn Tn

T0 F0

Tn Fn

↑0 ↓0

↑n ↓n

↓0 ↑0

↓n ↑n

∧] F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

F0 F0 F0 F0 F0 F0 F0 F0 F0

Fm F0 F0..m+n−1 Fm F0..m+n F0..m F0..m+n F0..m F0..m+n

T0 F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

Tm F0 F0..m+n Tm T1..m+n ↑0..m ↑0..m+n ↓m ↓0..m+n

↑0 F0 F0..n ↑0 ↑0..n ↑0 ↑0..n F0..1 F0..n+1

↑m F0 F0..m+n ↑m ↑0..m+n ↑0..m ↑0..m+n F0..m+1 F0..m+n+1

↓0 F0 F0..n ↓0 ↓n F0..1 F0..n+1 ↓0 ↓0..n

↓m F0 F0..m+n ↓m ↓0..m+n F0..m+1 F0..m+n+1 ↓0..m ↓0..m+n

where m > 0, n > 0.

Table 2. Boolean Functions on Traces

�
def
= γ ◦ �] ◦ α

Their abstract counterparts are defined as follows:

∧] def
= α ◦ ∧ ◦ 〈γ, γ〉

¬] def
= α ◦ ¬ ◦ γ

∆] def
= λx.x

�] def
= λt̂.{t ∈ T | ∃t′ ∈ t̂.Val(t) = Val(t′) ∧ Subs(t) ≤ Subs(t′)}

where Val : T → {F,T, ↑, ↓} and Subs : T → N are defined as follows:

Val(Xn)
def
= X Subs(Xn)

def
= n

And. The function ∧ : ℘(S)×℘(S) → ℘(S) represents a perfect zero-delay AND
gate. Its abstract counterpart, ∧] : ℘(T) × ℘(T) → ℘(T), is defined in terms
of ∧ by composition with α and γ; note that our semantics is based upon an
independent attribute model [10].

Not. The bijective function ¬ : ℘(S) → ℘(S) represents a perfect zero delay
NOT gate. As with ∧, we define ¬] : ℘(T) → ℘(T) by composition of the
concrete operator ¬ with α and γ. When tabulated, ∧] and ¬] behave as shown
in Table 2.

Transmission line (non-inertial) delay. Our definition of transmission line delay
is essentially a superset of all possible delay functions that preserve the under-
lying trace structure of the signal. The definition, γ ◦α, captures this behaviour
straightforwardly; the α function abstracts away all details of time, though pre-
serves transitions and the values at the beginning and end of time, then γ con-
cretises this, resulting in the set of all possible traces with similar structure.
This definition is more permissive than more typical notions of delay in that it
includes negative as well as positive time shifts as well as transformations that
can stretch or compress (though not remove or reorder) pulses.

9

Inertial delay. Inertial delay is broadly similar to transmission line delay, in
that, as well as changing the time at which transitions may occur, one or more
complete pulses (i.e. pairs of adjacent transitions) may be removed. This models
a common property of some physical components, whereby very short pulses are
‘soaked up’ by internal capacitance and/or inductance and thereby not passed
on. We model inertial delay in the abstract domain – in effect, nondeterministic
traces are mapped to convex hulls of the form F0..a | T0..b | ↑0..c | ↓0..d. The
concrete inertial delay operator � is defined in terms of �] by composition with
γ and α, so as with transmission line delay, it encompasses all possible (correct)
inertial delay functions. It can be noted that, for all ŝ ∈ ℘(S), ∆ŝ ⊆ �ŝ.

4.1 Soundness and Completeness

An abstract function f] may be described as sound with respect to a concrete
function f if all behaviours exhibited by f are within the set of possible be-
haviours predicted by f]. Where these sets are identical (i.e. where f] predicts
all possible behaviours of f), completeness holds [6–8, 5, 12], two forms of which
are defined below.

Definition 11. Given a concrete domain D and an abstract domain D], related
by adjoint functions 〈α, γ〉 that form a Galois connection (i.e. α ◦ γ(x) w x and
γ ◦ α(x) w x), a pair of functions f : D → D and f] : D] → D] may be said to
be sound iff the following (equivalent) relations hold:

α ◦ f v f] ◦ α f ◦ γ v γ ◦ f]

Definition 12. Let f]
best

def
= α ◦ f ◦ γ.

Definition 13. Where f] = f]
best and f ◦γ = γ◦f], the property γ-completeness

holds.

Definition 14. Where f] = f]
best and α◦f = f]◦α, the property α-completeness

holds.

Note that α-completeness and γ-completeness are orthogonal properties; nei-
ther implies the other, though if either or both kinds of completeness hold,
soundness must also hold.

Theorem 2. The transmission line delay operator (∆,∆]) is sound, α-complete
and γ-complete. Proof:

1. ∆]
best = α ◦ ∆ ◦ γ = α ◦ γ ◦ α ◦ γ = α ◦ γ = (λx.x) = ∆].

2. α-completeness: α ◦ ∆ = α ◦ γ ◦ α = α = (λx.x) ◦ α = ∆] ◦ α.
3. γ-completeness: ∆ ◦ γ = γ ◦ α ◦ γ = γ = γ ◦ (λx.x) = γ ◦ ∆].

Theorem 3. The inertial delay operator (�,�]) is sound, α-complete and γ-
complete. Proof:

10

1. �
]
best = α ◦ � ◦ γ = α ◦ γ ◦ �] ◦ α ◦ γ = �].

2. α-completeness: α ◦ � = α ◦ γ ◦ �] ◦ α = �] ◦ α.
3. γ-completeness: � ◦ γ = γ ◦ �] ◦ α ◦ γ = γ ◦ �].

Theorem 4. The perfect NOT operator (¬,¬]) is sound, α-complete and γ-
complete. Proof:

1. ¬]
best = α ◦ ¬ ◦ γ = ¬].

2. Since ¬ is a bijection, γ ◦ α ◦ ¬ = ¬ ◦ γ ◦ α.
3. α-completeness: α ◦ ¬ = α ◦ γ ◦ α ◦ ¬ = α ◦ ¬ ◦ γ ◦ α = ¬] ◦ α.
4. γ-completeness: ¬ ◦ γ = ¬ ◦ γ ◦ α ◦ γ = γ ◦ α ◦ ¬ ◦ γ = γ ◦ ¬].

Theorem 5. The perfect AND operator (∧,∧]) is sound7. Proof:

1. ∧ ◦ 〈γ, γ〉 ⊆ γ ◦ ∧] = γ ◦ α ◦ ∧ ◦ 〈γ, γ〉.

Note that whilst perfect, zero delay AND is sound but not complete, a com-

posite speed-insensitive AND (∧SI
def
= ∆ ◦ ∧,∧]

SI

def
= ∆] ◦ ∧]) can be straightfor-

wardly be shown to be γ-complete, but not α-complete. Dually, delay-independent

AND (∧DI
def
= ∧ ◦ 〈∆,∆〉,∧]

DI

def
= ∧] ◦ 〈∆],∆]〉) is α- but not γ-complete. We

find, however, that (∧complete
def
= ∆ ◦ ∧ ◦ 〈∆,∆〉,∧]

complete

def
= ∆] ◦ ∧] ◦ 〈∆],∆]〉)

is both α- and γ-complete.

5 Finite Versions of the Abstract Domain

The abstract domain defined in Section 3 allows arbitrary asynchronous combi-
national circuits to be reasoned about. In this section we present a number of
simplifications of this basic model which allow accuracy to be traded off against
levels of abstraction. The model presented in Section 3 is useful in identifying
possible glitches within circuits, though in this case generally one is interested
in whether a particular signal can glitch, rather than the number of possible
glitches – this requires less information than that captured by our original ab-
straction. It follows that further abstraction should be possible, which is indeed
the case.

5.1 Collapsing Non-Zero Subscripts: the 256-value Transitional
Logic T256

Mapping all non-zero subscript traces t ∈ X1..∞ to the single abstract value
X+, for X ranging over {F,T, ↑, ↓}, makes it possible to define a finite abstract
domain with a Galois connection to T. This domain has the desirable property
of abstracting away details of ‘how glitchy’ a trace may be, whilst retaining the
ability to distinguish clean traces from dirty traces.

7 Note that we adopt an independent attribute model when considering the dyadic
nature of AND.

11

¬c

F0 T0

F+ T+

T0 F0

T+ F+

↑0 ↓0

↑+ ↓+

↓0 ↑0

↓+ ↑+

∆c

F0 F0

F+ F+

T0 T0

T+ T+

↑0 ↑0

↑+ ↑+

↓0 ↓0

↓+ ↓+

�c

F0 F0

F+ F?

T0 T0

T+ T?

↑0 ↑0

↑+ ↑?

↓0 ↓0

↓+ ↓?

∧c F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F+ F? F? F? F? F?

T0 F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

T+ F0 F? T+ T+ F? ↑? ↓+ ↓?

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F?

↑+ F0 F? ↑+ ↑? ↑? ↑? F? F?

↓0 F0 F? ↓0 ↓+ F? F? ↓0 ↓?

↓+ F0 F? ↓+ ↓? F? F? ↓? ↓?

where F?
def
= F0 | F+, T?

def
= T0 | T+, ↓?

def
= ↓0 | ↓+, ↑?

def
= ↑0 | ↑+

Table 3. Operators on Tc

Definition 15. The abstract domain of subscript-collapsed deterministic traces

is the set Tc
def
= {F0,F+,T0,T+, ↑0, ↑+, ↓0, ↓+}. Following the usual convention,

the corresponding abstract domain of subscript-collapsed nondeterministic traces

is the set T256
def
= ℘(Tc).

Note that unlike T and ℘(T), both Tc and ℘(Tc) are finite sets, with 8 and
256 members respectively.

Definition 16. The Galois connection αc : ℘(T) → ℘(Tc), γc : ℘(Tc) → ℘(T)
is defined as follows:

βc Xn
def
=

{

X0 iff n = 0;

X+ otherwise.

αct̂
def
= {βct | t ∈ t̂} γct̂

def
= {t ∈ T | βct ∈ t̂}

It is possible to tabulate 256 × 256 truth tables that fully enumerate all
members of T256 along their edges, but they are too large to reproduce here in
full. For brevity, Table 3 defines the operators ¬c : Tc → ℘(Tc), ∆c : Tc → ℘(Tc),
�c : Tc → ℘(Tc) and ∧c : Tc × Tc → ℘(Tc) on Tc. Their fully nondeterministic
versions, defined on ℘(Tc), are as follows:

¬ct̂
def
=

⋃

t∈t̂

{¬ct} ∆ct̂
def
=

⋃

t∈t̂

{∆ct} �ct̂
def
=

⋃

t∈t̂

{�ct} t̂ ∧c û
def
=

⋃

t∈t̂
u∈û

{t ∧c u}

Note that, as with ∆], the ∆c operator is merely an identity function.

6 Further Simplification of the Abstract Domain

A fully tabulated version of the ¬c, ∆c, �c and ∧c operators defined in Section
5.1 can be regarded as a 256-value transitional logic, where the values are the

12

℘(S) ℘(T) T256

T13 T9 T5 B3 B

T15 T11 T7 T5 T3 U

...
...........

.α
..

.
............γ

...
...........

.α
..

.
............γ

...
.....

α

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

.................................

γ

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.....................
............

α ..
.....
............

γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ

...
...........

.α
..

.
............ γ..

......
.
.....
......
.

α

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.............

............

γ

..

......
.
.....
......
.

α

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.............

............

γ

..

......
.
.....
......
.

α

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.............

............

γ

..

......
.
.....
......
.

α

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.............

............

γ

........
........
........
........
.......
........
........
........
.......
........
........
........
.......
........
........
........
.......
........
........
........
.......
........
........
........
...............
............

α

..
.....
.
............

γ

...
.

............

γ

where U
def
= {F}, B

def
= {0, 1}, B3

def
= B ∪ {F} = {0, 1,F}.

Fig. 2. Hierarchy of Domains

members of ℘(Tc). Such an approach still captures more nondeterminism than
is useful in for many applications. It is possible to further reduce the abstract
domain, replacing some nondeterministic choices with appropriate least upper
bound elements with respect to 〈℘(Tc),⊆〉. The hierarchy of domains that re-
sults is shown in Fig. 2 – the relationship to 2-value Boolean logic B and 3-value
ternary logic B3 is shown8. Note that since B lacks an upper bound that cor-
responds with F, it is not possible to define α : B3 → B (though γ : B → B3

can be trivially defined), so a Galois connection does not exist in that particular
case. Following Cousot & Cousot [1, 2], the domain U, useless logic, containing
only F, completes the lattice.

Finding the smallest lattice including {F0,F+,T0,T+, ↑0, ↑+, ↓0, ↓+} that is
closed under ∧c, and ¬c results in the 13-value transitional logic,

T13
def
= {F0,F+,F?,T0,T+,T?, ↑0, ↑+, ↑?, ↓0, ↓+, ↓?,F}

Though much smaller than ℘(Tc), this logic is equivalently useful for most
purposes—note that a special element needs to be explicitly included, F, repre-
senting the least upper bound (top element) of the lattice.

In cases where it is important to know that a trace is definitely clean, but
where it is not necessary to distinguish between ‘definitely dirty’ and ‘possibly
dirty’, further reducing the domain by folding F+, T+, ↑+ and ↓+ into their
respective least upper bounds F?, T?, ↑? and ↓? results in a 9-value transitional

logic, T9
def
= {F0,F?,T0,T?, ↑0, ↑?, ↓0, ↓?,F}. An even simpler 5-value transitional

logic T5
def
= {F,T, ↑, ↓,F} results from folding all remaining nondeterminism into

F. T13 and T9 are well suited to logic simulation, refinement and model checking,
whereas T5 is only recommended for glitch checking.

6.1 Static/Clean Logics

The T13, T9 and T5 logics can be usefully extended by introducing two extra
upper bounds: S, the least upper bound of traces whose values are fixed for all

8 As with our other logics, we assume that F ⊆ F and T ⊆ F – some ternary logics
in the literature (notably Kleene’s) lack this formal requirement.

13

time, and C, the least upper bound of traces that may transition, but that never
glitch.

Definition 17. With respect to ℘(Tc), the least upper bounds S, C and F are
defined as follows:

S
def
= {F0,T0} C

def
= {F0,T0, ↑0, ↓0}

F
def
= {F0,F+,T0,T+, ↑0, ↑+, ↓0, ↓+}

The resulting static/clean transitional logics T15
def
= T13 ∪ {S,C}, T11

def
=

T9 ∪ {S,C} and T7
def
= T5 ∪ {S,C} have applications in the design rule checking

of ‘impure’ synchronous circuits. For example, a gated clock input represented
by S ∧ C = C might be accepted by a model checker, but C ∧ C = F would not.

Removing ↑ and ↓ from T7 results in a 5-value static/clean logic T5
def
=

{F,T,S,C,F} capable of reasoning about gated clock synchronous circuits; an

even simpler (though less accurate) 3-value static/clean logic T3
def
= {S,C,F}

results from also removing F and T.

7 Refinement and Equivalence in Transitional Logics

Hardware engineers frequently concern themselves with modification and op-
timisation of existing circuits, so it is appropriate to support this by defining
equivalence and refinement with respect to our abstract domains. Refinement
relationships between circuits are analogous to concepts of refinement in process
calculi, and may similarly be used to aid provably correct design. For example,
the Boolean equivalence a∧¬a = F is not a strong equivalence in our model, nor
is it a weak equivalence – it actually turns out to be a (left-to-right) refinement,
i.e. a∧¬a < F0, reflecting the ‘engineer’s intuition’ that it is safe to replace a∧¬a
with F0, but that the converse could damage the functionality of the circuit by
introducing new glitch states that were not present in the original design.

Informally, if the deterministic trace u ∈ T refines (i.e. retains the steady
state behaviour of, but is no more glitchy than) trace t ∈ T, this may be denoted
t < u.

Definition 18. Given a pair of traces t ∈ T and u ∈ T,

t < u
def
≡ Val(t) = Val(u) ∧ Subs(t) ≥ Subs(u)

For example, F1 < F0, T3 < T2, ↑5 < ↑5, but ↓0 and ↑1 are incomparable.
Where t ∈ T and u ∈ T, if t < u and u < t, it follows that t = u.

Refinement and equivalence for nondeterministic traces is slightly less straight-
forward, in that it is necessary to handle cases like ↓1|3|5 < ↓0|2|4. To make these
comparable, we construct convex hulls of the form X0..n enclosing the nonde-
terministic choices, so the above case becomes equivalent to ↓0..5 < ↓0..4. In

14

effect, this approach compares worst-case behaviour, disregarding finer detail;
in practice, since ∧, ∆, � and ¬ typically return results of the general form
X0..n anyway, this tends not to cause any practical difficulties. Less permissive
definitions of refinement, e.g. t̂ <strict û ≡ ∀t ∈ t̂ . ∀u ∈ û . t < u, often disal-
low too many possible optimisations that in practice are quite acceptable—our
model better reflects the engineer’s intuition that ‘less glitchy is better,’ but that
very detailed information about the structure of possible glitches is generally not
important.

Definition 19. Where t̂ ∈ ℘(T) and û ∈ ℘(T),

t̂ < û
def
≡ (∀t ∈ t̂, u ∈ û . Val(t) = Val(u)) ∧ MaxSubs(t̂) ≥ MaxSubs(û)

where MaxSubs(t̂)
def
= maxt∈t̂ Subs(t) is a function returning the largest subscript

of a nondeterministic trace.

Equivalence of Nondeterministic Traces. Where t̂ ∈ ℘(T) and û ∈ ℘(T), if t̂ = û
then the traces are strongly equivalent , i.e. they represent exactly the same sets
of nondeterministic choices. If the convex hulls surrounding t̂ and û are identical,
as is the case when t̂ < û∧ û < t̂, the traces may be said to be weakly equivalent,
denoted t̂ l û. Where t̂ < û ∨ û < t̂, the traces are comparable, denoted t̂ m û.

Finite Abstract Domains Refinement and equivalence can also be defined for
the finite abstract domain T256 and some of its simplified forms. Since T256 is
implicitly nondeterministic, we do not need to consider the deterministic case.

Definition 20. Given traces t ∈ T256 and u ∈ T256,

t < u
def
≡ Val(t) = Val(u) ∧ (Subs(t) = Subs(u) ∨ Subs(u) = 0)

t l u
def
≡ t < u ∧ u < t ≡ t = u

t m u
def
≡ t < u ∨ u < t ≡ Val(t) = Val(u)

8 Related Work

There seems to be relatively little work reported in the literature regarding the
application of modern program analysis techniques to hardware.

Don Gaubatz [4] proposes a 4-value ‘quaternary’ logic that bears some re-
semblance to our 5-value transitional logic.

Paul Cunningham [3] extends Gaubatz’s work in many respects, though his
formalism is based on a conventional 2-value logic with transitions handled ex-
plicitly as events rather than as values in an extended logic.

Charles Hymans [9] uses abstract interpretation to present a safety prop-
erty checking technique based upon abstract interpretation of (synchronous)
behavioural VHDL specifications.

15

9 Conclusions

In this paper, we have presented a technique based upon the solid foundation
of abstract interpretation [1, 2] that allows properties of a wide class of digital
circuits to be reasoned about. We describe what is essentially a first attempt at
applying abstract interpretation to asynchronous hardware—clearly more can
be done, particularly in exploring completeness.

9.1 Future Work

In Section 7, we define refinement and equivalence relations on circuits. It ap-
pears to be possible to generalise this definition of refinement and equivalence to
any abstract domain that is itself amenable to abstract interpretation. We have
already demonstrated that our technique is potentially useful for logic simulation
[13] – implementing a demonstrable simulator is a logical next step.

An experimental proof system exists for the 11-value clean/static transitional
logic, and we hope to extend this to cover the more general case, ℘(T).

Acknowledgments

This paper has greatly benefited from comments received on early drafts. In par-
ticular, we wish to thank the anonymous reviewers, Patrick and Radhia Cousot,
Charles Hymans, the Semantics and Abstract Interpretation group at École Nor-
male Supérieure, as well as the CPRG and Rainbow groups at Cambridge.

The first author wishes to thank Big Hand Ltd. and Senshutek Ltd. for
financially supporting this work.

References

1. Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Los Angeles, California, 1977), ACM Press,
New York, NY, pp. 238–252.

2. Cousot, P., and Cousot, R. Systematic design of program analysis frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Antonio, Texas, 1979), ACM Press,
New York, NY, pp. 269–282.

3. Cunningham, P. A. Verification of Asynchronous Circuits. PhD thesis, University
of Cambridge, 2002.

4. Gaubatz, D. A. Logic Programming Analysis of Asynchronous Digital Circuits.
PhD thesis, University of Cambridge, 1991.

5. Giacobazzi, R., and Mastroeni, I. Domain compression for complete abstrac-
tions. In Fourth International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’03) (2003), vol. 2575 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 146–160.

16

6. Giacobazzi, R., and Ranzato, F. Completeness in abstract interpretation:
A domain perspective. In Proc. of the 6th International Conference on Alge-
braic Methodology and Software Technology (AMAST’97) (1997), M. Johnson, Ed.,
vol. 1349 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 231–
245.

7. Giacobazzi, R., and Ranzato, F. Refining and compressing abstract domains.
In Proc. of the 24th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP’97) (1997), R. G. P. Degano and A. Marchetti-Spaccamela,
Eds., vol. 1256 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
pp. 771–781.

8. Giacobazzi, R., Ranzato, F., and Scozzari, F. Making abstract interpretations
complete. Journal of the ACM 47, 2 (2000), 361–416.

9. Hymans, C. Checking safety properties of behavioral VHDL descriptions by ab-
stract interpretation. In 9th International Static Analysis Symposium (SAS’02)
(2002), vol. 2477 of Lecture Notes in Computer Science, Springer, pp. 444–460.

10. Jones, N. D., and Muchnick, S. Complexity of flow analysis, inductive assertion
synthesis, and a language due to Dijkstra. In 21st Symposium on Foundations of
Computer Science (1980), IEEE, pp. 185–190.

11. Morelli, G. Coralled: Get hold of wire delays. Electronic Design News, September
25, 2003 , pp. 37–46.

12. Mycroft, A. Completeness and predicate-based abstract interpretation. In Proc.
ACM conf. on Partial Evaluation and Program Manipulation (2003), pp. 179–185.

13. Thompson, S., and Mycroft, A. Sliding window logic simulation. In 15th UK
Asynchronous Forum (2004), Cambridge.

