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Abstract

The purpose of the POSTGRES project was to build anext generationDBMS to rectify the known

deficiencies in current relational DBMSs. This system, constructed over a four year period by one full time

programmer and 3-4 part time students is operational and consists of about 180,000 lines of C. POST-

GRES is available free of charge and is being used by perhaps 125 sites around the world. This paper

describes the major concepts of the system and details its current state. We restrict our attention to the

DBMS ‘‘backend’’ functions, and make only passing mention of the front end tools available for POST-

GRES.

1. INTRODUCTION

Commercial relational DBMSs are oriented toward efficient support for business data processing

applications where large numbers of instances of fixed format records must be stored and accessed. The

traditional transaction management and query facilities for this application area will be termeddata man-

agement,and are addressed by relational systems.

To satisfy the needs of users outside of business applications, DBMSs must be expanded to offer ser-

vices in two other dimensions, namelyobject managementandknowledge management.Object man-

agement entails efficiently storing and manipulating non-traditional data types such as bitmaps, icons, text,

and polygons. Object management problems abound in CAD and many other engineering applications.

Knowledge management entails the ability to store and enforce a collection ofrules that are part of

the semantics of an application. Such rules describe integrity constraints about the application, as well as

allowing the derivation of data that is not directly stored in the data base.
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We now indicate a simple example which requires services in all three dimensions. Consider an

application that stores and manipulates text and graphics to facilitate the layout of newspaper copy. Such a

system will be naturally integrated with subscription and classified advertisement data. Billing customers

for these services will require traditional data management services. In addition, this application must store

non-traditional objects including text, bitmaps (pictures), and icons (the banner across the top of the paper).

Hence, object management services are required. Lastly, there are many rules that control newspaper lay-

out. For example, the ad copy for two major department stores can never be on facing pages. Support for

such rules is desirable in this application.

A second example requiring all three services is indicated in [COMM90]. Hence, we believe that

most real world data management problems that will arise in the 1990s are inherentlythree dimensional,

and requiredata, object, and knowledge management services. The fundamental goal of POSTGRES

[STON86, STON90, KEMN91B] is to provide support for such applications.

To accomplish this objective, object and rule management capabilities were added to the services

found in a traditional data manager. In the next two sections we describe the capabilities provided in these

two areas. Then, in Section 4 we discuss the novelno-overwrite storage manager that we implemented in

POSTGRES, and the notion oftime travel that it supports. Section 5 continues with some of the imple-

mentation philosophy of POSTGRES. Section 6 indicates the current status of the system and indicates its

current performance on a subset of the Wisconsin benchmark [BITT83] and on an engineering benchmark

[CATT91]. Section 7 then ends the paper with a collection of conclusions.

The POSTGRES DBMS has been under construction since 1986. The initial concepts for the system

were presented in [STON86] and the initial data model appeared in [ROWE87]. Our storage manager con-

cepts are detailed in [STON87], and the first rule system that we implemented is discussed in [STON88].

Our first "demo-ware" was operational in 1987, and we released Version 1 of POSTGRES to a few external

users in June 1989. A critique of Version 1 of POSTGRES appears in [STON90]. Version 2 followed in

June 1990, and it included a new rules system documented in [STON90B]. We are now delivering Version

2.1, which is the subject of this paper. Further information on this system can be obtained from the refer-

ence manual [KEMN91B], the POSTGRES tutorial [KEMN91] and the release notes.

POSTGRES is now about 180,000 lines of code in C and has been written by a team consisting of a

full time chief programmer and 3-4 part time students. It runs on Sun 3, Sun 4, DECstation, and Sequent

Symmetry machines and can be obtained free of charge over the internet or on tape for a modest reproduc-

tion fee. For details on obtaining POSTGRES, please call or write:

Claire Mosher

521 Evans Hall

University of California
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Berkeley, Ca. 94720

(415) 642-4662

2. THE POSTGRES DAT A MODEL AND QUERY LANGUAGE

2.1. Introduction

Traditional relational DBMSs support a data model consisting of a collection of named relations,

each attribute of which has a specific type. In current commercial systems possible types are floating point

numbers, integers, character strings, money, and dates. It is commonly recognized that this data model is

insufficient for future data processing applications. In designing a new data model and query language, we

were guided by the following three design criteria.

1) orientation toward data base access from a query language

We expect POSTGRES users to interact with their data bases primarily by using the set-oriented

query language, POSTQUEL. Hence, inclusion of a query language, an optimizer and the corresponding

run-time system was a primary design goal.

It is also possible to interact with a POSTGRES data base by utilizing a navigational interface. Such

interfaces were popularized by the CODASYL proposals of the 1970’s and are used in some of the recent

object-oriented systems. Because POSTGRES gives each record a unique identifier (OID), it is possible to

use the identifier for one record as a data item in a second record. Using optionally definable indexes on

OIDs, it is then possible to navigate from one record to the next by running one query per navigation step.

In addition, POSTGRES allows a user to define functions (methods) to the DBMS. Such functions

can intersperse statements in a programming language, query language commands, and direct calls to inter-

nal POSTGRES interfaces, such as the get_record routine in the access methods. Such functions are avail-

able to users in the query language or they can be directly executed. The latter capability is termedfast

path, because it allows a programmer to package a collection of direct calls to POSTGRES internals into a

user executable function. This will support highest possible performance by bypassing any unneeded por-

tion of POSTGRES functionality.

As a result a POSTGRES application programmer is provided great flexibility in style of interaction,

since he can intersperse queries, navigation, and direct function execution. This will allow him to use the

query language and obtain data independence and automatic optimization or to selectively give up these

benefits to obtain higher performance.

2) Orientation toward multi-lingual access
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We could have picked our favorite programming language and then tightly coupled POSTGRES to

the compiler and run-time environment of that language. Such an approach would offerpersistencefor

variables in this programming language, as well as a query language integrated with the control statements

of the language. This approach has been followed in ODE [AGRA89] and many of the recent object-

oriented DBMSs.

Our point of view is that most data bases are accessed by programs written in several different lan-

guages, and we do not see any programming language Esperanto on the horizon. Therefore, most program-

ming shops aremulti-lingual and require access to a data base from different languages. In addition, data

base application packages that a user might acquire, for example to perform statistical or spreadsheet ser-

vices, are often not coded in the language being used for developing in-house applications. Again, this

results in a multi-lingual environment.

Hence, POSTGRES is programming languageneutral, that is, it can be called from many different

languages. Tight integration of POSTGRES to any particular language requires compiler extensions and a

run time system specific to that programming language. Another research group has built an implementa-

tion of persistent CLOS (Common LISP Object System) on top of POSTGRES [WANG88] and we are

planning a version of persistent C++ in the future. Persistent CLOS (or persistent X for any programming

language, X) is inevitably language specific. The run-time system must map the disk representation for lan-

guage objects, including pointers, into the main memory representation expected by the language. More-

over, an object cache must be maintained in the program address space, or performance will suffer badly.

Both tasks are inherently language specific.

We expect many language specific interfaces to be built for POSTGRES and believe that the query

language plus thefast path interface available in POSTGRES offers a powerful, convenient abstraction

against which to build these programming language interfaces. The reader is directed to [STON91] which

discusses our approach to embedding POSTGRES capabilities in C++.

3) small number of concepts

We tried to build a data model with as few concepts as possible. The relational model succeeded in

replacing previous data models in part because of its simplicity. We wanted to have as few concepts as pos-

sible so that users would have minimum complexity to contend with. Hence, POSTGRES leverages the

following four constructs:

classes

inheritance

types

functions
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In the next subsection we briefly review the POSTGRES data model. Then, we turn to a short description

of POSTQUEL and fast path.

2.2. The POSTGRES Data Model

The fundamental notion in POSTGRES is that of aclass**, which is a named collection ofinstances

of objects. Each instance has the same collection of namedattributes and each attribute is of a specific

type. Moreover, each instance has a unique (never-changing) identifier (OID).

A user can create a new class by specifying the class name, along with all attribute names and their

types, for example.

create EMP (name = c12, salary = float, age = int)

A class can optionallyinherit data elements from other classes. For example, a SALESMAN class

can be created as follows:

create SALESMAN (quota = float) inherits EMP

In this case, an instance of SALESMAN has a quota and inherits all data elements from EMP, namely

name, salary and age. We had the standard discussion about whether to include single or multiple inheri-

tance and concluded that a single inheritance scheme would be too restrictive. As a result POSTGRES

allows a class to inherit from an arbitrary collection of otherparent classes. When ambiguities arise

because a class inherits the same attribute name from multiple parents, we elected to refuse to create the

new class. However, we isolated the resolution semantics in a single routine, which can be easily changed

to track multiple inheritance semantics as they unfold over time in programming languages.

There are three kinds of classes. First a class can be areal (or base) class whose instances are stored

in the data base. Alternately a class can be aderived class (orview or virtual class) whose instances are

not physically stored but are materialized only when necessary. Definition and maintenance of views is

considered in Section 3.5. Lastly, a class can be aversion of another class, in which case it is stored as a

differential relative to itsparent class. Again Section 3.5 discusses in more detail how this mechanism

works.

POSTGRES contains an extensive type system and a powerful notion of functions. There are three

kinds of types in POSTGRES, base types, arrays of base types, and composite types, which we discuss in

** In this section the reader can use the wordsclass, constructed type,and relation interchangeably. Moreover, the words

record, instance, and tuple are similarly interchangeable. In fact, previous descriptions of the POSTGRES data model (i.e.

[ROWE87, STON90]) used other terminology than this paper.
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turn.

Some researchers, e.g. [STON86B, OSBO86], have argued that one should be able to construct new

base typessuch as bits, bitstrings, encoded character strings, bitmaps, compressed integers, packed decimal

numbers, radix 50 decimal numbers, money, etc. Unlike many next generation DBMSs which have a hard-

wired collection of base types (typically integers, floats and character strings), POSTGRES contains an

abstract data type (ADT) facility whereby any user can construct arbitrary newbasetypes. Such types

can be added to the system while it is executing and require the defining user to specify functions to convert

instances of the type to and from the character string data type. Details of the syntax appear in

[KEMN91B]. Consequently, it is possible to construct a class, DEPT, as follows:

Create DEPT (dname = c10, manager = c12, floorspace = polygon, mailstop = point)

Here, a DEPT instance contains four attributes, the first two hav e familiar types while the third is a polygon

indicating the space allocated to the department and the fourth is the geographic location of the mailstop.

A user can assign values to attributes of base types in POSTQUEL by either specifying a constant or

a function which returns the correct type, e.g:

replace DEPT (mailstop = "(10,10)") where DEPT.dname = "shoe"

replace DEPT (mailstop = center (DEPT.polygon)) where DEPT.dname = "toy"

Arrays of base types are also supported as POSTGRES types. Therefore, if employees receive a dif-

ferent salary each month, we could redefine the EMP class as:

create EMP (name = c12, salary = float[12], age = int)

Arrays are supported in the POSTQUEL query language using the standard bracket notation, e.g:

retrieve (EMP.name) where EMP.salary[4] = 1000.

replace EMP (salary[6] = salary[5]) where EMP.name = "Jones"

replace EMP (salary = "12, 14, 16, 18, 20, 19, 17, 15, 13, 11, 9, 10") where EMP.name = "Fred"

Composite types allow an application designer to constructcomplex objects,i.e. attributes which

contain other instances as part or all of their value. Hence, complex objects have a hierarchical internal

structure, and POSTGRES supports two kinds of composite types. First, zero or more instances of any

class is automatically a composite type. For example, the EMP class can be redefined to have attributes,

manager and co-workers, each of which holds a collection of zero or more instances of the EMP class:

create EMP (name = c12, salary = float[12], age = int, manager = EMP, co-workers = EMP)

Consequently, each time a class is constructed, a type is automatically available to hold a collection of

instances of the class.
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In the above example manager and co-workers have the same structure for each instance of EMP.

However, there are situations where the application designer requires a complex object which does not have

this rigid structure. For example, consider extending the EMP class to keep track of the hobbies that each

employee engages in. For example, Joe might engage in windsurfing and softball while Bill participates in

bicycling, skiing, and skating. For each hobby, we must record hobby-specific information. For example,

softball data includes the team the employee plays on, his position and batting average while windsurfing

data includes the type of board owned and mean time to getting wet. It is clear that hobbies information for

each employee is best modeled as a collection of zero or more instances ofvarious classes. Moreover,

each employee can have differently structured instances. To accomodate this diversity, POSTGRES sup-

ports a final constructed type,set,whose value is a collection of instances from all classes. Using this con-

struct, hobbies information can be added to the EMP class as follows:

add to EMP (hobbies = set)

In summary, complex objects are supported in POSTGRES by two composite types. The first, indi-

cated by a class name, contains zero or more instances of that class while the second, indicated byset,

holds zero or more instances of any classes.

Composite types are supported in POSTQUEL by the concept ofpath expressions.Since manager

in the EMP class is a composite type, its elements can be hierarchically addressed by anested dotnotation.

For example to find the age of the manager of Joe, one would write:

retrieve (EMP.manager.age) where EMP.name = "Joe"

rather than being forced to perform some sort of a join. This nested dot notation is also found in IRIS

[WILK90], ORION [KIM90], O2 [DEUX90], and EXTRA [CARE88].

Composite types can have a value which is a function which returns the correct type, e.g:

replace EMP (hobbies = compute-hobbies("Jones")) where EMP.name = "Jones"

We now turn to the POSTGRES notion of functions. There are three different kinds of functions

known to POSTGRES,

C functions

operators

POSTQUEL functions

A user can define an arbitrary number ofC functions whose arguments are base types or composite

types. For example, he can define a function, area, which maps an instance of a polygon into an instance of

a floating point number. Such functions are automatically available in the query language as illustrated in

the following query which finds the names of departments for which area returns a result greater than 500:
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retrieve (DEPT.dname) where area (DEPT.floorspace) > 500

C functions can be defined to POSTGRES while the system is running and are dynamically loaded when

required during query execution.

C functions can also have an argument which is a class name, e.g:

retrieve (EMP.name) where overpaid (EMP)

In this case overpaid has an operand of type EMP and returns a boolean, and the query finds the names of

all employees for which overpaid returns true. A function whose argument is a class name is inherited

down the class hierarchy in the standard way. Hence, overpaid is automatically available for the SALES-

MAN class. In some circles such functions are calledmethods. Moreover, overpaid can either be consid-

ered as a function using the above syntax or as a new attribute for EMP whose type is the return type of the

function. Using the latter interpretation, the user can restate the above query as:

retrieve (EMP.name) where EMP.overpaid

Hence, overpaid is interchangeably a function defined for each instance of EMP or a new attribute for EMP.

The same interpretation of such functions appears in IRIS [WILK90].

C functions are arbitrary C procedures. Hence, they hav e arbitrary semantics and can run arbitrary

POSTQUEL commands during execution. Therefore, queries with C functions in the qualification cannot

be optimized by the POSTGRES query optimizer. For example, the above query on overpaid employees

will result in a sequential scan of all instances of the class.

To utilize indexes in processing queries, POSTGRES supports a second kind of function, calledoper-

ators. Operators are functions with one or two operands which use the standard operator notation in the

query language. For example the following query looks for departments whose floor space has a greater

area than that of a specific polygon:

retrieve (DEPT.dname) where DEPT.floorspace AGT "(0,0), (1,1), (0,2)"

The "area greater than" operator, AGT, is defined by indicating the token to use in the query language as

well as the function to call to evaluate the operator. Moreover, sev eralhints can also be included in the def-

inition which assist the query optimizer. One of these hints is that ALE is the negator of this operator.

Therefore, the query optimizer can transform the query:

retrieve (DEPT.dname) where not DEPT.floorspace ALE "(0,0), (1,1), (0,2)"

which cannot be optimized into the one above which can be.

In addition, the design of the POSTGRES access methods allows a B+-tree index to be constructed

for the instances of any base type. Consequently, a B-tree index for floorspace in DEPT supports efficient

access for thecollection of operators {ALT, ALE, AE, AGT, AGE}. Information on the access paths
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available for the various operators is recorded in the POSTGRES system catalogs.

As pointed out in [STON87B] it is imperative that a user be able to construct new access methods to

provide efficient access to instances of non-traditional base types. For example, suppose a user introduces a

new operator "!!" that returns true if two polygons overlap. Then, he might ask a query such as:

retrieve (DEPT.dname) where DEPT.floorspace !! "(0,0), (1,1), (0,2)"

There is no B+-tree or hash access method that will allow this query to be rapidly executed. Rather, the

query must be supported by some multidimensional access method such as R-trees, grid files, K-D-B trees,

etc. Hence, POSTGRES was designed to allow new access methods to be written by POSTGRES users and

then dynamically added to the system. Basically, an access method to POSTGRES is a collection of 13 C

functions which perform record level operations such as fetching the next record in a scan, inserting a new

record, deleting a specific record, etc. All a user need do is define implementations for each of these func-

tions and make a collection of entries in the system catalogs.

Operators are only available for operands which are base types because access methods traditionally

support fast access to specific fields in records. It is unclear what an access method for a constructed type

should do, and therefore POSTGRES does not include this capability.

The third kind of function available in POSTGRES isPOSTQUEL functions. Any collection of

commands in the POSTQUEL query language can be packaged together and defined as a function. For

example, the following function defines the high-paid employees:

define function high-pay returns EMP as

retrieve (EMP.all) where EMP.salary > 50000

POSTQUEL functions can also have parameters, for example:

define function sal-lookup (c12) returns float as

retrieve (EMP.salary) where EMP.name = $1

Notice that sal-lookup has one argument in the body of the function, the name of the person involved. This

argument must be provided at the time the function is called.

Such functions may be placed in a query, e.g:

retrieve (EMP.name) where EMP.salary = sal-lookup("Joe")

or they can be directly executed using the fast path facility to be described in Section 2.4:

sal-lookup ("Joe")

Moreover, attributes of a composite type automatically have values which are functions that return the cor-

rect type. For example, consider the function:
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define function mgr-lookup (c12) returns EMP as

retrieve (EMP.all) where EMP.name = DEPT.manager and DEPT.name = $1

This function can be used to assign values to the manager attribute in the EMP class, for example:

append to EMP (name = "Sam", salary = 1000, age = 40, manager = mgr-lookup ("shoe"))

Like C functions, POSTQUEL functions can have a specific class as an argument:

define function neighbors (DEPT) returns DEPT as

retrieve (DEPT.all) where DEPT.floor = $.floor

This function is defined for each instance of DEPT and its value is the result of the query with the appropri-

ate value substituted for $.floor. Like C functions that have a class as an argument, such POSTQUEL func-

tions can either be thought of as functions and queried as follows:

retrieve (DEPT.name) where neighbors(DEPT).name = "shoe"

or they can be thought of as new attributes using the following query syntax:

retrieve (DEPT.name) where DEPT.neighbors.name = "shoe"

2.3. The POSTGRES Query Language

The previous section presented several examples of the POSTQUEL language. It is a set oriented

query language that resembles a superset of a relational query language. Besides user defined functions and

operators, array support, and path expressions which were illustrated earlier, the features which have been

added to a traditional relational language include:

support for nested queries

transitive closure

support for inheritance

support for time travel

POSTQUEL also allows queries to be nested and has operators that have sets of instances as

operands. For example, to find the departments which occupy an entire floor, one would query:

retrieve (DEPT.dname)

where DEPT.floor NOT-IN {D.floor from D in DEPT where D.dname != DEPT.dname}

In this case, the expression inside the curly braces represents a set of instances and NOT-IN is an operator

which takes a set of instances as its right operand.

The transitive closure operation allows one to explode a parts or ancestor hierarchy. Consider for

example the class:
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parent (older, younger)

One can ask for all the ancestors of John as follows:

retrieve* into answer (parent.older) from a in answer

where parent.younger = "John" or parent.younger = a.older

In this case the * after retrieve indicates that the associated query should be run until answer fails to grow.

As noted in this example, the result of a POSTQUEL command can be added to the data base as a new

class. In this case, POSTQUEL follows the lead of relational systems by removing duplicate records from

the result. The user who is interested in retaining duplicates can do so by ensuring that the OID field of

some instance is included in the target list being selected.

If one wishes to find the names of all employees over 40, one would write:

retrieve (E.name) from E in EMP where E.age > 40

On the other hand, if one wanted the names of all salesmen or employees over 40, the notation is:

retrieve (E.name) from E in EMP* where E.age > 40

Here the * after EMP indicates that the query should be run over EMP and all classes under EMP in the

inheritance hierarchy. This use of * allows a user to easily run queries over a class and all its descendents.

Lastly, POSTGRES supports the notion oftime travel. This feature allows a user to run historical

queries. For example to find the salary of Sam at time T one would query:

retrieve (EMP.salary) from EMP [T] where EMP.name = "Sam"

POSTGRES will automatically find the version of Sam’s record valid at the correct time and get the appro-

priate salary. Section 4 discusses support for this feature in more detail.

2.4. Fast Path

There are two reasons why we chose to implement afast path feature. First, there are a variety of

decision support applications in which the end user is given a specialized query language. In such environ-

ments, it is often easier for the application developer to construct a parse tree representation for a query

rather than an ASCII one. Hence, it would be desirable for the application designer to be able to directly

interface to the POSTGRES optimizer or executor. Most DBMSs do not allow direct access to internal sys-

tem modules.

The second reason is a bit more complex. In the Berkeley implementation of persistent CLOS, it is

necessary for the run time system to assign a unique identifier (OID) to every persistent object it constructs.

It is undesirable for the system to synchronously insert each object directly into a POSTGRES data base

and thereby assign a POSTGRES identifier to the object. This would result in poor performance in
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executing a persistent CLOS program. Rather, persistent CLOS maintains a cache of objects in the address

space of the program and only inserts a persistent object into this cache synchronously. There are several

options which control how the cache is written out to the data base at a later time. Unfortunately, it is

essential that a persistent object be assigned a unique identifier at the time it enters the cache, because other

objects may have to point to the newly created object and use its OID to do so.

If persistent CLOS assigns unique identifiers, then there will be a complex mapping that must be per-

formed when objects are written out to the data base and real POSTGRES unique identifiers are assigned.

Alternately, persistent CLOS must maintain its own system for unique identifiers, independent of the

POSTGRES one, an obvious duplication of effort. The solution chosen was to allow persistent CLOS to

access the POSTGRES routine that assigns unique identifiers and allow it to preassign N POSTGRES

object identifiers which it can subsequently assign to cached objects. At a later time, these objects can be

written to a POSTGRES data base using the preassigned unique identifiers. When the supply of identifiers

is exhausted, persistent CLOS can request another collection.

In these examples, an application program requires direct access to a user-defined or internal POST-

GRES function, and therefore the POSTGRES query language has been extended with:

function-name (param-list)

In this case, a user can ask that any function known to POSTGRES be executed. This function can be one

that a user has previously defined or it can be one that is included in the POSTGRES implementation.

Hence, a user can directly call the parser, the optimizer, the executor, the access methods, the buffer man-

ager or the utility routines. In addition he can define functions which in turn make calls on POSTGRES

internals. In this way, he can have considerable control over the low lev el flow of control, much as is avail-

able through a DBMS toolkit such as Exodus [RICH87], but without all the effort involved in configuring a

tailored DBMS from the toolkit.

The above capability is calledfast path because it provides direct access to specific functions with-

out checking the validity of parameters. As such, it is effectively a remote procedure call facility and

allows a user program to call a function in another address space rather than in its own address space.

3. THE RULES SYSTEM

3.1. Introduction

It is clear to us that all DBMSs need a rules system. Current commercial systems are required to sup-

port referential integrity [DATE81], which is merely a simple-minded collection of rules. However, there

are a large number of more general rules which an application designer would want to support. For exam-

ple, one might want to insist that a specific employee, Joe, has the same salary as another employee, Fred.
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This rule is very difficult to enforce in application logic because it would require the application to see all

updates to the salary field, in order tofire application logic to enforce the rule at the correct time. A better

solution is to enforce the rule inside the data manager.

In addition, most current systems have special purpose rules systems to support relational views, and

protection. In building the POSTGRES rules system we were motivated by the desire to constructonegen-

eral purpose rules system that could performall of the following functions:

view management

triggers

integrity constraints

referential integrity

protection

version control

This should be contrasted with other approaches e.g. [ESWA76, MCCA89, WIDO90] which have different

goals.

3.2. POSTGRES Rules

The rules we are using have a familiar production rule syntax of the form:

ON event (TO) object WHERE POSTQUEL-qualification

THEN DO [instead] POSTQUEL-command(s)

Here, event is retrieve, replace, delete, append, new (i. e. replace or append) or old (i.e. delete or replace).

Moreover, object is either the name of a class or class.column. POSTQUEL-qualification is a normal quali-

fication, with no additions or changes. The optional keywordinstead indicates that the action indicated by

POSTQUEL-command(s) is to be performed instead of the action which caused the rule to activate. If

instead is missing, then the action is done in addition to the user event. Lastly, POSTQUEL-commands is

a set of POSTQUEL commands with the following two changes:

new or current can appear instead of the name of a class in front of any attribute.

refuse (target-list) is added as a new POSTQUEL command

In this notation we could specify that Fred’s salary adjustments get propagated on to Joe as follows:

on new EMP.salary where EMP.name = "Fred"

then do replace E (salary = new.salary) from E in EMP where E.name = "Joe"

In general, rules specify additional actions to be taken as a result of user updates. These additional

actions may activate other rules, and aforward chaining control flow results, as was popularized in OPS5

[FORG81].
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POSTGRES allows events to be retrieves as well as updates. Moreover, the action can be one or

more queries. Consequently, the rule that Joe must have the same salary as Fred can also be expressed as:

on retrieve to EMP.salary where EMP.name = "Joe"

then do instead retrieve (EMP.salary) where EMP.name = "Fred"

In this case, Joe’s salary is not explicitly stored; rather it isderived by activating the above rule. In this

case the two data items are kept in synchronization by storing one and deriving the other. Moreover, if

Fred’s salary is not explicitly stored, then further rules would be awakened to find the ultimate answer, and

abackward chaining control flow results. This control structure was popularized in Prolog [CLOC81].

If Fred receives frequent raises and Joe’s salary is rarely queried, then the backward chaining repre-

sentation will be more efficient. On the other hand, if many queries are directed to Joe’s salary and Fred is

rarely updated, then the forward chaining alternative is preferred. In POSTGRES, the application designer

must decide whether he desires a forward chaining or backward chaining control flow and specify his rules

accordingly.

3.3. Implementation of Rules

There are two implementations for POSTGRES rules. The first is throughrecord level processing

deep in the run-time system. This rules system is called when individual records are accessed, deleted,

inserted or modified. The second implementation is through aquery rewrite module. This code exists

between the parser and the query optimizer and converts a user command to an alternate form prior to opti-

mization. In the rest of this section we briefly discuss each implementation by explaining how each system

processes the rule which progagates Fred’s salary on to Joe, i.e:

on new EMP.salary where EMP.name = "Fred"

then do replace E (salary = new.salary) from E in EMP where E.name = "Joe"

The record-level rule system causes a marker to be placed on the salary attribute of Fred’s instance.

This marker contain the identifier of the corresponding rule and the types of events to which it is sensitive.

If the executor touches a marked attribute, then it calls the rule system before proceeding. The rule system

is passed the current instance and the proposed new one. It discovers that the event of the rule actually

applies, substitutes new values and current values in the action part of the rule and then executes the action.

When the action is complete, it returns control to the executor which installs the proposed update and con-

tinues.

If Fred’s name is changed, then the marker on his salary must be dropped. In addition, if Joe is hired

before Fred, then the markers must be added at the time Fred’s record is inserted into the DBMS. To per-

form these tasks POSTGRES requires other markers which are discussed in [STON90B]. Also, if a rule
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sets a sufficient number of markers in a class, then POSTGRES can perform markerescalationand place

an enclosing marker on the entire class. Again details appear in [STON90B].

The record-level rules system is especially efficient if there are a large number of rules, and each cov-

ers only a few instances. In this case, no extra overhead will be required unless a marked instance is actu-

ally touched. Hence, the rule systems requires no "tax", unless a rule actually applies. In this case, the

overhead is that required to ensure the event is true and then to execute the action.

On the other hand, consider the following rule:

on replace to EMP.salary

then do

append to AUDIT (name = current.name, salary = current.salary, new = new.salary, user = user())

and an incoming query:

replace EMP (salary = 1.1 * EMP.salary) where EMP.age < 50

Clearly, utilizing the record-level rules system will entail firing this rule once per elderly employee, a large

overhead. It is much more efficient torewrite the user command to:

append to AUDIT (name = EMP.name, salary = EMP.salary, new = 1.1 * EMP.salary, user = user())

where EMP.age < 50

replace EMP (salary = 1.1 * EMP.salary) where EMP.age < 50

In this case, the auditing operation is done in bulk as a single command. In [STON90B] we present a gen-

eral algorithm which can rewrite any POSTGRES command to enforce any rule. In general, if there are N

rules for a given class, then each user command will turn into a total of N + 1 resulting commands. There-

fore, this rules system will perform poorly if there are a large number of small scope rules but admirably if

there are a small number of large scope rules.

As a result the two implementations are complementary, and we are exploring arule chooserwhich

could suggest the best implementation for any giv en rule. Unfortunately the two implementations have dif-

ferent semantics in certain cases, and we now turn to this topic.

3.4. Semantics of Rules

Consider the rule

on retrieve to EMP.salary where EMP.name = "Joe"

then do instead retrieve (EMP.salary) where EMP.name = "Fred"

and the following user query:

retrieve (EMP.name, EMP.salary) where EMP.name = "Joe"
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If query rewrite is used to support the above rule, then the user query will be rewritten to:

retrieve (EMP.name, E.salary) from E in EMP where EMP.name = "Joe" and E.name = "Fred"

Consider the possible answers to the user query for various numbers of instances of Fred. If there is no

Fred in the data base, then the query rewritten by the rules system will return no instances. If there is one

Fred, then one instance will be returned, while N Freds will cause N instances to be returned. Therefore,

query rewrite implements the union semantics indicated in column 1 of Table 1. On the other hand, the

record-level implementation can return Joe with a null salary if Fred doesn’t exist. If there are multiple

Freds, it can return any one of them, all of them, or an error. Therefore, it can implement union, random or

error semantics.

Tw o conclusions are evident from this discussion. First, the desired semantics for this example are

debatable. Moreover, a case can probably be made for each of the semantics, depending on the attribute

whose value is provided by the rule. Hence, one should probably include all three, so that an informed user

can choose which one fits his application. Second, it is infeasible for the query rewrite system to produce

anything other than union semantics. Therefore, a user who desires different semantics must choose the

record-level system. As a result, the selection of which rule system to use has semantic as well as perfor-

mance implications.

A separate semantic matter concerns the time that rules are activated. There are certain rules which

must be activatedimmediately upon occurence of the event in the rule, and others which should be

Union Random Error

Semantics Semantics Semantics

no Fred 0 instances 1 instance with a null salary 1 instance with a null salary

1 Fred 1 instance 1 instance 1 instance

N Freds N instances 1 instance error

Semantics of Joe’s salary

Table 1
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deferred to the end of the user’s transaction. Also, some rules should be run aspart of the user’s transac-

tion, while others should run in aseparatetransaction. For example, the following rule must run immedi-

ately in the same transaction:

on retrieve to EMP.salary where EMP.name = "Joe"

then do instead retrieve (EMP.salary) where EMP.name = "Fred"

while the one below must be activatedimmediately in adifferent transaction,

on retrieve to EMP.salary

then do append to AUDIT (name = current.name, salary = current.salary, user = user())

In this last example, the user can abort after he has retrieved salary data of interest. If the action is run in

the user’s transaction, then aborting will subvert the desired auditing. In addition, the action must be per-

formed immediately for the same reason.

As a result there are at least four reasonable rule activation policies:

immediate -- same transaction

immediate -- different transaction

deferred -- same transaction

deferred -- different transaction

At the moment, POSTGRES only implements the first option. In time, we may support all four.

3.5. Rule System Applications

In this section we discuss the implementation of POSTGRES views and versions. In both cases,

required functionality is supported bycompiling user level syntax into one or more rules for subsequent

activation inside POSTGRES.

Views (or virtual classes) are an important DBMS concept because they allow previously imple-

mented classes to be supported even when the schema changes. For example, the view, TOY-EMP, can be

defined as follows:

define view TOY-EMP (EMP.all) where EMP.dept = "toy"

This view is complied into the following POSTGRES rule:

on retrieve to TOY-EMP

then do instead retrieve (EMP.all) where EMP.dept = "toy"

Any query ranging over TOY-EMP will be processed correctly by either implementation of the POSTGRES

rules system. However, a key problem is supporting updates on views. Current commercial relational sys-

tems support only a subset of SQL update commands, namely those which can be unambiguously
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processed against the underlying base tables. POSTGRES takes a much more general approach. If the

application designer specifies a default view, i.e:

define default view LOW-PAY (EMP.OID, EMP.name, EMP.age) where EMP.salary < 5000

then, a collection of default update rules will be compiled for the view. For example, the replace rule for

LOW-PAY is:

on replace to LOW-PAY.age

then do instead replace EMP (age = new.age) where EMP.OID = current.OID

These default rules will give the correct view updating semantics as long as the view has no ambiguous

updates. However, the application designer is free to specify his own update semantics by indicating other

update rules. For example, he could define the following replace rule for TOY-EMP

on replace to TOY-EMP.dept

then do instead delete EMP where EMP.name = current.name and new.dept != "toy"

Therefore, default views are supported by compiling the view syntax into a collection of rules. Other

update semantics can be readily specified by user-written updating rules.

A second area where compilation to rules can support desired functionality is that ofversions. The

goal is to create ahypothetical version of a class with the following properties:

1) Initially the hypothetical class has all instances of the base class

2) The hypothetical class can then be freely updated to diverge from the base class

3) Updates to the hypothetical class do not cause physical modifications to the base class

3) Updates to the base class are visible in the hypothetical class, unless the instance updated has

been deleted or modified in the hypothetical class.

Of course, it is possible to support versions by making a complete copy of the class for the version and then

making subsequent updates in the copy. More efficient algorithms which make use ofdifferential files are

presented in [KATZ82, WOOD83].

In POSTGRES any user can create a version of a class as follows:

create version my-EMP from EMP

This command is supported by creating twodifferential classes for EMP:

EMP-MINUS (deleted-OID)

EMP-PLUS (all-fields-in EMP, replaced-OID)

and installing a collection of rules. EMP-MINUS holds the OID for any instance in EMP which is to be

deleted from the version, and is the negative differential. On the other hand, EMP-PLUS holds any new
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instances added to the version as well as the new record for any modification to an instance of EMP. In the

latter case, the OID of the record replaced in EMP is also recorded.

The retrieve rule installed at the time the version is created is:

on retrieve to my-EMP

then do instead

retrieve (EMP-PLUS.all)

retrieve (EMP.all) where EMP.OID NOT-IN {EMP-PLUS.replaced-OID}

and EMP.OID NOT-IN {EMP-MINUS.deleted-OID}

The delete rule for the version is similarly:

on delete to my-EMP

then do instead

append to EMP-MINUS (deleted-OID = current.OID) where EMP.OID = current.OID

delete EMP-PLUS where EMP-PLUS.OID = current.OID

The interested reader can derive the replace and append rules or consult [ONG90] for a complete explana-

tion. Also, there is a performance comparison in [ONG90] which shows that a rule system implementation

of versions has comparable performance to an algorithmic implementation with hard-wired code deep in

the executor.

Both of the examples in this section have shown important DBMS function that can be supported

with very little code by compiling higher level syntax into a collection of rules. In addition, both examples

are only possible with a rule system like POSTGRES that supports both forward and backward chaining

rules.

4. STORAGE SYSTEM

When considering the POSTGRES storage system, we were guided by a missionary zeal to do some-

thing different. All current commercial systems use a storage manager with a write-ahead log (WAL), and

we felt that this technology was well understood. Moreover, the original INGRES prototype from the

1970s used a similar storage manager, and we had no desire to do another implementation.

Hence, we seized on the idea of implementing a "no-overwrite" storage manager. Using this tech-

nique the old record remains in the data base whenever an update occurs, and serves the purpose normally

performed by a write-ahead log. Consequently, POSTGRES has no log in the conventional sense of the

term. Instead the POSTGRES log is simply 2 bits per transaction indicating whether each transaction com-

mitted, aborted, or is in progress.
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Tw o very nice features can be exploited in a no-overwrite system, instantaneous crash recovery and

time travel. First, aborting a transaction can be instantaneous because one does not need to process the log

undoing the effects of updates; the previous records are readily available in the data base. More generally,

to recover from a crash, one must abort all the transactions in progress at the time of the crash. This pro-

cess can be effectively instantaneous in POSTGRES. Of course, the tradeoff is that a POSTGRES data

base at any giv en time will have committed instances intermixed with instances which were written by

aborted transactions. The run time system must distinguish these two kinds of instances and ignore the lat-

ter ones. The techniques used are discussed in [STON87].

This storage manager should be contrasted with a conventional one where the previous record is

overwritten with a new one. In this case a write-ahead log is required to maintain the previous version of

each record. There is no possibility of time travel because the log cannot be queried since it is in a different

format. Moreover, the data base must be restored to a consistent state when a crash occurs by processing

the log to undo any partially completed transactions. Hence, there is no possibility of instantaneous crash

recovery.

Clearly a no-overwrite storage manager is superior to a conventional one if it can be implemented at

comparable performance. There is a brief hand-wav e of an argument in [STON87] that alleges this might

be the case. In our opinion, the argument hinges around the existence ofstable main memory. In the

absence of stable memory, a no-overwrite storage manager must force to disk at commit time all pages

written by a transaction. This is required because the effects of a committed transaction must be durable in

case a crash occurs and main memory is lost. A conventional data manager on the other hand, need only

force to disk at commit time the log pages for the transaction’s updates. Even if there are as many log

pages as data pages (a highly unlikely occurence), the conventional storage manager is doing sequential I/O

to the log while a no-overwrite storage manager is doing random I/O. Since sequential I/O is substantially

faster than random I/O, the no-overwrite solution is guaranteed to offer worse performance.

However, if stable main memory is present then neither solution must force pages to disk. In this

environment, performance should be comparable. Hence, with stable main memory it appears that a no-

overwrite solution is competitive. As computer manufacturers offer some form of stable main memory, a

no-overwrite solution may become a viable storage option.

The second benefit of a no-overwrite storage manager is the possibility oftime travel. As noted ear-

lier, a user can ask a historical query and POSTGRES will automatically return information from the record

valid at the correct time. To support time travel, POSTGRES maintains two different physical collections

of records, one for the current data and one for historical data, each with its own indexes. As noted in

[STON87] there is an asynchronous demon, which we call thevacuum cleaner,running in the background

which moves records which are no longer valid from the current data base to the historical data base. The
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historical data base is formatted to perform well on an archival device such as an optical disk jukebox. Fur-

ther details can be obtained from [STON87].

5. THE POSTGRES IMPLEMENTATION

POSTGRES contains a fairly conventional parser, query optimizer and execution engine. Four

aspects of the implementation deserve special mention,

the process structure

extendability

dynamic loading

rule wake-up

and we discuss each in turn.

The first aspect of our design concerns the operating system process structure. Currently, POST-

GRES runs as one process for each active user. Therefore, N active users will get N POSTGRES processes

which share the POSTGRES code, buffer pool and lock table but have private data segments. This was

done as an expedient to get a system operational as quickly as possible. Hence, we deliberately ducked the

complexity associated with building POSTGRES as a single server process to which the N users can con-

nect or as a collection of J, J < N, servers to which users connect. Either option would have required pro-

cess management and scheduling to be built inside of POSTGRES, and we wanted to avoid these difficul-

ties.

Second, POSTGRES extendability has been accomplished by making the parser, optimizer and

execution engine entirely table-driven. For example, if the parser sees a token, ||, it checks in the operator

class in the system catalogs to see if the operator is defined. If not, it generates an error. Information for

frequently used operators is cached in a main memory data structure for augmented performance. When

the optimizer evaluates a qualification, such as:

where EMP.location || "(0,0)"

it checks to see if there is an index on location and if so whether the operator || is supported for the index

and what the selectivity of the clause is. With this information it can compute the expected cost of an

indexed scan and compare it with a sequential scan. The general algorithm is sketched in [STON86B].

Basically, the optimizer is table-driven off the system catalogs, which describe the present storage configu-

ration.

POSTGRES assumes that data types, operators and functions can be added and subtracted dynami-

cally, i.e. while the system is executing. Moreover, we hav e designed the system so that it can
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accommodate a potentially very large number of types and operators. Consequently, the user functions that

support the implementation of a type must be dynamically loaded and unloaded. Hence, POSTGRES

maintains a cache of currently loaded functions and dynamically moves functions into the cache and then

ages them out of the cache. The downside of this design decision is that a dynamic loader is required for

each hardware platform on which POSTGRES operates.

Lastly, the record-oriented implementation for rules system forces significant complexity on our

design. A user can add a rule such as:

on new EMP.salary where EMP.name = "Joe"

then do retrieve (new.salary)

In this case his application process wishes to be notified of any salary adjustment for Joe. Consider a sec-

ond user who gives Joe a raise. The POSTGRES process that actually does the adjustment will notice that

a marker has been placed on the salary field and alerts a special process called thePOSTMASTER. This

process in turn alerts the process for the first user where the query would be run and the results delivered to

the application process.

6. POSTGRES PERFORMANCE

At the current time (June 1991) POSTGRES Version 2.1 has been distributed for nearly three months

and has been installed by at least 125 sites. In this section we indicate POSTGRES, Version 2.1 perfor-

mance on both the Wisconsin benchmark [BITT83] and on an engineering benchmark [CATT91]. For the

Wisconsin benchmark, we compare POSTGRES with the University of California version of INGRES

which we worked on from 1974-78. Figure 1 shows the performance of the two systems for a subset of the

Wisconsin benchmark executing on a Sun SPARCstation. As can be seen, POSTGRES is around twice the

speed of UCB-INGRES.

We hav e also compared the performance of POSTGRES with that of INGRES, Version 5.0, a com-

mercial DBMS from the INGRES products division of ASK Computer Systems. On a SUN 3/280 POST-

GRES is about 3/5 of the performance of ASK-INGRES for the Wisconsin benchmark. There are still sub-

stantial inefficiencies in POSTGRES, especially in the code which checks that a retrieved record is valid.

We expect that subsequent tuning planned for Version 3 will get us somewhere closer to ASK-INGRES.

As a second benchmark, we report the performance of POSTGRES on the benchmark in [CATT91].

In this benchmark, we compare POSTGRES with the systems reported by Cattell, namely his in-house sys-

tem, an OODB from one of the commercial vendors, and a commercial RDBMS. In Figure 2 we report

results for three configurations of the small data base version of the benchmark, using POSTGRES config-

ured with 7.0 Mbytes of buffer space. The first two describe a remote data base configuration in which the
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Query Meaning POSTGRES UCB-INGRES

2 select 10% into temp, no index 9.8 10.2

3 select 1% into temp, clust. index 0.7 5.2

5 select 1% into temp, non-clust. index 1.2 5.3

6 select 10% into temp, non-clust. index 4.0 8.9

7 select 1 to screen, clust. index 0.3 0.9

9 joinAselB, no index 12.6 35.3

10 joinABprime, no index 17.0 35.3

11 joinCselAselB, no index 25.9 53.7

14 joinCselAselB, clust. index 24.1 56.7

17 joinCselAselB, non-clust. index 35.2 68.7

18 project 1% into temp 18.5 36.7

A Comparison of UCB-INGRES and POSTGRES

(Times are listed in seconds per query.)

Figure 1

data base resides on a SUN 3/280 and the application program executes on a separate SUN 3/60, and we

indicate respectively "cold" (1st execution of the command) and "warm" (after cache stabilizes) numbers.

The third set of results describes a "local" configuration for which both the application program and the

data base reside on the same SUN 3/280. "Warm-local" numbers are omitted because they are essentially

idential to the "warm-remote" results.

The numbers for the other systems were reported in [CATT91] running on a different Sun 3/280.

Because the disk on the Cattell system is dramatically faster than the the disk on the POSTGRES system,

the comparison is not "apples to apples". As a result, we also report "cooked" POSTGRES numbers,

obtained by multiplying the POSTGRES I/O time by the ratio of the average seek times of the two disks

and making the appropriate adjustment. The cooked numbers are our best guess for POSTGRES perfor-

mance on the Cattell hardware.
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To make POSTGRES perform as well as possible, we wrote all three benchmark routines as a C

functions which are executed using the Fast Path feature of POSTGRES described in Section 2.4. These

functions make appropriate calls directly on the POSTGRES access methods to manipulate the data base.

This is a high performance way of using POSTGRES, but of course, provides no data independence what-

soever.

As can be seen, POSTGRES beats the relational system by a substantial factor. Relative to the in-

house system POSTGRES loses by about a factor of 2. Since the two systems are executing similar algo-

rithms; the difference is mostly accounted for by tuning considerations. For example, on the warm-lookup

both systems are measuring the CPU time to perform 1000 access method calls. Since the POSTGRES

access methods are slower than the in-house system, we obviously has some tuning left to do. The second

consideration concerns data base size. POSTGRES puts a large header on the front of each record, and

incurs a substantial space penalty because record size is so small on this benchmark. Hence, on the cold-

lookup benchmark, POSTGRES will bring into the cache about twice as many pages as the in-house sys-

tem. Obviously, we must optimize the size of the headers to be competitive on small record benchmarks.

We expect that subsequent tuning of this sort will improve POSTGRES performance to approximate that of

the in-house system.

The OODB system is faster than both the in-house system and POSTGRES on the insert operation

because it clusters different record types on the same disk page. This allows it to do less I/O for the insert

than the other two systems. It also outperforms the other systems on "warm" operations because it caches

records in main memory format rather than disk format.

Tw o comments should be made at this point. First, POSTGRES allows an application designer to

tradeoff performance for data independence and other DBMS services. He can code the benchmark for

maximum performance and no data independence as we did above. Alternately, he can use the query lan-

guage and obtain lower performance with full DBMS services. Hence, POSTGRES allows the application

designer to choose the right mix of performance and data base services appropriate for his application.

A second comment is that the in-house and OODB systems run the data base in the same address

space as the user program. Consequently, a malicious or careless user can obliterate the data base and com-

promise DBMS security. On the other hand, POSTGRES imports only specific user functions into its

address space. Although such functions can be malicious or careless and cause data loss, POSTGRES is

trusting only indicated functions and not whole user programs. Moreover, POSTGRES provides a registra-

tion facility for functions, at which point they can be scrutinized for security. Therefore, POSTGRES pro-

vides a higher degree of data security than available from the other systems. Of course, POSTGRES must

import all routines that the indicated collection of functions makes calls on, which could be the entire
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Query in-house OODB RDBMS POSTGRES POSTGRES-cooked

cold-remote-lookup 7.6 20 29 24.2 17.5

cold-remote-traversal 17 17 90 44.1 36.8

cold-remote-insert 8.2 3.6 20 9.5 7.3

warm-remote-lookup 2.4 1.0 19 8.4 8.4

warm-remote-traversal 8.4 1.2 84 26.8 26.8

warm-remote-insert 7.5 2.9 20 5.4 4.5

cold-local-lookup 5.4 13 27 24.1 17.4

cold-local-traversal 13 9.8 90 44.0 36.7

cold-local-insert 7.4 1.5 22 9.5 7.3

A Comparison of Several Systems on the Cattell Benchmark

Figure 2

application in the worst case.

7. CONCLUSIONS

This paper has presented the design, implementation and some of the philosophy of POSTGRES.

We feel that it meets most of the "litmus test" presented in [COMM90]; hence, POSTGRES capabilities

may serve as a beacon for future evolution of commercial systems.

We expect to produce Version 3 of POSTGRES which should be available in the third quarter of

1991. It will be as fast and bug-free as possible, and contain the complete implementation of aggregates

and complex objects. At that time, we will have implemented the entire proposed system with the excep-

tion of:

1) Union, intersection and other set functions have not been constructed. The only set functions available

are IN and NOT-IN.

2) A where clause cannot appear inside the {...} notation
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We are starting to design the successor to POSTGRES, temporarily designated POSTGRES II, which

will attempt to manage main-memory data, disk-based data, and archive-based data in an elegant, unified

manner. A first look at our ideas appears in [STON91].
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