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Erik Charles Baldwin Stevens (M.S., Aerospace Engineering Sciences) 

Remote Sensing, Modeling, and Synthesis: On the Development of a Global Ocean 

Wind/Wave Climatology and its Application to Sensitive Climate Parameters 

Thesis directed by Professors Lakshmi Kantha and Baylor Fox-Kemper 

 

In this study, data from TOPEX satellite altimetry is combined with ERA40 

(ECMWF 40-year reanalysis) and non-data-assimilating WaveWatch3 model output 

to develop a comprehensive 2.5ox2.5o monthly global climatology of wind and wave 

properties useful in determining the global extent of Langmuir mixing. The 

climatology is forged from data covering the years 1994 - 2001. The variables 

mapped include: significant wave height, mean wave period, 10-meter atmospheric 

wind speed, skin friction velocity, wind direction, and wave direction. Further 

computation of surface Stokes drift and Langmuir number from these parameters 

exhibits sensitivity to data from the climatology, demonstrating its applicability and 

limitations for use as Langmuir turbulence forcing.  

Agreement among the three data sources in the climatology is better than 90% 

for most basic wind/wave variables in the climatology, with wave period and wave 

direction showing the most disagreement. However, small disagreements in simple 

wave parameters lead to large discrepancies (approaching 50-100%) in estimates of 

Stokes drift and Langmuir number. 

The average Langmuir number worldwide was found to be near 0.3 in regions 

of aligned wind and waves, but significantly less in trade wind regions. Scatter 

between the three sources in the average worldwide Langmuir number is 0.28 – 0.40, 

with the best-guess world average being ~0.35. Further study of the resulting  
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Langmuir number climatology reveals that the choice of Langmuir number definition 

has an impact on the statistics of the result by skewing the resulting Langmuir number 

histogram. Because of this, care should be taken to ensure proper use of means, 

medians, and standard deviations.  

This study shows that comparing data assimilating and non-assimilating 

models illuminates the magnitude of missing model physics, and provides a check on 

the usefulness of model data versus empirical data. Context is gained by comparing 

multiple data sources rather than using just one.  
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I. INTRODUCTION 

1.1 Context 

Attention in much of the scientific and political communities is 

increasingly focusing on climate modeling and the resulting predictions of Earth’s 

near future. Recent drastic changes in the natural environment (Rosenzweig et al., 

2007) have suddenly stepped out of the circles of the scientific community and 

signaled the urgency of climate change in the practical, everyday world. 

Consequently, scientific findings on the current state of the Earth system, such as 

the 2007 International Panel on Climate Change (IPCC) report are facing 

increasing importance and scrutiny.  

The IPCC report represents a grand review of the recent work and research 

on the climate and its changes, summarizing the most influential predictions and 

results. The implications of the IPCC report are substantial to our economic and 

societal futures, and as a result, public attention and political agendas have finally 

begun to address these issues quite seriously. With this increased regard for 

climate modeling, demands for accuracy of the predictions made and the 

consequences of predictive error are becoming substantial. 

The ability of a model to predict reality should depend on the extent to 

which it accounts for the initial conditions (i.e. empirical environmental data) and 

the accuracy to which it resolves all of the processes governing change (Sterl and 

Caires, 2005). Thus, to be fully correct in our predictions about the future, we 
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must include completely accurate measurements of the environment, and correctly 

simulate all of the processes that manipulate the present conditions into a future 

state. The current state of computer climate models is an approximation of this 

ideal representation.  The models include many of the well-understood processes 

as governing equations and many of the hard to model processes as 

parameterizations. Still, there are likely many unknown contributors to global 

climate that are left out. One example of a process missing from climate models is 

explicit treatment of Langmuir turbulence and mixing – which is the motivation 

for the work herein. The available initial data and forcing is sufficient and mostly 

accurate, though spatial and temporal coverage is generally lacking over the open 

ocean. Still, there will always be much unknown about the Earth system as a 

whole, and there will always be pieces missing from our climate models.  

1.2 Stokes Drift 

In the absence of surface currents, the motion of a particle at the ocean 

surface is tied to the motion of surface gravity waves. As a wave propagates under 

the particle, the particle is thrust up and forward horizontally along the surface 

until the ridge of the wave is underneath. The particle then falls down and 

backward horizontally as the wave propagates away. In this way, the particle’s 

path makes an elliptical orbit with the period of the wave. However, this orbit is 

not closed. The particle actually travels further in the direction of wave 

propagation than it falls backwards as the wave moves away. As a result, the 

ocean surface exhibits a mean velocity in the direction of the wave field, due only 
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to the motion of the waves themselves. This velocity is referred to as the Stokes 

drift (Kantha and Clayson, 2000).  

Stokes drift is important because it acts as a source of energy to generate 

additional turbulence in the oceanic mixed layer (Kantha and Clayson, 2000). 

Stokes drift decays exponentially with depth, creating shear. This shear extracts 

energy from the wave field, converting it to turbulence. It is estimated that this 

energy extraction from the wave field is as significant worldwide as energy 

dissipation found in surf zones at the ocean edges (Kantha et al. 2009).  

Additionally, the vorticity created by Stokes drift at the ocean surface provides for 

the genesis of Langmuir mixing (Kantha and Clayson, 2000).  

1.3 Langmuir Mixing 

One phenomenon presently missing explicit treatment in global climate 

models is Langmuir mixing due to Langmuir cells and Langmuir turbulence 

(Sullivan, McWilliams & Moeng 97, Sullivan & McWilliams, 2010). Commonly 

named windrows, Langmuir cells are known to enhance vertical mixing in the 

upper mixed layer of the ocean wherever they exist (e.g., Plueddemann et al., 

1996, D’Asaro & Dairiki, 1997). Because of this enhanced mixing they have an 

effect on sea surface temperature, near-surface stratification, and energy, 

momentum, and gas fluxes, which are key factors in worldwide climate. 

Langmuir cells appear in long vortex pairs aligned parallel to the wind and 

wave directions (or between the two). The spacing between cells is usually 5-300 

meters. Vertical velocities between the cells are quite high at 2-6 cm/s 
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downwelling and 1-2 cm/s upwelling. For this reason, Langmuir cells are capable 

of significant vertical transport of gases, momentum, turbulence, and energy in 

the ocean mixed layer (Kantha and Clayson, 2000). Langmuir turbulence is a 

more disorganized form of near surface overturning, with overturning cells 

elongated in roughly the wave and wind direction (Sullivan and McWilliams, 

2010) and vertical kinetic energies that exceed the scaling from solid-wall 

boundary layers (D’Asaro and Dairiki, 1997) by a factor of 1.5-5. 

There is ongoing debate on how strong, deep, and influential Langmuir 

cells are to sea surface temperature and other important processes, as well as the 

extent to which they occur in the world’s complex and meagerly mapped oceans. 

They appear to generate and decay quickly and are therefore hard to study in the 

field (Kantha and Clayson, 2000). Climate models do not explicitly include any 

Langmuir cell physics, instead simply matching the depth of the mixed layer to 

available measurements. While this may be sufficient to map upper-ocean mixing 

in some areas, there are other regions, e.g. the Southern Ocean, where a persistent 

shallow bias exists in the modeled mixed layer depths. Ongoing work by Webb et 

al. (2010) is closely investigating how climate models react to the inclusion of 

Langmuir mixing, but there is still disagreement in the computation of turbulent 

Langmuir number, a parameter thought to be involved in controlling the strength 

of Langmuir mixing at any location (e.g., Harcourt & D’Asaro 2008). Though the 

principle of the Langmuir number (La), that the strength of Langmuir mixing is 

proportional to the ratio of surface Stokes drift velocity to wind friction velocity, 
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is agreed upon, the scaling of the relationship is still uncertain. Additionally, the 

exact response of Langmuir mixing to misalignment of the wind and waves is 

poorly understood. For this study, a common approximation for this response is 

used: La is proportional to the cosine of the angle between the wind and waves, as 

evidenced by the dot product in Eqs. 1 below.  

The scaling of La can generally be thought of in three different forms. One 

of these forms, the Kantha number (after Lakshmi Kantha, who proposed it), 

provides a sound logical basis for the computation: that Kantha number increases 

as wave activity increases and scales precisely with the Stokes production term of 

energy. For this study, the Kantha number and the inverse-square of the Langmuir 

number (La-2) (Eqs. 1) are presented side by side for comparison. 

  





   

  

    


   


 

…where Us is Stokes drift and u* is ocean surface friction velocity due to wind. 

The main uncertainties in Langmuir number computation involve 

knowledge of the global ocean wind and wave state. Computed from a few key 

variables (wave height, wave period, wind speed, and wind and wave directions), 

the Langmuir number is quite sensitive to small changes in wave height and 

period. Thus, large errors can easily result from inaccuracies in the current wind 

and wave datasets. 

(1) 
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A key issue is uncovered by the inclusion of Langmuir number in climate 

models: the important end projections from climate models may depend greatly 

on sensitive reactions to the wind and ocean wave forcing. Small errors in the 

wind/wave climatology may therefore introduce large, unreal disturbances to the 

modeled climate. This is a manifestation of a principle that seems obvious: if we 

wish to clearly map and understand the Earth system as a whole, we must first 

understand its most basic pieces. A goal of this work is to quantify the likely 

values and uncertainty in different estimates of these variables, so that future 

climate model predictions of these variables can be checked for agreement with 

extant data.  

1.4 Current Ocean Datasets 

Satellite-retrieved wave data is a great resource because of its empirical 

nature and near global coverage. Satellite altimeters can directly and accurately 

measure wave height, and properties of the returned altimeter radar beam can 

indirectly give us information about the wind speed, wave period, and other 

important oceanographic parameters (see Gourrion et al., 2002, Vandemark et al., 

1996, Gommenginger et al., 2003, etc.). Unfortunately, these indirectly measured 

data are based on empirical fits, and there is enough scatter around the fits to 

generate significant potential errors. Satellite altimetry is discussed in more detail 

in Section 2.1.1. 

Additional ocean data can be retrieved from networks of floating 

instruments. These include ARGO floats, moored buoy arrays, and surface 
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drifters. There have also been several large-scale ship-based research campaigns 

to map the properties of the world’s oceans. Though the ship data is thorough, its 

coverage in time and space is insufficient for creating a climatology of the 

average world ocean. Similar problems exist for moored buoy arrays due to their 

locations near continental shelves and shores, and non-continuous time coverage. 

ARGO floats may provide some of the data needed to create a climatology, and 

could be an important source of comparison data. 

A model dataset, the EMCWF Reanalysis (ERA40), assimilates empirical 

wind and wave data to generate comprehensive global wind and wave fields for 

the past half-century. The primary focus of the ERA40 is the global atmospheric 

state, and the wave field is used to improve the air-sea momentum transfer (and 

also to estimate the wave field). Aside from the wave model, there is not a full 

ocean model in ERA40, thus it is not a true climate model. While certain aspects 

(wave height and wind speed, for example) of the climatology created from 

ERA40 are quite robust, others (wave period and direction) are still open to 

question. There is disagreement in these variables between ERA40 and other 

models, as well as satellite wave data. It should be noted that while satellite and 

buoy wave data are assimilated in ERA40, buoy data is sparse and the only 

satellite data assimilated is significant wave height (not period or other variables). 

There has been much work done to validate the ERA40 data (see Section2.1.2), 

and regions of error have been uncovered. 
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1.5 Thesis Overview 

While considerable work has gone into comparing certain variables 

between the various wind and wave datasets available (see Caires et al., 2004, 

Bidlot et al., 2002, Hanson et al. 2009, Hwang et al. 1998, etc), no work has yet 

been done to fully quantify the differences between their methods and reconcile 

the disagreement between their results. There is a need for the models and 

observations to be combined into a comprehensive picture of the characteristic 

Earth wind and wave fields. A question remains: How can information from 

satellites, computer models, and in situ observations be accurately combined to 

represent this complex and dynamic truth? 

This study sets out to answer this question. A new ocean wind/wave 

climatology (a multimodel ensemble average) is developed for the following 

variables: significant wave height (Hs), mean second-moment wave period (Tm), 

10-meter wind speed and direction (U10), surface friction velocity (u*), and 

surface Stokes drift (Us) magnitude and direction. It is hoped that this dataset will 

validate the accuracy of future parameterizations and models of natural wind and 

wave phenomena, leading to a better understanding of Earth’s dynamic climate 

system and the role of remote sensing and modeling in climate science. 

The usefulness of the new climatology is demonstrated by a case study in 

which the climatology data is used to compute the highly sensitive inverse-square 

Langmuir (La-2) and Kantha (Ka) numbers. This new Langmuir mixing 
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climatology will answer the question: how strong and prevalent is Langmuir 

mixing worldwide?   
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II. METHODOLOGY 

2.1 Data Sources 

Three overlapping sources were used in this study to compile the 

wind/wave climatologies so as to reconcile any differences and cover any 

shortcomings in the data. The three data sources are TOPEX satellite altimetry, 

the European Center for Medium-Range Weather Forecasts’ (ECMWF) ocean-

atmosphere model reanalysis (ERA40), and the NOAA WaveWatch3 (WW3) 

model. They were chosen because they represent a subset of three independent 

wave data sources overlapping globally, from which the study period was chosen 

to be from 1994 to 2001. While there are other satellite altimeters that could have 

been used for this study, TOPEX provides the longest contiguous satellite record 

from one instrument and has been highly validated and scrutinized in the 

literature; its properties and retrievals have been well-studied. An overview of 

each data source is found in Table II-1. 

Table II-1: Summary of data 

Source Strengths Weaknesses Spatial Coverage Temporal Coverage 

TOPEX Hs (4cm) Everything 
else 

(mostly) 

~Global, (66oN to 
66oS lat.) 

~10 day repeat 
period, 1993 – 2001 

ERA40 Hs, U10 Data 
assimilation 

periods 

Global Every 6 hours, 1957 – 
2002 

WW3 2D 
spectrum 
Stokes 
drift 

Forcing 
field is 

arbitrary, no 
assimilation 

Global Every 3 hours, as 
desired 
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2.1.1 TOPEX Altimetry 

TOPEX altimetry consists of Ku-band radar altimeter data, retrieved 

remotely aboard a satellite orbiting at 1336km above the ocean surface. The 

altimeter data is collected in a pushbroom architecture, with passes inclined at 66o 

to the equator. By measuring once per second, it provides data with roughly 7km 

resolution. The repeat period for any given point is roughly ten days (Hwang et 

al., 1998). 

TOPEX data is not truly global in coverage since the satellite orbit 

inclination limits data coverage to 66oN to 66oS. The lack of coverage poleward 

of 66o latitude is inconsequential for this study, as sea ice or landmass dominates 

much of this area for much of the year. Based on current literature, the bulk of 

current interest in wind-wave interaction is focused on the ice-free open ocean – 

the area to which this study pertains. 

Wave height (Hs) is the characteristic oceanographic parameter retrieved 

by TOPEX. The instrument sends out 4,000 pulses per second, and averages these 

data into one-second measurements. Wave height is then determined from the 

average radar return waveform variance, with a nominal accuracy of 4-5cm 

(Chelton et al., 1989). 

TOPEX also returns the normalized radar cross section for each 

measurement, and the empirical model of Gourrion et al. (2002) is used to covert 

this into 10-meter wind speed (U10). The U10 data was calculated and furnished by 
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Benjamin Hamlington at the Colorado Center for Astrodynamics Research 

(CCAR) in Boulder, CO. 

Given u10, the models of Vandemark et al. (1996) and Gommenginger et 

al. (2003) are used to find the friction velocity (u*) and mean wave period (Tm) 

(both also furnished by Benjamin Hamlington) respectively, as follows: 

For U10 < 2.4m/s: 
2

10
2/1

10 ]5.5)10ln()1[(10 


UCdCd  

For U10 > 2.4m/s: 
2

10
2/1

10 ]5.5)10ln()1[(10 


UCdCd  

Then, 

10
2/1

10* UCdu   

And, 

PTm 545.2895.0   

Where, 

25.02
0 )( sHP   

Gourrion et al. (2002) report that altimeter backscatter is proportional to 

both wind speed and sea state, and thus sea state biases are corrected for in the 

U10 model. The result is a wind-independent bias of less than 0.3m/s in TOPEX 

u10 as compared to buoys, models, and satellite scatterometers. 

Vandemark et al. (1996) found their model (Eqs. 2 and 3) to produce a 

roughly 0.02m/s bias in u*, with a root-mean square-error (RMSE) near 0.038m/s 

(2) 

(3) 

(4) 

(5) 
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versus in situ (ship-derived) observations. They also demonstrated that higher 

accuracies can be achieved by directly correlating u* to radar cross section (o), 

rather than deriving U10 from o and then u* from U10. However, a well-tested 

model as such was not available for this study. 

The Tm relationship used here (Eq. 4) is derived from regression against 

buoy wave period data, with a reported RMSE of roughly 0.98s (about 7%) 

(Gommenginger et al., 2003). An extensive study by Caires et al. (2005) shows 

that the Gommenginger Tm model is biased in swell-dominated seas and for wind 

speeds less than 10m/s. With these points removed, they found the TOPEX-

ERA40 RMSE to be 0.77s. 

2.1.2 ERA40 Reanalysis 

The ERA40 dataset, completed in 2004, is a 45-year reanalysis run of the 

European Center for Medium-Range Weather Forecasts (ECMWF) 

meteorological (atmosphere) model, coupled to a 3rd-Generation WAM wave 

model (Komen et al., 1994). The coupling consists of the 10-meter wind speed, 

U10, from the atmosphere model being passed to the wave model every four time 

steps (hourly). The WAM 3.0 wave model used in ERA40 uses energy balance 

equations to derive the full wave spectrum without any restriction of its spectral 

shape. Wave parameters (Hs, Tm, etc.) are accurately calculated by integrating this 

full wave spectrum, and then the wave spectrum itself is deleted (Sterl and Caires, 

2005). Since the spectrum is not saved, some additional wave parameters (e.g. 

Stokes Drift) can not be directly calculated, but must be approximated from the 



14 
 
 

 

data available and assumptions about the average wave spectrum. This 

disadvantage of the ERA40 data limits its usefulness for estimating complex and 

interesting wave properties and effects. 

The coupled wind-wave model was run to generate the atmosphere and 

sea state for 1957 to 2002, using a 3DVAR technique to assimilate all available 

empirical atmospheric data, as well as ERS-1 and ERS-2 satellite altimeter Hs 

data. This assimilation essentially pushes the model toward the measured reality. 

Thus the model is constantly tuned to match wind and wave data throughout the 

period, and is not expected to deviate significantly from this input. By providing 

complete gridded data for the majority of atmosphere-ocean interaction, the 

ERA40 reanalysis fills obvious and problematic data gaps and discontinuities in 

the wind and wave measurement record (Sterl and Caires, 2005). 

The data coverage advantage outweighs the potential errors contributed by 

the assumptions and simplified physics that go into models, but to assume that the 

model data is essentially correct simply because some of its parameters are tuned 

to real data would be incorrect. Instead, I treat the ERA40 model dataset as 

representing a reality parallel to what was observed from 1957 to 2002. These two 

realities likely have many similarities and some potential differences.  

It is expected that the model output of Hs is essentially the same as the 

observed ERS satellite Hs data, which were assimilated, but only for the period of 

assimilation. In fact, distinct differences in the ERA40 data from different data 

assimilation periods are clear. Figure II-1 shows monthly mean worldwide Hs for 
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the entire ERA40 period. According to Sterl and Caires (2005) there are four 

distinct data assimilation periods:  

Period 1 (September 1957 to November 1991): No satellite Hs 

information is assimilated during this period. Though the average wave field 

compares well with observations, ERA-40 generally underestimates high wave 

heights and overestimates low ones.  

Period 2 (December 1991 to May 1993): Faulty ERS-1 Hs data are 

assimilated, and ERA40 Hs values between 1-3m are overestimated compared to 

buoy data. Hs data quality for heights above 3m is similar to that in period 1. 

Period 3 (January 1994 to May 1996): Assimilated ERS-1 Hs data are no 

longer known to be faulty, but a known calibration correction is not applied to Hs 

since it creates a positive bias in the Tm field.  

Period 4 (June1996 to December 2002): Assimilation of calibrated ERS-2 

Hs data. ERA40 still generally underestimates high wave heights, and slightly 

overestimates low wave heights. 
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Figure II-1: ERA40 global mean wave height from 1958-2001. Data 
assimilation periods 1-4 are marked by dashed boxes, with this study's data 
period shown by the solid black box. Graph from Sterl and Caires (2005). 

Since TOPEX data are available only from 1993-2001, ERA40 data before 

this period were not considered in this study. Additionally, the obvious 

discrepancy of ERA40 data during period 2 prior to 1994 was reason to narrow 

the time window for this study to 1994-2001. This eight-year period provides 

good data from both TOPEX and ERA40. 

While the period 1 ERA40 data is not considered in this study, it is 

important to note that Hs data from this period matches buoy observations closely. 

Though this lends credence to the model, recall that buoys are only sparsely 

located, and their positions near populated shores and continental shelves may 

present potential biases compared to measurements of the global ocean as a 

whole. For example, there are no moored buoys in the stormy southern ocean 

where average Hs is the highest in the world. 

Finally, the abrupt jump in Hs data seen during period 2 (Figure II-1) 

shows the drastic effect data assimilation has on the model. Because of this, 

measurement errors in the assimilated data are expected to translate well into 

P1 

P2 P3 P4 

Data Period 
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errors in the model output. The model is really only as good as the data going into 

it. 

2.1.3 NOAA Wave Watch 3 

WW3 is a 3rd-generation operational wave model with various 

improvements over WAM 3.0. A recent review (Cavaleri et al, 2007) found WW3 

to be the most accurate model in use at the time. The underlying structure of 

WW3 uses different governing equations, numerical methods, physical 

parameterizations, and a unique architecture from WAM 3.0 (WAVEWATCH III 

Model, 2009). Because of this, it provides a completely independent source from 

ERA40 wave data and a third dataset to which wave comparisons can be made. 

The main advantage of WW3 over available ERA40 data is that the directional 

wave spectrum data are available for direct calculation of uncommon wave 

parameters (such as Stokes drift). Otherwise, wave parameters are calculated by 

integrating the 2D wave spectrum as in ERA40. 

The main assumption in the WW3 governing equations is that water depth, 

current, and wave field vary on time and space scales much larger than the scales 

of individual waves. This should be generally correct on the global scale, and 

verification comes in the form comparisons to buoys and other models.  

Hanson et al. (2009) showed WW3 to outperform WAM 3.0 in the Pacific 

Ocean based on comparison to seven buoys and nine different performance 

metrics. These metrics quantified the errors in wave height, period, and direction 

as derived from the wave spectrum under equal forcing. 
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Further validation of WW3 comes from Tolman (2002), who found WW3 

errors to be generally less than WAM 3.0 as compared to both buoy and ERS-1 

altimeter data, especially in tropical regions and in local areas of extreme wave 

heights (though poorer performance was found in some high-latitude regions). 

RMS errors for WW3 were found to be typically 15% for local Hs. 

For this study, WW3 was run by Adrean Webb from the University of 

Colorado, Applied Math department. The model was run on the Bluefire super 

computer at the National Center for Atmospheric Research (NCAR) with the 

assistance of NCAR modeling experts. The wind model chosen to force the wave 

model (chosen by Adrean Webb to suit the needs of another project) was version 

2.0 of the Common Ocean-Ice Reference Experiments (CORE 2.0) forcing (Large 

and Yeager, 2008). CORE 2.0 is a slightly different wind product than that used 

to force the WAM 3.0 wave model in ERA40, and a slightly different wave field 

is expected as a result. Both wind products are well accepted for forcing ocean 

models, so using the two fields gives a sense of the uncertainty among accepted 

wind products. 

It is assumed for this study that the wind field over the ocean is generally 

well resolved in these models, since accurate and validated wind data of global 

coverage is available from satellite scatterometer missions. In other words, there 

is much more uncertainty about the wave field across the world’s oceans than of 

the wind field that is forcing these waves. With this assumption, the differences 

between the resulting WW3 and ERA40 wave fields should predominantly be due 
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to differences in the physics and dynamics of the models themselves, and much 

less due to differences in wind forcing, although the differences in 10-meter wind 

speed and direction are briefly discussed herein. 

2.2 Data Reduction 

When comparing unique data sources, collocation in time and space is an 

inevitable problem. The very large amount of data involved here further 

complicated the preprocessing needed to make apples-to-apples comparisons. 

Regridding and logistical manipulation of the source data occupied the bulk of the 

time spent preparing this project, often requiring switching machines or 

techniques due to crashes, bugs, or resource overuse, sometimes several days into 

the running of a script. This study could have been completed twice in the same 

amount of time had everything worked properly the first time, but mistakes and 

unexpected crashes are the reality of working with copious amounts of data. One 

goal that has arisen as a result of this project is that the data I have taken the time 

to preprocess is available for research use. In this way, perhaps much more 

science can be achieved beyond what is already investigated here. 

For this study, the final grid was chosen to match that of the standard 

ERA40 atmospheric data grid: 2.5ox2.5o and 6-hourly. To do this, WW3 data, 

which came originally in 3-hourly chunks, was decimated (every other timestep 

used) to match the temporal spacing of ERA40. After this, linear interpolation 

was used to regrid the data from a 1.25ox1o grid to the 2.5ox2.5o grid of ERA40. 

The WW3 fields are generally smooth over a distance of roughly 2 grid points, so 
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this interpolation is not expected to cause significant error, but it simplifies the 

comparison of the models. 

The TOPEX data swaths were gridded by binning the measurements by 

the 6-hourly periods in ERA40. For each bin, the median of every TOPEX data 

point within a 2.5ox2.5o grid cell provided the data value for the center of that cell. 

Medians were taken to decrease sensitivity to outliers, as the TOPEX data is 

noisier than the model output from ERA40 and WW3. Figure II-2 shows the 

varying resolutions of each data source before gridding. 
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Figure II-2: Mean wave period (s) from each data source for February 8th, 
1993. Note that this day falls within period 2  of the ERA40data history (see 

Section 2.1.2). 

Once each available variable from each data source was gridded, the 6-

hourly data was then temporally averaged (medians) for each month from 1994-

2001. These monthly climatology data (presented seasonally in Appendix A) were 

used to calculate any secondary variables such as Stokes drift and Langmuir 
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number. Finally, the monthly data were binned and averaged (again, medians) to 

create the final fields presented here.  

The choice of medians vs. means has a significant effect on the results of 

the TOPEX data because of general noisiness, especially in certain regions. These 

regions are discussed in more detail in Section 4.3. The mean - median difference 

(Figure II-3) shows these areas where noise skews the data distribution, causing 

inflated means. As the TOPEX wave period inversion is purely empirical, rather 

than being based on solid physical ground as are the significant wave height 

formulae, such outliers are perhaps not unexpected.  

 

Figure II-3: TOPEX mean - median inverse-square Langmuir number for 
1993. Colorscale goes from -10 to 10. 

 

2.3 Calculation of Stokes Drift 

In wave models, assuming all waves travel in the same direction, Stokes 

drift can be found by integrating the complete wave spectrum as seen in Eq. 6 
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(McWilliams and Restrepo, 1999). This method is implemented in our run of 

WW3, and yields results accurate to the wave field generated in the model. 

  
  

  

In ERA40, however, the wave spectrum was not available, so direct 

calculation of Stokes drift was impossible. TOPEX cannot measure the wave 

spectrum at all. Consequently Stokes drift must be approximated in both ERA40 

and TOPEX. The Stokes drift in WW3, on the other hand, is calculated directly 

from the wave spectrum using Eq. 6. The approximation used here assumes a 

monochromatic wave spectrum formula with an empirical correction factor based 

on WW3 spectral calculations of Stokes drift. This approximation is expected to 

have an error less than the disagreement between WW3 and ERA40, so it is close 

enough for use here. The Stokes drift calculation for monochromatic waves is 

found in Eq. 7. 

  
  

Here,  is an empirical parameter that is treated as a constant. It was 

estimated using WW3 data algebraically by setting the full-spectrum Stokes drift 

calculation (Eq. 6) equal to the approximation (Eq. 7) and solving for . The 

result,  = 1.7088, provides a good approximation (around 0-15% error, best in 

stormy regions), as seen in Figure II-4. 

(6) 

(7) 
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Figure II-4: Average percent difference Usmr - Usapprox from WW3 

It is clear that  is not truly constant, and it may even be a function of 

wave age or wind speed. However, a function for  does not yet exist at the time 

of this research. Adrean Webb is currently exploring the behavior of , and his 

results will be used in future calculations of Stokes drift.  

There is implicit error in the TOPEX and ERA40 Stokes drift and 

Langmuir number in areas where  deviates from the constant value used here. It 

should be noted that these errors may approach 20% in the specific regions shown 

in Figure II-4.  

 

2.4 Multimodel Ensemble Average 

General confusion tends to come out of the disagreement in the wind/wave 

data scrutinized here between TOPEX, ERA40, and WW3. Reading the 

documentation and literature pertaining to each data source, one finds claims that 
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each source is the better than the others, and vast amounts of validation to prove 

it. While this seems contradictory, there are some general themes that can be 

pulled out of the literature to help sort the data. My attempt at this is presented in 

this study parallel to the three sources as a multimodel ensemble (MME). 

TOPEX wave period, for example, can reasonably be dismissed as 

inaccurate for this study due to the reasons why it is regionally and 

climatologically biased, stated in Section 2.1.1. This leaves us with only the buoy-

based validation studies completed so far (Caires et al., 2004, Bidlot et al., 2002, 

Hanson et al. 2009, Hwang et al. 1998, etc). The gist of such studies is that both 

WW3 and ERA40 are accurate in wave period to an equal degree, albeit with 

different wind forcing for WW3 than that used here. Because of this, I will treat 

wave period from both sources with equal weight, averaging them together to 

compress the scatter into one wave period field. 

Since TOPEX does not measure wind or wave direction, it cannot be used 

to validate ERA40 or WW3 in these parameters. Interestingly, ERA40 and WW3 

have slightly different wave direction fields (as will be seen in Section 3.1), even 

though their wind direction fields are nearly identical. This unintuitive result must 

stem from the large differences in model architectures and assumptions. To sort 

out whether one solution may be better than the other, I am relying on two things: 

1) Both the literature and general community in oceanography lean towards WW3 

as being superior in the accuracy of its wave field. 2) The WW3 model produces 

wind and waves that are aligned more often than in ERA40 (This will be shown in 
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Section 3.1, Figure III-7), a concept that is consistent with the general theory of 

wave production by wind. For these reasons, I consider the WW3 wave direction 

field to be the most correct available, and use solely it for wave direction in my 

multimodel ensemble climatology. 

All other variables considered here are agreed upon closely enough that 

averaging them has little consequence, and is intuitive since they all represent the 

current limits of accuracy.  

Another consideration is that the run of WW3 used here is essentially in 

another class of wave models from ERA40 because it does not assimilate any 

data. A consequence is that the two models may be outputting different views of 

the same truth. If this is the case, averaging them together is not necessarily the 

most correct way to estimate the true wave field. However, the logic behind the 

models is the same: to accurately model the true wave field. Each model does this 

to a different degree of accuracy, and neither can necessarily be proven as more 

correct based on the analyses here, so I weight them both equally for this study. 

To summarize, the multimodel ensemble (MME) calculated for this study 

is composed of: 

 Significant wave height: average of TOPEX, ERA40, and WW3 

 Mean wave period: average of ERA40 and WW3 

 Wind and wave directions: WW3 

 Friction velocity: average of TOPEX, ERA40, and WW3 
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MME Stokes drift, Langmuir, and Kantha numbers are calculated from the MME 

variables outlined above. To decrease data-size, the wind and wave fields were 

averaged into monthly means before finding the Stokes drift and Langmuir fields. 

A preferred method would involve finding the Langmuir and Stokes drift fields 

before taking the averages. However, this was not feasible for this study due to 

data size, availability, and consistency constraints. 
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III. RESULTS 

 
Climatologies resulting from each data source are shown below. They are 

presented in two ways: zonal averages and color-filled 2D contour fields. In most 

cases, zonal averages are sufficient to show the majority of worldwide variability and 

consistency with well-known global climate patterns such as wind belts. That is, often 

the data are banded in zonal stripes. A complete view of the data by season is found 

in Appendix A. Detailed discussion of the climatology will follow in Section IV. 

For some lesser-known variables, I present the full two dimensional contour 

field of the world’s oceans in addition to zonal averages, so as to fully introduce 

spatial patterns and extent. For those variables of which two-dimensional contour 

plots are not presented in this section, these data are found in Appendix A. 

For the zonal average plots, the blue line shows data from TOPEX, red from 

ERA40, black from WW3, and green represents the multimodel ensemble developed 

for this study (Figure III-1). The green MME line is only included in zonal plots in 

which there is significant disagreement. For all other zonal plots, the MME can be 

assumed to follow the average of the TOPEX, ERA40, and WW3. 
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Figure III-1: Legend for climatology 

 

3.1 Primary Wind/Wave Variables and their Climatologies 

The first variables shown here are fundamental primary properties from 

which other wind-wave parameters are calculated. This group includes the most 

basic factors from which the wind and wave fields are measured or described: 

significant wave height (Hs), second-moment mean wave period (Tm2), ten-meter 

wind speed (U10), wind direction (WD), mean wave direction (MWD), and the 

cosine of the angle between the wind and wave directions – cos().  
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Figure III-2: Global zonal average of ten-meter wind speed from TOPEX 
(blue), ERA40 (red), and WW3 (black) 

 

 

Figure III-3: Global zonal average of significant wave height from TOPEX 
(blue), ERA40 (red), and WW3 (black) 
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Figure III-4: Global zonal average of second-moment mean wave period from 
TOPEX (blue), ERA40 (red), WW3 (black), and MME (green) 

 

Figure III-5: Global zonal average of wind direction from ERA40 (red) and 
WW3 (black) 
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Figure III-6: Global zonal average of mean wave direction from ERA40 (red) 
and WW3 (black) 

 

Figure III-7: Global zonal average of Cos() from ERA40 (red) and WW3 
(black) 



33 
 
 

 

 

Figure III-8: Global average cos() from WW3. 

 

3.2 Secondary Variables 

Next, I present climatologies of the derived wind/wave parameters that are 

calculated directly from the variables shown in Sections 3.1 using Eqs. 1, 6, and 

7. They are surface friction velocity (u*), surface stokes drift (Us), inverse-square 

turbulent Langmuir number (La-2), and Kantha number (Ka). 
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Figure III-9: Surface friction velocity from TOPEX (blue), ERA40 (red), and 
WW3 (black) 

 

Figure III-10: Surface Stokes drift from TOPEX (blue), ERA40 (red), WW3 
(black), and multimodel ensemble climatology (green). 
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Figure III-11: Seasonal zonal means of Stokes drift from multimodel 
ensemble 

 

Figure III-12: Inverse-square turbulent Langmuir number from TOPEX 
(blue), ERA40 (red), WW3 (black), and MME (green) 
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Figure III-13: Multimodel ensemble inverse-square turbulent Langmuir 
number (solid green) with 2- errorbars based on zonal variability (dashed 

black) and time variability (dashed blue) 

 

Figure III-14: Seasonal zonal means of inverse square Langmuir Number from 
multimodel ensemble 
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Figure III-15: Global average of multimodel ensemble La-2 

 

 

Figure III-16: Multimodel ensemble Kantha number (solid green) with 2- 
errorbars based on zonal variability (dashed black) and time variability 

(dashed blue) 
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Figure III-17: Seasonal zonal means of Kantha Number from multimodel 
ensemble 

 

 
Figure III-18: Map of global average multimodel ensemble Kantha number 
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IV. DISCUSSION 

 
“I consider this [the TOPEX/Poseidon mission] the most 
successful ocean experiment of all times” 1 

- Walter Munk  

4.1 Wind Fields and Friction Velocity 

To dissect the differences between the ERA40 and WW3 models, we must 

first look at the wind fields that are forcing these wave models. As discussed in 

Section II, the wind field from ERA40 comes from the highly-developed 

ECMWF atmospheric model, while the winds used to force the WW3 model used 

here are derived from NCEP/NCAR reanalysis (CORE 2.0). 

Figure III-2 and Figure III-5 show the small disparity between the two 

wind fields. The magnitude of the 10-m wind forcing in WW3 is 8.7% higher on 

average than the ERA40 u10 (Figure III-2). Reasons for this slight uncertainty in 

global average winds are beyond the scope of this study, but the affects are 

expected to ripple (pun intended) into the modeled ocean wave fields. Wind 

direction (Figure III-5), however, is nearly identical for both models. This will be 

important later on when the Langmuir number field is discussed in Section 4.5.  

Ocean surface friction velocity, calculated from the ten-meter wind speed 

by Equation 4, quantifies the momentum transfer between the atmosphere and 

                                                 
 

1 From Walter Munk’s testimony to the U.S. Commission on Ocean Policy (Walter 
Munk, 2002, p.2) 



40 
 
 

 

ocean. The wind creates waves through this friction velocity, and thus it is the 

most direct indicator of how the wind is forcing the waves for each data source. 

As a result of U10 being higher in WW3, surface friction velocity is 

correspondingly higher by 8.8% on average (Figure III-9). While the calculations 

for friction velocity from wind speed in the two models are different, it is clear 

that this is not the only reason for the increased u* in WW3, since the difference 

is anticipated by the wind speed difference. 

4.2 Significant Wave Height 

One way to interpret stronger wind forcing in WW3 is that the winds are 

biased to input more energy into the wave field than ERA40. For example, the 

wave height and wind speed fields (Figure III-2 and Figure III-3) show a strong 

correlation, with peaks near 50o latitude and a lull at the equator. With this in 

mind, one would expect higher wave heights and shorter wave periods for WW3, 

and this is exactly what is seen in Figure III-3 and Figure III-4. The significant 

wave height in WW3 is 24.1% higher, and the mean wave period is 7.5% shorter, 

than ERA40.  

While there is consistency in these numbers and a clear picture of the 

models is starting to emerge, there is another crucial distinction between ERA40 

and WW3. As discussed in Section 2.1.2, ERA40 assimilates ERS altimeter wave 

height data, thus closely tuning the model output to empirical reality. While this is 

an advantage in increasing wave height output accuracy, it applies a mysterious 

cheat, so to speak, bypassing the physical effects to correct the model. This makes 
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direct comparison between WW3 and ERA40 impossible since our run of WW3 

does not assimilate data, and thus has no way to correct for biases due to missing 

physics. However, the difference between ERA40 and WW3 results is a good 

indicator of the potential model bias of wave models, and is useful in estimating 

how much error is expected if WW3 were used as a climate model component to 

predict future wave climate where data assimilation is unavailable. 

Of particular interest are the physics of wave energy transfer to turbulent 

kinetic energy in the ocean mixed layer. Kantha et al. (2009) has shown that 

significant energy is extracted from the wave field by Stokes production of 

turbulent kinetic energy. This energy exchange is a consequence of Stokes drift, 

which is described in more detail in Section 1.2. If Stokes production in fact 

accounts for a large amount of energy removed from the wave field (as predicted 

by Kantha et al., 2009), then this mechanism might explain some of the extra 

energy in the WW3 wave field. I strongly encourage future studies to determine 

the contribution of Stokes production to the discrepancy between models with and 

without data assimilation. 

The effects of data assimilation into a model are clearly evident in Figure 

II-1, as discussed in Section 2.1.2. It is not surprising to see ERA40 wave heights 

agree quite well (average difference 4.9%) with TOPEX altimetry, since TOPEX 

is essentially a different version of the same altimeter technology used in ERS 1 

and 2, the data from which are assimilated into ERA40. The strong agreement 

lends weight to the superiority of these wave height fields over that of the non-
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assimilating WW3, despite its advancements compared to other models (as 

reported in Section 2.1.3).  

4.3 Mean Wave Period 

Figure III-4  shows the second-moment mean wave period climatology 

calculated from each source. The spread between the sources tells of the level of 

uncertainty in the global wave period field. However, Caires et al. (2005) reports 

strong biases in TOPEX Tm derived from the Gommenginger et al., (2003) model 

in swell-dominated seas with low winds. One would then expect the regions of 

highest disagreement in Tm to correlate well with regions that are climatologically 

swell-dominated with weak winds. In fact, a side-by-side comparison of wave age 

and wind speed with ERA40-TOPEX Tm difference reveals that all areas of large 

Tm disagreement occur within swell-dominated regions with low winds, as 

expected (Figure IV-1). 



 
 

 

Figure IV-1
color scale goes from 72 

ERA40 [m/s]

There are regions in 

well in wave period, even though swell seas dominate climatologically. The most 

1: A) Global swell-sea probability from Chen et al.
color scale goes from 72 - 99%). B) Average 10-meter wind speed from 

[m/s]. C) ERA40-TOPEX average difference in mean wave period 
[s]. 

here are regions in Figure IV-1 in which TOPEX and ERA40 agree quite 

well in wave period, even though swell seas dominate climatologically. The most 
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et al. (2002), (the 
meter wind speed from 

TOPEX average difference in mean wave period 

in which TOPEX and ERA40 agree quite 

well in wave period, even though swell seas dominate climatologically. The most 
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conspicuous of these regions is in the central Pacific between the equator and the 

Hawaiian Islands. Though this region has large swell (Figure IV-1 A), wave 

period (Figure IV-1 C) is accurately resolved in the TOPEX data because of the 

higher wind speeds common to the area (Figure IV-1 B). This confirms the 

assertions (that both swell climate and wind speed must be considered to quality 

control TOPEX data) made by Caires et al. (2005). There are no significant 

regions of wave period disagreement in climatologically wind-dominated regions. 

The wave period disagreement, like the swell climatology, hugs the eastern ocean 

boundaries, staying within roughly 30o of the equator. 

4.4 Stokes Drift 

The average surface Stokes drift from each data source is shown in Figure 

III-10. The disagreement between sources is problematic because it translates into 

increased uncertainty in the magnitudes of factors resulting from Stokes Drift, 

such as production of turbulent kinetic energy. Stokes drift (Eqs. 6 and 7) is 

highly sensitive to wave height errors and extremely sensitive to errors in mean 

wave period due to the respective powers of 2 and 3 in the Stokes drift equation. 

The result is that small errors or disagreement in wave height and wave period are 

magnified in Stokes drift. Comparison of Figure II-2 and Figure III-10 shows that 

wave period disagreement is the primary source of uncertainty in Stokes drift, 

where WW3 is 40.2% and 88.3% higher worldwide than TOPEX and ERA40 

respectively. It is counterintuitive that WW3 is closer to TOPEX than ERA40 in 

its calculation of Us, since the TOPEX data has a clear and known low bias for 
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wave period (See Section 2.1.1). However, WW3 has an apparent high significant 

wave height bias as discussed above. 

The final Stokes drift climatology (Figure III-10, Figure III-11, and 

Appendix A) was calculated from the multimodel ensemble wave height and 

wave period fields. The seasonal average Us (Figure III-11) shows a clear 

seasonal signal: the stokes drift is more than twice as strong in the Northern 

hemisphere in the winter months than in the summer months. This trend is 

expected since wind and storm activity increases in this area during winter, but 

the magnitude of the seasonal signal is dramatic. Interestingly, the seasonal Us 

signal remains in the La-2/Ka climatologies (Figure III-14 and Figure III-17), 

though its relative magnitude is less pronounced, as wintertime u*increases along 

with Stokes drift. This suggests that the Us and u* seasonal signals are different 

enough to change the Langmuir mixing climate seasonally.  

4.5 Langmuir and Kantha Numbers 

The level of disagreement seen in Us (40.2% and 88.3% for WW3-

TOPEX and WW3-ERA40 respectively) translates directly into equal uncertainty 

in La-2 (40.2% and 88.3% respectively), but to only cube-root uncertainty in Ka 

(11.9% and 23.5% respectively). This example shows one advantage of using the 

Kantha number to describe Langmuir mixing conditions: the uncertainty between 

the models and observations, which is doubled or tripled in the calculation of Us, 

is then divided nearly back to the original percentage of uncertainty. This increase 
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in confidence of the resulting Kantha number climatology nicely compliments the 

physical logic behind the Kantha number as compared to the Langmuir number.  

However, histograms of La, La-2, and Ka (Figure IV-2) reveal La-2 to have 

the most normal distribution. The resulting advantage is that using standard 

deviation to estimate statistical variability for La-2is more appropriate than for 

Kantha number.  This less-skewed distribution is an important factor to consider 

when choosing among these parameters to measure wind-wave equillibrium. Even 

more important is the realization that the averages of the three Langmuir-related 

definitions used here (Eqs. 1) will each be warped according to the unique 

skewness and kurtosis (tail weight and stoutness) of the differing distributions. 

Also, the 2 error bounds included in Figure III-13 and Figure III-16 are only 

representative scatter in Gaussian-distributed data, and thus can be trusted more in 

the case of La-2. That said, sometimes a Gaussian distribution is not the most 

realistic distribution, and in cases such as this normal standard deviations are not a 

good way to represent variability. Whether the Langmuir number distribution 

should, in theory, be Gaussian is an open question at this point. 

To demonstrate the effect of the distribution shapes, Table IV-1 shows the 

mean, median, skewness, and kurtosis (where 3.0 = Gaussian) of each 

distribution.  



 
 

 

 

Variable

 

Figure III-

Ka. The regions of low activity in these figures are caused by local climatological 

Figure IV-2: Histograms of La, Ka, and La-2

Table IV-1: Langmuir/Kantha number statistics

Variable Mean Median Skewness Kurtosis

La 0.33 0.31 0.36 6.02

La-2 8.78 9.78 -0.79 2.77

Ka 1.92 2.14 -2.19 7.02

-15 and Figure III-18 show the final climatologies of 

. The regions of low activity in these figures are caused by local climatological 
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misalignment of the wind and waves, as seen in Figure III-8. It is notable that the 

same regions of wind/wave misalignment are characterized by low (<5 m/s) 

average winds (Figure IV-1 B). The emerging picture is that low winds combined 

with strong remotely generated swell provide misalignment between the wind and 

waves, and thus the mechanism by which Langmuir number is decreased. In 

nearly all other regions of the global ocean, the strength of the surface wind stress, 

Stokes drift, and the alignment between the two are conducive to Langmuir cell 

formation and/or strengthening (La-2 ~ 11 or Ka ~ 2.25). Areas of overall light 

winds or equatorward trade winds are the only areas of diminished Langmuir 

mixing likelihood across the world’s oceans.  

The climatology (Figure III-18) shows that 77.2% of the Earth’s ocean 

surface has a Kantha number greater than 1.75 (La < 0.43, La-2 > 5.4). Regions of 

especially high Kantha number include the stormy regions of the world, aligned in 

near zonal belts at roughly 50oS, 20oN, and 50oN.  

Langmuir number variability in time and space (Figure III-13) is 

comparable, though slightly less temporally than it is zonally. Variability is much 

less in the southern ocean than across the rest of the world, and this is due to a 

lack of continental boundaries and persistent storminess there year round. 

Comparison of Figure III-12 and Figure III-13 shows that the final Langmuir 

number disagreement between the three data sources is generally within the 

temporal and regional scatter. 
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The highest Kantha numbers are in the Southern ocean. There, strong and 

consistent westerly flow with imbedded polar front cyclones generates strong 

surface winds, driving large swell. This very active region of the ocean is also the 

location of the persistent mixed layer depth shallow bias in climate models. It is 

possible that correctly including Langmuir mixing into the models will help to 

decrease this known bias. Research into the effect of Langmuir mixing on model 

mixed layer depth is ongoing and tangential to this study, but preliminary work by 

Webb et al. (2010) shows the potential usefulness of a Langmuir mixing 

climatology such as this one. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study has looked through large amounts of oceanographic data from 

three different sources in order to determine the spread that exists between the 

sources. Section III displayed a summary of the data, and a more complete view is 

found in Appendix A.  

Three different definitions of Langmuir number have been studied here, 

each with its own merits. Indeed the researcher may choose the definition that 

best suits his purposes, with one exception. Any definition of La for which the 

ratio of Stokes drift to friction velocity is raised to a power, special care must be 

taken to account for the resulting skewing of the data distribution. Conclusions 

drawn from simple statistics computed from these skewed distributions may be 

inaccurate.  

The multilmodel ensemble climatology presented here considers each 

source’s strengths and weaknesses to create a blended best guess at the true wave 

field. The MME climatology shows significant Langmuir mixing conditions to 

exist over most of Earth’s oceans, with the only regions of inactivity being in 

tropical trade wind areas. The strength of the average Kantha number worldwide 

is estimated at ~2.25 (La~0.3, La-2~11.4) in the vast regions of aligned wind and 

waves and strongest in the stormy Southern ocean. This value of Langmuir 

number suggests that Langmuir mixing is likely to be strong and common 

worldwide. The potential effects this may have on climate projection is an open 
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question, since model sensitivity to Langmuir mixing inclusion has already been 

shown. More important than the inclusion of Langmuir mixing in models is the 

accuracy of the strength and depth of the mixing. While this study suggests 

Langmuir mixing to be significant, the scatter of possible correct values of the 

average Langmuir number field (6 < La-2 < 13 zonally), as well as its temporal 

and spatial spread, will likely have a drastic affect on Langmuir mixing depth in 

models. For this reason, any model including Langmuir mixing based on 

climatology should be tested at the extremes of the La scatter to determine the 

level of confidence in the output solution. 

One group of variables is well-agreed upon by all three sources (average 

disagreement 10% or less). This group includes significant wave height, ten-meter 

wind speed and direction, surface friction velocity, and wave direction. Wave 

height and wind speed have been accurately mapped by satellites and validated 

with in situ observations, and this foundation of high accuracy is included into the 

models through assimilation. This study confirms the importance of data 

assimilation in models, showing how it can be used to bypass missing physics or 

crude parameterizations.  

However, variables that cannot be assimilated into the models because 

they are not well-measured empirically (mean wave period, Stokes drift, and 

Langmuir/Kantha number) represent a group of data for which there is large 

disagreement between sources. The level of scatter for wave period shows its 

calculation and worldwide measurement accuracy is behind that of other wave 
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parameters. While buoy data can help to ensure the models agree in localized 

regions, they cannot help describe the worldwide climate at their current 

infrastructure. The only way to reconcile the scatter between the sources looked at 

here is to gather more observations. Until then, neither can be given any more 

weight than another when considering the total world ocean climate, even though 

some may outperform others in certain regions of the world or in certain 

conditions. There is hope that improved altimeter-derived wave period 

measurement can alleviate this problem in the near future, but at present the 

altimeter wave period is even less trustworthy than the models. 

The ERA40 and WW3 wave height and period data suggest there is a 

missing piece in present wave model physics. The WW3 field has higher energy 

on average, and this may be due a combination of factors including missing 

dissipation of wave energy from Stokes production of turbulent kinetic energy. 

Since the WW3 run used here does not assimilate data, it has no way to tune past 

any possible missing physics like ERA40 can. This distinction reveals something 

about the level of correctness of the model physics, as well as the operational use 

of the WW3 model. If WW3 is to be run in the future, I highly recommend 

assimilating wave field data when possible. Even the most sophisticated model 

seems to be no match for empirical observations where they exist. Indeed it is the 

model’s job to fill in the gaps in the empirical data record, but the extent to which 

we trust the model data should be based on the density of the points assimilated 

and not necessarily the strength of the model physics. 
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The multimodel ensemble presented here is nice way to collapse the data 

scatter into one climatology, however I caution the user of this data not to fully 

trust it as more accurate than the data from one source alone. There is no way to 

know whether the MME average is more or less correct than each source. Instead, 

the MME serves to show not just a best guess at what is correct, but the bigger 

picture including the total amount of knowledge spread in the parameter space. 

By increasing the amount and variety of data used to create a climatology, we 

only improve our total understanding of the range of possible correct answers. 

Much information would be missed by only considering data from ERA40, for 

example. But by looking at two additional sources the ERA40 data can be put into 

the context of the state of present ocean characteristic knowledge. Essentially, by 

only using one data source, we are unaware of what we don’t know. 

5.2 Recommendations for Future Work 

The next logical step forward is to include the new Langmuir climatology 

and its spread into a climate model. Work to achieve this is currently being 

carried out by Baylor Fox-Kemper, Adrean Webb, and the author at the 

University of Colorado, Boulder. It may be that the current amount of spread in 

the Langmuir field leads to differing climate solutions that are unsatisfactory. If 

this is the case, refinement to this climatology must be made. There are a few 

other data sources that could be brought in to further increase the accuracy of the 

multimodel ensemble mean.  
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ARGO floats measure temperature and salinity profiles over a wide range 

of the ocean in its upper layers. The mixed layer depth can be computed from 

these profiles, and it may be possible to incorporate such data with data from the 

climatology presented here to more accurately determine the true mixed layer 

depth on large scales. Additionally, buoy data can be used to further validate 

wave period and height after accounting for positioning biases.  

An investigation into the differences between various levels of data-

assimilating and non-assimilating models may shed light on the missing or 

incorrect physics. Until the models can accurately map the oceans without any 

data assimilation past its initial conditions, much could be learned about what is 

missing by assimilating data in chunks. One example shown in this study is 

Stokes production of turbulent kinetic energy, and the underestimate in wave 

dissipation in the non-assimilating WW3 model, which could be due to omission 

of this effect (although it is also likely that the ad-hoc parameterization of wave 

dissipation in the model could be adjusted to account for the underestimation). 

    Finally, worldwide average wave period seems to be the main piece of 

basic wave data that is still rather uncertain. Further campaigns to measure this 

quantity on a global, climate scale could greatly improve ocean wave modeling 

and research. Perhaps in the future a robust instrument or technique will allow 

direct wave period measurement on this scale from a remote sensing satellite. 

Such data would have greatly reduced the scatter of the Langmuir number and 

Stokes drift estimates in this study, were they available. 
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Figure A-4: Average friction velocity from multimodel ensemble  

 

Figure A-5: Average significant wave height from multimodel ensemble  
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Figure A-6: Average mean wave period from multimodel ensemble  

 

 

Figure A-7: Seasonal zonal average significant wave height from multimodel 
ensemble  
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Figure A-8: Seasonal zonal average mean wave period from multimodel 
ensemble  

 

Figure A-9: Seasonal zonal average friction velocity from multimodel 
ensemble  
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Figure A-10: Seasonal zonal average cos() from multimodel ensemble  

 


