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The Representation of Biological Classes in the Human Brain
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Evidence of category specificity from neuroimaging in the human visual system is generally limited to a few relatively coarse categorical
distinctions— e.g., faces versus bodies, or animals versus artifacts—leaving unknown the neural underpinnings of fine-grained category
structure within these large domains. Here we use fMRI to explore brain activity for a set of categories within the animate domain,
including six animal species—two each from three very different biological classes: primates, birds, and insects. Patterns of activity
throughout ventral object vision cortex reflected the biological classes of the stimuli. Specifically, the abstract representational space—
measured as dissimilarity matrices defined between species-specific multivariate patterns of brain activity— correlated strongly with
behavioral judgments of biological similarity of the same stimuli. This biological class structure was uncorrelated with structure mea-
sured in retinotopic visual cortex, which correlated instead with a dissimilarity matrix defined by a model of V1 cortex for the same
stimuli. Additionally, analysis of the shape of the similarity space in ventral regions provides evidence for a continuum in the abstract
representational space—with primates at one end and insects at the other. Further investigation into the cortical topography of activity
that contributes to this category structure reveals the partial engagement of brain systems active normally for inanimate objects in

addition to animate regions.

Introduction
Neuroimaging studies of object vision in humans reveal a set of
functional landmarks associated with a stable but relatively
coarse set of categorical distinctions (for review, see Martin, 2007;
Kanwisher, 2010; Mahon and Caramazza, 2011). For example, a
system centered in the lateral fusiform is active for living things
including faces (Kanwisher et al., 1997; Haxby et al., 2000), bod-
ies (Peelen and Downing, 2005), and animals (Chao et al., 1999),
while a complementary system in the medial ventral stream is
active for nonliving things, including scenes (Epstein et al., 1999)
and tools (Chao et al., 1999). While such landmarks provide
insight into how the brain’s resources are divided among broad
categories, far less is known about finer distinctions—for in-
stance, how we tell one animal species from another. For finer
grained distinctions, further experimentation is unlikely to yield
a similar set of regional landmarks, e.g., a region specific for
squirrels and another for raccoons.

Finer grained category structure is evident, however, by mea-
suring category-specific signals embedded in distributed patterns
of brain activity (Haxby, 2010). Multivariate pattern classifiers
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can decode a large number of natural categories including dis-
criminating between members of subordinate object classes
(Haxby et al., 2001; Cox and Savoy, 2003; Reddy and Kanwisher,
2007; Eger et al., 2008). However, classification accuracy alone
provides limited information about representational structure.
To better understand the structure of representations, it is addi-
tionally helpful to investigate the similarity spaces defined by
multivariate patterns (Edelman et al., 1998; Hanson et al., 2004;
O’Toole et al., 2007; Connolly et al., 2012). This latter ap-
proach— coined recently as representational similarity analysis
(RSA) (Kriegeskorte et al., 2008)—measures how categories are
organized in abstract representational space, providing greater
insight into underlying encoded dimensions. Kiani et al. (2007)
used RSA to measure neural population responses in monkey
inferotemporal cortex using multiple single-unit recordings re-
vealing a rich, hierarchical category structure for a large number
of categories—including a major distinction between animate
and inanimate objects, a distinction within the animate domain
between faces and bodies, and a finer grained hierarchical struc-
ture among animal bodies that appears to reflect information
about biological relationships among species. A follow-up RSA
study using functional magnetic resonance imaging (fMRI) in
humans (Kriegeskorte et al., 2008) revealed a high degree of
agreement between representational spaces in monkeys and hu-
mans for broad distinctions, but did not address the fine-grained
structure for animate categories evident in monkeys.

Here, we use RSA to investigate fine-grained category struc-
ture for a set of animal classes—documenting for the first time
using human neuroimaging a hierarchical category structure that
mirrors biological class structure. Analysis of the topographies of
responses reveals a continuum that appears to reflect the degree
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probe event that was either identical to an
event from that trial or was new. Each trial in-
cluded a blank encoding event—6 s of fixa-
tion— interspersed pseudo-randomly among
the encoding events so that a set of encoding
events never began or ended with a blank event.
Event order was pseudo-randomized to approx-
imate a first-order counterbalancing of species—
each species followed every other the same
number of times (Aguirre, 2007). The subject’s
task was to indicate whether the probe was old or
new via button press. A scanning run comprised
six trials, and there were 10 runs per session for a
total of 60 encoding events per species.
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Figure 1.

of animacy in the ventral visual cortex. The “least animate” ob-
jects in our study—the bugs—evoke cortical activity similar to
that evoked by artifacts, whereas the most human-like—the pri-
mates— evoke activity similar to that evoked by animate stimuli
in previous studies, thus suggesting that the animate—inanimate
distinction in human cortex may also reflect a graded dimension
among animate categories.

Materials and Methods

We recorded brain activity associated with viewing color photographs of
six species: ladybird beetles, luna moths, common yellowthroat warblers,
mallard ducks, ring-tailed lemurs, and squirrel monkeys. These species
were chosen to represent a simple natural hierarchy comprising three
superordinate classes—insects, birds, and primates—as well as a higher-
level grouping of invertebrates and warm-blooded vertebrates. We refer
to these classes as bugs, birds, and mammals corresponding to the so-
called “life form” rank identified in cross-cultural studies as having folk-
biological significance (Berlin, 1992). Each individual species was chosen
because it was judged to have salient visual features common to that
species but distinct from the others.

Participants. Participants were 12 right-handed adults with normal or
corrected vision from the Dartmouth College community (age range
20-35 years; mean age 25 years; 7 males). Before participation, subjects
were screened for MRI scanning and provided informed consent in ac-
cordance with the Institutional Review Board of Dartmouth College.
Subjects were paid an hourly rate for their participation.

Stimuli. The stimuli for the fMRI experiment comprised 32 images for
each species, plus left-right flipped complements, for a total of 64 unique
images per species and a grand total of 384 images. The original high-
resolution digital images were collected from the internet. Image back-
ground of all stimuli was erased and made transparent. Images were
scaled to fit into a 400 X 400 pixel frame. Stimuli were presented to
subjects in the MRI scanner using a rear-projection screen positioned at
the rear of the scanner and viewed with a mirror mounted to the head
coil. Viewed images subtended ~10° of visual angle.

Procedure. The stimuli were presented to subjects using a slow event-
related design while they were engaged in a simple recognition memory
task (Fig. 1). An encoding event consisted of three different images of the
same species each presented consecutively for 500 ms without gaps.
Events were followed by a 4500 ms interstimulus interval. A trial con-
sisted of six encoding events—one for each category—followed by a

Slow event-related fMRI design. During fMRI scanning, subjects engaged in a simple recognition memory task to
ensure attention was paid to each stimulus. During encoding events images were presented in sequences of three exemplars of the
same class. A set of six encoding events— one for each stimulus class—was followed by a probe event, which prompted subjects
to answer yes or no depending on whether the probe was identical to one of the encoding events.

Image acquisition. Brain images were ac-
quired using a 3 T Philips Achieva Intera scan-
ner with an eight-channel head coil. The
functional imaging used gradient-echo echop-
lanar imaging with SENSE reduction factor of
2. The MR parameters were TE/TR = 35/2000
ms, flip angle = 90°, resolution = 3 X 3 mm,
matrix size of 80 X 80, and FOV = 240 X 240
mm. There were 42 transverse slices with full-
brain coverage, and the slice thickness was 3
mm with no gap. Slices were acquired in an
interleaved order. Each of the 10 functional
runs included 164 dynamic scans and 4
dummy scans for a total time of 336 s per run.
At the end of each scanning session a single, high-resolution T1-weighted
(TE/TR = 4.53/9848 ms) anatomical scan was acquired with a 3D-turbo
field echo sequence. The voxel resolution was 0.938 X 0.938 X 1.0 mm with
a bounding box matrix of (256 X 256 X 160) (FOV = 240 X 240 X 160
mm).

Image preprocessing. Before all other analyses, time series data were
preprocessed according to a standard set of steps. The goal was to dimin-
ish the effects of noise from various sources to better estimate the blood
oxygen level-dependent signal. First, images were corrected for differ-
ences in slice acquisition time due to the interleaved slice order within the
TR. Second, to correct for subject movement, individual volumes were
spatially registered to the last volume of the last functional run—the
volume closest in time to the high-resolution anatomical scan. Third, the
data were despiked to remove any high values not attributable to physi-
ological processes, thus correcting for normal scanner noise. Fourth,
each run was detrended using Legendre polynomials to remove linear,
quadratic, and cubic trends. Motion parameters— estimated during the
motion-correction step—were also regressed out of the time series data
at this step. Fifth, time series data were z-normalized within each run.
Finally, volumes were spatially smoothed using a 4 mm FWHM Gaussian
kernel. Time series preprocessing was done using AFNI software (Cox,
1996).

Neural similarity. The first step in calculating neural similarity was to
estimate the average voxelwise hemodynamic responses across the entire
experiment for our six stimulus categories using deconvolution using
AFNI software (3dDeconvolve). Each stimulus event was modeled by a
set of eight tent functions expanding from the onset of the event out to
16 s with 2 s intervals. In addition to modeling events for the six stimulus
classes, we also modeled yes-and-no probe events as regressors-of-no-
interest. The resulting hemodynamic response functions were robust
throughout the ventral pathway and tended to have peaks at 6 s post-
stimulus onset. These peak responses—the 3 values for the fourth tent
functions—were used as the patterns from which we derived dissimilar-
ity matrices (DMs). We calculated neural DMs within each mask for each
subject by calculating the correlation distance (i.e., 1 — their Pearson
correlation) between all pairs of species-specific 8 patterns—resulting in
a 6 X 6 symmetrical DM. We chose correlation distance as a metric for
deriving neural similarity, because prior work has shown that it is a good
choice for RSA, outperforming other metrics such as Euclidean distance
(Kriegeskorte et al., 2008). Derivation and analyses of similarity struc-
tures were performed primarily using Python programming tools for
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Similarity searchlight analyses. A, DM based on behavioral ratings and corresponding dendrogram. B, Whole-brain searchlight results for correlation with behavioral DM. Neural DMs

evaluated within searchlight spheres (radius = 9 mm) correlated significantly with the behavioral DM throughout the LOC region, but not in early visual regions of the occipital pole. , DM based
on V1 model of stimuli and corresponding dendrogram. D, Searchlight results for correlation with V1 model. Neural DMs for searchlight spheres correlated with the V1 model in the medial occipital

pole. Searchlight maps show the average Pearson product-moment correlation with the target DMs (4, €) across subjects in MNI standard space. Maps are thresholded at £,

one-sample t test for z > 0, for z-values converted from permutation-based p values.

neuroimaging and mathematical computing, especially PyMVPA
(http://www.pymvpa.org) (Hanke et al., 2009), NumPy (http://numpy.
scipy.org), and SciPy (http://www.scipy.org).

Pattern classification. We tested the discriminability of patterns for the
six animal species using linear support vector machines (SVMs) (Vapnik,
2000) (LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/) imple-
mented within the PyYMVPA (Hanke et al., 2009) framework using the
default soft margin option that automatically scales the C parameter
according to the norm of the data. The preprocessed time series data were
coded so that only time points corresponding to peak hemodynamic
responses for events (6 s after stimulus onset) were labeled by species
category. All other time points were discarded. Within each run, time
points were averaged within category—resulting in a single pattern per
category per run—then z-scored within each run at each voxel. Note that
it was not possible to use the B-weights used in calculating neural simi-
larity for classification because those were estimated once for the entire
time series, whereas classification required one independent estimate per
run. Classification training and testing were done using a leave-one-run-
out cross-validation strategy.

Behavioral similarity judgments. Eight of the 12 fMRI participants re-
turned to the laboratory after the original scanning sessions to participate
in two behavioral similarity judgment tasks administered in a single 45
min session. The first task was a triad judgment task, in which subjects
were instructed to “choose the odd-one-out” given a set of three animals.
The stimuli were digital images that included a representative image from
each of the six species used in the imaging experiment (targets) and
images of nine additional species (barracuda, beetle, chimpanzee, fox,
kingbird, lizard, brown moth, shark, and snake)—the additional animals
served to elicit a greater number of responses from subjects and provided
a more general context for judgments. We tested a subset of possible
triads excluding triads that contained less than two targets—a total of 371
judgments. In a second task, subjects rated pairwise similarity of two
animals at a time on a scale from 0 to 100—excluding all pairings with-
out at least one target—a total of 90 judgments. For both tasks, subjects
were told to make their decisions based on the “type of animal depicted
by each image.”

The pairwise task and the triad task yielded consistent results across
tasks and subjects. The data were combined to create a single behavioral
DM as follows. The pairwise judgments for each subject were represented
asa 6 X 15 (6 targets plus 9 additional animals) matrix corresponding to

= 4.41,p <0001,

one judgment per animal pair, and the triad data were represented as a
6 X 15 matrix corresponding to the number of times a pair was chosen as
belonging together, while a third item was chosen as the odd-one-out.
These two matrices were concatenated horizontally, and a single DM was
computed as the correlation distance between all pairs of rows. Resulting
DMs were averaged across subjects to produce a single standard behav-
ioral similarity structure (see Fig. 2A).

V1 model similarity structure. To account for low-level visual proper-
ties such as retinotopic shape biases and spatial frequency information
across our stimulus categories, we tested an alternative target similarity
structure based on a model of V1 cortical neurons (Serre et al., 2007).
Using software provided on the web site for the Center for Biological &
Computational Learning at MIT (http://cbcl.mit.edu/software-datasets/),
we modeled each of our stimulus images with a set of spatial filters that
mimics the receptive fields of V1 complex cortical cells—specifically as
C1 units in the second layer of the HMAX model (Serre et al., 2007). We
averaged the CI unit response vectors for each stimulus image within
each animal species and used correlation distance to calculate the V1
model DM (see Fig. 2C).

Results

Similarity searchlights

Using the behavioral and V1 model DMs as target similarity
structures, we used the searchlight mapping technique (Krieges-
korte et al., 2006) to map the correlation between neural similar-
ity and target similarity throughout the brain for each subject.
Neural DMs were calculated for each searchlight sphere (ra-
dius = 9 mm) using the correlation distance method described in
Materials and Methods, Neural similarity. The correlation be-
tween these DMs and the target DMs were recorded at each
searchlight center. The maps from group analysis shown in Fig-
ure 2, B and D, reveal a clear dissociation between regions that
correlated highly with the behavioral and V1 model DMs. High
correspondence with behavioral similarity was observed throughout
the lateral occipital complex (LOC) region but was absent in early
visual (EV) areas, whereas the retinotopic regions of the medial
occipital lobe correlated significantly with the V1 model. Statistical
significance of the correlation values was determined using a Monte
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A, Searchlight results for six-way SVM classification. Classification performance was high throughout visual cortex
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searchlight. The purpose of this analysis
was to reveal the locations of common
representational structure across subjects
that were independent of the target simi-
larity structures—thus leaving open the
possibility of discovering common struc-
ture that is unique to neural representa-
tion and not predicted by the target
models. For this analysis, an individual
subject’s data were first transformed into
0 standard MNI space— using the symmet-
ric nonlinear MNI152 brain template at 3
mm isotropic resolution (resampled from
Fonov et al., 2009). For each searchlight
sphere, we calculated the neural DM for
all 12 subjects and recorded the average
correlation between DMs across subjects.
Figure 3B shows the map of across-subject
similarity correlations. The map reveals
shared structure throughout EV cortex
and the LOC region, and extended to
small patches of cortex in bilateral intra-
parietal sulcus and right inferior frontal
gyrus. Similar to the SVM searchlight re-
0 sults, however, this analysis is unable to
dissociate regions based on different types
of representational organization.

o
i
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and in other parts of the brain. The highest classification accuracy was observed in the occipital pole: mean proportion correct =

0.64 (x =9,y = —93,z = 3). The map is thresholded at ,,;,) = 5.9, p < 0.0001, for values greater than chance (0.16). B,
Searchlight results for correlation between DMs calculated within searchlight spheres for different subjects. Mapped values reflect
the average correlation across subjects for each searchlight sphere in MNI space. High across-subject correlations were observed
throughout EV cortex and the LOC region. The highest cross-subject correlations were observed in right fusiform gyrus: mean =

0.85(x=39,y= —63,z= —15).

Carlo method by generating a set of 1000 chance correlations by
permuting the labels on the neural DM at each sphere. The
resulting p value maps were then converted to z-scores (by
calculating the inverse of the cumulative normal distribution)
for group analysis (one-sample ¢ test).

Classification searchlight

To map the discriminability between our six-stimulus classes
throughout the brain, we ran searchlights that recorded the ac-
curacy of a six-way SVM pattern classifier (see Materials and
Methods, Pattern classification). Pattern classification was robust
throughout EV areas and the LOC region (Fig. 3A), and was
significant to a lesser degree in other parts of the brain including
dorsal parietal and lateral frontal cortices. The area with the high-
est classification accuracy across subjects was in the occipital pole.
Unlike the similarity searchlights, the classification searchlight
did not differentiate between early and later stages of visual pro-
cessing as classification was robust in both regions. Comparing
the two analyses highlights the differences between classification
analysis and similarity analysis. While two regions may have
equivalently high performance on a classification measure, they
nevertheless may have very different organization in terms of
informational content. Searchlight analyses (both classification
and similarity searchlights) were performed in subject native
space, and the results were transformed into standard space for
group analysis.

Across-subject similarity correlation searchlight
We next explored the reproducibility of similarity structures
across subjects by using an across-subject similarity correlation

Region of interest analyses of
representational structure: LOC and EV
The searchlight analyses above reveal the
location of interesting structure in our
data, including a marked dissociation be-
tween semantic structure and low-level visual structure between
early and later sections of the visual pathway. However, several
questions remain—especially for understanding representa-
tional structure throughout the LOC. For example: How will the
similarity space defined over larger patterns throughout LOC
compare with behavioral similarity? Is neural similarity in LOC
identical to behavioral judgments, or is there a systematic differ-
ence between LOC similarity and behavioral similarity? What
prominent dimensions define the representational space in LOC?
To answer these questions it is necessary to investigate struc-
ture in distributed patterns across regions larger than the field of
view of single searchlight spheres. It is a challenge, however, to
identify separate regions of interest (ROIs) for EV and LOC with-
out introducing arbitrary anatomical delineations or running
into circularity without the help of appropriate functional local-
izers. For example, it would be circular to use the EV and LOC
regions identified in Figure 2 for the purpose of comparing neural
similarity with the behavioral and V1 models because those re-
gions were identified using those models. Similarly, it would be
difficult to justify the use of hand-drawn anatomical masks that
included only those areas (although this latter technique is often
pursued to satisfactory effect, despite reliance on imprecise ana-
tomical landmarks). To overcome these difficulties, we devel-
oped a method for identifying shared representational structure
across subjects that does not rely on external assumptions about
representational structure, and does not require arbitrary segre-
gation of anatomical regions. The technique combines three well
known data analysis techniques, two of which have already been
used in combination above, namely, searchlight analysis and
representational similarity analysis, and the third is cluster anal-
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ysis. First, we compute all dissimilarity A Cluster 1 - "LOC"
matrices defined per searchlight from all g1l
subjects, and then we cluster those dissim-
ilarity matrices to identify clusters of
shared representational structure. After
clustering, searchlight centers are mapped
back into an individual subject’s brain
space to identify regions that produced
shared structure across subjects. Once
identified, those voxels were used to de-
fine ROIs to further explore representa-
tional structure throughout each region.
Due to computational limitations (in
terms of computer memory) of clustering
all searchlight similarities from all 12 sub-
jects in a single analysis, some data reduc-
tion is a necessary first step. For this
purpose, we used the data from the across-
subject similarity correlation searchlight
(Fig. 3B) to produce a mask that included
all of the searchlight centers that had high
average correlation across pairs of sub-
jects using an arbitrary threshold of r >
0.3, and a spatial clustering criterion of
500 contiguous voxels. This mask was
then dilated to include all of the voxels Figure4. Definitions of ROIs, LOC, and EV, by maximizing across-subject reproducibility. DMs defined by searchlight spheres
that contributed to the between-subject  fromall subjects were clustered to identify two major groups of similarity structures. The searchlight centers were then coded by
correlations recorded at the searchlight cluster and mapped back into individual brains. A, The largest cluster was formed by DMs from voxels throughout LOC. B, The
second largest cluster was formed by DMs from voxels in EV. Searchlight DMs in both clusters included voxels from every subject.
The maps show the overlap of voxels from different subjects in MNI space for Clusters 1and 2.
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gl

Number of subjects ™

centers. The dilated mask was edited to
include only voxels that were in the cere-
brum mask. This single large mask, which
included a contiguous set of voxels span-
ning nearly all of the EV cortex and
the LOC region, was resampled to indi- )
vidual subject’s spaces. (We note that lim- ‘“’,\ } R
0
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investigation into possible shared repre-
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light center.) This second data reduction  behavioral DM (Fig. 24) was r = 0.76, and between the EV DM (B) and the V1 model DM (Fig. 2€) was r = 0.78. The correlation

Hi
number of voxels by including only those
were divisible by two in the x-, y-, and _ 0
i
the mask. (Note that although the search- Lo
from all the voxels in a subject’s volume Figure 5. A, B, Average neural DMs and corresponding dendrograms for LOC (4) and EV (B). The mean between-subject
step resulted in a tractable number of ob-  between the average EV and LOC DMs was r = 0.09.
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Figure 6.  Accuracies for pairwise SVM classification within LOC (feft) and EV (right). Classification accuracies were significantly
above chance for all pairs of stimuli within and between superordinate classes in LOC; however, overall accuracies were higher for
between-class pairs than within-class pairs. The best discrimination was observed between primates and bugs. Classification
accuracies in EV were all well above chance for all stimulus pairings. Pr, primates; Bi, birds; Bu, bugs. Boxplots show the upper and
lower quartiles of the distribution of values across subjects (top and bottom extents of the boxes), the median (center line), the

range within 150% of the inner quartile (whiskers), and outliers (crosshairs).
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Figure7.  MDS of DMs from LOC and behavioral ratings. A, 2D MDS solution that reflects the best fit Euclidean distances for all

13 input matrices (12 subjects plus the behavioral DM) computed using individual differences scaling (Takane et al., 1977). B,
Individual differences are reflected in the weights assigned to each dimension for each input matrix. The weights reflect the
importance of each dimension to each DM. The LOC DMs all have high weights on Dimension 1 and low weights on Dimension 2.
Four subjects had weights equal to zero on Dimension 2, which means that the MDS solutions for those subjects are equivalent to
a projection of the stimulus points onto the x-axis in A, and scaled along the x-axis by the weight on Dimension 1. Thus, for those
subjects a single-dimensional solution with primates at one end and bugs at the other accounted for the most variance in LOC. Dim,
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and 2 to include the entire corresponding
searchlight spheres, but restricted to in-
clude only voxels that were also in the sub-
ject’s gray-matter mask. Finally, any
voxels that were overlapping from the ex-
panded masks for Clusters 1 and 2 were
excluded from both. Henceforth, we will
refer to the ROIs for Cluster 1 and Cluster
2 as LOC and EV, respectively. Figure 4
shows the overlap across subjects for LOC
and EV masks (shown in standard space).

The DMs for LOC and EV are pre-
sented in Figure 5. For visualization of the
similarity structures, we used hierarchical
clustering to produce the dendrograms in
Figure 5. The dendrogram for LOC shows
the familiar hierarchical category struc-
ture that also characterizes behavioral
judgments. The correlations between
LOC DMs and the behavioral DM and be-
tween EV and the VI model DMs were
quite high (Fig. 5).

It is important to confirm that the pat-
terns investigated using similarity analysis
also support reliable classification be-
tween all pairs of stimuli. That is because if
two patterns are indistinguishable from
each other, giving them unique labels in a
similarity analysis can spuriously boost
correlations between DMs. Figure 6 sum-
marizes results for pairwise SVM classifi-
cation for all stimulus pairings. These
results show robust classification between
all pairs of stimuli in LOC and in EV. In
LOC, the highest classification accuracy
was observed for bugs versus primates dis-
criminations, and was generally higher for
between-class discriminations than for
within-class discriminations. In EV, there

Dimension.

servations for clustering, with each subject contributing 616 DMs
on average (minimum = 534, maximum = 697). We clustered
these DMs (total 7386) using agglomerative hierarchical cluster-
ing using a single linkage algorithm (Sibson, 1973) based on a
distance matrix for all DMs (computed using correlation dis-
tance). Using a threshold of 10% of the maximum distance be-
tween nodes in the clustered hierarchy, the solution revealed two
main clusters. The largest cluster, “Cluster 1,” included 1549 ob-
servations, and the second largest, “Cluster 2,” included 513. The
third largest cluster only had 39 DMs, and beyond that there were
no clusters with >10. We will limit our analysis to the two largest
clusters. Without exception, voxels from Cluster 1 mapped into
every subject within the LOC region and voxels from Cluster 2
mapped into every subject within medial occipital lobe, although
the number of contributing voxels and precise locations varied
across subjects. The average number of voxels contributing to
Cluster 1 from each subject was 129 (minimum = 31, maxi-
mum = 212, SD = 61), and the average number contributing to
Cluster 2 from each subject was 43 (minimum = 5, maximum =
85, SD = 22). To complete the ROI masks in each subject, we
expanded the searchlight centers that contributed to Clusters 1

was no apparent difference for accuracies

for within-class versus between-class dis-

crimination, with the exception of within
primates. These analyses demonstrate that two regions that sup-
port equivalently robust classification can nevertheless have very
different representational organization in terms of similarity
structure. Note that the purpose of these analyses was not to claim
that classification accuracy is higher in LOC and EV than in other
parts of the brain—that has already been demonstrated by the
searchlight analysis reported above (Fig. 3A).

An additional finding, consistent with the classification results
and evident when inspecting the dissimilarity matrices (Fig. 5), is
that the dissimilarity values in LOC are greatest between the pri-
mates and the bugs, and the values between birds and the other
two superordinate classes are intermediate. These relationships
are made clear through visualization using multidimensional
scaling (MDS) (Takane et al., 1977). In Figure 7, we plot the
results for an individual differences MDS solution computed for
all 12 individual LOC DMs plus the behavioral DM. This analysis
allows for an assessment of the variation across subjects in terms
of the structure of representation, and it allows for a direct com-
parison between the structure of the behavioral DM and neural
DMs that is more informative than simple correlation measures.
Figure 7A shows the best fit MDS solution for all 13 input DMs.
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Dimension 1 in the solution defines a
continuum in representational space
with primates at one end and bugs at the
other with the birds in between, and Di-
mension 2 defines a continuum with birds
at one extreme and the bugs at the other.
The weights for individual input DMs
(Fig. 7B) show the importance of each di-
mension for each input matrix. The
weights plot shows that Dimension 1 is
more important than Dimension 2 for all
input DMs; however, while Dimension 2
is of intermediate importance for the be-
havioral DM, it is unimportant for the
LOC DMs.

Mapping category structure to

cortical topographies

Similarity analysis reveals a high level of
reproducibility across subjects in abstract
representational spaces defined by neural
DMs—especially with respect to the
primate-to-bugs dimension observed in
LOC. How does this abstract representa-
tional space map onto cortical topogra-
phies? The final set of analyses are aimed
at better understanding how patterns of
activity across the cortical anatomy give
rise to the category structure observed in
the previous analyses.

Figure 8 shows the group results of the
projection of Dimension 1 from Figure 7
onto the fitted B coefficients for the six
categories for each subject, calculated as
the dot-product of the dimension weights (1 X 6 vector) and
B-weights (6 X n voxel matrix). The distribution of activity
shows a consistent set of bilateral structures that are positively
correlated with Dimension 1, including lateral fusiform cortex,
posterior superior temporal sulcus (STS), and the medial and
lateral portions of occipital cortex. Positive correlation with Di-
mension 1 means that there is greater activity in these areas for
categories on the positive end of the dimension (i.e., primates)
and less activity for categories on the negative end of the dimen-
sion (i.e., bugs). A complementary set of structures that is nega-
tively correlated with Dimension 1 includes medial and posterior
fusiform and lingual gyri, the inferior temporal lobe, and inferior
parietal lobule. Interestingly, this pattern is similar to previous
findings that have compared activity for animate versus inani-
mate objects, like faces and animals versus tools and other arti-
facts (Chao et al., 1999, 2002; Chao and Martin, 2000; Haxby et
al., 2001; Beauchamp et al., 2002; Mahon et al., 2007).

Correspondence between our findings and findings that com-
pare animate versus inanimate objects is surprising because all of
our categories are animate categories. However, our results may
be consistent with previous studies if the continuum we observe
in our data is part of a larger continuum that encompasses a wider
range of stimuli that ranges from the most animate objects (hu-
mans) to the properly inanimate (e.g., tools). To fully test this
hypothesis, it is necessary to sample a wider range of objects,
which will require further experimentation outside the scope of
the present study. However, it is possible to directly compare our
result with previously reported results using a common set of
coordinates. For this purpose, we compare our data to those

Figure 8.

Dimension 1.
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T-value

Projection of Dimension 1 (Fig. 7) onto the B-weights for the six categories. Positive values correspond to a positive
correlation between 3-weights and the values along Dimension 1, i.e., the highest positive values indicate voxels where activity
was greatest for monkeys and lowest for luna moths, while strong negative values indicate greater activity for luna moths and less
formonkeys. The colorsindicate t values from a group analysis for projected values different from zero. Values of [t,,| > 3.11have
p < 0.01; however, the full range of values are shown to highlight the consistent bilateral distribution of activity correlated with

reported in Mahon et al. (2009) using their technique to compute
a medial-to-lateral index. Mahon et al. (2009) used this index to
analyze the topography for living versus nonliving stimuli in the
brains of sighted subjects viewing images and congenitally blind
subjects hearing words. Here we use the living—nonliving index
for image viewing from Mahon et al. (2009) for direct compari-
son with our data. Following Mahon et al. (2009), the medial-to-
lateral index is computed as the average t value for the group
analysis for a given contrast in each y-by-z slab at each
x-coordinate within a bilateral ventral temporal mask for medial-
to-lateral indices in the range of 25 =< |x| < 40 (Fig. 9). Here,
instead of contrasts between conditions, we use the values of the
principal MDS projection, which reflects the continuum from
bugs to birds to primates. Consistent with the topographies
shown in Figure 8, the medial-to-lateral index for the MDS pro-
jection was positively correlated with the living—nonliving index
(Fig. 9). Because primates and bugs represent the two poles of the
continuum represented by Dimension 1, we expected to obtain
similar results when comparing the contrasts of primates and
bugs. Figure 9C shows the results for this contrast, which are
nearly identical to those for the projection of Dimension 1. This
pattern of results can be explained if we assume that our catego-
ries fall along a continuum in representational space identical to
Dimension 1 in the MDS solution in Figure 7 with the assump-
tion that nonliving objects fall on the far left end of this contin-
uum. In agreement with this hypothesis, the medial-to-lateral
index reported by Mahon et al. (2009) shows greater negative
values at the most medial coordinates, which is expected if actual
inanimate objects (like those used by Mahon et al., 2009) pro-
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ular to that dimension. We removed the
variance accounted for by Dimension 1
by computing a least-squares solution
fitting that dimension to the data and
keeping the residuals. This was done in-
dividually on each run of each subject’s
data using the individually weighted
MDS model for each subject. Fitting a
separate model for each run was neces-
sary because of the leave-one-run-out
cross-validation strategy used in classification.

The results of pairwise classification in
LOC (Fig. 10A) show that despite the
prominence of Dimension 1 in LOC, clas-
sification accuracies were still robustly
above chance for all pairs of stimuli even
after removing variance accounted for by
the MDS model. Within-class discrimina-
tions (monkeys vs lemurs, warblers vs
mallards, and luna moths vs ladybugs)

— MDS Projection
-+ Prim-Bug
== Liv-Nonliv

-45 -40 -35 -30 -25 25 30 35 40

X coordinate in MNI space

Primates
minus
bugs

Figure9.

the lateral fusiform in which activity was greater for primates.

duced more activity than did bugs in the medial “inanimate”
regions. In addition to the range of medial coordinates used to
compare data across studies, we also provide data in Figure 9 for
lateral coordinates out to |x| = 60, showing an inverted U shape
consistent with findings that show greater activity for inanimate
stimuliin lateral regions of the inferior temporal lobe (Chao et al.,
1999; Beauchamp et al., 2003).

Given the prominence of Dimension 1 in the representa-
tional space of LOC across our subjects, it is natural to ask
whether this singular dimension accounted for all of the mea-
surable variance across our categories. To rule out this possi-
bility, we removed variance accounted for by Dimension 1 and
recomputed several classification analyses. If Dimension 1
accounted for all of the reproducible variation across our
stimulus categories, then classification accuracies should be at
chance after collapsing the data onto a hyperplane perpendic-

a5

Comparison of the projection of the bugs-to-primates dimension (Fig. 7) to the living—nonliving contrast from Mahon
et al. (2009). Using a method described by Mahon et al. (2009), we calculated the medial-to-lateral index for the projected
Dimension 1from the MDS analysis (Fig. 8). 4, The colored regions show the extent of the mask used in the analysis, and the colors
reflect the unthresholded ¢ values for the group result. The mask we used covers a greater extent of the ventral surface in the
medial-to-lateral dimension than that reported by Mahon et al. (2009). While these extra data points played no role in the
comparison with the living—nonliving contrast, they illustrate the extent of consistent activity across the ventral surface. B, The medial-to-
lateral index for our results and for living—nonliving. The values reported for the living—nonliving contrast were kindly provided to us by
Brad Mahon and are also plotted in Mahon et al. (2009; their Fig. 58, p. 402). The linear fits between our data and the living—nonliving
contrast were highly significant with R2 of 0.83 and 0.82 for the left and right ROIs, respectively. €, For comparison, we present the results
of the contrast of primates and bugs within the left and right ventral ROls. The unthresholded contrast on the left shows a nearly identical
pattern to that of the Dimension 1 projection, which is also reflected by the medial-to-lateral index calculated for the primates—bugs
contrast (B). On the right, we plot all voxels that pass a statistical threshold (£, > 2.2, p << 0.05) for the contrast. Blue voxels reveal
bilateral medial regions in which the activity for bugs was greater than that for primates; warm-colored voxels reveal bilateral regions in

were unaffected by removing this dimen-
sion, suggesting that these fine-grained
distinctions are not coded along this di-
mension. In contrast, between-class dis-
criminations dropped from classification
accuracies of >90% to <75%, indicating
that this dimension captures much of the
variance for these distinctions. Similar to
LOC, within-class discrimination in EV
was not affected. While there was some
reduction in accuracies for between-class
discriminations in EV, the effect was less
than that observed in LOC, remaining
>80% on average.

Next, we assessed the extent to which
representation of Dimension 1 was lim-
ited to lateral portions of the ventral LOC
region. We know from our previous anal-
ysis (Fig. 9) that Dimension 1 is most
strongly represented in the lateral parts of
the fusiform |x| = ~45. If the lateral fusi-
form is driven completely by Dimension
1, then after removing Dimension 1 vari-
ance, classification accuracy should drop
to chance. To rule out this possibility, we
ran classification analyses for ROIs de-
fined by 3 mm medial-to-lateral slabs
within the ventral temporal ROI used in the analyses reported in
Figure 9. The results shown in Figure 10 B illustrate that before
removal of Dimension 1, classification accuracies were highest
in lateral fusiform (as expected), and significantly above
chance throughout the medial-to-lateral extent. After remov-
ing Dimension 1, classification accuracies were reduced across
the entire medial-to-lateral extent indicating that this dimen-
sion contributed to classification performance across the
entire region. Crucially, even after removing Dimension 1,
classification accuracies remained significantly above chance
across the entire extent with the exception of the most lateral
parts corresponding to voxels in inferior temporal lobe.

To provide a complete picture of the effect of removing vari-
ance accounted for by Dimension 1, we report the results of a
full-brain SVM searchlight after removing Dimension 1 (Fig.
10C). In line with our previous findings, classification accuracies

50 55 60

t-values

-5
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in the LOC region were diminished (com- A LOC EV
pare Fig. 34), but remained §1gn1ﬁcantly Within class Between class Within class Between class
above chance. Notably, classification ac- Tid —

curacies in the occipital pole remained
high compared with the LOC region.
Together, these analyses demonstrate
that classification accuracy in LOC re-
mains robust after removal of Dimension

. L|[RO0E - &

'
'
‘ : E
' '
s .
‘ '

- '
'

1 variance, indicating that while Dimen-
sion 1 is a major component of the repre-
sentation in LOGC, it is only one dimension
of a high-dimensional representational

Proportion correct

space (Haxby et al., 2011). The exact
number of informative dimensions, the
psychological dimensions they encode,
and their distribution across cortex re- 5

o9)

Bu Pr-Bi

Pr-Bu Bi-Bu Pr Bi Bu Pr-Bi Pr-Bu Bi-Bu

main unspecified. A full accounting of the
high-dimensional representational space
is beyond the scope of this article.

Discussion
Using behavioral judgments as a target,

we found semantic structure to be re-
flected strongly throughout the LOC. This
finding was strengthened by the comple-

Proportion correct

— Before
---- After

mentary distribution of representational 0
structure corresponding to low-level vi- 60 -54
sual features reflected in medial occipital

cortex. Although the set of animal classes C

was small, this study is the first human
neuroimaging study to document cate-
gory structure within the domain of ani-
mate objects that reflects biological
relations among species. The results are
consistent with findings in monkey in-
ferotemporal cortex that showed a simi-
larity structure with separate clusters for
quadrupeds, human bodies, fish, reptiles,
butterflies, and other insects (Kiani et al.,
2007), thus providing converging evi-
dence that representation of animal
classes is supported by neuronal popula-
tion codes in primate object vision cortex.
These results also extend a recent trend of
uncovering finer grain semantic category
structure within LOC using multivariate
decoding techniques (Kriegeskorte et al.,
2008; Naselaris et al., 2009; Haxby et al.,
2011), and in addition demonstrate how RSA is an essential
component of the multivariate pattern analysis toolkit, pro-
viding insights into structure that are left merely implicit in
most pattern classification analyses—for more discussion on
this point refer to Connolly et al. (2012).

A set of unexpected discoveries suggests that animal categories
are represented along a continuum within LOC, and the struc-
tures that mediate this continuum are directly related to—if not
identical to—the structures that underlie the animate—inanimate
distinction. This hypothesis deserves closer attention, and we be-
gin by reviewing the evidence that prompts it.

The first unexpected observation was that interesting repre-
sentational structure for animals within LOC was not limited to
activity within the known animate regions, e.g., within lateral
fusiform and STS, and in contrast semantic structure was re-

Figure 10.
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The effect of removing variance accounted for by Dimension 1 on classification accuracy. 4, Pairwise classification
accuracies for LOCand EV after removing variance accounted for by Dimension 1. Compare to Figure 6. B, Six-way SVM classification
as a function of medial-to-lateral coordinates before and after removing variance accounted for by Dimension 1. €, Six-way SVM
searchlight after removing Dimension 1variance. Colored voxels show areas of classification accuracy that were significantly above
chance using the same threshold as in Figure 34 (,;,, > 5.9, p << 0.0001). Pr, Primates; Bi, birds; Bu, bugs.

flected throughout LOC across purported animate and inani-
mate regions. The second observation was that the structure of
similarity spaces in LOC did not conform exactly to our expecta-
tions about semantic structure, and instead revealed a represen-
tational structure unique to LOC. The characteristic similarity
structure produced by LOC activity was remarkably reproducible
across subjects, with an average correlation between dissimilarity
matrices across subjects of r = 0.94. Thus, similarity spaces in
LOC were virtually identical across subjects, and individual LOC
similarities were more like other subjects’ LOC similarities than
the semantic space defined by behavioral judgments, despite the
fact that both behavioral and neural similarities shared a com-
mon hierarchy of animal classes. MDS revealed that the major
commonality in LOC similarities—and something that set LOC
similarity apart from semantic similarity—was the organization
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of stimuli with respect to a single dimension in representational
space. This prominent dimension is characterized as a contin-
uum with primates at one end, bugs at the other, and birds in
between (Fig. 7). We found that the topographical distribution of
activity underlying the single-dimensional organization impli-
cates a set of brain structures that has been shown in other studies
to mediate the dissociation of animate and inanimate stimuli.
Greater activity for primates than for bugs was observed in lateral
fusiform and STS, while greater activity for bugs than for pri-
mates was observed in medial fusiform and lingual gyrus, middle/
inferior temporal gyrus, and inferior parietal lobule. This pattern
of activity has been reported by various studies that have directly
compared animate and inanimate stimuli (Chao et al., 1999,
2002; Chao and Martin, 2000; Haxby et al., 2001; Beauchamp et
al., 2002, 2003; Mahon et al., 2007), with bugs taking the place of
inanimate objects (like tools) and primates taking the place of
animate objects (like animals or people). In the absence of actual
inanimate stimuli to compare our results against, we borrowed
data from a study that contrasted activity for viewing pictures of
living and nonliving objects (Mahon et al., 2009). The direct com-
parison of our results using the medial-to-lateral index demon-
strated a direct relationship between our observed continuum and
differential activity associated with living and nonliving objects.

How can we explain these findings? One possibility is that the
animal categories we have tested fall along a continuum in rep-
resentational space that is predictable by the degree of animacy
exhibited by each category. This suggestion follows from the ob-
servation that activity for primates resembles that for animate
objects and activity for bugs resembles that for inanimate objects.
We further assert that primates are subjectively “more animate”
than are bugs. We can safely assume that experimental partici-
pants when prompted to make such decisions will agree that
monkeys are more likely than bugs, for example, to have a mind,
to initiate actions, and to be aware of their surroundings. Accord-
ingly, our legal systems confer special rights to primates but not
to bugs: killing a bug is inconsequential, whereas gratuitous kill-
ing of a monkey may result in criminal penalties. It is natural to
expect gradations in similarity to the animate prototype—hu-
man beings—across the range of animate entities that includes, at
least, all other animals. The fact that there are gradations of ani-
macy (alternatively: gradations in similarity to humans) across
the range of organisms in the animal kingdom is not surprising.
What is new here is that the hierarchy of animacy appears to be
reflected in the patterns of neural activity across cortical regions
that have previously been described as dedicated for processing
objects within discrete domains. Our new hypothesis predicts
that testing a wider range of stimuli including humans and, for
instance, tools will result in the same continuum reported here
but flanked on the animate side by human stimuli and on the
inanimate side by tools.

The animate—inanimate distinction is a fundamental psycho-
logical distinction that appears early in cognitive development
(Rakison and Poulin-Dubois, 2001), deteriorates late in dementia
(Hodges et al., 1995), and is a major determinant of morpho-
syntactic structure throughout the languages of the world (Dahl,
2008). Because our findings suggest that degree of animacy is re-
flected by differential activity across the same systems that underlie
the animate—inanimate distinction in corte, it is a clear possibility
that those subsystems in part encode the ubiquitous ontological di-
mension of animacy itself. This proposal agrees with the social brain
hypothesis (Dunbar and Shultz, 2007), which proposes that the large
human neocortex evolved as a result of evolutionary advantages
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conferred by social collaboration, with the perception of and com-
munication with other minds as a primary function. Similarly,
the domain-specific theory of category specificity in the brain
(Caramazza and Shelton, 1998) proposes a dedicated subsystem
for representing conspecifics as the basis of the animate-specific
regions of cortex. In addition to the animate subsystems, how-
ever, the domain-specific theory also proposes that the subsys-
tem underlying inanimate representations arose out of
evolutionary pressures for representing affordances in manip-
ulability, thus facilitating the advancement of tool use among
our ancestors. It remains to be seen how marginally animate
objects, like bugs, can fit within the same domain as manipu-
lable objects, like tools, as there are no obvious affordances for
manipulability associated with bugs.

Important caveats are necessary to avoid misrepresentation of
this discussion of our findings. Foremost, we are not proposing a
single-dimensional psychological model for representation in
LOC. In fact, our results show that this single dimension does not
account for fine-grained distinctions—for within-class discrim-
inations. While the dimension we have identified accounts for a
considerable amount of variance in our data, removing that vari-
ance nevertheless resulted in category-specific patterns that sup-
ported robust classification performance across all pairs of
animal categories. Thus, the dimension of animacy is most cer-
tainly just a single dimension within a high-dimensional repre-
sentational space. In recent related work, we explore evidence for
a common high-dimensional model of object representation in
ventral temporal cortex (Haxby et al., 2011) that proposes >30
such dimensions. Second, the proposal that animacy is the psy-
chological dimension encoded by the dimension in question is an
open hypothesis that will require further investigations to ade-
quately address. The proposal is compelling, especially given the
high reproducibility of the dimension across our subjects and
the strong demonstrated relationship between the dimension and
the cortical systems that underlie the animate—inanimate distinc-
tion. However, further experimentation is needed to know
whether the graded representation of animacy is in fact the pri-
mary dimension that defines the macro-structure of representa-
tion for animate categories.
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