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Abstract

Bound propagation is an important Artificial Intelligence technique used in Constraint
Programming tools to deal with numerical constraints. It is typically embedded within a
search procedure (”branch and prune”) and used at every node of the search tree to narrow
down the search space, so it is critical that it be fast. The procedure invokes constraint
propagators until a common fixpoint is reached, but the known algorithms for this have
a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables
have a small numerical range, but they have the well-known problem of being prohibitively
slow when these ranges are large. An important question is therefore whether strongly-
polynomial algorithms exist that compute the common bound consistent fixpoint of a set
of constraints. This paper answers this question. In particular we show that this fixpoint
computation s in fact NP-complete, even when restricted to binary linear constraints.

1. Introduction and Overview of the Main Results

Constraint solvers typically solve problems by interleaving search and propagation. Prop-
agation is an iterative procedure which, at each iteration, propagates every constraint in
the problem to narrow the domains of its variables. The iteration stops when no constraint
changes the domains of its variables. In this case, propagation has reached a common fix-
point for all constraints. This iterative algorithm is guaranteed to compute the fixpoint in
polynomial time if propagating each constraint takes polynomial time and the domains of
the variables are defined as lists of values. Very often, however, it is inconvenient or infeasi-
ble to list all values explicitly: instead the domains are defined by lower and upper bounds.
We focus on this representation, and on variables taking integer values. In this setting,
computing a fixpoint by the iterative algorithm may require exponential time even if each
constraint can be propagated in polynomial time. We show that this exponential behaviour
is not simply due to the iterative algorithm being suboptimal; rather it is intrinsic to the
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problem of computing a fixpoint, as it is NP-complete even when the system of constraints
is restricted to binary linear inequality constraints.

1.1 Bound Propagation and Slow Convergence

We illustrate the behaviour of the iterative fixpoint algorithm using a system of two con-
straints:

r+y="7 x+1>2y, with initial bounds:  x € [0,5], y € [0, 10]

A possible trace of the fixpoint computation is the following. The lower bound of y is
initially 0 but from the constraint = + y = 7 we deduce that y cannot take values 0 or 1:
if it does, then the sum is < 7, even if we fiz x to its highest allowed value. Therefore the
intervals can be narrowed down to z € [0,5],y € [2,10]. Similarly:

from r+y=7, we deduce: xz €[0,5],y € [2,7];
from z+1>2y, we deduce: x €[3,5],y € 2,7];

and: x € [3,5],y € [2,3];
back to z+y =17, wenow deduce: =z € [4,5],y € [2,3].

At this point we have reached a common fixpoint for both constraints, because we cannot
deduce that the domains need to be narrowed any further.

This algorithm, however, exhibits slow convergence behaviour even in deceivingly simple
examples such as:

r<vy, y<ax with initial bounds: € [0,10%], y € [0,10%] (1)

The iterative algorithm for fixpoint computation shrinks the bounds by one unit in each
iteration, which means that 10® iterations will be required to reach the fixpoint, which in
this case is empty. This slow convergence is in fact exponential in the size of the problem
representation, as log(10%) bits are enough to represent each bound. This behaviour is not
limited to artificial examples as the previous one but in fact happens time and again when
solving problems with large numerical ranges. This severely limits the application of CP in
areas such as software verification or theorem proving where large ranges are needed (e.g.,
the whole 32-bit integer range).

Due to the importance of the problem, efforts have been made to alleviate slow con-
vergence, notably Jaffar, Maher, Stuckey, and Yap (1994), Lhomme, Gottlieb, Rueher, and
Taillibert (1996), Lebbah and Lhomme (2002), Leconte and Berstel (2006); but all proposed
algorithmic improvements prevent slow convergence only in specific cases. Fully addressing
the slow convergence problem would require a strongly polynomial algorithm for fixpoint
computation. Therefore the question is: does such an algorithm exist, or is bound propa-
gation in fact intractable?

1.2 Prior Complexity Results on Propagation

Standard propagation algorithms are iterative processes that apply ”propagators”, i.e., nar-
rowing functions associated with each constraint, until reaching a fixpoint. Their complexity
is therefore determined by two complementary questions:
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Q1: How hard is it to compute each propagator?
Q2: How hard is it to find a common fixpoint of the propagators?

The complexity of constraint propagation has in a sense been extremely well-studied, but
all the results we are aware of for bound propagation deal with Question 1 only. Those prior
hardness results showed that for some complex constraints we cannot have polynomial-time
propagators reaching certain levels of consistency. Two such results are:

e Given a linear equality it has been observed (Yuanlin & Yap, 2000; Choi, Harvey,
Lee, & Stuckey, 2006) that any propagator that reaches arc consistency or bound(Z)
consistency! needs to solve a knapsack problem, which is NP-complete in the weak
sense. For this reason propagators for linear constraints used in practice either reach
a weaker consistency such as bound(R) consistency, or are restricted to very small
domains, as proposed for instance in Trick (2001).

e Results by Bessiere (2006) prove that even bounded-arity (two-variable) constraints
can be constructed for which checking bound(Z) consistency is NP-complete.

Question 2 only makes sense, of course, in the common case where the propagators are
polynomial-time computable (if they are not, computing their common fixpoint cannot be
easy in general). The only known fact in this case is that the standard, iterative propagation
algorithms often take an exponential number of steps to reach a fixpoint in practice, as
mentioned and illustrated in Section 1.1. This leaves open the question whether better
algorithms exist or fixpoint computation is, in fact, intrinsically hard.

1.3 Our Main Results

In this paper we consider very simple, common propagators and address Question 2. We
show that in general even surprisingly simple propagators can lead to a fixpoint computa-
tion problem that is NP-hard. This not only explains why all standard, iterative fixpoint-
computation algorithms have an exponential worst-case in practice, but also shows it is un-
likely that the there exists an algorithm with better worst case. In particular an important
class of simple propagators whose fixpoint computation is NP-hard is the bound(R) consis-
tency propagators for linear constraints (Proposition 1). These are ubiquitous constraints,
and very weak and widely used propagators for these constraints. Many problems that
use numerical computations and large domains tend to include at least linear constraints,
therefore there are few cases where slow convergence will be avoidable. We nevertheless
identify one such case: if the coefficients of the linear constraints are all unit (1 in absolute
value), then bound(R) consistency can be obtained in polynomial time by a non-standard
propagation algorithm based on Linear Programming. We also study other types of basic
numerical constraints: multiplication and max.

1.4 Outline

In Section 2 we summarize the required material on Constraint Satisfaction Problems
and bound propagation. Section 3 then focuses on linear constraints. We prove the

1. We give the formal definitions of bound(R) and bound(Z) consistency in Section 2.2.
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aforementioned Proposition 1, then identify restricted forms of linear constraints for which
propagation is tractable. Section 4 presents results for some other basic propagators: for
quadratic constraints, the hardness result can be strengthened and holds even for a fixed
number of variables; for max constraints, fixpoint computation has an interesting complexity
(between P and NP-complete) and is proved equivalent to an important open problem; we
last comment on max-closed constraints. We conclude in Section 5.

2. Formal Background

In this section we summarize the required material on Constraint Satisfaction Problems and
bound propagation. More details on this material can be found in papers by e.g. Schulte
and Carlsson (2006), and Bessiere (2006).

2.1 Comnstraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a triple (X, D,C), where: X = {z1---z,} is
a set of variables, D = {D; --- D,} is a set of finite domains (finite sets of values), one for
each variable, and C' is a set of constraints. In this paper we consider discrete domains: all
the elements in D are integers. For the moment we simply define constraints very generally
as logical predicates over subsets of X; later in the paper we consider specific types of
constraints, for instance linear ones. An assignment is a function 7 that assigns a value
7(x;) € D; to every variable x;. A solution to the CSP is an assignment that satisfies the
constraints. Throughout the paper, we keep the following conventions:

e n = |X| denotes the number of variables;
e m = |C| is the number of constraints;

e d = max;e1.p |D;| is the size of the largest domain.

It is important to note that D; may be represented as an interval, rather than an explicit
set of values. In this work, we only consider domains represented as intervals: each domain
is of the form D; = [l;, u;], where [; and u; are the lower and upper bounds of the domain.

2.2 Propagators and Notions of Bound Consistency

The constraints of the problem are associated with propagators. (In our setting there will
be, in general, several propagators per constraint.) We follow the classical presentation of
propagators as operators on a lattice, initiated in work by Benhamou (1996) and on which
more details can be found in papers by Apt (1999), and Schulte and Carlsson (2006): each
propagator is a function that can narrow the domains of (some of) the variables, removing
values that cannot appear in any solution. Thus, we talk about the current domain of a
variable z;, as the result of it being narrowed by the application of one or more propagators.
We denote by x; the current lower bound of x; and by ;" its current upper bound. z;
and xj are initially set to the initial bounds [;, u; and remain afterwards constrained by
li <y <z} < w. We denote by D the Cartesian product of the intervals [I;,u;] for all
1 € l.n.
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Definition 1 (Propagator) A propagator for a constraint k € 1..m is a function f :
P(D) — P(D), that is:

e monotone, i.e., A C A — f(A") C f(A);
e contracting, i.e., f(A) C A;
e correct, i.e., no point in A\ f(A) satisfies the constraint.

We restrict ourselves to propagators that are polynomial-time computable. Bound con-
sistency propagators are additionally restricted to elements of P(D) that are representable
as Cartesian products of intervals, plus the special value (.

Several types of propagators can be used for numerical constraints; these propagators
are characterized by the level of consistency they enforce. Since we have restricted our
focus to interval domains, we present only bound consistency. The two main variants are
bound(Z) and bound(R) consistency:

Definition 2 (Bound(Z|R) support) A bound(Z) (bound(R)) support of a constraint k
is an assignment T of integer (real) values to the variables X such that x; < 7(x;) < xf
fori € 1.n and T satisfies the constraint k.

Definition 3 (Bound(Z|R) consistency) A constraint k is bound(Z) (bound(R)) con-
sistent iff for every variable z; € X, there exists a bound(Z) (bound(R)) support T~ with
() = x; and a bound(Z) (bound(R)) support T+ with 7+ (x;) = x;

Z’ .
The difference between the two is easily understood on an example:
Example 1 Consider the constraint 2x + 2y + 3z = 4.

o The intervals x,y,z € [0,1] are bound(R) consistent since each of the integer bounds
has a real-valued support: x = 0 is supported by the tuple (x = 0,y = 1,z = 2/3);
z=1and y =0 by the tuple (xt =1/2,y =0,z=1); =1,y =1 and z = 0 by the
tuple (x =1,y =1,z =0).

e These intervals are, however, not bound(Z) consistent: the only integer solution is
(x =1,y =1,z = 0), which means that bound(Z) consistency would reduce the bounds
further to x € [1,1],y € [1,1],z € [0,0].

Bound(Z) consistency requires that we check the existence of an integer-valued support,
and for some classes of constraints such as linear equalities each propagator would need to
solve an NP-complete problem. Since our focus is on the computation of common fixpoint of
simple operators, we only consider bound(R) consistency in this paper. As noted previously
in the literature (Schulte & Stuckey, 2005), bound(R) consistency it is in fact “the bound
consistency implemented for most primitive constraints”, precisely because it is often the
only one for which propagators are easy to compute in general for large domains. In the
rest of the paper we focus on several of the main basic types of numerical constraints (in
particular linear ones), and give further details on the bound(R) consistency propagators
obtained for these constraints. In all the cases we consider the propagators are very simple
indeed.
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A:=D
change := true
while change do
change := false
foreach f € F do
oldA := A
A= f(A)
if A # oldA then change := true
done
done

Figure 1: A simple fixpoint computation algorithm.

2.3 Fixpoints

Propagators are monotone narrowing operators, thus we may consider the problem of iden-
tifying the greatest common fixpoint of a set of propagators.

Definition 4 (Greatest Common Fixpoint) The greatest common fixpoint gfp(F') of a
set of propagators F is the largest Cartesian product of intervals A C D such that for each
operator f € F, we have f(A) = A.

There are two computational problems related to fixpoints:

e Function Problem: Effectively compute gfp(F);

e Decision Problem: Decide whether gfp(F) # (), i.e., whether there exists a (non-
empty) fixpoint. (Note that our definition of propagators implies that f(0) = 0 for all
f € F. Therefore ) is always a common fixpoint.) In other words: do the propagators
stabilize to non-empty domains?

As often in complexity work we mostly focus on the Decision problem in this paper.
The reason is that the basic complexity classes (NP in particular) are defined for decision
problems, and that hardness results on the decision problem also imply that the function
problem is hard. The only place where we refer to the function problem is this section,
where we describe the basic greatest fixpoint computation algorithm.

An algorithm for computing gfp(F') is specified in Fig. 1. It is presented in its simplest
form, which excludes several possible optimizations related, in particular, to the fact that
not all constraints necessarily deal with all variables. (These optimizations are well-known
and orthogonal to our discussion in this paper.) In this algorithm we initialize the Cartesian
product of domains to D, in other words we initially have z; = [; and z = wu;, for
all ¢ € 1..n; and we simply apply all propagators until a stable state is reached, i.e., no
propagator shrinks any domain further. The reader can verify that this algorithm specifies
formally the reasoning that we presented informally in our introductory example (Sec. 1.1).
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2.4 Complexity Upper Bound of Fixpoint Propagation

The worst-case time upper bound of fixpoint computation can be analyzed as follows?.
Let p = |F| be the number of propagators. (Note that we have in general one or more
propagators per constraint, i.e., p > m.) We enter the while loop at most nd times since
at every new iteration we must reduce at least one bound by one unit, and each time the
foreach loop is entered at most p times. Overall the algorithm therefore terminates after a
number of propagator applications of:

O(npd).

In other words, it is in fact exponential in the number of bits of the encoding: this complexity
can be written (’)(np-2b), where b is the number of bits of the bound encoding. This is despite
the fact that each propagator is polynomial in the size of the encoding. Such algorithms are
called pseudo-polynomial. In contrast algorithms that are truly polynomial in the number
of bits of the encoding, i.e., whose worst-case time complexity is O(w(n, m,logd)), for
some polynomial 7, are called strongly polynomial (Papadimitiou, 1994). The problem of a
pseudo-polynomial algorithm for this problem is that it scales linearly with the size of the
domains, which may themselves be exponentially large. Since the propagators we consider
take strongly polynomial time, the analyis of the upper bound is summarized as follows:

Observation 1 The naive fizpoint computation algorithm (Fig. 1) always terminates in
pseudo-polynomial-time.

The question is whether strongly polynomial algorithms exist. The rest of the paper
focusses on this question, for several classes of propagators.

3. Linear Constraints

In this section we consider linear inequalities, i.e., our set of constraints C' contains m
inequalities of the form:
Z a;ixT; >cp, kel...m (2)

i€l..n

where each ¢, and a;j, are integers. It is convenient to introduce some extra notation: we
denote by s; ;, the sign of the i¢th term in constraint k, i.e.,:

o + if Qi k >0

Moreover, given a sign s € {—,+}, the sign —s is defined as + if s = — and as —

otherwise. The sign +s will simply denote s. With this notation the terms a; gz, Sk
+5ik

a; T, simply represent the smallest and largest elements of the set {a; yv | v € [z}, z;]}.

and

2. Few papers give explicit upper bounds on the complexity of computing a fixpoint of a set of bound
consistency propagators. The earliest reference we are aware of is the work of Lhomme (1993); it
considers constraints on the reals but assumes finite precision (floating points), and its analysis directly
adapts to discrete intervals.
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3.1 Bound(R) Consistency Propagators for Linear Inequalities

We briefly summarize the material we need on bound(R) consistency in the case of linear
inequalities. We refer the reader to the literature for more details, in particular the papers
by Harvey and Stuckey (2003), Schulte and Carlsson (2006), Bessiere (2006), and Apt and
Zoeteweij (2007) have substantial material on bound(R) consistency and linear constraints.
Also of interest are works that show how to improve bound propagation for long linear
constraints (Harvey & Schimpf, 2002; Katriel, Sellmann, Upfal, & Van Hentenryck, 2007).

Consider a variable z;. Its bound a:l_slk is bound(R) inconsistent w.r.t. the kth inequality
of the system iff: even when we fix the other terms to their maximum, we obtain something
lower than cg. It is bound consistent if the opposite is true i.e., iff:

+S1,k +Si—1,k —Sik +Si+1,k +Sn,k
a1,kTq + ...+ ai_kai_i +| a; kT, YR+ ai+1,k‘ri+i + ...+ apkTn > e (4)

We call this the bound consistency inequality of variable x; w.r.t. constraint k. The
bound consistency propagator for a linear inequality simply shrinks the bounds of each
variable z;. Let:

Qik = Ck— Z aj,kﬂf;rsj'k
JElLn], j#i

be the minimal quantity that has to be reached by a; pz; "k to satisfy the bound consistency
inequality (in other words: z; is bound consistent w.r.t. constraint k iff ai,kx;si’k > Gik)-
The (bound(R) consistency) propagator associated with constraint k& € 1..m and variable

7 € 1..n is the function that reduces the bound of x; to the closest bound consistent value.
It is defined by the following pseudo-code:

if aj, >0 then xz; := max (:Ei_7 [gzﬂ)
I ' (5)
ifajx <0 then z; := min (”3?’ LZZD

(The propagator does nothing if a; = 0.)

3.2 NP-completeness of Integer Fixpoint Computation

We now prove that the propagators L;j introduced in the previous sub-section (Eq. 5),
although very simple when considered independently, give rise to complex fixpoints. More
precisely, we show the NP-completeness of the following decision problem:

Decision Problem 1 (Bound(R)-Consistency for Linear Constraints)

INPUT: a CSP whose set of constraints C' are linear inequalities.

QUESTION: Let F' = {L;}, : i € 1.n,k € 1..m} be the set of bound(R) consistency propaga-
tors associated with the CSP. Do the propagators in F' have a non-empty common fizpoint?

3.2.1 CHARACTERISING THE FIXPOINTS BY INEQUALITIES

Our first observation is that the bounds obtained when a fixpoint is reached are characterized
by the bound consistency conditions of Eq. 4. In other words a fixpoint is reached iff the
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lower and upper bounds z; and a;;" satisfy the following inequalities, for each variable ¢ and
constraint k:

+51,k +Si—1,k —Sik +Sit1,k +Sn,k
ay,kTq YR+ ai_kai_{ bE 4 Qi kT, 4 ai+17kxi+{+ + ..+ apren > e
Vkel...myiel...n (6)
ligxi‘ga:jgu,- Viel...n

It is clear that Decision Problem 1 is answered positively iff there are integer values for
the bounds z;” and :172',2' € 1..n, that satisfy the Linear Program 6. (If a fixpoint exists then
the bounds given by this fixpoint satisfy the inequalities and are within the initial bounds
l;,u;. Conversely if the inequalities are satisfied we have a fixpoint.)

A first consequence for Decision Problem 1 is that its membership in NP is straightfor-
ward since it is solvable by Integer Programming.

3.2.2 LINEAR INEQUALITIES WITH TWO-VARIABLES-PER-INEQUALITY

The key to understanding why Decision Problem 1 is hard is to connect fixpoint computation
to the special case of Integer (Linear) Programming where all constraints have Two Variables
Per Inequality (TVPI in the LP terminology, see Bar-Yehuda & Rawitz, 2001):

Definition 5 A TVPI instance with m constraints and n variables is an Integer Linear
Program of the following form.:

akxik—kbka:jk >c, Vkel...m

where a,b, ¢ are vectors of arbitrary (possibly negative) integers.

The feasibility of TVPI constraints is NP-complete® but can be decided in pseudo-
polynomial time. An early pseudo-polynomial time algorithm can be found in work by
Aspvall and Shiloach (1980); this algorithm essentially reduces the problem to a 2-SAT
instance of size m - d, which is solvable in linear time (the overall algorithm therefore
runs in pseudo-polynomial time, but also with a pseudo-polynomial space requirement).
A particularly relevant algorithm for TVPI constraints is proposed in the work of Bar-
Yehuda and Rawitz (2001). This algorithm has pseudo-polynomial time complexity with
low, strongly polynomial space requirements. Interestingly, this algorithm essentially uses
bound propagation (in fact, precisely bound(R) consistency), and embeds it in what amounts
to a backtrack-free search with a “parallel” improvement that allows to amortize its overall
runtime.

This seems to suggest a strong relation between propagation and TVPI constraints; in
particular one could easily be mistaken to believe that propagation is a decision procedure
for systems of TVPI constraints. We say that propagation provides a decision procedure for
a class of constraints if propagation fails exactly when the constraints are unsatisfiable (in

3. Here we focus on feasibility only. The optimization problem, i.e., optimizing a linear function under
TVPI constraints, is strongly NP-hard, i.e., NP-hard even for bounded domain sizes (in fact domains
{0,1} are enough), because it trivially encodes Max-2SAT (Bar-Yehuda & Rawitz, 2001).

665



BORDEAUX, KATSIRELOS, NARODYTSKA, & VARDI

other words: the existence of a bound consistent state suffices to guarantee the existence
of a solution). This is the usual condition that guarantees a backtrack-free search; but
propagation rarely achieves this in the general case and it is in fact not a decision procedure
for TVPI constraints:

Example 2 Consider the problem = +y = 1,z = y with z,y € [0,1]. The problem is
inconsistent yet it is bound(R) consistent (and also, in fact, bound(Z) consistent).

To prove our main result we need to identify a restricted case of TVPI constraints
for which fixpoint computation is indeed a decision procedure. This particular case is
monotone TVPI constraints, in which the two variables in each inequality have coefficients
with opposite signs, i.e., the problem is of the following form:

Definition 6 A monotone TVPI instance with m constraints and n variables is an In-
teger Linear Program of the following form:

apx;, —byr;, >cp Vkel...m

where ap, > 0,0, > 0,Vk € 1...m.

We can now prove our NP-hardness result from monotone TVPI constraints, using the
following result:

Theorem 1 (Lagarias, 1985) The feasibility of Two- Variable- Per-Inequality monotone In-
teger Programming is NP-complete.

3.2.3 NP-HARDNESS

We now prove that Decision Problem 1 is NP-hard. We already know that it is in NP,
therefore we can state our main result for bound(R) consistency for linear constraints as:

Proposition 1 Decision problem 1 is NP-complete.

Proof. We show that fizpoint computation decides systems of monotone TVPI constraints.
Consider a monotone TVPI instance Q of the form given by Def. 6. We want to show
the equivalence: Q has an integer solution iff the set of bound(R) consistency propagators
obtained for Q have a non-empty common fixpoint.

e “Q has an integer solution” means that there exist integer values v; for each variable
x; satisfying l; < v; <wu; and, Vk € 1...m:

agvi, — bgvj, > cg (7)

o “There exists a common fixpoint” means that bounds x; , :L"Z'-", can be found for all
i€ 1...n, satisfying l; < x; < mj <w; and, Vk € 1...m:

agr; —bpr; > cx apry — byl > o (8)

(These are simply the constraints of Eq. 6 for variable xz;, (left) and x;, (right),
rewritten by taking into account a > 0,b > 0.)
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We prove the two directions of the iff:

o Consider an integer solution to Q in which each variable z; takes value v;. It is easy

to verify that the bounds x; = :E:_ = v; satisfy l; < x; < x:r < wu; and Eq. 8.

o Consider a bound consistent state described by the bounds x; :E;" It is easy to verify
that the solution v defined by v; = a:;r,z' € 1...n satisfies l; <v; < u; and Eq. 7.

This means that we can reduce the problem of monotone TVPI feasibility to the existence
of a fixpoint, and that Decision Problem 1 is therefore NP-hard. O

Note that the NP-hardness result for Decision Problem 1 holds even for (monotone)
TVPI constraints, while the pseudo-polynomial upper bound of Section 2.4 holds for general
linear constraints of unbounded sizes; as said earlier the membership in NP is also valid for
general linear constraints.

3.3 A Comment on Linear Equalities

From the beginning of this section we have focused on linear inequalities for reasons that
should become clear in this sub-section. Readers may wonder whether considering equalities
would make any difference. The short answer is no.

A first observation is that an inequality > ;< ,, @;z; > c can directly be encoded into the
equality Y ;¢ ., aiT; —y = ¢ where y is a new variable ranging over [0, u] for u > 3, aix;rsi,
so that there is a bijection between solutions of the two constraints. Therefore the problem
of propagating inequalities reduces to the problem of propagating equalities, and the NP-
completeness result still holds for problems whose linear constraints are all equalities (or
for any mix of equalities / inequalities).

A second observation is the following: because we focus on bound(R) consistency, the
propagation obtained for an equality } ;cq ,, a;z; = c is the same as the one obtained using
two constraints ) ;o; ,a;x; < ¢ and ) oy, a;x; > c. For this reason it is convenient
to assume that constraints are of homogeneous form, and to restrict ourselves to linear
inequalities?.

3.4 Tractable Classes of Linear Constraints

Intractable problems often become tractable when additional restrictions are imposed on
the topology of the constraint graph, or on the constraints themselves. In this subsection
we identify one significant class of linear constraints that can be propagated in strongly
polynomial time, based on a restriction on the coefficients of the constraints.

Our initial observation is that one source of complexity of the propagators L;j of Eq.
5 is that they use rounding: when we update a variable’s bounds, we obtain from the other
variables a real value that is rounded upwards for lower bounds and downwards for upper
bounds. The effects of rounding were noticed by previous authors and used to optimize

4. Note also that in the case of inequalities the propagators for bound(Z) consistency are the same as for
bound(R) consistency. Since we want propagators to be polynomial-time computable, the case we want
to avoid however is bound(Z) consistency for linear equalities, where we cannot define polynomial-time
computable propagators unless P=NP.
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propagation (Harvey & Stuckey, 2003). Rounding effectively means that propagation stabi-
lizes to integral solutions of Linear Programs. The Linear Programs in question have a very
specific form, but the intractability is due to the integrality. Therefore in this sub-section
(1) we observe that if we remove the rounding, the problem becomes tractable; (2) we use
this observation to show that if the coefficients are unit (i.e., belong to {—1,0,+1}), there
is effectively no rounding, which means that the same tractability result holds.

3.4.1 LINEAR PROPAGATORS WITHOUT ROUNDING

We now consider operators similar to those of Eq. 5 but without rounding, in other words
we now associate to the linear constraints the following operators:

if aj, >0 then x; := max (332-_, Zli)
Si ket (9)
ifa;p <O then z7 := min (xj', Z”Z)

Even when the initial bounds are integers as assumed throughout this paper, these
operators will in general reduce these bounds to real-values. Note that such propagators
can effectively be used to deal with variables with a real-valued domain, indeed they are used
both in the Constraint Programming community (Behamou & Granvilliers, 2006) and in the
Operations Research community, where a different terminology is used (Feasibility-Based
Bounds Tightening, see e.g. Belotti, Cafieri, Lee & Liberti, 2010).

The decision problem we focus on is now whether there exist real-valued bounds that
are a fixpoint. We note that this problem is tractable; a similar result has been reported
independently in the work of Belotti, Cafieri, Lee, and Liberti (2010).

Decision Problem 2 (Fixpoint of Continuous Linear Propagators)

INPUT: a CSP whose set of constraints C' are linear inequalities.

QUESTION: Does the set of real-valued propagators F = {S; :i € 1.n,k € 1.m} associ-
ated to C have a common fixpoint?

Observation 2 Decision problem 2 can be decided by Linear Programming.

It is easy to see that the fixpoints of operators \S; . are exactly the real-valued solutions to
the system of linear constraints of Eq. 6. Note that we have been careful in the statement
of Observation 2: whether Linear Programming is strongly polynomial is in fact a long-
standing open question (Smale, 1998). The best “polynomial-time” LP algorithms are,
encouragingly, of time complexity O(m(n,m,b)) for some polynomial 7, where b is the
number of bits of the number encoding—this looks strongly polynomial (Khachian, 1979).
But there is a catch: the complexity is counted in number of operations, and operations
on the rationals can in principle expand the size of the numbers (repeated multiplications
can blow-up the representation exponentially). However, for practical purposes, typical LP
implementations prevent the blow-up of number representation by limiting the precision
to b bits throughout the execution; solvability by Linear Programming is widely regarded
as synonymous to strong tractability, and provably sub-exponential LP algorithms exist
(Matousek, Sharir, & Welzl, 1996). In other words, Observation 2 should really be read as
a carefully phrased way to say that Problem 2 is efficiently solvable in practice.
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3.4.2 LINEAR CONSTRAINTS WITH UNIT COEFFICIENTS

A unit linear constraint is of the usual form ) ;. ,, a;xx; > ¢ but with the additional
restriction that each coefficient a; j is chosen in {—1,0,41}. Our introductory example of
slow convergence (Eq. 1) was a (particularly simple) example of unit linear constraints, and
the slow convergence could in this particular case be avoided. Note that we are considering
linear unit constraints of any number of variables. A special case of unit constraints that
have been widely studied is the class of unit-TVPI constraints (i.e., both unit and TVPI).
This is perhaps the most important class of linear constraints whose integer feasibility can
be solved in strongly polynomial time, see for instance work by Jaffar et al. (1994).

Proposition 2 When all constraints have unit coefficients, Decision Problem 1 can be
decided by Linear Programming.

Proof. The LP is, of course, of the form given in Eq. 6. The observation is, in short,
that no rounding is needed when the coefficients are unit.

More precisely, for any Cartesian product of intervals A, let L(A) = ; , Lix(A) and
S(A) =Nk Sik(A). We show that when all coefficients are unit and when (as defined) the
bounds of the initial Cartesian product D are integral, then we have L'(D) = SY(D), for
all t > 0. We first note that the bounds of L'(D) are integral for all t since the original
state D has integral bounds and that each operator in L applies rounding. The equality
LY(D) = SYD) is now proved by induction on t. For t = 0, LY(D) = SYD) = D. If
the induction hypothesis holds at step t, then S™1(D) = S(S4D)) = S(LY(D)). Now
SH(D) = L(LY(D)) = L'*1(D) because L' (D) has integral bounds, hence applying S or L
on this Cartesian product gives the same result. (In Eq. 5 all g; s are integral in this case
and all a; s are unit therefore the division ¢; /a; gives an integer, which means that the
propagators L; i with rounding return the same result as the non-rounded propagators S; i
of Eq. 9.)

Now having L'(D) = SY(D), for all t > 0 it is easy to see that gfp{L;r} = gfp{Six}
Because the domains are finite L'(D) stabilizes for a finite t. For this particular t, L*(D) is
the greatest fixpoint of L and the same greatest Cartesian product S'(D) is also the greatest
fixzpoint of S. O

Note that in general Linear Programming does not necessarily find integer solutions to
the system of Eq. 6; what the result shows is that LP will find a solution iff an integer one
exists. If we want to actually compute the largest consistent bounds x; and xj of a certain
variable z;, we can simply minimize x; or maximize :17;|r under the constraints of Eq. 6.
The previous proof shows that these extremal values are integral.

3.4.3 ARE THERE OTHER TRACTABLE CASES?

It is interesting to consider whether other properties make the propagation solvable in
strongly polynomial time. With respect to restrictions on the constraint graph, there are
nevertheless reasons to be pessimistic: we note that the feasibility of monotone TVPI Integer
Programming remains NP-complete under strict restrictions on the constraint graph, as
shown in the work of Hochbaum and Naor (1994). This suggests that such restrictions are
unlikely to lead to interesting tractable classes of fixpoint computation.
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Regarding the restrictions on coefficients, we note that in general the NP-completeness
of (monotone) TVPI constraints assumes that the coefficients ag, by, ¢ are arbitrary. The
Unit restriction imposes, on the contrary, the strongest restriction on coefficients: that their
absolute value be < 1. If we impose a more general bound 8 on these absolute values then
one may wonder whether the problem exhibits some form of fized-parameter tractability.
We leave this question open for future work.

4. Generalizations and Non-Linear Constraints

By Proposition 1, fixpoint computation for numerical constraints as basic and common
as linear constraints is intractable. Several cases of non-linear constraints are neverthe-
less of interest. First, we show that if the simplest possible type of polynomials (a single
squaring operation) is added to linear constraints, then our general hardness result can be
strengthened. Second, it is interesting to note that if we enrich unit linear constraints with
simple min or max constraints, then fixpoint computation is equivalent to a puzzling open
problem discussed recently in the theorem-proving literature. Last, we briefly comment on
connections between our results and the tractability of max-closed constraints.

4.1 Quadratic Constraints
For the purposes of this section it is sufficient to enrich our linear constraint language
(constraints of the form given by Eq. 2) with squaring constraints of the form:

2

It is also sufficient to restrict ourselves to non-negative values for variables z; and x;, i.e.,
0 <l <u;and 0 < [; < wuj. In this setting the bound(R) consistency propagators are
defined by the following instructions:

2 2
x; = max(z; , (x]_) ) r; := min(x], (x;r) )

T = max(a:j_, { x;-‘) a:;r = min(a:;r, { ij)

In other words the fixpoints are integer solutions to the following bound consistency

inequalities:
2 2
x; > (a:]_) ;oaf < (mj) Poowy >y xj <\/xf (10)

When these simple quadratic constraints are added to the language of linear constraints,
our NP-completeness result can be strengthened: the problem is NP-complete even when
considering a bounded(!) number of variables and constraints; in fact one TVPI constraint
and one squaring constraint. This is due to the fact that fixpoint computation converges to
a state that encodes a complex number-theoretic problem.

Proposition 3 Given a CSP with 3 variables and 2 constraints a1x1 + asxo = ¢, 21 = x%,
determining whether their associated bound(R) consistency propagators have a fixpoint is
NP-complete.
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Proof. Membership in NP is straightforward. We show the hardness result for the special
case where a; > 0,1 € {1,2,3} and focus, as said, on positive intervals. We first note
that the bound consistency inequalities of (Eq. 10) for the squaring constraint 1 = 3% are
satisfied iff v7 = (z3)? and z{ = (x3)? since we focus on integer bounds. (This property of
the squaring propagator is noticed in a slightly different form in Schulte & Stuckey, 2005).
From a propagation viewpoint the equality ayx1 + asxe = c is seen as two inequalities
a1r1 + agxe > ¢ and —ajry — agwe > ¢ whose bound consistent inequalities (Eq. 4) are
effectively satisfied iff a1x] + asxy = ¢ and a1z + aszy = c.

We rely on a theorem (Manders & Adleman, 1978) which shows that deciding whether
an equation of the form alxg + asxy = c has integer solutions, where a1, as and c are
non-negative integers, is NP-complete. We reduce this problem to the existence of bound
consistent bounds for the conjunction a1x1 + asxs = ¢, 1 = x% with initial bounds 1 = Iy =
I3 =0 and uy = us = uz = ¢. We just need to show that fixpoint computation is complete
for this system—a bound consistent state is found iff the original equation has a solution:

e [If the original equation has a solution, i.e., a pair of non-negative integer values
(vg,v3) satisfying a1v? + agve = ¢, then we define T, = xf =03, Ty = x; = vy, and
T3 = x;f = v3. These bounds are such that 0 < x; < a;:r < ¢ and satisfy the bound
consistency conditions of Eq. 10 and Eq. 4.

e [f the conjunction has a bound consistent state, i.e., bounds :Ei_,l‘;_ such that Fq. 10
and Eq. 4 are satisfied, then the solution v defined by vy = x5 and vs = x5 satisfies
the original equation aw% + asvy = c.

4.2 Connections to the Max-Atom Problem

Another common type of primitive non-linear constraints is of the form:
xp, = max(x;, z;)

The bound(R) consistency propagators for this constraint are the following (Schulte &
Stuckey, 2005):

x;, = max(z,, z; ,z; ) z = min(z;], 2})
zf = min(m;{,max(mj,x;r)) xj = min(mj,xj)

(In fact to strictly reach bound(R) consistency one would need to additionally check
whether the bounds of z; have an empty intersection with the bounds of one of the max-ed
variables, say x;, in which case we can essentially impose the constraint x; = xj; for the
purposes of this section the simpler formulation above is equivalent.) In other words the
fixpoints are characterized by the following inequalities:

+ + o+ + + + + - - - -
x; < max(z; $ T ) x; <) ] < x, >, T, > T

The fixpoint computation of max constraints mixed with unit linear constraints is interesting
because its complexity is an open problem. Note that there is no rounding or use of

671



BORDEAUX, KATSIRELOS, NARODYTSKA, & VARDI

coefficients in the definition of the bound consistency inequalities, therefore the complexity
arising from rounding in all our NP-complete variants of propagation does not arise here.
The open problem we connect to is called Maz-Atom in the work of Bezem, Nieuwenhuis,
and Rodriguez-Carbonell (2008); see this reference for prior problems of interest that are
shown equivalent to Max-Atom. A max-atom constraint is of the form: max(z;, z;)+c > .
The work reported by Bezem et al. (2008) shows a number of results on the feasibility of
conjunctions of max-atom constraints: (1) There is no significant complexity difference
between integer and real feasibility; (2) The problem can be decided in pseudo-polynomial
time using what amounts to a fixpoint computation algorithm; (3) The problem has short
proofs of unsatisfiability and is therefore in NPNcoNP; which means that it is of a very
different nature from our other NP-complete variants. In fact, a recent result (Atserias &
Maneva, 2010) shows that the complexity of Max-Atom is equivalent to well-known open
problems called mean-payoff games, which have in turn connections to some important open
questions in model-checking: parity games, a class of games reducible to mean-payoff games,
are equivalent to the model-checking problem of p-calculus (Emerson, Jutla, & Sistla, 1993;
Jurdzinski, 1998).

Here we draw a simple connection that follows from the observation that the bound
consistency inequalities for the upper bounds include the constraint a;; < max(a;;r,xj)
which encode max-atom constraints almost directly.

Proposition 4 Bound(R) consistency for a combination of unit linear and max constraints
can be solved in polynomial time only if Maz-Atom can be also be solved in polynomial time.

Proof. 7To reduce a Max-Atom instance with variables x;,i € 1...n and m constraints to a
fixpoint computation problem we simply introduce one fresh variable yy., for each k € 1...m.
Let the kth constraint be of the form max(x;,,x;, ) +ck > xp, , it rewrites to the conjunction
max(x, , ;) = Yk, Yk + cx > xp,. The lower bounds of all variables are fized to 0 and the
upper bounds need only be set to Y cq. ,, Ci by the small model property (Lemma 2) of the
paper by Bezem et al. (2008). The bound consistency equations for the upper bounds directly
encode the problem. O

4.3 Max-Closed Constraints

We last note a connection between our results and the class of max-closed constraints
introduced by Jeavons and Cooper (1995) (more on this in, e.g., Petke & Jeavons, 2009).
A constraint R(x1,...,x,) is max-closed if whenever we have two solutions (v; ...v,) and
(w1 ...wy), their maximum defined as (max(vy,w1),...,max(v,,wy,)) is also a solution.
Results by Jeavons and Cooper (1995) show that max-closed constraints are tractable: if
a system of constraints is max-closed, then its feasibility can be determined in polynomial
time. However note that this result essentially assumes an explicit (or table) representation
of the constraint, i.e., it is assumed that each constraint is defined by explicitly listing the
tuples that are solutions to it. In contrast some important types of constraints such as the
numerical constraints considered in this paper are implicitly defined: we do not know the
list of solutions to R(x1,...,z,) but can only verify efficiently whether a particular tuple
is accepted by the constraint.
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Implicitly-defined max-closed constraints played an important role in this paper: both
the monotone TVPI constraints, considered in Section 3.2 and the Max-atom constraints
considered in Section 4.2, are max-closed, as shown respectively by Hochbaum and Naor
(1994), and Bezem et al. (2008). In sharp contrast to the case of explicitly-defined con-
straints, the resolution of implicitly-defined max-closed constraints is therefore only pseudo-
polynomial and it is in fact intractable, as shown by the special case of monotone TVPI
constraints:

Observation 3 The feasibility of 7implicitly-defined” max-closed constraints is NP-complete.

As shown in Section 3.2 with the particular example of monotone TVPI constraints,
even the fixpoint computation of implicitly defined max-closed constraints is, in fact, NP-
complete in general.

5. Conclusion

Reasoning about intervals was introduced in the Al literature by the works of Cleary (1987),
and Davis (1987)%. A substantial body of Al work has ensued (see, e.g. Hyvonen, 1992);
bound computation is now used by most finite-domain CP solvers (Schulte & Carlsson,
2006).

In this paper we have theoretically investigated the complexity of computing the common
fixpoint of a set of bound consistency propagators. We have shown that even when the
propagators are themselves very simple, the fixpoint computation used in these algorithms
can be complex, it is indeed NP-complete even for a very restricted constraint class — linear
monotone inequalities with two variables per inequality. We also considered some special
classes of constraints, like quadratic constraints and max constraints. Finally, we identified a
class of constraints, namely, linear inequalities with unit coefficients, that allows a tractable
fixpoint computation algorithm.

Bound propagation is a successful and widely used technique in Constraint Programing.
There is a large literature on propagating single constraints (Van Hoeve & Katriel, 2006;
Bessiere, 2006; Rossi, van Beek, & Walsh, 2006) and it is perhaps a surprise that no prior
study exists on the complexity of the fixpoint computation. The NP-completeness of fixpoint
computation for simple types of constraints is a fundamental and somewhat surprising
result, and one that sheds light on slow convergence phenomena.

This result also “puts bound propagation on the map” of Al computational problems:
together with knapsack constraints and some forms of learning in neural nets (Schaeffer &
Yannakakis, 1991), it is one of the few important Al problems we are aware of that have a
pseudo-polynomial complexity and yet are intractable.
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