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Abstract

We present a new constraint-based continuous area cartogram construction method that is
unique in its ability to preserve essential cues for recognition of region shapes. It automatically
achieves desired region areas while maintaining correct map topology. The agorithmis
compared with a number of existing methods, and results are shown to be superior in both
accuracy and preservation of shape recognition cues. Through hierarchical resolution, we first
perform gross adjustments upon a coarsely resampled map and later refine the map at
progressively higher levels of detall.

1 Introduction

The area cartogram is a useful tool for visualizing the geographic distribution of “routine”
datain avariety of disciplines, including politics, socia demographics, epidemiology, and
business. Through the spatial transformation of map regions relative to the data, the cartogram
prominently emphasizes data distribution instead of territoria size.

For example, the results of the popular vote in the 1996 U.S. presidential race are visualized in
Figure 1a using traditional thematic mapping. There is a significant problem with this
visualization. Without prior knowledge of population density, the viewer has no clear indicator as
to who actually won the election. This map produces an intrinsic distortion of the data. The
results would be better visualized on a map more representative of population. Figure 1bisan
equal population cartogram of the same data generated using the Constraint-Based Method
described in this paper. It clearly shows the winner.

A continuous area cartogram is one in which the topology, or connectivity, of the map regions
isretained while areas are resized. Accur resizing regions relative t variable whil
maintaining continuity and region recognition i enaii $

2 Background

Several computer algorithms have aready been developed to construct continuous area
cartograms|[1, 2,4, 7, 9, 10, 11]. We present here five of the most effective of these methods
and make comparisons of their results with ours at the end of the paper. We chose the names of
the methods discussed here to be descriptive in nature, they may not necessarily be the names
used by the authors.
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Figure 1: 1996 U.S. presidential return visualizations (Data Source: Federal Election Commission).




2.1 Continuous cartogram methods

Tobler’s Pseudo-Cartogram Method creates an equal density approximation by compressing
or expanding the lines of latitude and longitude until aleast root mean square error solution is
obtained [10]. This method provides an effective way to “preprocess’ a map prior to cartogram
construction but the cartograms produced can contain extensive area error. Dorling’s Cellular
Automaton Method is adapted from the “ Game of Life,” where amap has a grid superimposed on
it and individual grid cells are traded until every geographic region obtains its desired number of
cells[1]. Whilethis method is very effective at achieving area, regions tend to lose their unique
contours and acquire a shape reflecting the grid.

The three other methods are radial in nature. The Radial Expansion Method of Selvin et al.
applies radial transformations from each region upon all map vertices such that the selected region
expands or shrinks while leaving the area of all other regions unchanged [7]. The Rubber Sheet
Method of Dougenik et al. exerts radial forces from each region upon all map vertices at a
magnitude proportional to region area error and inversely proportional to distance [2]. Gusein-
Zade and Tikunov’s Line Integral Method applies radial transformations such that the density of a
selected cell is made uniform while leaving all other cells unchanged, with the vector sum of
transformations applied as aline integral around each of the region boundaries [4]. While the
radial methods produce reasonabl e results in terms of area error, they produce both a* ballooning”
effect that can render regions unrecognizable and a “pinching” of originally rectangular region
corners.

Radial Rubber | Pseudo- Cellular Line
Characteristics Expansion | Sheet |Cartogram| Automaton | Integral

1. Independent of region traversal order v v v v
2. Independent of coordinate axes v v v v
3. Conformal mapping v v v v
4. Global displacements per iteration v v v
5. Intersection prevention v v

6. Ability to fix (pin down) points v

7. User controls on area vs. shape

Table 1: Desred cartogram method characteristics.

2.2 Desired cartogram method characteristics

In Table 1 we have expanded upon a previous review of methods by Gusein-Zade and
Tikunov [5] and quantified seven characteristics that we fedl, if attained, would lead to a
comprehensive and versatile cartogram algorithm. Independence of results from vertex traversal
order and the coordinate axes enables reproducible results, generating the same cartogram
regardless of the organization of the map’s source data base and orientation. In order to be an
effective communication tool, the method should be conformal in its preservation of angleslocally
so that detailed areas on the cartogram are similar to the original map. Globality assures that all
regions influence every map vertex, generally resulting in faster convergence to a solution. In
order to guarantee quality results, the algorithm should also prevent the intersection and self-
overlapping of regions. The last two characteristics provide user control of aesthetics by alowing



vertex locations to be pinned down or modified and by enabling the user to make shape versus
accuracy trade-offs. None of the methods described above possesses al of the first five technical
requirements, and none, with the exception of the Cellular Automaton Method, pay any attention
to aesthetic controls.

3 The Algorithm

In designing our algorithm, we recognized that the process of creating continuous cartograms
can be broken down into two distinct but conflicting tasks: adjusting region sizes and retaining
region shapes. The agorithm, as shown in Figure 2, iterates over a map sampled at consecutively
higher levels of detail [6]. Within alevel of detail, it achieves desired areas without regard to
shape, and then restores shape while attempting to hold the areas fixed. These tasks are
performed within the modeling paradigm of a constraint-based physical system.

The map vertices and region data are loaded or obtained via GI S database linkages. The map
isinitially acted upon at a coarse resolution and refined later at progressively higher levels of
detail. At the heart of our method is arepetitive “relaxation process.” We alternate between the
two goals of resizing regions to their correct areas and restoring region shapes while attempting
to hold their areas fixed, switching goals when the solution “ stagnates.”

Regions := LoadFull ResolutionMap (MapDataFile);
coarseness := max_coarseness;
AreaTargets := CaculateDesredArea (Regions);
repeat
SimplifyMap (Regions, coarseness);
repeat
AchieveAreas (Regions, AreaTargets);
RestoreShapeWhileMaintainingArea (Regions);
until adverse effect of area upon shape increases;
ReconstructM apToFull Resolution (Regions, coarseness);

coarseness := coarseness / 2;
until reached desired level of detail;

Figure 2: Pseudocode of our continuous cartogram agorithm.

3.1 Hierarchical resolution

Thefirst step in the smplification of map resolution is the identification of certain shared
vertices that would cause a break in the map topology if they were smplified away. These “key
points’ can be defined as interior vertices shared by three or more regions and as perimeter
vertices shared by two or more regions. The key points of awestern U.S. map are highlighted in
Figure 4a. Simply connecting the key points, as demonstrated in Figure 4b, introduces gross
shape errors. Instead, we simplify between key points at a resolution relative to the size of the
region, as shown in Figure 4c.
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a) Identification of “key” shared | b) Direct smplification between | c¢) Simplification at a resolution
pointsin the western U.S. key points. relative to region sizes.

Figure 4: Identification of map key points and example smplifications.

A minimum number of simplified edges are constructed between two key points such that the
distance between any vertex and its simplified edge is within an allowed offset distance, computed
as a percentage of the length of the region’s bounding box diagonal. In this manner the
simplification is based upon a collection of resolutions custom-scaled to each region, providing a
balanced smplification of region details that is independent of region size.

3.2 Dynamics

Our method uses a dynamic system paradigm in which area and shape maintaining forces act
upon the map vertices. We frequently apply strong, one-time forces upon vertices to prevent a
break in map topology, which in a momentum-based Newtonian physical system would lead to
oscillations. Instead, we use Aristotelian dynamics, where the velocity of apoint is directly
proportional to the total force upon it, so that a vertex only moves when aforce is acting upon it.

3.3 Achieving desired areas

Region areas are achieved using area springs, as demonstrated in Figure 5. Area springs are
situated so that they scale aregion by exerting equal forces upon each vertex in adirection that
bisects each interior angle, as depicted in Figure 5b. However, as demonstrated in Figure 5c,
adjacent regions also exert areaforces upon shared vertices, resulting in atug of war, with the
region of greatest error having the stronger hand.

Relaxed: -—/W

Compressed: */660\*

force force VAN P
Stretched: '—/m\—' \ NE
force force - ,
o _ b) Depiction of the area springs | ¢) Influence of area springs
a) Direction of area spring forces. | for Texas. from adjacent regions.

Figure 5: Examples of area springs.



The desired area of amap region is proportiona to its share of the geographic quantity to be
visualized. The force of each area spring is proportional to the percentage area error of the
region.

The pseudocode for resizing regionsis given in Figure 6. It begins by distributing the area
spring forces to the region vertices. Thisisfollowed by superimposing topologica constraint
forces that prevent regions from inverting and intersecting. These are explained in more detail
below. The net forces are then collectively applied upon the individual vertices during the
dynamics procedure, thereby affecting vertex velocities which, in turn, modify point positions.

procedure AchieveAreas (Regions, AreaTargets);
repeat
DistrubuteAreaSpringForces (Regions, AreaTargets);
DistributeT opol ogical ConstraintForces (Regions);
PointDynamics (Regions);

until average area error increases;

Figure 6: Pseudocode of the processto resize regions to their desired aress.
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Figure 7: Orientation springs and edge length proportionality springs.

3.4 Restoring region shapes

Shape restoration is achieved by orientation springs and edge length proportionality springs.
Orientation springs influence region edges to maintain their initial map orientation, as
demonstrated in Figure 7a. We compute the magnitude of each orientation spring force relative
to the edge’ s deviation from itsinitial orientation. Edge length proportionality springs influence
region edges to remain in the same proportion to each other as they were in the original map, as
demonstrated in Figure 7b. We compute the magnitude of each edge length proportionality
spring force relative to the percentage difference between the edge' s current and desired
proportional lengths.

The shape restoration pseudocode, given in Figure 8, begins with the distribution of shape
forces, either from the orientation springs or the edge length proportionality springs. We have
found that isolating the two shape mechanisms, whose forces are often contradicting, enables each
to retain their ground more effectively against the subsequent adversarial procedure, the area



constraint. The looping construct halts when the average shape error, computed as a weighted
sum of degrees of orientation error and unit lengths of edge proportion error, ceases to decrease.

procedure RestoreShapeWhileMaintainingArea (Regions);
useOS :=true;
repeat

if useOS then
DistrubuteOrientationSpringForces (Regions);
else
DistributeEdgel engthProportionality SpringForces (Regions);
useQOS = not useOsS;
DistributeAreaConstraintForces (Regions);
DistributeT opol ogical ConstraintForces (Regions);
PointDynamics (Regions);
until average shape error increases;

Figure 8: Pseudocode of the shape restoration process.

3.5 Maintaining area

The key component of the shape restoration process, and our entire method, is holding the
region areas fixed while their shapes are readjusting. Thisis enabled through dynamic area
constraints, which attempt to cancel those components of the shape forces that would cause a
changein area. The resulting constrained dynamic environment enables shape adjustments to
occur without significant loss of accuracy in area. We utilize constrained particle dynamics, as
detailed in tutorial form by Witkin in [12], to ensure that our regions obey a specific area
constraint. We modify Witkin’s formulation, as explained in [6], to utilize Aristotelian dynamics.
As shown in the pseudocode in Figure 8, the area constraining forces are computed following the
distribution of the shape restoration forces. Thisis necessary since the area constraints serve asa
mediator, canceling shape forces as necessary to keep the region areas fixed. Once the constraint
forces are computed and applied to the vertices, topological constraint forces are applied to
ensure the integrity of the map topology.

3.6 Maintaining topological integrity

The map topology is maintained by hinge constraints, edge constraints, and intersection
penalty constraints. The hinge constraint restricts the angle between two adjacent edges from
opening or closing beyond their limits, as demonstrated in Figure 9a. The hinge gradually applies
force only when the angle nears 0° or 360°, at a magnitude inversely proportional to the hinge
angle. The edge constraint prevents an edge from flipping to negative length, as demonstrated in
Figure 9b. Forceisgradually exerted as the edge approaches zero length, at a magnitude
inversely proportiona to the edge length.

Polygonal regions may either cross over each other or self-intersect. To prevent abreak in the
map connectivity, we employ the additional topology maintaining mechanism of intersection
penalty constraints. These exert forces, as demonstrated in Figure 9c, to correct situations where



aregion has overlapped itself or others. Intersections are detected using the parametric line
clipping method in [3].
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a) Hinge constraint. b) Edge constraint. C) Intersection penalty constraint.

Figure 9: Examples of topological constraints.

a) Constructed using the Rubber Sheet Method b) Constructed using the Constraint-Based
(Dougenik et al.). Method (Kocmoud and House).

Figure 10: 1960 U.S. population cartograms (a: Adapted from and reproduced with permission from
[2], page 80, Figure 6).

4 Result Comparisons

The results of our cartogram algorithm and previous agorithms are presented here. We
begin with 21960 U.S. population cartogram comparison with the Rubber Sheet Method in
Figure 10. While the Rubber Sheet cartogram retains a better likeness of the western coastline, it
also produces a severe pinched distortion of the non-coastal western states that inhibits
recognition. The overall appearance of the northeastern states is better represented in our
cartogram when compared to the generalized “ballooning” appearance in the other method. Our
map contains only 2.2% average area error, half a percent away from the other map’s 1.7% area
error.

In Figure 11 we show 1980 U.S. population cartograms generated from various methods.
While the shapes are preserved well in the Pseudo-Cartogram in Figure 11b, it has a 60% area
error. The Radial Expansion cartogram in Figure 11c suffers most from circular shape




generalizations and loss of state contour details. Overal, the Line Integral cartogram in Figure
11d stands out among the radial algorithms, displaying more controlled “ballooning” than the
Radial Expansion cartogram and reportedly approaching near 1% area error. However, the
ballooning artifact still exists, and pinching of rectangular cornersis still a problem. By contrast,
our method is successful in preserving the distinctive shapes of nearly al the states, while still
achieving a high accuracy of 4.4% average area error. Accuracy datais not available for the
Radial Expansion method.

a) Constructed using the Pseudo-Cartogram b) Constructed using the Radial Expansion
Method (Tobler). Method (Selvin et a.).

¢) Constructed using the Line Integral Method
(Gusein-Zade and Tikunov). Method (Kocmoud and House).

Figure 11: 1980 U.S. population cartograms (a: Reproduced with permission from [10], page 49,
Figure 8, & 1986 American Congress on Surveying and Mapping; b: Reproduced with
permission from [7], page 21, figure 3; c: Reproduced with permission from [4], page 172,
Figure 1, & 1993 American Congress on Surveying and Mapping).

In Figure 12 we compare our method with Dorling’s Cellular Automaton Method. Note that
he has included major citiesin his 1981 equal population cartogram of British counties, whereas
we have not. We see that the cellular approach severely distorts region shapes, rendering many of
them unrecognizable. Our cartogram, however, is again successful in maintaining region shape.
The bloated average area error of 28% in our cartogram is partly due to two sparsely populated
counties, with 196% error each, that cannot shrink any further without compromising our
specified level of shape preservation.



b) Cartbgram using the ¢) Cartogram using the
a) Original land area map of Cellular Automata Machine Constraint-Based Method
British counties. Method (Dorling). (Kocmoud and House).

Figure 12: 1981 equa population cartograms of Britain (a, b, ¢: Reproduced with permission from [1],
pages 20-22, Figures 14b,14c, and 14d).

5 Discussion

Our method, as implemented, includes all seven of the desirable cartogram algorithm features
listed in Table 1. It isstructured so that all forces are accumulated and applied at once, so results
are independent of traversal order, and all calculations are coordinate frame independent. It
preserves angles locally as much as possible, and prevents topology changes through edge
intersections. It isalso possible for vertices to be fixed and for the area/shape tradeoff to be
adjusted. Although we do not, as yet, perform global displacements when adjusting areas, our
area constraint forces during the shape restoration process are the direct result of a global
calculation and effectively hold all areas once they are attained.

Our method was implemented in the MicroStation Development Language, a standard C
programming language that compiles and executes within the MicroStation CAD program
(Bentley Systems, Inc.). The map input data can be loaded from a formatted text file or
converted directly from GIS data. Our examples were created on a 120MHz Toshiba Satellite
Pro 430 notebook computer with 32MB RAM. Transforming the U.S. map with its 744 vertices
took 18 hours for the 1960 population cartogram and 16 hours for the 1980 cartogram. The
1981 population cartogram of British counties contains 983 vertices and ran for 24 hours.

A significant feature of our method is the ability to incorporate interactive aesthetic control,
enabling the user to fix small problems at any time by stiffening particular springs or by modifying
or pinning down vertex locations. The user can also adjust the level of area accuracy with respect
to sacrifice in shape at any time. Since we wished to stress the automatic nature of our algorithm,
we have not hand-adjusted any of our examples shown here. However, these features could easily
be integrated into an attractive interface.



6 Conclusion

We have demonstrated a new method for automatically generating continuous area
cartograms that appears to be a significant improvement over previous methods. The technique
offers easy map reproducibility as well as the opportunity for interactive aesthetic control. It runs
on commonly available computers at speeds that could make it a useful tool for general individual
use in geography.
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