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Abstract

It is well known that the classical numerical algorithm of the steepest descent method (SDM) is effective for well-posed
linear systems, but performs poorly for ill-posed ones. In this paper we propose accelerated and/or bidirectional mod-
ifications of SDM, namely the accelerated steepest descent method (ASDM), the bidirectional method (2DM), and the
accelerated bidirectional method (A2DM). The starting point is a manifold defined in terms of a minimum functional and
a fictitious time variable; nevertheless, in the end the fictitious time variable disappears so that we arrive at purely iterative
algorithms. The proposed algorithms are justified by dynamics-theoretical and optimization interpretation. The accelera-
tor plays a prominent role of switching from the situation of slow convergence to a new situation that the functional tends to
decrease stepwise in an intermittent and ceaseless manner. Three examples of solving ill-posed systems are examined and
comparisons are made with exact solutions and with the existing algorithms of the SDM, the Barzilai-Borwein method,
and the random SDM, revealing that the new algorithms of ASDM and A2DM have better computational efficiency and
accuracy even for the highly ill-posed systems.

Keywords: Ill-posed linear equations, accelerated steepest descent method, accelerated bidirectional method.

1. Introduction

1.1 Ill-posed Problems and Remedy

In this paper we propose robust and easily implemented new methods to solve the system of linear algebraic equations

Ax = b, (1)

where the coefficient matrix A ∈ Rn×n is a given positive definite matrix, which may be ill-conditioned; the right-hand
side vector b ∈ Rn is the input data, which may be corrupted by noise; and x ∈ Rn is the unknown vector to be sought for.
We thus encounter the problem that the numerical solution to Eq. (1) may deviate from the exact one to a great extent,
when A is highly ill-conditioned and/or b is disturbed by noise. In some occasions (for example, design code regulations
require engineers to consider hundreds of load combinations b), the unknown vectors x may be solved for preferably by
first inverting A, but this again causes a great difficulty when A has a large condition number.

Many numerical methods used in the computational mechanics are confronted with the ill-posed linear algebraic equa-
tions, as demonstrated in the literature (Liu, 2007a; Liu, 2007b; Liu, 2007c; Lorentz & Benallal, 2005). Indeed, the
solution of ill-posed linear algebraic equations is an important issue for many engineering and scientific problems. A
good numerical method to solve Eq. (1) is not only important in its own right but also beneficial in applications such as (i)
the optimization problems including linear programming and nonlinear programming, (ii) the Newton’s, quasi-Newton’s
and homotopy methods for systems of nonlinear equations, and (iii) the finite difference, boundary element and finite
element methods for partial differential equations.

To account of the sensitivity to noise a common practice is to invoke a regularization method to tackle this sort of ill-posed
problems (Kunisch & Zou, 1998; Resmerita, 2005; Wang & Xiao, 2001; Xie & Zou, 2002), where a suitable regularization
parameter is utilized to depress the bias in the computed solution via a better balance of the approximation error and the
propagated data error. Developed were several techniques after the pioneering work of Tikhonov & Arsenin (1977). For
a large scale system the main choice is to use the iterative regularization algorithms, where a regularized parameter is
represented by the number of iterations. The iterative algorithms work if an early stopping criterion is erected to prevent
from reconstruction of noisy components in the approximated solutions. To solve the ill-posed linear problems, several
methods such as using the fictitious time integration method as an ill-conditioning filter (Liu & Atluri, 2009a), a modified
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polynomial expansion method (Liu & Atluri, 2009b), the nonstandard group preserving scheme (Liu & Chang, 2009),
and a natural regularization (Liu, Hong, & Alturi, 2010) have been developed.

A quantitative measure of the ill-posedness of Eq. (1) is the condition number of the square matrix A (Stewart, 1973):

cond(A) = ∥A∥∥A−1∥, (2)

where ∥A∥ is the Frobenius norm of A. For an arbitrary ϵ > 0, there exists a matrix norm ∥A∥ such that ρ(A) ≤ ∥A∥ ≤
ρ(A) + ϵ, where ρ(A) is the radius of the spectrum of A. Therefore, the condition number of A can be estimated by

cond(A) =
maxσ(A) |λ|
minσ(A) |λ|

, (3)

where σ(A) is the collection of the eigenvalues of A.

The linear algebraic system (1) with A having a large condition number usually suffers from the numerical instability
problem that an arbitrary small perturbation on the right-hand side b may lead to a large perturbation to the solution x on
the left-hand side. Roughly speaking, the numerical solution of Eq. (1) may lose the accuracy of k decimal points in x when
cond(A) = 10k. The problems of ill-conditioned A appear in several fields. A famous example of highly ill-conditioned
matrices is the Hilbert matrix. It arises naturally in finding an n-degree polynomial function p(x) = a0 + a1x + . . . + anxn

to best match a continuous function f (x) ∈ C[0, 1] in the interval of x ∈ [0, 1]:

min
deg(p)≤n

∫ 1

0
| f (x) − p(x)|2dx. (4)

The minimization problem (4) leads to Eq. (1), where A is the (n + 1) × (n + 1) Hilbert matrix, whose elements are of the
form

Ai j =
1

i + j − 1
, (5)

x is composed of the n + 1 coefficients a0, a1, . . . , an of p(x), and

b =



∫ 1
0 f (x)dx∫ 1

0 x f (x)dx
...∫ 1

0 xn f (x)dx


(6)

is uniquely determined by the function f (x).

1.2 The Steepest Descent Method

Solving Eq. (1) by the steepest descent method (Jacoby, 1972; Ostrowski, 1973) is equivalent to solving the minimization
problem:

min
x∈Rn
φ(x), (7)

where
φ(x) =

1
2

xT Ax − bT x,

in which the superscript T signifies the transpose. By using the Ritz variational principle one can derive the following
SDM algorithm.
(i) Give an initial x0.
(ii) For k = 0, 1, 2, . . ., we repeat the following computations:

rk = Axk − b,

αk =
∥rk∥2
rT

k Ark
, (8)

xk+1 = xk − αkrk,

where xk := x(k∆t) and rk = r(k∆t). If xk converges according to a given stopping criterion ∥rk∥ < ε, then stop; otherwise,
go to step (ii).
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For the SDM the residual vector rk is the steepest descent direction of the function φ at the point xk. But when ∥rk∥ is
rather small the computed rk may deviate from the actual steepest descent direction to a great extent due to a round-off
error of computing machine, which usually leads to the numerical instability of the SDM.

1.3 Steplengths in the SDM, BBM, and RSDM

Modifications to the SDM have recurred. These modifications, although somewhat ad hoc in some cases, have stimulated
a new interest in the SDM because it is recognized that the gradient vector itself is not a bad choice of the direction, but
rather that the steplength originally dictated by the classical SDM is to blame for the slow convergence behavior. Barzilai
& Borwein (1988) were the first, who presented a new choice of steplength through two-point stepsize. The algorithm of
the Barzilai-Borwein method (BBM) is

xk+1 = xk −
(∆rk−1)T∆xk−1

∥∆rk−1∥2
rk, (9)

where ∆rk−1 = rk − rk−1 and ∆xk−1 = xk − xk−1 with initial guesses r0 = 0 and x0 = 0. Although failing to guarantee the
descent of the minimum functional values, they were able to produce a substantial improvement of the convergence speed
in certain tests. Their results have initiated many researches on the SDM, for example, Raydan (1993, 1997), Friedlander
et al. (1999), Raydan & Svaiter (2002), Dai & Liao (2002), Dai et al. (2002), Dai & Yuan (2003), Flectcher (2005),
Yuan (2006), etc. Among these efforts, a very interesting modification of steplength was the random SDM (abbreviated
to RSDM) proposed by Raydan & Svaiter (2002), namely

xk+1 = xk − θk
∥rk∥2
rT

k Ark
rk, (10)

where θk are random numbers in [0, 2].

These algorithms (8), (9), and (10) may be summarized as

xk+1 = xk − αkrk,

in which

αk =


∥rk∥2
rT

k Ark
for SDM,

(∆rk−1)T∆xk−1
∥∆rk−1∥2 for BBM,

θk
∥rk∥2
rT

k Ark
with random θk ∈ [0, 2] for RSDM.

It can be seen that they are different mainly in steplengths.

2. A New Stage—Invariant Manifold

In this paper we approach this steplength problem from a quite different point of view of dynamics on an invariant manifold
in the product space of the state space and a fictitious time axis, and propose new strategies.

From Eqs. (1) and (7) it is easy to prove that the minimum is

min
x∈Rn
φ(x) = φ(x∗) = −1

2
x∗T Ax∗ < 0,

because A is positive definite, where x∗ is the solution of Eq. (1). We take

ϕ(x) := φ(x) + c0 =
1
2

xT Ax − bT x + c0, (11)

where c0 is a constant such that ϕ(x) > 0. Therefore, solving Eq. (1) by the steepest descent method amounts to solving
the minimization problem:

min
x∈Rn
ϕ(x), (12)

where ϕ(x) is given by Eq. (11). It is obvious that the minima of ϕ(x) and φ(x) occur at the same place x = x∗.

There are several regularization methods available for treating Eq. (1) when A is ill-conditioned. In this paper we consider
an iterative regularization method for Eq. (1) by investigating the evolutional behavior of x governed by a dynamical
system defined on a manifold

h(x, t) := Q(t)ϕ(x) = C(t) (13)

formed from ϕ(x) with the requirements that Q(t) be positive (Q(t) > 0) and strictly increasing (Q(t2) > Q(t1) if t2 > t1)
and that C(t) > 0. The requirement that Q(t) be a strictly increasing function of a fictitious time variable t enables us to
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have an absolutely convergent property in solving Eq. (1). We will utilize such a strictly increasing positive Q(t) to play
the role of an accelerator in the dynamics of the iterative methods. We expect h(x, t) = C(t) to be an invariant manifold in
the space of (x, t) for a dynamical system to be specified further. Note that by the above implicit function we in fact have
required x to be a function x(t) of t, that is, we are considering the trajectory

h(x(t), t) = Q(t)ϕ(x(t)) = C(t) (14)

in the invariant manifold (13). Therefore, when taking the differentiation of Eq. (14) with respect to t, we have to fulfill
the consistency condition

Q̇(t)ϕ(x(t)) + Q(t)rT (t)ẋ(t) − Ċ(t) = 0, (15)

where
r = Ax − b (16)

is the residual vector and an overdot indicates differentiation with respect to t.

Let there be a gradient flow in the state space of (x),

ẋ = −α∂ϕ
∂x
= −αr, (17)

where α is to be determined. Inserting Eq. (17) into Eq. (15) and using Eq. (16) we get

α =
Q̇ϕ − Ċ
Q∥r∥2 . (18)

With this we obtain an evolution equation for x(t):

ẋ =
Ċ − Q̇ϕ
Q∥r∥2 r. (19)

This is the governing equation for the dynamical system defined on the invariant manifold (13). Since, in order to be
qualified as an accelerator, Q(t) has been chosen to be a strictly increasing positive function of t, we have an absolutely
convergent property in solving Eq. (1) by searching the minimum of ϕ through the following equation,

ϕ(x(t)) =
C(t)
Q(t)
. (20)

When t is large the above equation with the aid of the accelerator Q(t) helps the functional ϕ to attain faster its minimum,
and meanwhile the solution of Eq. (1) is obtained quicker.

3. Dynamics of Iterative Algorithms

In this section we derive a discrete analogue of the foregoing continuous time dynamics and develop accelerated algo-
rithms based on the discrete time dynamics. Since the fictitious time variable is now discrete, we arrive at purely iterative
algorithms with discrete k ∈ {0, 1, 2, . . .} superseding continuous t.

Here and following, we use the symbols ẋk = ẋ(k∆t), Qk = Q(k∆t), Ck = C(k∆t), αk = ∆tα(k∆t), and ϕk = ϕ(xk), etc.
Hence the trajectory (14) on the invariant manifold (13) becomes

Qk+1ϕk+1 = Ck+1. (21)

3.1 Accelerated SDM

We use the Euler scheme to discretize the evolution equation (17),

xk+1 = xk − αkrk. (22)

Upon denoting ϕk+1 = ϕ(xk+1) = ϕ(xk − αkrk), the minimization problem (12) becomes

min
αk
ϕk+1, (23)

which leads to

αk =
rT

k rk

rT
k Ark

. (24)
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Hence

xk+1 = xk −
∥rk∥2
rT

k Ark
rk. (25)

It is recognized that this is indeed the algorithm (8) of the steepest descent method (SDM). The trajectory

ϕk+1 = Ck+1, (26)

of xk+1 generated by Eq. (25) is kept on the invariant manifold if and only if

Ck+1 = Ck −
rT

k rk

2rT
k Ark

. (27)

Despite the optimal property (23) and the globally convergent property, the SDM algorithm (25) converges linearly and
performs poorly in ill-posed cases (Akaike, 1959). To accelerate the convergent iterations we stick to such Ck+1 of Eq.
(27) but replace Qk+1 = 1 implied in Eq. (26) as comparing with equation given below by the accelerator Q1 > 1 and
Qk+1 > Qk. According to Eq. (27), we choose rT

k rk and rT
k Ark be the factors of the accelerator. After derivation, we find

the minimization problem
min
αk

Qk+1ϕk+1 (28)

with the best accelerator

Qk+1 = exp
 2γrT

k rkrT
k Ark

(1 − γ2)(rT
k rk)2 + 2ϕkrT

k Ark
αk

 (29)

and Eq. (22) leads to

αk = (1 − γ)
rT

k rk

rT
k Ark

. (30)

The range of γ contained in Eq. (29) is 0 ≤ γ < 1 which is investigated in the next subsection.

Inserting Eq. (30) into Eq. (22) we have

xk+1 = xk − (1 − γ) ∥rk∥2
rT

k Ark
rk. (31)

The trajectory (21) of xk+1 obtained by Eq. (31) stays on the invariant manifold if and only if Ck+1 and Qk+1 satisfy Eqs.
(27) and (29), respectively.

Then, we devise the following algorithm:
(i) Give an initial x0.
(ii) For k = 0, 1, 2, . . ., we repeat the following computations:

rk = Axk − b, (32)

αk = (1 − γ) ∥rk∥2
rT

k Ark
, (33)

xk+1 = xk − αkrk. (34)

If xk converges according to a given stopping criterion ∥rk∥ < ε, then stop; otherwise, go to step (ii).

For convenience the algorithm is referred to as the accelerated steepest descent method (ASDM)1. If instead γ = 0 the
above algorithm becomes the classical steepest descent method (SDM). The SDM and ASDM are unidirectional methods
in the sense that at each step the optimizations of their algorithms are performed within an one-dimensional space in
which the optimal steplengths are found.

3.2 How Does the Accelerator Work?

In the last subsection, we propose an accelerated modification of SDM. For this modification, it is easy to obtain

ϕk+1

ϕk
= 1 − (1 − γ2)

(rT
k rk)2

(rT
k Ark)(rT

k A−1rk)

1This algorithm had been proposed in (Liu, 2012) from the different point of view and named “MSDM”. Here we rename it “ASDM” basing on the
concept of accelerator.
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by specifying c0 =
1
2 x⋆T Ax⋆ where Ax⋆ = b. Upon using the Kantorovich inequality, we get the upper bound of ϕk+1

ϕk
as

follows:
ϕk+1

ϕk
≤ 1 − (1 − γ2)

4 cond(A)
(1 + cond(A))2 . (35)

From inequality (35) it follows that γ ∈ (−1, 1) is sufficient for a strictly decreasing sequence {ϕk}. However, γ ∈ (−1, 0)
leads to Qk < 1 based on Eq. (29); therefore, we have to choose γ ∈ (0, 1) in order to have an accelerator Q0 > 1 and
Qk+1 > Qk.

The θk in the algorithm (10) of the random SDM indeed plays the role of 1 − γ. According to the above analysis based
on the viewpoint of dynamics, we suggest that the random numbers be chosen from θk ∈ (0, 1) (abbreviated to RSDM1)
rather than the original ad hoc range θk ∈ [0, 2] (abbreviated to RSDM).

Another index is

rT
k+1rk+1

rT
k rk

= 2γ − 1 +
(rT

k rk)(rT
k A2rk)

(rT
k Ark)2

.

Using again the Kantorovich inequality we derive the upper bound of rT
k+1rk+1

rT
k rk

as in the following:

rT
k+1rk+1

rT
k rk

≤ 2γ − 1 +
(1 + cond(A))2

4 cond(A)
. (36)

According to the estimate (36), the strictly decreasing rT
k+1rk+1 may exist merely in the range

cond(A) < 3 − 4γ +
√

(3 − 4γ)2 − 1.

Observe that the range of strictly decreasing rT
k+1rk+1 for γ , 0 appears to be narrower than that for γ = 0. It provides

one of the reasons why the irregularly jumping behavior of the residual errors for the accelerated algorithm ASDM
(0 < γ < 1) is more violent than that of the classical algorithm SDM (γ = 0). The corresponding behavior of SDM
(γ = 0) was explored in (Nocedal et al., 2002).

3.3 Bidirectional Methods

In deriving the unidirectional methods we use the Euler scheme to discretize the dynamical system (17). Now we discretize
the flow ẋ as the weighted difference of states:

ẋ(k∆t) =
x((k + 1)∆t) − βkx(k∆t)

∆t
so that the dynamical system (17) becomes

xk+1 = βkxk − αkrk. (37)

With ϕk+1 =ϕ(xk+1) =ϕ(βkxk − αkrk) the minimization problem (12) becomes

min
βk ,αk
ϕk+1. (38)

Thus it follows that

αk =
ak

2dk
1 − ak

1dk
2

ak
1ak

3 − (ak
2)2
, βk =

ak
3dk

1 − ak
2dk

2

ak
1ak

3 − (ak
2)2
, (39)

where ak
1 := xT

k Axk, ak
2 := rT

k Axk, ak
3 := rT

k Ark, dk
1 := bT xk, dk

2 := bT rk. The trajectory (26) of xk+1 generated by Eq. (37)
with Eq. (39) will be kept on the invariant manifold if and only if

Ck+1 = Ck +
(ak

1)2ak
3 + dk

1[2(ak
2)2 + ak

3dk
1 − 2ak

2dk
2] + ak

1[−(ak
2)2 − 2ak

3dk
1 + (dk

2)2]

2[(ak
2)2 − ak

1ak
3]

. (40)

Note that Qk+1 = 1 implied in Eq. (26). In order to speed up the rate of convergence, we stick to Eq. (40) but replace
Qk+1 = 1 with the accelerator Q1 > 1 and Qk+1 > Qk. According to Eq. (40), we select ak

1, ak
2, ak

3, dk
1, and dk

2 to be the
factors of the accelerator Qk+1. Basing on our investigation, we find that with the best accelerator

Qk+1 = exp
 2γ[ak

1ak
3 − (ak

2)2](ak
2dk

1 − ak
1dk

2)

[γ2(ak
2)2 − ak

1ak
3]d2

1 + (1 − γ2)[2ak
1ak

2dk
1dk

2 − (ak
1)2(dk

2)2]
αk

 (41)
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containing a parameter γ ∈ [0, 1), the extremal of the optimization problem

min
βk ,αk

Qk+1ϕk+1, (42)

instead of Eq. (38), occurs at

αk = (1 − γ)
ak

2dk
1 − ak

1dk
2

ak
1ak

3 − (ak
2)2
, βk =

γak
2(ak

1dk
2 − ak

2dk
1) + ak

1(ak
3dk

1 − ak
2dk

2)

ak
1[ak

1ak
3 − (ak

2)2]
. (43)

Following the discrete time dynamics of xk+1 of Eq. (37) with Eq. (43), the xk+1 evolves, generating the trajectory (21) on
the invariant manifold if and only if Ck+1 and Qk+1 satisfy Eqs. (40) and (41), respectively.

According to the above derivation, an iterative algorithm is proposed as below.
(i) Give an initial x0.
(ii) For k = 0, 1, . . ., we repeat the following computations:

rk = Axk − b.

If xk converges according to a given stopping criterion ∥rk∥ < ε, then stop; otherwise

αk = (1 − γ)
(rT

k Axk)(bT xk) − (xT
k Axk)(bT rk)

(xT
k Axk)(rT

k Ark) − (rT
k Axk)2

,

βk =
γrT

k Axk[(xT
k Axk)(bT rk) − (rT

k Axk)(bT xk)] + xT
k Axk[(rT

k Ark)(bT xk) − (rT
k Axk)(bT rk)]

xT
k Axk[(xT

k Axk)(rT
k Ark) − (rT

k Axk)2]
,

xk+1 = βkxk − αkrk,

and go to step (ii).

For convenience the new algorithm is referred to as the accelerated bidirectional method (A2DM), “accelerated” referring
to Qk+1 > 1 and “bi-direcional” to xk+1 ∈ span{xk, rk}. When γ = 0 the accelerator is turned off, i.e. Qk+1 = 1, and hence
the A2DM reduces to the bidirectional method (2DM). Table 1 summarizes the relations of the SDM, ASDM, 2DM, and
A2DM.

4. Further Study by Numerical Experiments

To assess the performance of the newly developed ASDM, 2DM, and A2DM algorithms let us perform numerical exper-
iments on three selected examples of ill-posed problems with condition numbers cond(A) = 1.59 × 1013, 4.79 × 1018,
and 1.36 × 1019 in 2, 50, 100 dimensions, respectively. The numerical results are compared with those obtained from
the steepest descent method (SDM), the Barzilai-Borwein method (BBM), and the random SDM with the intervals of
θk ∈ [0, 2] (RSDM) and θk ∈ (0, 1) (RSDM1).

4.1 Example 1

In this example we consider a highly ill-posed two-dimensional linear system:[
2 6
2 6.00001

] [
x
y

]
=

[
8

8.00001

]
. (44)

The condition number is cond(A) = 1.59× 1013, where A = BT B is positive definite and B denotes the coefficient matrix,
which is not symmetric, of Eq. (44). The exact solution is (x⋆, y⋆) = (1, 1). The seven algorithms of SDM, BBM,
RSDM, RSDM1, ASDM, 2DM, and A2DM are applied to find the solutions of Eq. (44), whose results are displayed
correspondingly in Fig. 1 to Fig. 7.

To promote a better understanding of these methods and, in particular, the influence of initial guesses, we run the algo-
rithms starting from various initial points (x0, y0) = (1 + cos i

360 , 1 + sin i
360 ), i = 1, 2, · · · , 360, and stopped at the 19th

step (k = 19). The iterations of 19 points (xk, yk), k = 0, 1, . . . , 19, per initial guess for the 360 initial guesses were plotted
in the (a) parts of the seven figures. In the (b) and (c) parts plotted are the residual errors rT

19r19 and the solution errors√
(x19 − x⋆)2 + (y19 − y⋆)2, respectively, at step k = 19 for the 360 initial guesses.

Figure 1(a) shows the 360 × 20 points of (xk, yk) during the 19 iterations by using the SDM for the 360 initial points on
the circle (x− 1)2 + (y− 1)2 = 1, among which for illustration purposes, in particular, 2 initial points (x0, y0) and their first
iteration points (x1, y1) are each marked by a cross and connected by thin lines to show their orbits. It is clearly seen that
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Figure 1. Example 1. Evolution of iterations, residual errors and solution errors for SDM

Figure 2. Example 1. Evolution of iterations, residual errors and solution errors for BBM
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Figure 3. Example 1. Evolution of iterations, residual errors and solution errors for RSDM

Figure 4. Example 1. Evolution of iterations, residual errors and solution errors for RSDM1
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Figure 5. Example 1. Evolution of iterations, residual errors and solution errors for ASDM

Figure 6. Example 1. Evolution of iterations, residual errors and solution errors for 2DM
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Figure 7. Example 1. Evolution of iterations, residual errors and solution errors for A2DM

all the first iterates (x1, y1) are already located nearly on the line x + 3y = 4. It is known that the line x + 3y = 4 is indeed
the major axis of a family of extremely elongated ellipses which are the level curves of ϕ of the ill-posed problem (44). It
looks like an extremely flat, narrow, steep-sided valley. In fact, all the first iteration points (x1, y1) are distributed nearly
on the line x + 3y = 4 and all subsequent iteration points (xk, yk), k = 2, 3, . . . , 19, are clustered around their own first
iteration points. The latter fact is indeed the consequence of the property of the SDM whose gradient directions between
two iterations are notoriously perpendicular so that the iterates turn directions right and left and hardly move on the flat
valley x + 3y = 4.

Figure 1(b) shows that the residual errors of the SDM oscillate irregularly between 10−14 and 10−5. The solution errors of
the SDM is shown in Fig. 1(c); it is obvious that the initial guesses have structured influence on the solution errors.

By using the BBM, the evolution of iterations is shown in Fig. 2. It is interesting to observe that in Fig. 2(a) the 360
initial points (x0, y0) (including points A and D) originally situated on the circle (x − 1)2 + (y − 1)2 = 1 start to iterate so
that the 360 first iteration points (x1, y1) are almost all on a line along BE, then the 360 second iteration points (x2, y2) are
almost all on a line along CF, and then all the subsequent iterates are clustered around their own second iteration points
nearly on the line along CF. Two orbits ABC · · · and DEF · · · indicated by thin lines with cross marks are displayed in
Fig. 2(a) for illustration purposes. Figures 2(b) and 2(c) show how the residual errors and solution errors change with the
initial guesses. Observe that the style of the changing residual errors in Fig. 2(b) is very different from the corresponding
one exhibited in the previous figure.

The evolution of iterations using the RSDM is plotted in Fig. 3(a). Since for RSDM the parameters θk are random
numbers generated from the interval [0, 2], observe that the iterations of (xk, yk) starting from the initial points (1 +
cos i

360 , 1 + sin i
360 ), i < 180, cross the line x + 3y = 4 and reach the lower left region x + 3y < 4, while the iterations

starting from the initial points (1+ cos i
360 , 1+ sin i

360 ), i > 180, conversely reach the upper right region x+ 3y > 4. Figure
3(b) shows the residual errors varying between 10−10 and 10−2. It seems that the initial guesses do not influence the trend
of the residual errors. Figure 3(c) shows how systematically the solution errors are related to the initial guesses.

Different from the above using the RSDM, the results of evolution by using the RSDM1 are shown in Fig. 4(a). Since we
choose θk ∈ (0, 1) for RSDM1, all iterations of (xk, yk) starting from the side x + 3y > 4 (resp. x + 3y < 4) remain inside
the region x+3y ≥ 4 (resp. x+3y ≤ 4). Figure 4(b) shows the residual errors varying between 10−10 and 10−2. Figure 4(c)
demonstrates almost the same systematical way as Fig. 3(c) in which the solution errors depend on the initial guesses.

The results of the ASDM, 2DM, and A2DM are shown in Figs. 5, 6, and 7, respectively. We use γ = 0.05 for the
accelerated algorithms of ASDM and A2DM. Figure 5(a) shows that all the 360 first iteration points (x1, y1) are located
nearly on an ellipse inside the circle (x − 1)2 + (y − 1)2 = 1 and that all the second iteration points (x2, y2) are located
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Figure 8. Example 2. Comparison of residual errors for A2DM with the other six methods

nearly on the line x + 3y = 4. It can be seen in Fig. 5(b) that the range of the residual errors is (10−14, 10−8) and in Fig.
5(c) how the solution errors depend on the initial guesses.

Up to now, we have explored the properties of the unidirectional methods. Now let us consider the bidirectional methods
of 2DM and A2DM. In this two-dimensional case, the results of 2DM and A2DM are similar. Figures 6(a) and 7(a) show
that almost all points are located very near to the solution point (x⋆, y⋆) = (1, 1), besides the initial points. As can be seen
in Figs. 6(c) and 7(c) the solution errors are smaller than those using the other five (unidirectional) methods. Although,
on the other hand, the residual errors shown in Figs. 6(b) and 7(b) are greater than those using the others, this matter does
not do harm but instead demonstrates the low reliability of the residual errors due to a large condition number as noted
in (Nocedal et al., 2002). Summarizing, for the ill-posed linear system (44), the A2DM and 2DM display their superior
performance, with their iterations converging rapidly to the solution point (x⋆, y⋆) = (1, 1) in less than 19 steps.

4.2 Example 2

In this example we consider a highly ill-posed linear equation (1) with A being the Hilbert matrix of elements in Eq. (5).
The ill-posedness of Eq. (1) increases fast with n.

In order to compare the numerical solutions with exact solutions we suppose that x⋆1 = x⋆2 = . . . = x⋆n = 1, and then by
Eq. (5) we have

bi =

n∑
j=1

1
i + j − 1

. (45)

We solve this problem for the case with n = 50. The resulting linear system of equations is highly ill-posed, the condition
number being as large as 4.79 × 1018. Seven methods are applied to find the solutions of Eq. (1), whose results are
displayed in Figs. 8 to 10. We used γ = 0.15 for A2DM and γ = 0.05 for ASDM.

The A2DM and 2DM have a privileged set of initial guesses xi = c,∀c ∈ R which happen to lie in a ray from the origin
xi = 0 through the solution point x⋆i = 1. If we start from these initial guesses, the A2DM and 2DM converge in only one
step. Therefore, we chose another initial guess xi = (−1)i×0.5, i = 1, 2, · · · , 50, and set a stopping criterion ε = 10−8. The
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Figure 9. Example 2. Comparison of solution errors for A2DM with the other six methods

Figure 10. Example 2. Comparison of Numerical errors for A2DM with the other six methods
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RSDM1 and the A2DM converge in 99985 iterations and 81660 iterations, respectively, but the others do not converge
within 105 iterations. Figure 8 shows the residual errors ∥rT

k rk∥ versus the step number k, the result of A2DM being
compared with those of the other six methods in six plots. It is seen that A2DM has a faster convergence rate than the
others. In this 50-dimensional case, 2DM does not work well as it did in the 2-dimensional case (Example 1). Observe
that the residual errors of SDM and 2DM are changing smoothly and converging slowly, whereas those of ASDM, BBM,
RSDM, RSDM1, and A2DM are changing violently to the contrary.

Figure 9 shows that the solution errors ∥xk − x⋆∥ versus the step number k. The solution errors of all methods display
nearly stationary during a relatively long period from step k = 101 to step k = 104. In this duration the performance of
A2DM is merely better than 2DM. But beyond the 104 iterations, the solution errors of A2DM vary to a larger extent and
succeed in attaining much lower values. Figure 10 displays the 50 components |(xN f − x⋆)i|/(x⋆)i of numerical errors at
the final converged step N f ; the distance between the final point and the solution point x⋆i = 1 for A2DM is the shortest.
Both figures confirm that A2DM renders the most accurate results in the end.

4.3 Example 3

As an application of the new algorithms we consider a polynomial interpolation problem. In other words, given some data
points, such as obtained by sampling of a measurement, the aim is to find a polynomial which goes exactly through these
points.

Given a set of m data points (ui, vi) where no two ui are the same, one is looking for a polynomial p(u) of degree at most
m − 1 with the following property:

p(ui) = vi, i = 1, . . . ,m, (46)

where ui ∈ [a, b], [a, b] being the spatial interval of the problem domain.

The unisolvence theorem states that such a polynomial p(u) exists and is unique, and can be proved by using the Vander-
monde matrix. Suppose that the interpolation polynomial is in the form of

p(u) =
m∑

i=1

xiui−1, (47)

where 1, u1, · · · , um−1 constitute a monomial basis. The statement that p(u) interpolates the data points means that Eq. (46)
must hold.

If we substitute Eq. (47) into Eq. (46), we obtain a system of linear equations in the unknown coefficients xi,

1 u1 u2
1 . . . um−2

1 um−1
1

1 u2 u2
2 . . . um−2

2 um−1
2

...
...

... . . .
...

...
1 um−1 u2

m−1 . . . um−2
m−1 um−1

m−1
1 um u2

m . . . um−2
m um−1

m





x1
x2
...

xm−1
xm


=



v1
v2
...

vm−1
vm


. (48)

We have to solve the above system for xi to construct the interpolant p(u).

In order to compare the numerical solutions with exact solutions we suppose that x⋆1 = x⋆2 = . . . = x⋆m = 1. Then we
obtain v1, . . . , vm according to Eq. (48) . In this case we take m = 100 and ui = −1 + 2i/100 to be the nodal points. The
condition number of this system is cond(A) = 1.36 × 1019 where A = BT B and B denotes the coefficient matrix.

Seven methods are applied to find the solutions of Eq. (48), whose results are displayed in Figs. 11 to 13. As in the last
example, the A2DM and 2DM have a privileged set of initial guesses xi = c,∀c ∈ R which happen to lie in a ray from the
origin xi = 0 through the solution point x⋆i = 1. If starting from these initial guesses, the A2DM and 2DM would converge
in only one step. Therefore, we start from, instead, a fairly ordinary initial guess xi = (−1)i × 0.5, i = 1, 2, · · · , 100, and
set a stopping criterion ϵ = 10−8. All the methods do not converge in 105 iterations. The comparison of the residual errors
for these methods are shown in Fig. 11. The residual errors of A2DM plotted in the six charts with the other six methods
exhibit faster convergence rate almost all the way in the whole iterative process. It can also be seen that ASDM performs
better than BBM, RSDM, and RSDM1.

It is interesting to examine more closely the behavior of the residual errors exhibited in Fig. 11 of this example as
well as Fig. 8 of the previous example. We observe that SDM and 2DM have similar trends of smoother and slower
decreasing rates, but the others exhibit more violently oscillating behavior. These common phenomena for the BBM,
RSDM, RSDM1, ASDM, and A2DM may be attributed to their steplength modifications by a multiplicative scalar factor,
namely ∥rk∥2∥∆rk−1∥2/ [rT

k Ark (∆rk−1)T∆xk−1] in BBM, θk in RSDM and RSDM1, and 1−γ (and hence Qk) in ASDM and

125



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 4; 2015

Figure 11. Example 3. Comparison of residual errors for A2DM with the other six methods

Figure 12. Example 3. Comparison of solution errors for A2DM with the other six methods
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Figure 13. Example 3. Comparison of Numerical errors for A2DM with the other six methods

A2DM. It is observed, in particular, that the accelerator Q1 > 1 and Qk+1 > Qk plays a prominent role of switching from
the situation of slow convergence to a new situation that the functional ϕk+1 tends to decrease stepwise in an intermittent
and ceaseless manner.

Since we know the exact solution of problem (48), we plot the solution errors ∥xk − x⋆∥ of these seven methods for all
steps k in Fig. 12. The result of A2DM is compared with those of the other six methods in the six plots. The solution
errors using A2DM converge faster than those using the others nearly at all steps k. Similarly, the numerical errors of
A2DM are smaller than those of the others as can be seen in Fig. 13.

5. Concluding Remarks

We have proposed accelerated and/or bidirectional modifications of the classical steepest descent method (SDM), namely
the accelerated SDM (ASDM), the bidirectional method (2DM), and the accelerated 2DM (A2DM). The proposed meth-
ods are all furnished with dynamics-theoretical and optimization interpretation. By embedding the minimization problem
of a quadratic functional into an invariant manifold in the product space of the state space and the fictitious time axis,
we have constructed a continuous time dynamical system for the unknown vector x in the state space. Using different
discretization schemes, we have constructed the invariant manifolds of the unidirectional method and the 2DM. Locally
they pursue optimal line search and optimal plane search, respectively. The unidirectional method is nothing but the
classical SDM. On the basis of dynamics of trajectories we have equipped SDM and 2DM with accelerators Q0 > 1 and
Qk+1 > Qk in order to improve the convergence rate and have thus developed the accelerated algorithms of ASDM and
A2DM through optimization processes.

The iterative algorithms so developed retain the simplicity of the classical SDM algorithm and are robust and easy to
implement. Moreover, both the operations of multiplication and addition are of the same order of N2 for the SDM,
ASDM, 2DM, and A2DM in N-dimensional problems. Comparison of SDM, BBM, RSDM, RSDM1, ASDM, 2DM, and
A2DM methods are made and demonstrated in the numerical experiments of three highly ill-posed problems.

In Example 1, we have observed that the initial guesses have not structured influence for the 2DM and A2DM and their
iterations converge rapidly to the solution point. For the example of Hilbert matrix, the RSDM1 and A2DM converge
within 105 iterations under the stopping criterion ε = 10−8 but the A2DM shows the lower value of solution error in the
end. Even though all the methods do not converge in 105 iterations with the stopping criterion ε = 10−8, the A2DM
exhibits faster convergence rate almost all the way in the whole iterative process of Example 3.
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The A2DM consequently displays better performance in all cases. The 2DM works well merely in the 2-dimensional case.
The ASDM is a second choice besides the A2DM. According to the numerical experiments, the bidirectional methods of
2DM and A2DM (the second column in Table 1) display better efficiency and accuracy than the unidirectional methods
of SDM and ASDM (the first column in Table 1), and the accelerated methods of ASDM and A2DM (the second row in
Table 1) work better than the original methods (the first row in Table 1).

Table 1. Classification of the proposed modifications

unidirectional method bidirectional method
———– SDM 2DM

accelerated ASDM A2DM

The merits of A2DM are (i) the point of view of global dynamics (virtual time method � continuous time dynamics
and iterative alogorithm � discrete time dynamics) with the Q0 > 1 and Qk+1 > Qk as an accelerator and (ii) both the
steplength and direction at each step being determined locally by an optimization in a two dimensional subspace without
sophisticated computation.
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